
Received 1 June 2023, accepted 7 June 2023, date of publication 19 June 2023, date of current version 28 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287654

Using Architecture Decision Records in Open
Source Projects—An MSR Study on GitHub
GEORG BUCHGEHER 1, STEFAN SCHÖBERL 2, VERENA GEIST 2, BERNHARD DORNINGER2,
PHILIPP HAINDL 3, AND RAINER WEINREICH 4
1karriere.at GmbH, 4020 Linz, Austria
2Software Competence Center Hagenberg GmbH, 4232 Hagenberg, Austria
3Department of Computer Science and Security, St. Pölten University of Applied Sciences, 3100 St. Pölten, Austria
4Department of Business Informatics—Software Engineering, Johannes Kepler University Linz, 4040 Linz, Austria

Corresponding author: Verena Geist (verena.geist@scch.at)

The research reported in this article has been funded in part by the Austrian Research Promotion Agency (FFG) BRIDGE project
AK-Graph under Grant no. 883718; in part by the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK), the Federal Ministry for Labour and Economy (BMAW), and the State of Upper Austria in the frame of the Software
Competence Center Hagenberg (SCCH) competence center INTEGRATE under Grant no. 892418 in the COMET-Competence Centers for
Excellent Technologies Programme managed by Austrian Research Promotion Agency FFG; and in part by the Interreg Österreich-Bayern
2014–2020 Programme under Grant AB292.

ABSTRACT Architecture decision records (ADRs) have been proposed as a resource-efficient means for
capturing architectural design decisions (ADDs), and have received attention not only from researchers but
also from practitioners. We conducted a mining software repositories (MSR) study, in which we analyzed
the use of ADRs in open source repositories at GitHub. Our results show that the adoption of ADRs is still
low, although the number of repositories using ADRs is increasing every year. About 50% of all repositories
with ADRs contain just one to five ADRs suggesting that the concept has been tried but not yet definitively
adopted. In repositories that use ADRs more systematically, we observed that recording decisions is a team
activity conducted by two or more users over a longer period of time. In most repositories the template
proposed by Michael Nygrad is used. We, finally, provide an interpretation of the obtained results and
discuss open future research challenges by elaborating on implications of the study’s findings as well as
on recommendations on how to further increase the adoption of ADRs.

INDEX TERMS Architecture decision records, mining software repositories, secondary study, GitHub, open
source projects, software architecture, software architecture knowledge management.

I. INTRODUCTION
In 2004, Bosch [1] proposed to extend the view on soft-
ware architecture beyond architectural structures and also
to consider architectural design decisions (ADDs) as first
class entities. ADDs seek to capture the rationale behind
architecture solution structures, along with design knowledge
(i.e., the pros and cons of a decision, the considered design
alternatives, and the consequences resulting from a decision).
This knowledge would otherwise remain implicit knowledge
in the minds of software architects and is subject of archi-
tecture knowledge vaporization, i.e., the loss of architecture
knowledge over time [1]. ADDs have been at the heart of

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

software architecture knowledge management (SAKM)
research, in which researchers are concerned with the captur-
ing, sharing, using, and reuse of architecture knowledge [2].

Capturing architecture knowledge (i.e., documenting
ADDs) and making it explicit can be regarded as prerequisite
for subsequent SAKM activities, i.e., using, sharing, reusing,
and maintaining architecture knowledge [3]. In the first
10 years of SAKM research, many approaches for capturing
ADDs have been proposed. According to Capilla et al. [4],
there still exist many barriers for the adoption of SAKM
approaches in industry. Main barriers are the lack of adequate
tool support, the high efforts required for capturing architec-
ture knowledge, the disruption of the design flow caused by
documenting architecture knowledge, and the lack of clarity
about which architecture knowledge should be documented.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63725

https://orcid.org/0000-0002-8565-6257
https://orcid.org/0009-0006-0245-3558
https://orcid.org/0000-0002-3729-1265
https://orcid.org/0000-0001-6075-5286
https://orcid.org/0009-0005-6475-7699
https://orcid.org/0000-0001-9987-5584


G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

To overcome these barriers, Capilla et al. propose to system-
atize the capturing process and to develop lean approaches for
capturing to reduce the effort involved in capturing architec-
ture knowledge.

In 2011, Nygard [5] proposed architecture decision records
(ADRs) as a lightweight means for capturingADDs. AnADR
is a simple text file using a formatting language like Mark-
down that records a single ADD by using a simple template
(similar to describing a pattern). ADRs are stored along other
project artifacts in a repository that uses a version control
system. ADRs seek to address some of the barriers men-
tioned by Capilla et al. [4]. They are a lightweight approach
which requires only minimal resources and no dedicated
tools except a simple text editor, and which systematizes the
capturing process by means of a simple template. In 2018,
ADRs were listed by the Thoughtworks Technology Radar
as a technique that should be adopted [6].

Since ADRs have been suggested as means for capturing
ADRs in practice, this raises the question if and to which
degree ADRs have actually found their way into practice.
In this paper, we conducted a mining software repositories
(MSR) study to analyze the use of ADRs in open source
repositories.We have systematically searched for repositories
using ADRs at GitHub – the largest open source repository
and development platform. The aim of our work is to inves-
tigate if and to which degree ADRs are used in practice
and to get insights into current practices of using ADRs.
Additionally, we identified future research challenges and
discuss implications as well as recommendations based on
the study’s findings. To the best of our knowledge, this is
the largest empirical study w.r.t. to the number of analyzed
repositories.

This MSR study provides the following contributions:
1) We analyze the current adoption of ADRs by conduct-

ing the first comprehensive survey of existing ADRs
across all available open source GitHub repositories.

2) We analyze how ADRs are actually used by practition-
ers in open source projects.

3) We provide a dataset, i.e., a collection of 921 GitHub
repositories actually using ADRs, for creating a solid
foundation to apply advanced analysis and learning
techniques in order to support developers and software
architects (e.g. in reusing, finding similar ADRs, etc.)
in the field of SAKM and ADRs.

The remainder of this paper is organized as follows:
In Section II, we provide a brief overview of the context
of our work, i.e., ADDs and ADRs, and we survey related
work. Section III describes our research approach, i.e., the
research methodology we followed, as well as the plan-
ning of our study. In Section IV, we describe the execution
phase of our study. We report our findings in Section V.
In Section VI, we elaborate on implications as well as recom-
mendations according to the study’s findings and discuss the
threats to validity of our research. Section VII concludes this
paper with future work on further employment of our study
results.

II. BACKGROUND AND RELATED WORK
In this section, we introduce the research background related
to ADDs/ADRs and discuss related research.

A. BACKGROUND
For a long time, software architecture was defined primarily
as the structural organization of a software system in form
of multiple structures (e.g., in [7]). Since 2004, the view
on software architecture has been extended to also include
the decisions that lead to the definition of various system
structures as first class entities [1]. These decisions are called
Architecture Design Decisions (ADD) [8]. The aim of ADDs
is to capture the rationale behind a decision including design
rules and constraints as well as additional requirements that
have to be considered.Without ADDs essential design knowl-
edge remains implicit in the heads of software architects and
is subject of architecture knowledge vaporization [1], i.e., the
loss of architecture knowledge over time.

In [9], Kruchten identifies three types of ADDs: Exis-
tence decisions, property decisions, and executive decisions.
A typical example for an existence decision is the presence
(or even absence) of a particular element or artifact in the
resulting architecture, e.g., ‘‘The system is using PrimeNg as
the sole library of basic UI components’’. Property decisions
describe a lasting characteristic of the system, e.g., ‘‘Each
business function has to follow the MVVM pattern’’. Finally,
executive decisions have an even more fundamental character
and usually originate from the financial and/or organizational
context of a software project, e.g., ‘‘The system is developed
with Angular/Typescript, starting with Angular version 14’’
or ‘‘Each inclusion of a dependency requiring a commercial
license must be approved by the project steering committee’’.

After 2004, architecture knowledge and its management
has become an active field of research [2], [4]. Farenhorst
and Boer provide a classification for architecture knowledge
in [10]. They distinguish between implicit (tacit) and explicit
as well as between application-generic and application-
specific architecture knowledge. Implicit knowledge refers to
knowledge that only exists in the head of software architects
and developers, while explicit knowledge refers to knowl-
edge that has been made explicit by writing it down, e.g.,
in books, articles, magazines, and software documentation.
Application-generic knowledge like architectural patterns,
styles, and reference architectures represents knowledge that
can be reused for the development of multiple applications,
while application-specific knowledge like requirements and
ADDs represents knowledge that is relevant for a specific
application.

