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ABSTRACT Body language is a nonverbal communication process consisting of movements, postures,
gestures, and expressions of the body or body parts. Body language expresses human feelings, thoughts, and
intentions. It also reveals physical and psychological health conditions: abnormal activities inform peoples’
health conditions, facial expressions indicate their emotional states and abnormal body actions convey spe-
cific diseases’ external signs and symptoms.We can observe the importance of studying the body language of
people with health conditions throughmany reports in literature written by healthcare (medical) and artificial
intelligence researchers. This paper comprehensively reviews artificial intelligence-based articles that have
studied patients’ body language. We also conduct different descriptive and exploratory examinations of
the findings using data analysis techniques, which provide more authentic domain knowledge of abnormal
activities, abnormal body actions, and more precise analysis of methodologies used in machine learning
tasks for studying these abnormalities. The paper’s results are essential for developing intelligent automated
systems that accurately evaluate patients’ physical and psychological conditions, precisely identify external
signs and symptoms of diseases, and adequately monitor patients’ health conditions.

INDEX TERMS Artificial intelligence, body language, abnormal activity, abnormal body action, abnormal-
ity detection, machine learning, data analysis.

I. INTRODUCTION
Body language is a collection of bodily actions such as
movements, postures, gestures, expressions, tone of voice,
proximity, and touch performed by different body parts used
in human relations and interactions to convey and express
thoughts, intentions, emotions, feelings, and physical con-
ditions. According to Mehrabian, a pioneer researcher of
body language, 93% of face-to-face communication consti-
tutes nonverbal signals, which include body actions (55%)
and vocal expressions (38%) [1]. Birdwhistell, the devel-
oper of kinesics (the study of nonverbal communications),
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established that more than 65% of communications are
made nonverbally [2], [3]. The interaction of body language
in communications facilitates speedy and clear information
transmission and understanding [4], and it speaks more and
better content than verbal language [5]. Because people are
not always aware that they are communicating nonverbally,
body language is often more honest than an individual’s
verbal pronouncements [6]. Thus, reading nonverbal cues and
signs is crucial for understanding people and establishing
human relationships and communication.

Business, trade, politics, security, education, and health-
care are a few of the many sectors of human society where
body language plays a significant role in different activities,
assisting people in expressing themselves and understanding
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and decoding others. The expressions of confidence, com-
fort, and attraction through body postures, kindness, seri-
ousness, and other characteristics with facial expressions,
attention and respect in eye contact, personality, and phys-
ical behaviors in handshakes are key in general business
negotiations and communications [7], [8], [9], [10], [11].
Educators’ body language affects students’ motivation, inspi-
ration, and engagement in teaching and learning settings.
On the other hand, understanding students’ body language is
also important as it reveals students’ involvement, attention,
understanding, thinking, and feeling during class activi-
ties [12], [13], [14], [15], [16]. The ability to interpret
body postures, facial expressions, and other bodily cues is
crucial in security services, criminal intelligence, and law
enforcement [17], [18], [19], [20], [21], [22]. Politicians,
in addition to verbal skills, communicate effectively through
their body language as it is a powerful tool for expressing
their personalities, connecting with people, and influencing
the audience’s perception through their good public appear-
ance, postures, facial expressions, hand gestures and tone of
voice [23], [24], [25], [26], [27].

Body language also plays an important role in the rela-
tionships and communications of personnel and patients in
healthcare systems [28], [29], [30], [31]. However, the signif-
icance of body language in health and medicine is utmostly
related to decoding patients’ physical and psychological
states. Sick people use hand gestures or finger movements
to point to pain locations in the body [32], and their facial
expressions show pain severity [33]. Several diseases affect
different body parts causing abnormalities in their move-
ments, postures, gestures, and expressions. Many papers in
the literature have studied the causational relationships of dis-
eases and pains to abnormal body actions, such as abnormal
head poses and movements, facial expressions, eye move-
ments, and upper and lower limb movements. For instance,
Study [34] reveals that patients with Parkinson’s disease
(PD) practice delayed initiating movements, slowness, and
hesitance. They also show fixed facial expressions, staring,
downward and unblinking gaze, stooped and flexed posture,
and tremors. Patients with ataxia-telangiectasia experience
co-contraction, myoclonus, tremor, dystonic spasms, tonic
activity, and other abnormal body postures [35]. According
to [36], rigidity, chorea, tics, motor impersistence, rigidity,
and choreiform motions are associated with Huntington’s
disease (HD). Postural deformities such as camptocormia,
antecollis, Pisa syndrome, and scoliosis are also found in
patients with Parkinson’s disease [37]. Moreover, PD patients
have less frequent and reduced facial expressions [38].
Work [39] informs that patients with Alzheimer’s disease
(AD) show increased latency to the initiation of saccades.
The results of [40] show that PD patients have difficulty in
performing motor tasks such as finger tapping, hand opening
and closing, forearm pronation, and supination. Paper [41]
highlights that celiac disease is frequently associated with
restless leg syndrome (RLS). According to [42], RLS is also

associated with type 2 diabetes. Paper [43] demonstrates that
there is a substantial relationship between tachyphemia and
freezing of gait.

Recent advances in artificial intelligence (AI), especially
machine (deep) learning, allow using AI-based technologies
in almost all aspects of human life. AI plays a key role
in transforming traditional healthcare into smart healthcare,
making it more efficient, convenient, and personalized [44].
Smart healthcare systems ?involve automated health moni-
toring, intelligent diagnosis and treatment, optimized hospital
management, best health decision-making, and AI-supported
medical research. Nevertheless, the application of AI in
healthcare presents ethical dilemmas that require careful
consideration and resolution. A primary ethical concern in
healthcare AI is privacy and data security. As AI algorithms
depend on extensive patient data for training and optimiza-
tion, securing sensitive patient data and limiting access to
authorized personnel is essential. Healthcare organizations
should enforce rigorous data protection policies like encryp-
tion, access control, and routine data audits. Additionally,
they should maintain data collection and usage transparency
and obtain patient consent for data sharing [45], [46].
Another ethical issue arises from AI algorithms poten-
tially perpetuating biases and discrimination in healthcare if
trained on biased data or programmed on biased assumptions.
To mitigate this, healthcare organizations should ensure AI
algorithms are trained on diverse, representative data sets
and consistently monitor them for bias and fairness, mak-
ing adjustments as needed [45], [46], [47]. Furthermore,
addressing accountability and responsibility is necessary as
AI decisions can significantly impact patients’ health and
well-being. Healthcare organizations should establish distinct
lines of accountability and responsibility for AI decisions
andmaintain transparency regarding decision-making criteria
and algorithm functionality [45], [47], [48]. Moreover, con-
cerns exist that AI could entirely replace human healthcare
professionals, resulting in losing empathy and human touch
in healthcare. To address this, organizations should develop
AI systems that collaborate with, rather than replace, human
professionals, ensuring AI systems include human oversight
and control, particularly in critical situations [45], [46], [47].
Healthcare organizations canminimize ethical risks by imple-
menting these measures while maximizing AI’s benefits.

Patients’ body language analysis using machine and deep
learning techniques enhances key dimensions of such sys-
tems with intelligently monitoring and evaluating health
conditions of patients, identifying external signs and symp-
toms of diseases and pains, and diagnosing diseases through
abnormal body actions such as abnormal postures, move-
ments, gestures, and expressions. We can distinguish two
main categories of AI-based research in this domain: the
first includes studies that analyze patients’ health conditions
concerning their activities and movements using machine
learning techniques (for instance, see [45], [46], [47]),
and the second involves studies that, similar to medical
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researches, investigate the effects of diseases and pains to
body actions to identify abnormality patterns (for instance,
see [52], [53], [54], [55]).

In the literature, we can find a few review papers that have
addressed to summarize such studies from different perspec-
tives. For instance, report [56] provides an in-depth review of
machine learning models that analyze abnormal body actions
caused by a large spectrum of neurodegenerative diseases.
Another paper [57] analyzes the performance of machine
learning algorithms that detect and recognize abnormal motor
symptoms of a specific neurodegenerative disease, namely
Parkinson’s disease, based on time-series data. Review [58]
investigates the research frameworks for automated facial
pain expression detection using FACS. Recent papers [30]
and [31] provide an overview of the role of body language
in healthcare and an analysis of computational methods
used to detect and recognize healthcare patients’ abnormal
body activities and actions. Though these reports provide
an exhaustive review of methodologies and computational
models used in the analyses of causational relationships
of diseases and pains with abnormal body actions, they
merely focus on specific diseases (e.g., neurodegenerative
diseases in [56], Parkinson’s disease in [57]), specific abnor-
mal actions (e.g., hand gestures in [56] and facial expressions
in [58]) performed by specific body parts (e.g., upper and
lower limbs in [30], [56], and [57] and face in [31] and [58]).

However, the comprehensive understanding of the rela-
tionships between diseases/pains and patients’ body language
and the development of reliable AI-powered solutions that
identify signs and symptoms of diseases and evaluate and
monitor patients’ health conditions require a broader and
deeper approach to studying and analyzing abnormal activ-
ities and abnormal body language of people with health
conditions. Since a certain disease may cause abnormalities
in movements, postures, gestures, or expressions in different
body parts as well as a certain abnormal body action may
be caused by different diseases, such a ‘‘clustered’’ review
and analysis approach should focus on determining all abnor-
mal body actions performed by each expressible body part.
As a completion of these ideas, the current study reviews
AI-based papers studying patients’ body language, and it
conducts descriptive and exploratory analyses of the extracted
knowledge from the reviewed papers using data analytics
techniques.

We investigate the papers that discuss bodily activities
(walking, sitting, lying, falling, etc.) of people with health
conditions and abnormal body actions of patients with cer-
tain diseases or pains. First, we cluster the selected papers
for review according to body parts expressing abnormalities
in their movements and poses. Second, we subcategorize
each cluster into subclusters concerning patient activities
and abnormality-causing diseases and pains. This approach
provides a clearer focus on smaller targets with the precise
classification of problems and their solutions. After identi-
fying the patient activities and the causational relationships
of diseases/pains with abnormal body actions, we mine the

information related to datasets, data acquisition and prepro-
cessing techniques, methods, and algorithms employed for
segmentation, detection, recognition, evaluation, and analy-
sis. We further conduct descriptive and exploratory analyses
of the findings to determine useful relations of data types,
data acquisition procedures, feature engineering techniques,
methods, and algorithms for abnormality detection, recog-
nition, and performance evaluation metrics. We believe this
research will support the development of more reliable, intel-
ligent systems that accurately evaluate patients’ physical and
psychological conditions, precisely identify external signs
and symptoms of diseases, and adequately monitor patients’
health conditions.

The main contributions of this paper can be summarized as
follows:

1. Numerous AI-based papers examining abnormal activ-
ities and body actions in individuals with health
conditions are reviewed, focusing on the causational
relationships between health conditions and body
action abnormalities and machine learning approaches
for detecting, recognizing, evaluating, and analyzing
abnormalities in these relationships.

2. The review findings are organized in separate tables
based on the expressive body parts, offering a more
comprehensive and clear depiction of the causational
relationships between diseases and abnormal body lan-
guage exhibited by each body part. This organization
also identifies and categorizes the relevant machine
learning techniques used to study these abnormal body
actions in relation to each body part.

3. Utilizing the information presented in the abnormal-
ity tables, a dataset encompassing properties, such as
abnormal body language, diseases, pain, data types,
datasets, data preprocessing techniques, feature engi-
neering processes, machine learning methods, algo-
rithms, performance evaluation metrics, and results,
has been created.

4. Exploratory and descriptive analyses are performed on
all dataset features, establishing their statistical and
relational properties. Consequently, we obtain highly
supportive outcomes concerning the most frequently
studied diseases, abnormal body actions, causal rela-
tionships, and research frameworks.

Further, we describe our review and analysis methodology,
which is densely depicted in Figure 1.

Stage 1: Paper Search and Selection. We search and
select AI papers that discuss the different activities (walk-
ing, sitting, running, falling, lying, etc.) of people with
some health conditions and patients’ abnormal body actions
caused by diseases and pains in electronic databases such as
SCOPUS, PubMed, ScienceDirect, etc. The search is con-
ducted using the related combinations of keywords such as
‘‘disease,’’ ‘‘pain,’’ ‘‘body,’’ ‘‘head,’’ ‘‘neck,’’ ‘‘shoulder,’’
‘‘face,’’ ‘‘eye,’’ ‘‘limb,’’ ‘‘upper limb,’’ ‘‘lower limb,’’‘‘arm,’’
‘‘hand,’’ ‘‘leg,’’ ‘‘foot,’’ ‘‘finger,’’ ‘‘movement,’’ ‘‘pose,’’
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‘‘posture,’’ ‘‘gesture,’’ ‘‘expression,’’ ‘‘falling,’’ ‘‘activity,’’
‘‘artificial intelligence,’’ ‘‘machine learning,’’ and ‘‘deep
learning.’’

Stage 2: Paper Classification. The selected papers are
classified into three main categories: the papers studying
abnormal activities of people with health conditions, the
papers studying disease and abnormal body language causa-
tional relationships, and the papers studying pain and abnor-
mal body language causational relationships. The papers of
these three categories are further divided into subcategories
based on the ‘‘expressible’’ body parts, i.e., body (general),
head, face, eyes, upper limbs, and lower limbs.

Stage 3: Paper Review. The review of the papers focuses
on identifying diseases/pains and abnormal body language
causational relationships, health conditions, body language,
datasets, data preprocessing techniques, feature engineer-
ing tools, machine (deep) learning methods, algorithms for
segmentation, detection, recognition, evaluation, and perfor-
mance evaluation metrics and results.

Stage 4: Finding Summarization. The information
extracted from the reviewed papers based on the defined cri-
teria is represented in tables according to the abnormal body
movements, poses, and expressions. The obtained knowledge
has been organized from the outlook of activities, diseases,
and pains within the tables.