An ADR captures a single ADD and its rationale in a
template-based document. Multiple templates for ADRs have
been proposed by researchers as well as practitioners. The
ADR templates encountered during our study are shown in
Table 1. A sample1 of an ADR using the template as pro-
posed by Nygard [5] is depicted in Figure 1, showing the

1https://github.com/ASethi93/james.git (Accessed: May 24, 2023)

63726 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 1. Sample of an ADR using the template proposed by Nygard.

recommended sections, i.e., Status, Context, Decision and
Consequences. A comparison of Nygard’s and other ADR
templates can be found in [11].

A central aspect of SAKM research has been the doc-
umentation of ADDs with appropriate methods and tools
[12], [13]. Tang et al. [14] provide a comparison of early
SAKM tools. Nat Pryce proposed the ADR Tools project2 for
working with ADRs. ADR Tools is a command-line tool for
working with ADRs that supports users in adding ADRs and
visualizing ADR dependencies. More recently, support for
ADRs has been added to the Structurizr,3 a diagrams-as-code
tool, which also supports the generation of a decision log-
based on ADRs as well as the visualization of dependencies
between ADRs similar to the ADR Tools.

B. RELATED WORKS
There exists a significant body of work in research on docu-
menting architectural design decisions [12]. Tofan et al. [19]
analysed 144 publications in a systematic mapping study
on the state of research on architectural decisions until
2012. They concluded that only a few of the analysed stud-
ies report the use of architectural decisions in industry.
Alexeeva et al. [20] analyzed 96 publications from 2004 to
2015 and developed a taxonomy for the classification of exist-
ing documentation approaches for architectural decisions.
Although ADRs were not explicitly identified, they men-
tion template-based approaches as semi-formal approaches
for capturing architectural design decisions. They also only
found few works on industrial experience for documenting
ADDs and mention the investigation of documenting archi-
tectural decisions in practice as a useful research contribution.

Anvaari et al. [21] present an exploratory study on architec-
tural decision making practices in six Norwegian companies
in the electricity industry in 2013. According to Anvaari et al.

2https://github.com/npryce/adr-tools (Accessed: May 24, 2023)
3https://structurizr.com/ (Accessed: May 24, 2023)

only ‘‘some of the companies document important architec-
tural decisions’’, either by keeping ‘‘meeting minutes’’ or
by using an internal wiki for documentation. They provide
no information on the use of ADRs as means for capturing
ADDs.

Also in 2013, Tofan et al. [22] present a survey with
43 architects from industry in which they analyzed real-world
architectural decisions. According to Tofan et al., architec-
tural decisions take an average of eight working days. They
also state that most decisions are the result of group decision
making processes including multiple stakeholders.

Weinreich and Groher [38] present an interview study
with European and US software architects with more than
13 years of professional experience in 2016, where they
also investigated how architects document architecture deci-
sions and their rationale in practice. The results showed that
architects in industry used various means for documenting
architecture decisions: ‘‘None of the interviewees reported
using knowledge or decision management tools to manage
project-related architectural knowledge. Instead, they men-
tioned text documents (64 percent), source code (60 percent),
wikis (56 percent), project diaries and meeting minutes (40
percent), and issue management systems (20 percent)’’ [38].
The use of ADRs has not been explicitly mentioned in the
study.

Keeling and Runde [23] share experiences from using
ADRs over two years for the development of microservices
in the IBM Watson Discovery Service project. The team has
recorded over 80 ADRs in two dozen repositories describing
the ‘‘birth, maturation, and death of services’’. They report
that it took them a few months of training until everybody
could write good ADRs. In the beginning, not all recorded
ADRs were actual decisions (but rather guidelines) and not
all decisions were architectural. ADRs were actually used to
document decisions after they have been made as the result
of preceding discussions. Reviews of ADRs were conducted
using GitHub’s pull request process in a similar way as code
reviews. Further, they have established a dedicated repository
for crosscutting ADRs. ADRs helped them to keep designs
aligned in the light of staff turnover.

Industrial experience reports on the use of ADRs can
further be found in grey literature. Harhio [12] conducted a
multivocal literature review on documenting ADDs in 2022.
Results showed that scientific literature was mainly con-
cerned with the development of tools for documenting ADDs,
while grey literature focused on ADRs.

Osl [24] presents lessons learned from using ADRs at
willhaben – a virtual marketplace for goods in Austria. Osl
reports that the ADR practices at willhaben differ from rec-
ommended practices in various points: (1) They decided
not to store ADRs co-located with source code but in a
central enterprise wiki to make ADRs also accessible to non-
technical stakeholders, and (2) to use a customized tem-
plate that has evolved over time. Osl has been using ADRs
for over two years, in which more than 80 ADRs have
been recorded. According to Osl, ADRs are well suited for

VOLUME 11, 2023 63727



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

TABLE 1. List of proposed ADR templates.

structuring discussions and can be used for communicating a
meeting agenda. However, he also states that ADRs are not a
good discussion format and that he uses communication via
slack for the discussion process of ADDs.

According to Blake [25], a handful of teams at Spotify
are using ADRs to document decisions related to system
design and engineering best practices. The benefits of using
ADRs are perceived to bring new team members up to speed
during onboarding, to support ownership handover processes
as part of organizational changes, and to align on best prac-
tices across the company and to reduce multiple variants of
solutions.

ADRs are also used by the mobile team at GitHub for
documenting decisions affecting iOS and Android codebases.
According to Perkins [26], ‘‘ADRs are not the most com-
mon within open source codebases, but have gained more
popularity since 2017’’. Like Keeling and Runde in [23],
Perkins also sees ADRs as the result of (lengthy) discussion
processes. ADRs allow informing team members how and
why decisions were made in an asynchronous fashion, which
saves direct communication between team members and sup-
ports the onboarding of new teammates. Recording ADRs is
considered useful for reflection in the future to recall how and
why decisions were made.

To sum up, existing industrial experience reports on the use
of ADRs only cover single companies, which does not permit
deriving general statements regarding the general adoption
of ADRs in practice. Corresponding research that analyses
a larger number of projects using ADRs is still missing. This
study lays out the foundation for an analysis of the adoption
of ADRs in open source projects and provides a first attempt
of analyzing ADR practices.

III. RESEARCH APPROACH
In this section, we describe the research methodology we
followed in our study, as well as how the study was planned.

A. RESEARCH METHODOLOGY
Vidoni [27] proposes a systematic process and guidelines for
MSR studies, i.e., the process to analyze and cross-link data
available in open source repositories to uncover interesting
and actionable information about software systems [28]. The
proposed process is the result of a systematic literature review
(SLR), in which existing MSR papers have been analyzed to
derive a systematic process. Vidoni compares the process of
MSR with the process of SLRs, since both methods can be
classified as secondary studies, i.e., studies in which results
are aggregated by analyzing existing data (primary studies)
to derive stronger forms of evidence about a particular phe-
nomenon [29]. The MSR process and guidelines proposed by
Vidoni are based on guidelines for conducting SLRs [30].
Although MSR and SLR studies both have conceptual sim-
ilarities, there are also important differences: MSR studies
differ from SLR studies in their searched sources (reposi-
tories vs. digital libraries), the analyzed elements (software
projects, source code, issue reports, etc. vs. research papers)
and the analysis process (a process that can only begin after
data collection and that is at least partially automated vs.
a typically manually conducted process).

According to Vidoni [27], the steps for conducting a MSR
study are the following:

1) Definition of Sources: The selection of directories in
which the search for repositories will be conducted.

2) Search for Repositories: The search for repositories that
contain the data that will be analyzed.

63728 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

3) Data Extraction: The extraction of data from the iden-
tified repositories that will then be used for analysis.

4) InformationGeneration: The generation of information
regarding the research questions that is extracted from
the data.