Stage 5: Analysis of Findings. The review dataset is con-
structed based on the tables obtained in Stage 4. All dataset
features – activities, diseases, pains, datasets, data prepro-
cessing techniques, feature engineering procedures, machine
(deep) learning methods, algorithms, methodologies, per-
formance evaluation metrics, and results – are statistically
analyzed. Methodology Similarity Clusters are defined, and
the best methodologies for abnormality pattern detection,
recognition, and evaluation are selected.

Stage 6: Conclusions. The review study is concluded: the
findings have been summarized, and the limitation of the
study and future research have been described in detail.

The paper is structured as follows: In Section II, we con-
duct a comprehensive review of selected research papers
that concentrate on the abnormal activities of people with
health conditions and patients abnormal body actions caused
by diseases and pains. Section III presents a summary of
key findings, including health conditions, body language,
methodologies, and results, displayed in ‘‘abnormality’’
tables. In Section IV, we provide the results of a detailed
descriptive and comprehensive analysis of the statistical prop-
erties of the findings. Section V concludes the current study
by emphasizing the key outputs. It also explains essential
constraints in AI-based research pertaining to patients’ abnor-
mal body language and proposes an approach for overcoming
these issues.

II. PATIENTS’ ABNORMAL ACTIVITIES AND BODY
LANGUAGE
In this section, first, we provide an initial insight into different
relations among activities, diseases, abnormalities, and other

important information discussed in the selected papers for
review and analysis using VOSviewer [59] and Mendeley
Reference Manager [60]. Then, we review the papers that
study different health conditions involving abnormal activi-
ties, motions, poses, gestures, and expressions produced by
the expressible body parts using machine and deep learning
techniques. We review the papers centralizing on body parts,
i.e., body, head, face, eye(s), lower limbs, and upper limbs.
We focus on abnormal activities, disease and body language
causational relationships, data acquisition techniques, data
types, datasets, data preprocessing steps, feature extraction
and selection procedures, machine learning methods and
algorithms, and performance evaluation metrics and results.

A. PRELIMINARY OBSERVATION
From initially collected 180 AI articles that mention dis-
eases, pains, their relationships to patients’ body postures
and, movements, activities, we selected 84 papers that dis-
cussed abnormal activities of people with health conditions
and the causational relationships of diseases and pains with
abnormal body actions, i.e., abnormal movements, postures,
gestures and expressions performed by the body or any body
part. Figure 2 illustrates the initial observation of the reviewed
papers’ network, i.e., the relationships of the diseases, pains,
body language, datasets, machine learning methods, and
other essential keywords occurring in these papers. This
graph is constructed using VOSviewer from the information
(keywords) extracted from the titles and abstracts of the
papers listed in Mendeley Reference Manager. The graph
consists of 101 nodes and 577 edges in 12 clusters. The
nodes in the graph represent all the keywords selected, and
each node size indicates the total number of occurrences
of the corresponding keyword in all papers. The keywords
closely related to one another are grouped into clusters of
different colors. The edges indicate the relations between
keywords. Due to the high number of keywords present,
some nodes are congested in a single location resulting in
some keywords not being displayed (we refer the reader
to Figure S1 to view a more detailed interactive chart).
Here, we can observe that the represented relationships of
diseases and pains with body postures, movements, expres-
sions, and gestures, patients’ activities, data preprocessing
techniques, detection, recognition, and analysis methods, and
performance evaluation metrics are very complex and highly
unstructured, which challenges mining the necessary infor-
mation and establishing structured and accurate relations
of these elements. We unscramble this problem through a
scrupulous review and comprehensive data analysis.

B. ABNORMAL BODY MOVEMENTS AND POSES
The following papers have proposed various patient activ-
ity detection and recognition systems. Study [61] presents
an initial implementation of a patient monitoring system
based on support vector machine (SVM) models that can
be used for patient activity recognition in case a patient or
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FIGURE 1. The review and analysis methodology: a six-stage process starts with ‘Paper Search & Selection’ for sourcing relevant papers, then
‘Paper Classification’ for sorting these papers based on body parts. ‘Paper Review’ ensures comprehensive understanding, while ‘Finding
Summarization’ distills key points. Subsequently, ‘Analysis & Findings’ observes and evaluates data, leading to the final stage, ‘Conclusions’,
discussing results and implications.
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an elder fall. The paper considers three types of activities:
simple walk, simple walk and fall, and simple walk and
run, monitored using sensors equipped with accelerometers
and microphones. The data classification with the SVM-
RBF (radial basis function) kernel produces an accuracy
of 96.72% for all activities. Meanwhile, the highest accu-
racy of 98.2% is detected for the run events. Paper [62]
proposes a novel method to detect and record various posture-
based events of interest in a typical elderly monitoring
application in a home surveillance scenario. These events
include standing, sitting, bending/squatting, side-lying, and
lying toward the camera. The preprocessed data of 30 video
clips with an average duration of 2 minutes and five pos-
tures recorded from a fixed camera are inferred using the
k-nearest neighbor (KNN) algorithm and evidence accumu-
lation technique. It is shown that the recognition rate of
above 90%. Paper [63] aims to unobtrusively monitor elder
activity to recognize falls and other health problems. It ana-
lyzes the performance of eight machine learning algorithms:
SVM, KNN, Random Forest (RF), Bagging, AdaBoost M1,
RIPPER Decision Rules, Naïve Bayes (NB) classifier, and
C4.5 Decision Trees (DTs) for detecting falling, lying down,
sitting down, standing/walking, sitting, and lying. The paper
shows that SVM produces the most accurate classifier: the
accuracy on clean data was 97.7%, and on noisy data, 96.5%.
RF, Bagging, and AdaBoost M1 Boosting closely follow
it. Research [64] introduces an activity recognition system
based on a nonlinear SVM algorithm to identify 20 differ-
ent human activities categorized into three classes, motions
(jumping, walking, etc.), stationary postures (bending, lying,
sitting, etc.), and transitions (standing-to-bend, lying-to-sit,
etc.), from an accelerometer and RGB-D camera data. The
model achieves the lowest weighted briber score of 0.1700,
the highest Macro F1 score of 33.53%, and the highest Micro
F1 score of 65.08%.

Among the studies focused on patient activity detection
and recognition, we can pay special attention to those inves-
tigating patients’ falls. The following papers have developed
fall detection systems implemented in different situations
related to patients and older adults. Paper [65] presents a
novel patient fall detection system implementation. The sys-
tem acquires the data from sensors attached to the legs of
the subjects that provide information on walking, walking
and falling, and walking and running. SVMs are used to
classify the acquired data and determine a fall emergency
event. Fall events are detected with an average accuracy
of 98.2%, whereas run events were successfully detected
at 96.72%. Study [66] introduces a low-cost, non-invasive
motion sensing method, mobile infrared silhouette imaging,
and sparse representation-based pose recognition for building
an elderly-fall detection system. The pyroelectric infrared
(PIR) sensor array is used for elderly pose acquisition, and
robust fall detection is obtained via sparse representation. The
mobile robot undertakes rotary scanning, and the pose of the
human body can be recorded as a simple binary silhouette.