Further, the phases of anMSR study can be separated into a
planning phase, an execution phase, and a results phase [27].
In the planning phase, the research objectives and the way
how the study is executed are defined. The execution phase is
comprised of searching for repositories in the defined sources
and the extraction of data from the found repositories. Finally,
in the results phase, the extracted data is summarized and
analyzed, and the results, i.e., the answers to the research
questions, are presented.

Following the proposed steps and phases for MSR studies,
we describe the planning phase of our study in the remain-
der of this section. We describe the execution phase of our
study (the search for repositories and the data extraction) in
Section IV and the result phase in Section V.

B. STUDY PLANNING
Study planning is divided into the description of research
objectives, research questions, and the source and search
strategy used for identifying the relevant repositories.

1) RESEARCH OBJECTIVES
The main objective we are pursuing with our study is to find
out how widespread the use of ADRs has become. Existing
experience reports (see Section II-B) currently only deal with
one or a few companies but do not provide any insights into
the general adoption of ADRs. We decided to analyze the
adoption of ADRs in open source repositories at GitHub,
because GitHub is the largest hosting platform for open
source repositories and thus provides a huge data basis for
our analysis. A further objective is to find out how ADRs are
actually used by practitioners.

2) RESEARCH QUESTIONS
To achieve our research objectives, we defined the following
research questions (RQs):

RQ1: How has the adoption of ADRs evolved over time?
RQ2: What is the state of practice of using ADRs in open
source repositories?

The aim of RQ1 is to investigate how the adoption of ADRs
has evolved over time since the concept and corresponding
ADR templates have been proposed. RQ2 then analyzes open
source repositories that are actually using ADRs and seeks
to put light on the actually followed practices of capturing
ADRs.

To answer RQ1, we investigate the following subquestions:
RQ1.1: How many GitHub repositories are using
ADRs?
RQ1.2: When did each repository start using ADRs?
RQ1.3: How has the number of recorded ADRs devel-
oped over time?

The aim of RQ1.1 is to identify all GitHub repositories
in which ADRs have been recorded, which is the foundation
for answering all other RQs. RQ1.2 investigates when users
started using ADRs in their repositories and if the adoption
w.r.t. the number of repositories using ADRs has increased
over time. RQ1.3 complements RQ1.1 by analyzing the adop-
tion of ADRs based on the number of recorded ADRs on a
yearly basis.

To answer RQ2, we investigate the following subquestions:
RQ2.1: How many ADRs are recorded per repository?
RQ2.2: How many users of a repository are contribut-
ing to ADRs?
RQ2.3: Are ADRs maintained over time?
RQ2.4: Over what period of time are ADRs recorded?
RQ2.5: Which ADR templates are used in open source
repositories?

ADRs seek to capture decisions that are architecturally
significant, i.e., which have a wide impact on a system’s
architecture. As part of RQ2.1 we analyze how many ADRs
are typically captured for a repository. RQ2.2 analyzes how
many users participate in capturing ADRs for a repository.
ADRs further need to be updated when architectural deci-
sions are changed. In RQ2.3 we analyze if recorded ADRs
are maintained over time. As part of RQ2.4 we analyze
over which period of time ADRs are recorded. For capturing
ADRs multiple templates have been proposed. In RQ2.5 we
analyze which templates have actually found their way into
practice.

3) SOURCE AND SEARCH STRATEGY
To reach our research objectives and to answer the derived
RQs we observe the use of ADRs as means for capturing
ADDs in open source repositories. GitHub was selected as
data source since GitHub is actually the largest hosting plat-
form for open source projects. We have searched all public
repositories for ADRs. To develop a corresponding search
strategy, we first conducted a set of pilot searches using the
search API provided by GitHub. These pilot searches helped
us to get familiar with the search API, to find out if there are
any ADR results at all, how we can carry out a systematic
search with the API, and to develop strategies to circumvent
certain API limitations we have encountered as part of the
pilot searches. Further, the pilot searches helped us to derive
inclusion and exclusion criteria.

Searching for ADRs was not straightforward due to several
limitations of the search API provided by GitHub. At GitHub,
the search string must not contain wildcard characters, which
prohibited searching for headings of Markdown ADR tem-
plates, e.g., ‘##Context’, ‘##Decision’, or ‘##Consequences’.
GitHub also limits the number of returned search results to
1000, which prohibits searching all repositories with a single
query. Further, also the length of the search string itself is
limited to 256 characters and at most 5 AND, OR, or NOT
operators. Finally, the number of queries within a certain
period of time is also limited, which slows down the entire
search process dramatically.

VOLUME 11, 2023 63729



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

To compensate the limited number of returned search
results, we decided to break down the search process, and to
limit queries for ADRfiles to single users. To compensate the
possibility of searching for headings of Markdown templates
we decided to search for Markdown files containing the word
‘‘decision’’ and further search the obtained results for ADR
files. The rationale behind this search strategy was that each
prominent ADR template (see Section II-B) at least specifies
one section heading using the word decision. Due to the large
search base and the search API quota limit, we automated the
search process whenever possible.

IV. STUDY EXECUTION
A. SEARCH PROCESS (DATA COLLECTION)
In this section, we explain the steps we followed to search
for GitHub repositories using ADRs. The main steps of the
resulting search process are depicted in Figure 2.

We first collected a list of all GitHub users that we
derived from searching for all public repositories (Step 1).
In total, we collected 26.372.973 GitHub users with public
repositories.

As a second step, we searched if a user possessed reposito-
ries with Markdown files that contained the word ‘decision’.
In total, there existed 282.789 users with at least one reposi-
tory with a Markdown file containing the word ‘decision’.

The results we obtained in Step 2 containedmany false pos-
itives, i.e., Markdown files containing the word ‘‘decision’’,
that are actually no ADRs, due to the rather generic search
term. For instance, results containedMarkdown files describ-
ing decision trees, licence agreements (e.g., the GNU GEN-
ERALPUBLICLICENSEVersion 2), andGitHub pages, i.e.,
repositories that are used for hosting static websites based
on Markdown files. Thus, to find the actual ADR files we
conducted an automated search based on filename patterns
(see Step 3). This means, we searched for filenames including
the relative paths containing the following patterns: arch, adr,
design, decision. As result we obtained 7331 users.

In Step 4, we manually screened the results of Step 3 to
decide whether a result set of a single user contained ADR
files or not. In cases where we were unsure, we looked at
the search result directly on the GitHub website to make a
decision. GitHub shows a preview of the search results and
also allows individual files to be opened in the browser. At the
end of the screening process we identified 1058 users with at
least one repository containing ADR files.

In the final step of the search process, we manually ver-
ified each search result. In this step, we divided the search
results per user into individual repositories (in the case that
a user possessed multiple repositories), applied the inclusion
and exclusion criteria, and removed duplicated repositories
from the result set. The inclusion and exclusion criteria are
summarized in Table 2. The main inclusion criteria was to
include all repositories that are actually using ADRs for docu-
menting ADDs. We excluded repositories that only explained
the concept of ADRs, repositories that only contained an

TABLE 2. Inclusion and exclusion criteria.

empty ADR template but no concrete ADRs, repositories that
only contained a single ADR that states that ADRs should
be captured for the project,4 repositories that contain obvious
test and example decisions, repositories containing ADRs not
written in English, repositories that contained obvious class-
room exercises, and repositories that contained decision logs
rather than ADRs. We decided to exclude decision logs, i.e.,
collections of ADDswithin a single file because it is a slightly
different concept and we could not answer all of our RQs
for decision logs. We used a plagiarism checker for detecting
duplicated repositories, i.e., repositories with identical deci-
sions. Repositories with identical ADRs are often the result
when cloning a repository. In case we detected repositories
with identical ADRs, we tried to identify the repository in
which the ADRs had initially been defined (based on the git
history) and removed all repositories that have been cloned
and copied from the original repository. At the end of this
manual verification and data cleaning process we identified
a number of repositories containing ADRs that we used for
answering the RQs. To facilitate further research, we provide
a list with the identified GitHub repositories.5

B. DATA EXTRACTION AND ANALYSIS
For analyzing the identified repositories and answering our
research questions, we developed a tool for automating the
data extraction process as much as possible. The tool con-
sists of two main components: a crawler and an analyzer.
The crawler receives a list of repositories as input. Each
repository is defined by the remote URL and a list of

4This is a default decision that is automatically created when using the
ADR Tools (see also Section II-A).