Paper [67] presents a depth video-based novel method
for human activity recognition (HAR) using robust multi-
features and embedded Hidden Markov Models (HMMs)
to recognize several daily activities (e.g., sitting down, tak-
ing medicine, falling, both hands waving, etc.) of older
adults living alone in indoor environments such as hos-
pitals, homes, and offices. The developed model analyzes
705 video sequences of sixteen people’s daily activities and
demonstrates the accuracy of 94.82% on hospital activities,
95.15% on home activities, and 95.97% on office activities.
Research [68] introduces a fall detection system framework
based on edge computing. The data obtained from wearable
devices is processed on a nearby edge device (e.g., a com-
puter or a mobile device) instead of sending the data to the
cloud. The machine learning model enables data analysis and
generates real-time notifications for assistance. The research
analyzes four types of falls: forward lying (fall forward from
standing and use of hands to dampen fall), front knees lying
(fall forward from standing with the first impact on knees),
sideward lying (fall sideward from standing with bending
legs), and back sitting chair (fall backward while trying to
sit on a chair). The highest performance of the model over
the data obtained with the waist and wrist combination gives
96% precision, 96% recall, and 95.8% accuracy.

The abnormal activities of the patients are the main interest
in the following papers. Work [69] proposes a high-speed and
robust posture classification algorithm employed in any per-
vasive patient monitoring system. The algorithm processes
twenty images per posture obtained from twenty bed-bound
patients to recognize the eight body postures: supine, supine
hands on the body, supine-folded leg, supine-crossed leg,
right yearner, right fetus, left yearner, and left fetus. The
algorithm achieves a total accuracy of 97.1% for all posture
classifications. Paper [70] introduces a novel real-time sys-
tem for recognizing freezing episodes in a standstill state,
tremors, and fall incidents commonly seen in PD patients
using a 3D camera sensor based on the Microsoft Kinect. The
system was tested on seven simulated subjects in 12 events
indicating that the design could detect 99% of the falling
incidents, 91% of tremors, and 92% of the freezing of gait
(FOG) episodes. [50] proposes a semi-automated approach
for improving upper body pose estimation in noisy clinical
environments. The subject-specific convolutional neural net-
works (CNNs) analyze videos of seven joints in the bodies
of three subjects: head, left/right hands, left/right elbows,
and left/right shoulders. The average accuracy for detecting
the upper-body features achieves 92%. Paper [71] studies
the patients’ movement detection problem using ResNet and
healthcare personnel movement detection using YOLOv2.
The data for the study is collected from the seven wall-
mounted depth sensors that capture 3D volumetric images
of patients and healthcare personnel. The patients’ mobility
activities are detected with a mean specificity of 89.2% and
sensitivity of 87.2% for overall activities, and the person-
nel activities are detected with a mean accuracy of 68.8%.

VOLUME 11, 2023 62145



S. Turaev et al.: Review and Analysis of Patients’ Body Language From an Artificial Intelligence Perspective

FIGURE 2. The network of the reviewed papers depicts the initial relationships among diseases, pains, body language, and machine learning methods
based on keyword data from the titles and abstracts of reviewed papers, visualized using VOSviewer.

Study [72] estimates the patient’s in-bed motions from pres-
sure sensors’ data mapped to images. Five body positions
and movements of six subjects on the bed are learned with
a hashing-based content retrieval method and CNNs. The
former searches a query image in a training hash table and
retrieves the nearest neighbor’s 3D body poses, and the latter
estimates a 3D pose from a pressure image using regression.
The results show satisfactory performance with both meth-
ods, even in poses where the subject has minimal contact with
the sensors.

In-bed motion tracking has grown in popularity for a
variety of therapeutic applications. Paper [73] addresses this
problem by proposing a deep neural network (DNN)-based
framework for 3D posture estimation. A DNN is used to
collect a complete body 3D position in the first phase of
the approach. This phase includes two networks: the first
one extracts the shape (2D pose) and texture feature map
with hierarchies from each view separately, and the second
network infuses this information from all accessible view-
points to build the 3D posture, which is then used by a
top-down inverse dynamic algorithm to compute the kinetic
of the L5/S1 join. The results are verified against a marker-
based motion capture system as a baseline. Throughout
all datasets, the grand mean SD of the total moment/force
absolute errors was 9.06 (± 7.60) N·m / 4.85 ± 4.85 N.
Report [74] reviews relevant literature using the methodol-
ogy of combining expertise and perspectives from physical

therapy, speech-language pathology, movement science, and
engineering to provide insight into applications of pose esti-
mation in human health and performance. It also focuses on
applications in human development, performance optimiza-
tion, injury prevention, and motor assessment of persons with
neurologic damage or disease. It concludes that pose estima-
tion algorithms directly address an essential and widespread
need for low-cost, easy-to-use, accessible technologies that
enable human movement tracking in virtually any environ-
ment, including the home, clinic, classroom, playing field,
and other ‘‘in the wild’’ settings.

Several machine learning-based researchers have devel-
oped intelligent systems that study patients’ abnormal body
poses and movements with particular diseases, such as
PD, HD, schizophrenia, depression, and pains. Paper [53]
proposes an automated resting and action/postural tremor
assessment using a set of accelerometers mounted on differ-
ent patient body segments. Estimating tremor type, resting,
and action postural and severity is based on features extracted
from the acquired signals and HMMs. The method is eval-
uated using data from 23 subjects (18 PD patients and
five control subjects). The proposed model reaches 87%
accuracy for tremor severity. The method also discriminates
resting from postural tremors and differentiates tremors from
other Parkinsonian motor symptoms during daily activi-
ties. Research [51] performs a preliminary investigation on
the visual-based monitoring behavior of psychiatric patients
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using surveillance cameras. Patients entering and leaving the
room, fighting, sleeping, talking, and breaking out are ana-
lyzed through statistics of optical flow vectors extracted from
the patient’s movements. The classification uses Bayesian
classifiers, HMM, and SVMs. For the data set, all the activ-
ities considered are successfully detected and classified by
approximately 85%.

Study [75] proposes relative body parts and a local motion
pattern-based depression detection framework, which ana-
lyzes the left and right arm, head, and upper and lower parts
of the left and right leg of 30 depressed and 30 healthy
subjects. The model first computes relative orientation and
radius for detecting the body parts resulting in a histogram
of relative parts’ motion. Second, space-time interest points
are calculated to analyze the motion holistically, and a bag
of words framework is learned. Then, two histograms are
fused, and a support vector machine classifier is trained. The
results show that a bimodal system overcomes the ambiguity
in polar histograms and helps maintain spatial information
by combining holistic body motion information. Paper [75]
studies upper body expressions and gestures’ contribution to
automatic depression analysis. The significant contribution of
this paper lies in creating a bag of body expressions and facial
dynamics for assessing the contribution of different body
parts for depression analysis. The experiments are performed
on real-world clinical data where video clips of patients and
healthy controls are recorded during interactive interview
sessions.

Work [76] proposes a deep learning method, feed-forward
1D-ConvNet (convolutional network), for detecting FOG
episodes in PD patients. The model is trained using a spec-
tral data representation strategy that considers information
from previous and current signal windows. The approach is
evaluated using data collected by a waist-placed inertial mea-
surement unit from 21 PD patients with FOG episodes. The
model achieves 90% for the geometric mean between sensi-
tivity and specificity. Paper [77] develops fast and objective
myoclonus quantification methods for myoclonus epilepsy
type 1 (EPM1), addressing marked variability problems,
which present a substantial challenge in devising treatment
and conducting clinical trials. An automatic tool obtains a
myoclonic jerk score from video recordings using human
body key point detection and human pose estimation. The
paper establishes that myoclonic jerks’ automated quantifi-
cation is feasible and consistent with the accepted clinical
gold standard quantification method. Research [78] pro-
poses a novel method to automatically detect self-adaptors
and fidgeting, i.e., a subset of self-adaptors correlated with
psychological distress. The paper processes the dataset con-
taining full-body videos (facial expressions, body motions,
gestures, and speech) of 35 people (18 with high distress
and 17 with low distress) and self-reported distress labels.
It demonstrates that the proposed multi-modal approach
combining audio-visual features with automatically detected
fidgeting behavioral cues can successfully predict distress

levels in a dataset labeled with self-reported anxiety and
depression.

A comprehensive review of the computational methods
used throughout the neurological spectrum, including Amy-
otrophic Lateral Sclerosis (ALS), AD, PD, HD, and Multiple
System Atrophy (MSA), is presented in [56]. This review
covers the computational approaches currently used across
the entire neurodegenerative spectrum and the general taxon-
omy identification of neurodegenerative disorders.Moreover,
a detailed analysis of the various modalities and decision
systems used for each disease and sleep disorders asso-
ciated with various diseases is provided. The paper [79]
presents a deep learning-enabled assessment framework for
the Unified Parkinson’s Disease Rating Scale (UPDRS).
The dataset includes bradykinesia (BRADY), gait disorders
(PIGD), rigidity, tremor, and posture instability. As an ensem-
ble model of ResNet, Spatio-Temporal Graph Convolutional
Networks (ST-GCN) and Hierarchical Convolutional Net-
works (HCN) are used in the assessment process. Using the
proposed framework, the highest F1 score obtained was 78%.
Paper [80] introduces an approach based on machine learning
(ML) and wearable sensors to select the best exercise for
detecting PD in patients.

Ten thousand samples are recorded using wireless sensors,
with 670 samples per exercise and 126 attributes. Since the
data is imbalanced, weights are used to control class distri-
bution. Three base estimators, RF (with multiple parameter
options), SVM, and logistic regression (LR), are used for
stacking. The final estimator was determined to be LR since it
was the most effective in actual use. The best-achieved accu-
racy through experiments is 67%. Research [81] describes
a simple method to detect gestures revealing muscle and
joint pain, such as lumbar spondylosis, tennis elbow, plantar
fasciitis, etc. The data is acquired using a Kinect sensor
from ten subjects. A feed-forward neural network is trained
to classify seven body poses and movements. The clas-
sification accuracy reaches 91.9%. Work [82] develops a
machine learning-based system consisting of an RF and
two-stage classification scheme (KNN and HMM) that can
continuously detect pain-related behaviors from patients’
electromyography (EMG) signals and body movements. The
models tested on the Emo-Pain dataset are proved efficient
in detecting different body poses and movements such as
guarding one-leg stand, abruption one-leg stand, protecting
reach forward, guarding sit to stand, etc.

As head movements and body expressions are regarded as
indications for depression analysis. In [83], authors examine
the significance of upper body expressions for automati-
cally detecting depression cases. A framework based on
Space-Time Interest Points (STIP) and a bag of expres-
sions is used. Head movement analysis is conducted for
the upper body part by selecting rigid face fiducial points
and a novel Histogram of Head Movements (HHM). Spatio-
temporal features are subsequently calculated on the aligned
face blob video. Next, a histogram and three hard fiducial
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points represent the frequency of head motions. Experi-
ments are conducted using real clinical data, with video
recordings of patients and healthy subjects during interac-
tive interview sessions. Using a range of body expressions,
the highest F1 and accuracy scores for depression detection
are 80% and 76.7%, respectively. In paper [84], General
Movements Assessment (GMA) is conducted on infants with
cerebral palsy. Video dataset from MINI-RGBD is utilized
with 12 sequences [85]. Two pain pose features are sug-
gested: Histograms of Joint Displacement 2D (HOJD2D)
and Histograms of Joint Orientation 2D (HOJO2D). Three
ML models, KNN, linear discriminant analysis (LDA), and
ensemble learning, are used. The ensemble model achieves
the best accuracy of 91.6%.

C. ABNORMAL HEAD POSES AND MOVEMENTS
The study of abnormalities in healthcare patients’ head
poses, andmovements originating from different diseases and
pains have also been under the interest of AI researchers.
Research [52] investigates vertiginous conditions and other
balance issues in otoneurology using a signal analysis
approach. To stimulate the vestibulo-ocular reflex, a subject
is instructed to shake his head horizontally from the center to
the left or right and back to the center based on a set rate. The
authors apply DT, SVM, NB, Kohonen networks, and neural
networks (NNs) to classify subjects as normal and abnormal.
With average accuracies of 89.8% and 89.4%, respectively,
the DT and SVMmodels have outperformed other models by
1-5%. [86] investigates the use of multimodal diagnostic cri-
teria, focusing on electroencephalogram (EEG), and develops
an RF classifier to differentiate dementia with Lewy bodies
(DLB) from AD. A comprehensive sample of patients was
chosen, including 66 subjects from each class (DLB, AD, and
normal). Clinical, cognitive, and visual EEG data and neu-
roimaging and cerebrospinal fluid measures were combined
with quantitative EEG (qEEG) measurements. Each tree in
the RF is created using a bootstrap sample which yielded to
achieve an accuracy of 87% using the proposed model.

The effects of everyday computer use, known as the Com-
puter Vision Syndrome (CVS) system, have been studied
using machine learning in [87]. The system calculates the rate
at which the eyes blink to detect CVS. CVS is identified if this
rate is larger or lower than a threshold value for eye blink rate
or head movement detection. A web camera is used to collect
data for this system. Using the Haar Cascade classifier, blinks
are distinguished from other eye movements from the col-
lected data. Additionally, segmenting head movement using
OpenCV is employed. Based on experiments, the proposed
algorithm produced 99.95% accuracy. In [88], a deep learning
model for abnormal head movement identification is intro-
duced. This model can handle distortion, noise, and different
illumination conditions. Normalization and scaling are done
in the first step of image preprocessing. Multi-task Cascaded
CNNs (MTCNN) with Hare Cascaded are applied in the
second stage to detect upper bodies. CNN is used for feature

extraction and classification tasks. The Normal Abnormal
Head Movement Dataset (NAHM) is gathered to verify the
proposed framework, with 98.31% validation accuracy.