5https://github.com/software-competence-center-hagenberg/ADR-Study-
Dataset

63730 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 2. Search process overview.

directories, which contain ADR files. This list is derived
from the semi-automated search process described above.
The crawler downloads (clones) the repository and extracts
the given directories for further analysis. The analyzer then
reads and parses each file with the file extension md and
collects metadata required for answering the research ques-
tions. For example, the analyzer counts the number of ADRs
in each repository and tries to identify which ADR template
has been used based on the headings in a Markdown file.
If a file contains all headings of a template, it is classified
as that template. If this is not possible because, e.g., some
headings are missing or a custom template is used, the file
is marked for a manual classification. Further, metadata is
collected by using the Git history for each file (first commit
date, last commit date, number of commits, and number of
authors) and for the whole repository (initial commit date, last
commit date). The tool was specifically tailored to collect the
data necessary to answer the research questions.

After the initial crawl and analysis process, we checked
each repository and the extracted ADR directories manually

FIGURE 3. Number of repositories starting to use ADRs per year. (RQ 1.2).

to verify that our results only contained actual ADR files.
All other files were removed (e.g., README files collocated
with ADR files) and the collected metadata was updated to
reflect the removed files.

1) HOW MANY GitHub REPOSITORIES ARE USING
ADRs? (RQ1.1)
As result of our search process (see Section IV-A), we iden-
tified a total number of 921 GitHub repositories, in which at
least one ADD has been captured using ADRs.

2) WHEN DID EACH REPOSITORY START USING
ADRs? (RQ1.2)
To answer this RQ, we have analyzed, when the first ADRfile
was added to each repository. Analysis results are depicted in
Figure 3. As shown in the figure, the first repositories starting
using ADRs in 2013. In 2014 no new repository started to
use ADRs, but in 2015 6 more repositories were found. From
2016 on there was a constant growth in repositories adopting
ADRs, 22 new repositories in 2016, 88 in 2017, 165 in 2018,
and 211 in 2019. Finally, in 2020 the most repositories so far
started to use ADRs, specifically more than 350 repositories.
The number of repositories depicted in Figure 3 is lower than
the number of repositories identified as part of RQ1.1 – this is
due to the fact that we do not have complete numbers for the
year 2021 at the time of writing and thus could not include
this data in the figure.

3) HOW DID THE NUMBER OF RECORDED ADRs DEVELOP
OVER TIME? (RQ1.3)
In addition to analyzing when repositories started using
ADRs (RQ1.2), we analyzed how many ADRs were added to
GitHub repositories each year. Figure 4 provides an overview
of the number of ADRs that were added to public GitHub
repositories per year. As shown in the figure, the first ADR
files were added in 2013 (2 ADRs), followed by 5 ADRs in
2014, 28 ADRs in 2015, and 118 ADRs in 2016. 2017 was

VOLUME 11, 2023 63731



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 4. Number of ADRs added per year. (RQ1.3).

FIGURE 5. Number of ADRs recorded per repository. (RQ2.1).

the first year in which over 500 ADRs were added (i.e.,
535 ADRs), followed by nearly 1000 ADRs (i.e., 995 ADRs
in 2018). In 2019, 1345 ADRs have been added. The most
ADRs (i.e., 2248 ADRs) have been added in 2020.

4) HOW MANY ADRs ARE RECORDED PER
REPOSITORY? (RQ2.1)
To determine how many ADRs were recorded per repository
(project), we counted the number of ADR files of each repos-
itory. Figure 5 shows our analysis results. More than 50%
of all repositories (554) contain between 1 and 5 ADR files.
198 repositories contain between 6 and 10 ADRs, 122 repos-
itories contain between 11 and 20 ADRs, 27 repositories
contain between 21 and 30 ADRs, and 20 repositories contain
more than 30 ADR files. The highest number of ADRs added
to a repository was 73.6

6https://github.com/vwt-digital/operational-data-hub (Last Accessed:
May 24, 2023)

5) HOW MANY USERS OF A REPOSITORY ARE
CONTRIBUTING TO ADRs? (RQ2.2)
We counted the number of authors contributing to ADRs in
each repository. The results are depicted in Figure 6 (left).
Within all repositories with ADRs, there are 453 repositories
where only a single user defined ADRs. This corresponds
to nearly half of all repositories. There are significantly less
repositories with two contributing authors (209 repositories).
As further shown in the figure, there are also many reposi-
tories in which more than two authors contributed to ADRs.
The repository with the highest number of contributors7 had
60 contributors at the time of our analysis. We further ana-
lyzed the number of contributing authors per repository for
repositories containing at least 10 ADRs. The results are
shown in Figure 6 (right). As shown in the figure, when
just considering the repositories with more than 10 ADRs,
the number of repositories with only one ADR contributor
(33) is significantly lower than the number of repositories
with two or more contributors (165), whereas the number of
repositories with one ADR contributor dominates (453) when
looking at the complete set of repositories with ADRs (shown
in the left diagram of Figure 6).

We further measured the commit quota of the most com-
mitting author of ADRs within a repository. This quota is
the number of ADR related commits of the most committing
author divided by the total number of ADR-related commits
andwas calculated for every repository. The results are shown
in Figure 7. The distribution of quotas is grouped by the total
number of ADR authors, e.g. the first boxplot in Figure 7
(left) shows the distribution for repositories with 2 ADR
authors. This boxplot shows that in the case of two con-
tributing authors, the more active author accounts for about
65% of all commits (median), while the values of the commit
activity range between 50% and 97%. The distribution of
the boxplots reveals that in general the commit activity is
distributed among the contributing authors, although also
repositories exist where single authors are contributing most
ADR-related commits (e.g., see whiskers for repositories
with 5 and 8 contributing authors in Figure 7). Considering
only repositories with 10 or more ADRs, Figure 7 (right)
shows a similar distribution, although the most active users
typically have a higher commit quota.

6) ARE ADRs MAINTAINED OVER TIME? (RQ2.3)
For each ADR file we counted the number of commits to
analyze how often ADRs are modified. Figure 8 (left) shows
these results as a histogram. Most ADR files (3255) are
created and only committed initially. After that they are never
modified again. Significantly less files were modified at least
once, e.g., 1497 files were committed two times 688 were
committed three times. The highest number of commits on a
single file is 58.8

7https://github.com/cosmos/cosmos-sdk (Accessed: May 24, 2023)
8https://github.com/otrv4/otrv4/blob/master/architecture-decisions/005-

brace-keys.md (Accessed: May 24, 2023)

63732 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 6. Number of repositories by number of contributing ADR authors. The left diagram shows the distribution of all repositories,
the right diagram shows the distribution only of repositories with at least 10 ADRs. (RQ2.2).

FIGURE 7. Commit quota of the most committing contributor. Only commits where an ADR file was affected are considered. The left plot
shows the data of all repositories, the right plot shows the data only of repositories with at least 10 ADRs. (RQ2.2).

Figure 8 (right) shows the data only for ADR files within
repositories with at least 10 ADRs. A similar distribution is
visible here.

7) OVER WHAT PERIOD OF TIME ARE ADRs
RECORDED? (RQ2.4)
For each repository, we analyzed the period over which
ADRs were created and maintained by determining the initial
commit date and the last commit date of each ADR file.
Results are depicted in Figure 9 (left). In 278 repositories,
all ADR files were only edited on a single day. This means,
that they were created and potentially modified on the same
day. Afterwards they were never touched again. In 100 repos-
itories the editing timespan lasted between 2 and 14 days.
In 38 repositories editing lasted between 15 days and one
month. However, there also exist many repositories (505)
with editing times between 1 month and more than two years,

which means that in more than 50% of all repositories ADRs
were maintained over a longer period of time.

Further, we analyzed the editing time period for reposito-
ries containing more than 10 ADRs. The results are shown
in Figure 9 (right). Compared to considering all repositories,
less ADR files are edited just for one day and more ADR
files are edited for a longer period of time when focusing on
repositories with more than 10 ADRs.