D. ABNORMAL FACIAL EXPRESSIONS
The study of abnormal facial expressions is also one of the
most investigated areas by AI researchers. Since the face is
an important source for expressing emotions, in the following
papers, the researchers have studied patients’ depression,
despair, irritation, sadness, and other negative emotions with
or without relating to specific diseases.

Study [89] improves the capabilities of Remote Patient
Monitoring Systems (RPMS) by building a more realistic
RPMS that considers patients’ mental and emotional states.
A dataset consisting of 351 digitally captured faces from
27 people is used. Artificial neural networks (ANN) are
applied to process images as face details represented by
intensities in grayscale mode. Moreover, facial features have
been extracted using the active contour model technique.
Authors utilized Sobel edge detected images and Laplacian of
Gaussian filtered images as starting points. Each control point
will go to the least energy point in the eight neighborhoods.
To reduce energy points in eight neighborhoods, each control
point is moved. Based on the experimental findings, feature
expression analysis could be employed to evaluate patients
with RPMS’s emotional states. The authors of [90] propose a
method for identifying performed emotional states based on
evaluating body language and gesture expressiveness. Eight
emotional states are collected from 10 participants: pleasure,
anger, despair, interest, sadness, irritation, pride, and joy.
The proposed method is based on both direct and indirect
categorization of time series. Eyes Web Expressive Ges-
ture Processing Library computes various expressive motion
cues. KNN, DT, and Hidden Naïve Bayes (HNB) models are
applied for classification. The best achieved Leave-One-Out
Cross-Validation (LOOCV) error value was by the DTmodel.
Reference [91] presents a computational framework that cre-
ates probabilistic expression profiles for video data and can
potentially help automatically quantify emotional expression
differences between patients with neuropsychiatric disorders
and healthy controls. The authors applied Active Appear-
ance Model (AAM) for face landmark detection and SVM
for facial expression classification. Happiness and neutral-
ity expressions had the highest accuracy scores, 82.0% and
54.5%, respectively.

Facial abnormalities have often been used to evaluate emo-
tional impairment in neuropsychiatric patients. Work [92]
develops an automated facial action coding system (FACS)
system to analyze dynamic changes in facial actions in videos
of neuropsychiatric patients. The introducedmethod analyzes
dynamical expression changes through videos, measures
individual- and combined-facial muscle movements through
action units (AUs), and performs automatically without an
operator’s intervention. These advantages facilitate high-
throughput analysis of large sample studies on emotional
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impairment in neuropsychiatric disorders. Paper [93] pro-
poses a facial-expression recognition system to improve
healthcare service in a smart city using IoT. The proposed
system first extracts sub-bands using applying a bandlet
transform to a face image; second, it applies a weighted,
center-symmetric local binary pattern (CS-LBP) to each sub-
band block by block resulting in the CS-LBP histograms of
the blocks that produce a feature vector of the face image.
Lastly, the data is fed into two classifiers: Gaussian mixture
model (GMM) and SVM. The scores of these classifiers are
fused by weight to produce a confidence score, which is
used to make decisions about the facial expression’s type.
The experiments on a constructed dataset with five types
of facial expressions – happy, sad, angry, excited, and neu-
tral produced by 100 male subjects (aged between 18 and
29 years) show that scene contexts can contribute important
information to automatically recognize emotional states and
motivate further research in this direction.

Research [94] develops a technique for automatically visu-
alizing expressive facial and upper-body motions concerning
emotions. A bimodal database (FABO) of 54 videos from four
people, 27 for the face and 27 for the body, is utilized. These
videos are collected using separate cameras to simultane-
ously record face and body postures. The developed model is
described in two steps: feature-level fusion and decision-level
fusion. First, each classifier is trained using only one modal-
ity. Second, the authors combined affective body postures
and facial expression knowledge at the feature and decision
levels. The study’s outcomes reveal that the classification
of emotions using the two modalities improves recognition
accuracy overall, exceeding classification using the face or
body modality alone. Paper [54] uses visual scanning behav-
iors (VSBs) on emotional and non-emotional stimuli to detect
apathy in AD patients. Forty-eight AD patients took part in
the study. A recurrent neural network (RNN) is used in two
ways: first, to discover differences in VSBs between apathetic
and non-patients, and second, to define the individual’s VSBs
in response to emotional and non-emotional stimuli. Vector
representations are generated in response to emotional and
non-emotional stimuli. After that, using a Logistic Regres-
sion classifier, patients are classified as either apathetic or
non-apathetic based on the distance between these vector
representations. The first method produces an Area Under the
ROC Curve (AUC) gain of 0.074, whereas the second one
yields an AUC gain of 0.814.

Study [95] suggests a novel approach for calculating the
usefulness of visual information collected from face stimuli
for emotion detection. The study targets a population consist-
ing of 21 patients with autism spectrum disorder (ASD). Face
stimuli are fused using a Gaussian fixation distribution esti-
mate, giving more detail in the face part. During the emotion
detection, participants with autism have fixations on the bot-
tom parts of their faces and are less focused on the eyes than
the usual subjects. Thismethod attains an accuracy of 90% for
ASD emotion detection and 92% for routine people emotion

detection. Paper [96] presents EMOTIC, a dataset of images
of people in natural and different situations annotated with
their apparent emotions. The EMOTIC database combines
two types of emotion representation: 26 discrete categories
and the continuous dimensions of Valence, Arousal, and
Dominance. A statistical and algorithmic dataset analysis
and annotators’ agreement analysis are also presented. Few
CNNmodels are used for emotion recognition, combining the
information of the person bounding box with the information
present in the scene context. The results show that scene con-
texts can contribute important information to automatically
recognize emotional states and motivate further research in
this direction.

The following papers mainly focused on depression detec-
tion and analysis through facial expressions. Study [97]
examines the association between changes in the intensity
of depressive symptoms over time and facial expression.
Videos captured from 34 individuals are analyzed, with man-
ual and automatic approaches employed to analyze facial
expressions. The automatic method registers faces based on
landmark points recorded using AAM. Next, the frames are
matched using a gradient-descent function and mapped to
reference points using a 2D similarity transformation. This
study shows the effectiveness of automatic methods in both
behavioral and clinical sciences. The authors of [98] are
motivated by the abundance of stress and anxiety feelings
to build a model for stress detection using video recordings.
The videos captured from 23 adults are used for analysis
where participants range in age from 10 to 45. The examined
features comprise heart rate calculated using camera-based
photoplethysmography, mouth activity, head motion parame-
ters, and eye-related events. Sequential backward selection
(SBS) and sequential forward selection (SFS) techniques
are used for feature selection. KNN, Generalized Likeli-
hood Ratio, SVM, NB classifier, and AdaBoost classifier are
employed for the classification step. The Adaboost classifier
demonstrated a superior classification accuracy, reaching a
91.68% accuracy rate.

Paper [99] introduces a model for the early detection of
possible depressed patients. This model investigates whether
there are differences in facial expression alterations between
depression patients and healthy persons in the same situa-
tion. Video samples of 26 depression patients and 26 healthy
people are obtained from Shandong Mental Health Center in
China as part of the data collection process. A person-specific
AAM model extracts the important facial features from
the captured videos based on the viola-Jones face detector.
Thereafter, a support vector machine is applied to recognize
depression based on the movement variations of the eyes,
brows, and corners of the lips. The covered facial expressions
are sadness, disgust, fear, neutrality, anger, surprise, and hap-
piness. The proposed model achieved an accuracy of 78%
and an F1 of 79.2%. Work [100] examines the difficulties
in recognizing facial expressions in traumatic brain injury
(TBI) patients in a realistic context. To collect data from TBI
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patients, scenarios were developed using video recordings.
A deep learning model composed of Long Short-Term Mem-
ory (LSTM) and CNN extract spatio-temporal information
for face frames and the Supervised Decent Method (SDM).
An AUC value of 75.26% is obtained using the proposed
model.

Automatic pain detection is an emerging area of investiga-
tion in healthcare. The variation in facial expressions often
provides a clue for the occurrence of pain and its level. The
main interest of the following papers is the automatic detec-
tion of ‘‘pain’’ facial expressions. The UNBC-McMaster
Shoulder Pain Expression Archive Database is presented
and evaluated in [101]. The paper uses video records of
individuals who experienced shoulder pain. Each arm was
subjected to eight unique motions during the motion testing:
flexion, abduction, and internal and external rotation. The
test recordings covered 129 participants with shoulder pain
and produced 200 recordings. The SVM model is utilized
for classification to provide a baseline for this database.
Other pain expression detection studies later used the UNBC-
McMaster Shoulder Pain Database. In [102], a computer
vision system is presented to analyze face characteristics to
detect video pain expressions. To get a discriminative rep-
resentation of the face, authors extracted shape information
using a pyramid histogram of oriented gradients (PHOG)
and appearance information using a pyramid local binary
pattern (PLBP). First, faces in videos are detected and tracked
using the Viola-Jones object detection model. When a face is
identified, the framework splits it into two equal portions to
treat each portion of the face equally; the top half of the face
has the eye regions and wrinkles on the upper area of the nose,
while the bottom part has themouth regions and the lower part
of the nose. PHOG and PLBP are then used to extract and
concatenate facial features. Second, the classification step is
applied using a set of ML models, including RF, SVM, DTs,
and KNN. The UNBC-McMaster Shoulder Pain dataset is
used to examine the effectiveness of the suggestedmodel. The
KNN model achieved the highest accuracy result, 96%, even
with limited data collection.

Paper [103] proposes an automated pain detection frame-
work from specific facial features. The framework uses
iterative shape alignment based on Procrustes analysis and
texture wrapping techniques to extract a facial region. It uses
Gabor feature extraction and feature compression with Prin-
cipal Component Analysis (PCA) to determine the pain.
Further, SVMs are used to classify between painful and non-
painful faces and four pain levels. The method achieves
87.23% accuracy for detecting pain at the frame level and
82.43% for classifying the frames between four pain levels.
The success rate of the methodology for pain detection at
the image level is 95.5%. Study [104] develops a healthcare
framework for recognizing patient states using theGMM.The
suggested framework handles two types of inputs: video and
audio, both obtained via multi-sensory environments. This
framework starts by recognizing faces in videos and identify-
ing key frames. These are then transformed to grayscale mode

and subjected to local ternary patterns (LTP). Afterward, face
histogram features are computed and fed into the GMM clas-
sifier. The system accordingly showed accuracies of 99.9%,
99.5%, and 98.8% in the normal, pain, and tension states. [58]
reviews 114 research papers that have contributed to auto-
mated pain detection, with a focus on (1) the framework-level
similarity between spontaneous automated facial expression
recognition (AFER) and automated pain detection (APD)
problems; (2) the evolution of system design, including the
recent development of deep learning methods; (3) the strate-
gies and considerations in developing a FACS-based pain
detection framework from existing research, and (4) intro-
duction of the most relevant databases that are available for
AFER and APD studies.

Accurately determining pain levels in children is diffi-
cult, even for trained professionals and parents. The facial
activity provides sensitive and specific information about
pain, and computer vision algorithms can help automatically
detect Facial AUs defined by the FACS. Paper [105] uses
a simple ANN with one hidden layer to recognize pain
using facial AUs coded by a computer vision system embed-
ded in the i-Motions software package. It also analyzes the
relationship between i-Motions (automatically) and human
(manually) coded AUs. It identifies that AUs coded auto-
matically differ from those coded by a human trained in the
FACS system and that the human coder is less sensitive to
environmental changes. The paper also considers a transfer
learning method to enable more robust pain recognition per-
formance. This method improves the AUC on independent
data from new participants in our target domain from 0.67 to
0.72. Research [106] proposes a DeepPain model for facial
expression classification. The model detects pain using facial
expressions such as joy, surprise, anger, contempt, fear, sad-
ness, and disgust. CNN is used first to learn face attributes
from the VGG model, coupled to an LSTM to leverage the
temporal correlation between video frames. The canonically
normalized appearance of each image is compared to taking
the entire image. To evaluate the Deep Pain model, UNBC-
McMaster painful dataset is used, which contains recorded
videos for 25 patients who had shoulder pain. This model
obtained an AUC of 89.6% when training a CNN end-to-
end to conduct pain-level estimates, improving to 93.3%
when that same CNN is utilized to extract features to train
the LSTM. Additionally, this model achieved 97.2% accu-
racy when tested on the CK+ face expression classification
dataset.

E. ABNORMAL EYES MOVEMENTS
The most abnormal eye movements caused by neurological
diseases, such as Alzheimer’s and Parkinson’s diseases are
studied in the following papers. In [107], the features of the
various components of fixational eye movements are inves-
tigated. To obtain data, 16 macular disease observers and
14 older people with normal vision used a Rodenstock scan-
ning laser ophthalmoscope for 30 seconds to fixate a small
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cross. A multiple linear regression model is used to evaluate
the obtained data. Results demonstrated that the intensity of
microsaccades has a significant role in restricting fixation
persistence. Paper [108] introduces a statistical model that
uses eye-tracking data to predict readers with and without
dyslexia. This model is built on an SVM applied in binary
classification mode. A dataset including 1,135 eye tracker
readings of Spanish speakers aged 11 to 54 with and without
dyslexia is used to train the SVM model using ten folds
cross experiments. All readings by the same user are placed
in the same fold, resulting in an equal number of readings
classified as participants with and without dyslexia in each
fold. The proposed model achieves an accuracy of 80.18%.
Work [109] suggests an approach for detecting early-stage
cognitive impairment cases. Eye movements are modeled
using linear mixed-effect models (LMM). The authors con-
ducted a case-control study with 20 patients with suspected
AD and 40 normal control patients. Data is evaluated using
linear mixed-effects models, revealing that eye movement
behavior while reading can identify whether a person suffers
from cognitive impairment. The study results are compatible
with previous findings that AD patients have visual memory
recognition problems and abnormalities in processing speed
and visual short-termmemory, even in the early stages of AD.