8) WHICH ADR TEMPLATES ARE USED IN OPEN SOURCE
REPOSITORIES? (RQ2.5)
For capturing ADDs, multiple (lightweight) ADR templates
have been proposed (see Section II).We analyzedwhichADR
templates are actually used. We identified the template used
in each repository by matching the headings of each ADR
file with the headings of each proposed template. In cases
where no ADR template could be determined automatically,
we manually inspected and classified the ADR files of the

VOLUME 11, 2023 63733



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 8. Number of commits per ADR file. The left diagram shows the distribution for all repositories, the right diagram shows the
distribution only for repositories with at least 10 ADRs. (RQ2.3).

FIGURE 9. Number of repositories by the absolute editing time period, i.e. the time between the first and the last commit on an
ADR file. The left diagram shows the distribution for all repositories, the right diagram shows the distribution only for repositories
with at least 10 ADRs. (RQ2.4).

repository. The analysis results are shown in Figure 10. The
template proposed by Michael Nygard is by far the most
used template (723 repositories), followed by the MADR
template (129 repositories).We also identified 61 repositories
in which templates were used that did not correspond to
known proposed/published templates. The other templates
listed in Table 1 were only used by 8 repositories in total.
The relative distribution of the templates being used does
not change if only repositories with 10 or more ADRs are
considered (see Figure 10 right). In this case the Michael
Nygard’s template is also dominant, followed by the MADR
template.

V. STUDY RESULTS
In this section, we describe the results of our study.We answer
the research questions based on the analysis results presented
in Section IV-B and report our findings.

1) HOW MANY GitHub REPOSITORIES ARE USING
ADRs? (RQ1.1)
We have found 921 public GitHub repositories that have
at least recorded one ADD as ADR. This number does not
reflect the number of repositories in which ADRs have sys-
tematically been recorded and used for a longer period of
time, since this number also contains repositories in which
only few ADRs (i.e., between 1-5 ADRs) have been cap-
tured. For many of these repositories, we assume that ADRs
have been tried out, but the repository owners probably have
decided not to further adopt ADRs. Nevertheless, for these
found repositories we can conclude that the owner(s) of the
repository are familiar with the concept of ADRs and that the
repository owner(s) have at least tried out using ADRs for
their projects. Given the number of public GitHub reposito-
ries (i.e., over 100 million public repositories ), the number
of repositories using ADRs is actually very small - especially

63734 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

FIGURE 10. Number of repositories by the most used ADR template within a repository. The left chart visualizes the distribution for all
repositories, the right chart shows the distribution only for repositories with at least 10 ADRs. Template abbreviations: MN. . . Template by
Michael Nygard, MA. . .MADR, OT. . .Other, PM. . . Template by Paolo Merson, TA. . . Template by Jeff Tyree and Art Akerman, AP. . . Alexandrian
Pattern, WW. . .Where What Why, FK. . . Template by Fabian Keller. (RQ2.5).

since not all repositories are using ADRs systematically (see
also RQ2.1).

2) WHEN DID EACH REPOSITORY START USING
ADRs? (RQ1.2)
The data on when individual repositories started using ADRs
(depicted in Figure 3) shows that the adoption of ADRs
started very slowly. Michael Nygard proposed ADRs in
November 2011, the first GitHub repositories with ADRs
date back to 2013 (2 repositories). By the end of 2015 only
8 repositories were using ADRs. Adoption started to increase
in 2017, 5 years after the concept was introduced. Since 2017,
we can observe an increasing adoption with yearly growth
rates between 28% and 88%. Our data shows that the use of
ADRs is still continuously increasing each year.

3) HOW DID THE NUMBER OF RECORDED ADRs DEVELOP
OVER TIME? (RQ1.3)
Corresponding to the number of repositories that started
using ADRs (RQ1.2), also the absolute number of recorded
ADRs per year is increasing each year. Growth rates since
2017 range between 35% and 86%. Based on the analysis
results of RQ1.2 and RQ1.3, we conclude that ADRs are
seeing a steadily increasing adoption (within the analyzed
time span), although at a low level when compared to the
overall number of GitHub repositories. It remains to be seen
how this adoption will develop in the following years.

Even if the number of projects using ADRs is still low,
with over 2000 ADRs recorded in 2020 it would make
sense – as part of future research – to systematically collect
and analyze if and to which degree the recorded architec-
tural knowledge (in terms of ADRs) is reusable for other
projects.

4) HOW MANY ADRs ARE RECORDED PER
REPOSITORY? (RQ2.1)
The number of ADRs recorded per repository differs signifi-
cantly between different repositories. Thus, it does not make
sense to calculate the average number of ADRs per repository

and to derive statements regarding the typical number of
captured ADRs in a repository or project. Nevertheless we
can derive some findings from our analysis.

In more than 50% of all analyzed repositories, the number
of added ADRs was just between 1 and 5 decisions. There
can be different reasons for this low number of ADRs. It is
likely that in these repositories capturing ADD using ADRs
has been tried out, but has not been adopted systematically
over time. It is natural that people try out an approach and stop
using it if they are not fully convinced and do not see benefits
for a further adoption. It would be a future research challenge
to investigate the actual reasons for not adopting ADRs after
trying them out. Conversely, a low number of ADRs does
not automatically mean that ADRs were not fully recorded.
Not every repository corresponds to one (large) project. It is
also possible that a project comprises several repositories and
the ADRs of a project are therefore distributed over several
repositories, each with a few ADRs.

Statements about the number of ADDs in a typical project
cannot be made by a quantitative analysis of the ADRs alone,
but also require a corresponding qualitative analysis - either
by reaching out to the repository owners, or by an in-depth
analysis of each repository and the corresponding ADRs.
A quantitative analysis of the identified repositories is beyond
the scope of this study and remains subject of future research.
However, with an increasing number of ADRs per repository,
it is more likely that ADDs are captured systematically and
that ADRs are successfully adopted in these repositories. For
repositories with more than 20 captured ADRs, we conclude
that there is a high probability that ADRs are adopted success-
fully in these repositories. However, from the total number
of found repositories only 47 repositories (5%) contain more
than 20 ADRs.

5) HOW MANY USERS OF A REPOSITORY ARE
CONTRIBUTING TO ADRs? (RQ2.2)
In about 50% of the analyzed repositories, all ADRs were
added by a single contributor only. This also means that in
about 50% of all repositories ADRs were actually defined by

VOLUME 11, 2023 63735



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

more than one contributor and therefore decision recording
was a team effort. In 130 repositories, five or more users
contributed ADRs. If we restrict our analysis to reposito-
ries with at least 10 recorded ADRs (to exclude repositories
in which ADRs probably only have been tried out but not
been further adopted), it can be observed that in only 16%
(33 of 198) of the repositories ADRs were defined by a
single user, whereas in 84% of the repositories (165 of 198)
multiple users made contributions to ADRs. We conclude
that in projects where ADRs are adopted, decision making/
recording is performed by the team and not by a sin-
gle person. This finding is consistent with the findings of
other researchers (e.g, [31], [38]) that architecting in prac-
tice is a group effort. This finding is also supported by
the analysis of commit activity of the users contributing to
ADR files.

6) ARE ADRs MAINTAINED OVER TIME? (RQ2.3)
In general, ADRs are not subject to frequent modifications.
ADRs are intended to be collected following an append-
only approach, where new decisions are added and obsolete
decisions are marked with a superseeded status but kept for
documentation purposes to show the history of the decision
making [32]. Nevertheless, there can exist multiple reasons
for making changes to an ADR, e.g., to simply correct a
type, to change the status of an ADD, or to incrementally
document an ADR over an extended period of the decision-
making process.

Of the 6362 ADR files, about 50% of these ADRs have
only been committed once and never modified again. This
reflects that ADRs are not intended to be modified frequently.
Regarding ADRs that have been modified at least once, ana-
lyzing the commit activity alone is insufficient to make state-
ments regarding the performed modifications. This would
require a more detailed analysis of the modifications made to
ADR files, which is beyond the scope of our study and thus
subject of future research.

7) OVER WHAT PERIOD OF TIME ARE ADRs
RECORDED? (RQ2.4)
The timespan over which ADRs are recorded differs between
the analyzed repositories. Many repositories show all modi-
fications to ADRs being made within a single day – however,
these are mainly repositories with only a few ADRs con-
tained.When considering repositories with at least ten ADRs,
repositories in which ADRs are only modified over a period
of one day are the minority, while in all other repositories
decision recording spans over a longer period of time. Our
data reveals that in 328 repositories decisions are recorded
over a period of more than six months. If we only consider
repositories with at least ten decisions, 138 repositories have
recorded ADRs over a period of over 6 months. Based on this
data, we assume that in projects where ADRs are collected
systematically, decision making/recording is a continuous
activity that can span over multiple months and years.

A further reason that repositories only contain ADRs that
have been modified over a timespan of a single day could
be that ADRs have been recorded elsewhere and have been
commited later to GitHub within a single commit operation.

A more detailed analysis, e.g., if there are times when most
ADDs are recorded remains subject of future work.

8) WHICH ADR TEMPLATES ARE USED IN OPEN SOURCE
REPOSITORIES? (RQ2.5)
Regarding the use of proposed ADR templates, it can be
observed that the template proposed by Michael Nygard is
the dominating template. It is being used in about 75% of all
repositories. Also the MADR template is seeing adoption to
a certain degree, followed by user-defined templates, while
other templates do not play an important role. We could not
observe significant differences regarding the selection of an
ADR template between repositories with only few ADRs and
repositories containing ten or more ADRs.

One possible reason that most repositories are using the
template by Michael Nygard could be the fact that this tem-
plate is used as default template by the ADR Tools. Thus,
every repository using this tool for working with ADRs starts
using automatically the template by Michael Nygard.

Regarding the use of custom templates, we observed that
at least in some cases the use of a customized template was
a dedicated decision because the users were not satisfied
with existing templates. For example, in one repository9 the
MADR template was criticized for its verbosity. Another
repository10) recorded the selection of a corresponding tem-
plate as an own ADD in which different templates were listed
as decision alternatives.

Our analysis also shows that complex ADR templates with
many sections (e.g., the template proposed by Tyree and
Akerman [15]) play no role for capturing ADDs in GitHub
repositories.

A more detailed analysis of template usage, e.g., which
sections of a template are actually used remains subject of
future research. Such an analysis could provide insights,
which aspects of ADDs are actually recorded in ADRs.

VI. DISCUSSION
ADRs were proposed as a lightweight approach (w.r.t. the
demand of human resources) with the aim of making the cap-
turing of ADDs practically feasible and to lay the foundation
for the successful application of SAKM practices. With this
goal inmind, we investigatedwhether ADRs are actually used
in open source projects.

Based on our systematic analysis of public GitHub repos-
itories we found that the adoption of ADRs in open source
projects is still very low, although the adoption is steadily
increasing in the analyzed time period. This finding is

9https://github.com/hugolhafner/analytics-server/blob/master/docs/adr/
001-record-architectural-decisions.md (Accessed: May 24, 2023)

10https://github.com/croz-ltd/klokwrk-project/blob/master/support/
documentation/adr/content/0001-architectural-decision-records.md
(Accessed: May 24, 2023)

63736 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

especially true since only a small number (i.e., 1-5) of ADRs
were found in over 50% of all identified repositories and only
47 repositories contain more than 20 ADRs. For the majority
of repositories with only few captured ADRs we assume that
capturing ADD with ADRs has been tried without further
adopting the practice.

The currently limited adoption of ADRs raises the ques-
tions why the adoption is still so low and how the adoption
can be increased in the future? Finding answers to these
questions requires further research that is not only comprised
of quantitative analysis (as conducted in this MSR study) but
that also encompasses qualitative analysis and that involves
discussions with repository owners that decided not to adopt
ADRs after trying them out.

However, we should also note that we have found a small
number of repositories for which we conclude that ADRs
have been adopted successfully. Figure 11 depicts the rela-
tionships between the number of ADRs per repository, the
number of contributing users, and the time period over which
ADRs are defined and modified. The VENN diagram visual-
izes repositories with at least 20 defined ADRs, repositories
in which ADRs were edited for at least 6 months, and where
at least two users contributed to the ADRs. As shown in the
figure, there is a correlation between these aspects. 42 reposi-
tories can be characterized by these attributes, which hint at a
systematic application and successful adoption of ADRs. For
these repositories, we can conclude that writing ADRs (and
probably also the preceding decision making processes) are
typically conducted as a team process.

Multiple templates have been proposed for capturing
ADDs. Given the dominance of the template proposed by
Michael Nygard, we conclude that this template actually
meets the needs of its users in most cases.

A. IMPLICATIONS OF STUDY RESULTS
Based on our findings, we have identified the following
implications and recommendations for research and practice:

Simple organizational measures can enhance the dis-
covery of ADRs in open repositories: ADRs not only
make architecture knowledge explicit, but also facilitate
architecture knowledge reuse across project boundaries.
However, to support reuse ADDs/ADRs actually need to
be discoverable. As we have described in Section IV-A,
searching for ADRs is currently very tedious and
resource-intensive w.r.t. human resources (required for
manual search steps) as well as time resources due
to API limitations. Therefore, a regular and automated
search for ADRs at GitHub is currently not possible.
Recommendation: One possibility for improving the
search for ADRs could be that ADRs use an explicit file
extension (e.g., *.ADR instead of the standard Mark-
down file extension). This would facilitate explicitly
searching for ADR files (using a dedicated file type
extension filter) with currently provided search APIs
capabilities provided by GitHub. Manual steps of the
search process would become obsolete and the search

FIGURE 11. Overlap of repositories containing at least 20 ADRs that were
contributed by at least two authors, and that have been added over a
period of at least 6 months.

process could be completely automated. This would
make the search repeatable and would facilitate the
development of new use cases like building up a knowl-
edge base of ADRs.
Further qualitative analysis can help to increase the
adoption of ADRs: While our study provides first
insights in using ADRs in open source projects, many
open questions remain that require further and more
detailed analyses of current ADRpractices. For instance,
it would be interesting to know which kinds of ADDs
(according to proposed classification schemata like [9]
and [33]) are typically captured using ADRs in open
source projects, and what were the reasons for many
repository owners not to further use ADRs in their
projects.
Recommendation: Conducting further in-depth analysis
of ADR practices will deliver valuable findings needed
to further develop the ADR practices to increase ADR
adoption. Here it is not only important to find out the
reasons for the limited adoption but also to advance
existing concepts, methods and tools.
Reuse of ADDs can benefit from cross-cutting knowl-
edge bases: Large code/project repositories such as
GitHub facilitate building up knowledge bases. In the
case of architecture knowledge management, a knowl-
edge base of ADDs/ADRs consisting of architecture
knowledge shared from ideally thousands of projects can
facilitate large scale architecture knowledge reuse.

VOLUME 11, 2023 63737



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

Recommendation: Proper knowledge bases should be
developed which allow searching for design decisions
typically made for particular kinds of systems like
microservice architecture or AI-based systems, search-
ing for ADDs related to particular implementation tech-
nologies and frameworks, and distilling ADDs related to
specific software engineering tasks like testing or con-
tinuous integration and delivery. Providing such derived
knowledge can assist inexperienced software architects
as well as software architects new to a particular system
in their decision making processes. The general idea and
a prototype of such a system has been presented in [34].
Supporting such tasks based on GitHub would provide
a global knowledge base where the above mentioned
questions could be addressed for developers.
Knowledge bases will add value to learning from
ADDs: Closely related to building up a knowledge
base for ADDs/ADRs is the topic of exploiting arti-
ficial intelligence (AI)-based methods in this context.
While GitHub code repositories have been used for
the development (training) of language models that can
be used for AI-based program generation (e.g., [35]),
exploiting public code bases like GitHub for learning-
based approaches using ADDs has not been subject of
research.
Recommendation: Additional research needs to be per-
formed to answer questions like how many ADRs are
required for the training of high quality models, which
architecture-related activities can be supported with
AI-based methods, how ADRs written in informally-
defined, natural language can be used by AI-based
methods in contrast to formally defined source code
with precise syntax and semantics, and how humans
(software architects) and AI-based systems can collabo-
rate during architecture design processes [36].
External validity of our findings cannot be claimed
regarding the adoption of ADRs in closed source
projects: The findings of our MSR study apply to open
source projects only, which were subject of our analysis.
However, this raises the question if and to which degree
our findings also apply to closed source projects.
Recommendation: While there exist experience reports
of using ADRs from single companies (see also
Section II-B), studies analyzing the adoption of ADRs
in multiple companies are still missing. Such studies are
needed to analyze if reports from single companies can
be generalized.

B. THREATS TO VALIDITY
Several threats possibly affecting the validity of our work do
exist. According to Vidoni [27], threats in MSR studies may
either arise from the selection of repositories or from the data
extraction process. In this section we discuss the steps we
took to mitigate potential threats and biases in our study, and
which threats to validity still exist.

According to Kalliamvakou et al. [37], research results can
be biased by threats that arise during the repository selection
process, for instance, by selecting inactive repositories, repos-
itories with a low activity, personal repositories (i.e., repos-
itories not intended for collaboration with multiple users).
Further, not all GitHub repositories are used for software
development projects, but also for hosting a website, or for
classroom/training exercises.

To mitigate threats during the repository selection process,
we did not restrict the mining process for ADRs to a subset of
repositories. The initial search for ADRs at GitHub was per-
formed on all public repositories. Repositories that were used
for hosting a website and for classroom/training exercises
were defined as exclude criteria (see Section IV-A). These
repositories were detected as part of a manual inspection
step, in which each candidate repository was inspected by at
least one of the authors of this study. For forked and cloned
repositories, we tried to identify the repository in which
ADRs were initially added. Cloned and forked repositories
with identical ADRs as the base repository were defined as
exclusion criteria.

Threats impacting the data extraction process are that not
all activity on GitHub can be traced to registered users and
that projects do not use GitHub exclusively [37]. The first
threat cannot be mitigated because data provided by GitHub
does not allow to identify activities of non-registered users.
As a consequence it is possible that the number of committers
to ADRs is higher as actually described as part of RQ2.2.
We were also not able to mitigate the threat that repositories
manage ADRs outside of GitHub (e.g., in a Wiki). Mitigat-
ing this threat is not possible, since this would require to
investigate for each public repository hosted on GitHub
if they maintain ADRs in some infrastructure outside of
GitHub.

Finally, it needs to be taken into consideration that GitHub
is continuously evolving [37] and repositories change on
a daily basis. The conducted mining process described in
this paper spanned over a period of multiple months – due
to the API limitations provided by GitHub and the time-
intensive work of manually analyzing the identified reposito-
ries. We weren’t able to account for repositories where ADR
files were added at a certain point in time but have since been
deleted, because the GitHub search API doesn’t allow us to
search for deleted files.

To mitigate the threat of experimenter bias, multiple
researchers (i.e., all authors) were involved in thisMSR study.
To ensure connstruct validity, the research questions were
clearly defined and methods for collecting data to address the
research questions were systematically selected.

Regarding external validity, we cannot draw general con-
clusions of ADR practices from open source projects to
industrial closed source projects. Regarding external validity
of our findings with regard to open source projects in general:
With GitHub we decided to analyze the world’s largest open
source hosting platform and we have searched all public
repositories that were available at the end of 2020. Thus we

63738 VOLUME 11, 2023



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

believe that the number of considered/searched repositories is
large enough to draw conclusions (e.g., regarding the limited
adoption of ADRs) from our results to open source projects
in general.

VII. CONCLUSION
In this paper, we presented a MSR study on the adoption
of ADRs in open source projects at GitHub. ADRs have
been proposed as lightweight technique for the capturing of
ADDs. This has raised the question if and to which degree
ADRs have actually found their way into practice. Therefore,
we developed a systematic search process to answer twomain
research questions regarding the adoption of ADRs over time
as well as current ADR practices.

We found 921 repositories out of 1267 repositories in total,
in which over 5000 ADRs have been defined. After a slow
adoption process between 2013 and 2015, adoption started
to increase steadily each year since 2017. Given the number
of recorded ADRs per repository, we conclude that in many
repositories the practice of recording ADDs with ADRs has
been tried out but not adopted over a longer period of time.
However, we also found repositories in which many ADRs
have been recorded over a longer period of time. For these
repositories, we conclude that ADRs have been successfully
adopted. Regarding the number of contributors, in more than
50% of the repositories ADRs have been defined by more
than one user, which hints that decision documentation (and
thus presumably also decision making) is a team process.
Regarding the use of proposed templates, we observed that
the template proposed by Michael Nygard is the dominating
template used by about 75% of all repositories. This shows
that it seems to be sufficient for projects having adopted an
ADR approach. However, it could also be an indication of the
usefulness of tool support for capturing such decisions, since
this template is supported by a dedicated tool. The MADR
template is also seeing adoption to a certain degree, as well as
templates that are customized to specific needs of their users.

Our study has shown that the adoption of ADRs as a well
established practice is still in its infancy. Nonetheless, its
prevalence is increasing year by year and it remains to be
seen how the adoption of ADRs will develop over the next
years. We also pointed out implications of the study’s finding
and give some recommendations to further facilitate the use
of ARDs and to increase their adoption. Promising research
directions are, e.g., the reuse of the recorded architecture
knowledge on a global basis and the use of AI-based meth-
ods for identifying relevant knowledge. Finally, we employ
our results in future research work, where we investigate
the application of graph technologies for analyzing ADRs,
thereby providing access to domain knowledge and enabling
the discovery of additional insights. The core of our approach
is the creation of a knowledge graph fromADRs, followed by
the conversion of this data intoWikidata concepts.We believe
that this approach could assist in the deeper analysis of
current ADR practices and the creation of new ADRs by
proposing best practices in specific domains.

REFERENCES
[1] J. Bosch, ‘‘Software architecture: The next step,’’ in Software Architecture

(Lecture Notes in Computer Science), F. Oquendo, B. C. Warboys, and
R. Morrison, Eds. Berlin, Germany: Springer, 2004, pp. 194–199.

[2] M. A. Babar, T. Dingsøyr, P. Lago, and H. V. Vliet, Software Architecture
Knowledge Management. Cham, Switzerland: Springer, 2009.

[3] R. Weinreich and I. Groher, ‘‘Software architecture knowledge manage-
ment approaches and their support for knowledge management activities:
A systematic literature review,’’ Inf. Softw. Technol., vol. 80, pp. 265–286,
Dec. 2016.

[4] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, ‘‘10 years
of software architecture knowledge management: Practice and future,’’
J. Syst. Softw., vol. 116, pp. 191–205, Jun. 2016.

[5] M. Nygard. (2011). Documenting Architecture Decisions. [Online]. Avail-
able: http://thinkrelevance.com/blog/2011/11/15/documentingarchitec
ture-decisions

[6] R. Parsons, M. Fowler, and B. Subramaniam. (2018). Technology Radar.
[Online]. Available: https://www.thoughtworks.com/radar

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2003.

[8] A. Jansen and J. Bosch, ‘‘Software architecture as a set of architectural
design decisions,’’ in Proc. 5th Work. IEEE/IFIP Conf. Softw. Archit.,
Oct. 2005, pp. 109–120.

[9] P. Kruchten, ‘‘An ontology of architectural design decisions in software
intensive systems,’’ in Proc. 2nd Groningen Workshop Softw. Variability,
2004, pp. 54–61.

[10] R. Farenhorst and R. C. D. Boer, ‘‘Knowledge management in software
architecture: State of the art,’’ in Software Architecture Knowledge Man-
agement. Berlin, Germany: Springer, 2009, p. 21.

[11] O. Zimmermann, L. Wegmann, H. Koziolek, and T. Goldschmidt, ‘‘Archi-
tectural decision guidance across projects–problem space modeling, deci-
sion backlog management and cloud computing knowledge,’’ in Proc. 12th
Work. IEEE/IFIP Conf. Softw. Archit., May 2015, pp. 85–94.

[12] S. Harhio, ‘‘Documenting software architecture design decisions in contin-
uous software development—A multivocal literature review,’’ M.S. thesis,
Fac. Sci., Univ. Helsinki, Helsinki, Finland, 2022.

[13] M. Keeling, ‘‘Love unrequited: The story of architecture, agile, and how
architecture decision records brought them together,’’ IEEE Softw., vol. 39,
no. 4, pp. 90–93, Jul. 2022.

[14] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, ‘‘A compar-
ative study of architecture knowledge management tools,’’ J. Syst. Softw.,
vol. 83, no. 3, pp. 352–370, Mar. 2010.

[15] J. Tyree and A. Akerman, ‘‘Architecture decisions: Demystifying architec-
ture,’’ IEEE Softw., vol. 22, no. 2, pp. 19–27, Mar. 2005.

[16] O. Kopp, A. Armbruster, and O. Zimmermann, ‘‘Markdown architec-
tural decision records: Format and tool support,’’ in Proc. ZEUS, 2018,
pp. 55–62.

[17] T. Gilb, Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage.
Amsterdam, The Netherlands: Elsevier, 2005.

[18] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, ‘‘Sustainable architec-
tural design decisions,’’ IEEE Softw., vol. 30, no. 6, pp. 46–53, Nov. 2013.

[19] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, ‘‘Past and future of
software architectural decisions—A systematic mapping study,’’ Inf. Softw.
Technol., vol. 56, no. 8, pp. 850–872, Aug. 2014.

[20] Z. Alexeeva, D. Perez-Palacin, and R. Mirandola, ‘‘Design decision docu-
mentation: A literature overview,’’ in Proc. Eur. Conf. Softw. Archit. Cham,
Switzerland: Springer, 2016, pp. 84–101.

[21] M. Anvaari, R. Conradi, and L. Jaccheri, ‘‘Architectural decision-
making in enterprises: Preliminary findings from an exploratory study in
Norwegian electricity industry,’’ in Proc. Eur. Conf. Softw. Archit. Cham,
Switzerland: Springer, 2013, pp. 162–175.

[22] D. Tofan, M. Galster, and P. Avgeriou, ‘‘Difficulty of architectural
decisions—A survey with professional architects,’’ in Proc. Eur. Conf.
Softw. Archit. Cham, Switzerland: Springer, 2013, pp. 192–199.

[23] M. Keeling and J. Runde. (Jul. 2018). Distribute Design Authority
With Architecture Decision Records. [Online]. Available: https://www.
agilealliance.org/resources/experience-reports/distributedesign-authority-
with-architecture-decision-records/

[24] M. Osl. (Mar. 2021). 8 Learnings From Using Architecture Decision
Records (ADRs) at Willhaben. [Online]. Available: https://tech.willhaben.
at/8-learnings-from-usingarchitecture-decision-records-adrs-at-
willhaben-5b1594ebaffe

VOLUME 11, 2023 63739



G. Buchgeher et al.: Using Architecture Decision Records in Open Source Projects

[25] J. Blake. (Apr. 2020). When Should I Write an Architecture Deci-
sion Record. [Online]. Available: https://engineering.atspotify.com/2020/
04/14/when-should-iwrite-an-architecture-decision-record/

[26] E. Perkins. (Aug. 2020). Why Write ADRs. [Online]. Available:
https://github.blog/2020-08-13-why-write-adrs/

[27] M. Vidoni, ‘‘A systematic process for mining software repositories:
Results from a systematic literature review,’’ Inf. Softw. Technol., vol. 144,
Apr. 2022, Art. no. 106791.

[28] A. E. Hassan, ‘‘The road ahead for mining software repositories,’’ in Proc.
Frontiers Softw. Maintenance, Sep. 2008, pp. 48–57.

[29] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-Based Software
Engineering and Systematic Reviews. Boca Raton, FL, USA: CRC Press,
2015.

[30] B. Kitchenham and P. Brereton, ‘‘A systematic review of systematic review
process research in software engineering,’’ Inf. Softw. Technol., vol. 55,
no. 12, pp. 2049–2075, Dec. 2013.

[31] H. Muccini, ‘‘Group decision-making in software architecture: A study on
industrial practices,’’ Inf. Softw. Technol., vol. 101, pp. 51–63, Sep. 2018.

[32] M. Keeling, ‘‘The psychology of architecture decision records,’’ IEEE
Softw., vol. 39, no. 6, pp. 114–117, Nov. 2022.

[33] C. Miesbauer and R. Weinreich, ‘‘Classification of design
decisions—An expert survey in practice,’’ in Software Architecture
(Lecture Notes in Computer Science), K. Drira, Ed. Berlin, Germany:
Springer, 2013, pp. 130–145.

[34] K. Brandner, B. Mayer, and R. Weinreich, ‘‘Software architecture knowl-
edge sharing with the architecture knowledge base (AKB),’’ in Proc. 13th
Eur. Conf. Softw. Archit., New York, NY, USA, Sep. 2019, pp. 30–33.

[35] M. Chen, ‘‘Evaluating large language models trained on code,’’ 2021,
arXiv:2107.03374.

[36] M. Razavian, B. Paech, and A. Tang, ‘‘The vision of on-demand architec-
tural knowledge systems as a decision-making companion,’’ J. Syst. Softw.,
vol. 198, Apr. 2023, Art. no. 111560.

[37] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, ‘‘An in-depth study of the promises and perils of mining
GitHub,’’ Empirical Softw. Eng., vol. 21, no. 5, pp. 2035–2071, Oct. 2016.

[38] R.Weinreich and I. Groher, ‘‘The architect’s role in practice: From decision
maker to knowledge manager?, IEEE Softw., vol. 33, no. 6, pp. 63–69,
2016, doi: 10.1109/MS.2016.143.

GEORG BUCHGEHER received the Ph.D. degree
in business and computer science from Johannes
Kepler University Linz, in 2013. He has been a key
Researcher and a Project Manager in the software
science area with Software Competence Center
Hagenberg GmbH (SCCH), since 2006. He is cur-
rently working as a Lead Software Architect with
karriere.at GmbH. He has more than 16 years of
experience in fundamental and applied research
projects. He has published more than 45 scien-

tific publications at international conferences and in scientific journals.
His research interests include software architecture, software engineering,
component- and service-based development, microservices, and knowledge
graphs. Furthermore, he is a program committee member of multiple interna-
tional conferences and workshops and serves as a reviewer for international
journals.

STEFAN SCHÖBERL received the degree in soft-
ware engineering from the University of Applied
Sciences Upper Austria, Campus Hagenberg.
Since 2021, he has been a Researcher and a
Senior Software Engineer in the software science
area with Software Competence Center Hagen-
berg GmbH (SCCH). He is also an External Lec-
turer with the University of Applied Sciences
Upper Austria, Campus Hagenberg, since 2022.
His research interests include compilers, software

analysis, cloud computing, and software architecture.

VERENA GEIST received the Ph.D. degree in com-
puter science from Johannes Kepler University
Linz, in 2012. She is currently a key Researcher
in the software science area with Software Com-
petence Center Hagenberg GmbH (SCCH), where
she leads the research focus on ‘‘complex sys-
tems analysis.’’ She is a coauthor of numerous
publications in scientific journals and conferences.
She has more than 17 years of experience, as a
researcher in the field of code analysis, software

redocumentation, AI for software engineering, process-aware information
systems, and knowledge graphs. Her signs of peer esteem are reflected in
several invitations to program committees, reviewing journal submissions,
and organization of workshops and conferences.

BERNHARD DORNINGER received the degree
in business and computer science from Johannes
Kepler University Linz. He has been a Senior
Project Manager in the software science area with
Software Competence Center Hagenberg GmbH
(SCCH), since 2000. His research interests include
requirements engineering, software analysis, and
software architecture.

PHILIPP HAINDL received the degree in infor-
mation and communication systems engineering
and business informatics from the University
of Applied Sciences Technikum Vienna and the
Ph.D. degree in computer science from Johannes
Kepler University Linz, in 2021. He is cur-
rently a Lecturer in software engineering with the
St. Pölten University of Applied Sciences. He has
more than 15 years of practical experience in
industrial software projects as technology consul-

tant, software engineer, and architect. His research interests include comprise
software security, learning analytics in software engineering education, and
resilient software architectures. He is a program committee member of
international software engineering conferences and serves as a reviewer for
international journals.

RAINER WEINREICH is currently an Asso-
ciate Professor with the Department of Busi-
ness Informatics–Software Engineering, Johannes
Kepler University Linz (JKU). His research inter-
ests include software engineering and software
architecture, with a current focus on software
architecture knowledge management for large-
scale enterprise software, cloud-native software
architecture, and microservices. He is a member
of program committees of leading conferences in

software architecture and a regular reviewer for international conferences
and scientific journals in software engineering. More information about him
can be found at https://www.se.jku.at/weinreich.

63740 VOLUME 11, 2023

http://dx.doi.org/10.1109/MS.2016.143