According to cognitive theories, attentional biases are
essential in maintaining obsessive-compulsive symptoms
(OCS). Therefore, an eye-tracking method is developed to
investigate attentional biases regarding OCS in [110]. In the
proposed model, eye-tracking measurements of the attention
problems served as the main variables in simple linear regres-
sions with OCS severity as the predictor. Findings showed
that OCS severity significantly predicted longer fixations
on obsessive-compulsive disorder (OCD) signals, evidence
of the maintenance attentional bias. Paper [111] examines
the correlation between eye-tracking measures and common
visual cognitive tests in Young-onset Alzheimer’s disease
(YOAD) patients. The study covers 57 participants: 21 nor-
mal controls and 36 YOAD patients. Three eye-tracking tests
are held on participants, including fixation, pro-saccade, and
smooth pursuit. The implemented method consists of three
parts. First, HMM is employed as a fitting model for eye
tracking (up, down, left, right, and fixed). Second, feature
extraction is performed using the fitted model to generate
individual feature vectors. Finally, a classification step is
performed using the obtained feature vectors. Using cross-
validation tests, this approach achieved an accuracy of 95%.
Authors of [112] develop a deep learning-based architecture
for classifying eye movements. The suggested architecture
uses recurrent temporal information-collection layers and
deep CNNs for extracting visual features. Standard web cam-
eras are used to capture the dataset images for training and
validation, which are then automatically preprocessed using
specialized software.

When applied to real-time tests, the developed architec-
ture’s overall accuracy on the validation set reached 92%
and 88%. A Mann-Whitney-Wilcoxon test revealed that AD

patients have to move their face and eyes concurrently in
the vertical direction, but cognitively normal persons did not.
While most studies on the influence of Parkinson’s disease on
eye movements have focused on rapid eye movements during
sleep, resting-state eye movements are explored in [113].
Vertical electrooculography (VEOG) is employed on 27 PD
patients in both the OFF and ON medication states to record
the motions. Extracted features from the frequency-, time-,
and frequency-time domains of the VEOG time series are
used to classify data. The effectiveness of the classification
process is measured using a range of classifiers, includ-
ing decision trees, KNN, SVM, and error-correcting output
code-SVM. The suggested model obtained discrimination
accuracies for the OFF and ON states, 69.10% and 87.27%,
respectively.

F. ABNORMAL UPPER LIMB MOVEMENTS
Abnormal arm, hand, and finger movements and gestures
caused by diseases are also widely studied in the literature.
Several papers studied upper limb motor symptoms such as
tremors, rigidity, and slow movements of PD, HD, and AD
patients. In [114], a gesture-based control of home automa-
tion is developed. Image data are acquired using cameras
and wearable devices to merge contextual sources with the
gesture pendant. The system is designed to accomplish two
tasks: gesture recognition using an HMM model and tremor
detection using Fast Fourier Transform (FFT). The pre-
sented system is evaluated using simulated data and reached
95% and 97% accuracy in gesture identification and tremor
detection, respectively. Paper [115] evaluates the viability
of utilizing accelerometer data to predict the severity of PD
patients’ symptoms and motor difficulties. 12 participants
had uniaxial accelerometer sensors attached to their upper
and lower limbs to obtain data. Signal filtration and seg-
mentation were done to prepare data for classification by the
SVM model. It was found that the margin of error was 1.8%.
Study [116] investigates how involuntary movement com-
plexity can be utilized to distinguish PD treatment states. For
data collection, subjects are directed to stand with their arms
extended for 60 seconds while a magnetic motion tracker
with nine sensor recording tools. Signals are prepared using
sample entropy, multi-scale sample entropy, and statistical
analysis, while MLP is employed for classification.

The best-achieved recognition rate is 100% using slope
features. Work [117] presents a non-invasive method for cap-
turing and assessing hand-related finemotor abilities. In total,
13 patients, 8 of whom suffered from PD, were studied
using a depth sensor. Background segmentation, and region of
interest (ROI), followed by binary segmentation within ROI,
are used to identify and track palms. A combination of SVM
with RBF which can optimize kernel parameters, was used
for analysis. This method yielded a highly precise detection
rate. Paper [118] describes an approach for estimating future
gestures from a sequence of handmotions using a deep neural
network. Using a capacitance sensor, a dataset including
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120 behaviors was obtained from 9 participants. Attention-
based GRU model was used to extract temporal information
and estimate gestures. The accuracy of this model was 99.6%,
which is comparable to other comparable models.

In [114], a gesture-based home automation control is devel-
oped, which can also be used for hand tremor detection.
Image data are acquired using cameras and wearable devices
to merge contextual sources with the gesture pendant. The
system is designed to accomplish two tasks: gesture recog-
nition using an HMM model and tremor detection using
FFT. The presented system is evaluated using simulated data
and reached 95% and 97% accuracy in gesture identification
and tremor detection, respectively. Paper [119] proposes a
smartphone-based method to measure upper limb tremors in
PD patients. Smartphones are utilized to gather data from
45 patients, both with and without PD. The study examines
two types of motions: postural hand tremor and rest hand
tremor. The random forest bootstrap aggregation of 500 trees
is used for feature selection.

Moreover, since the user data is susceptible to overfit-
ting, an out-of-bag error estimate is used to overcome that.
Paper [120] assessed bradykinesia using ML algorithms.
Movement Disorders Society-Sponsored Revision of the Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS) was
the basis for the study. A sample of 25 people with PD had
their motion data recorded utilizing orientation sensors. The
recorded signals were filtered to eliminate noise and drift.
Spline interpolation was also employed for signal fitting,
while statistical measures and a forward-selection wrapper
were used for feature extraction and selection. The classi-
fication was performed using SVM in LOOCV and yielded
41.5%, 40%, and 52% for the finger-tapping, diadochokine-
sis, and toe-tapping classes.

Study [121] investigates the Leap Motion Controller for
objective motor dysfunction evaluation in PD patients. Using
a board sensor, motion data is obtained for 28 subjects
performing predefined exercises. A collection of MATLAB
methods, including MathWorks, MA, Natick, and the USA,
are used to extract features. In addition, the Peak finder
technique measures the number of movements each work-
out, while power spectral density is employed to estimate
movement power. Multiple ML classification techniques are
utilized, including NN, SVM, LR, and K-means. The SVM
model produces the highest performance, with an accuracy
of 85.71%, a sensitivity of 83.5%, and a specificity of 87.7%.
The Praxis test is a gesture-based diagnostic test accepted as
diagnostically indicative of cortical pathologies such as AD.
Using the Praxis test, paper [122] examines the feasibility of
using static and dynamic upper-body gestures in a medical
context to automate test processes. Video data for 60 peo-
ple, including 29 gestures, are recorded in their workplace.
A tree structure is utilized to represent skeletal data, which
is then smoothed to reduce jitter. Preprocessing procedures
comprise normalized joint positions, hand segmentation, and
PCA. CNN is utilized in the classification step to recognize

hand motions, while LSTM is used to aggregate temporal
information. An average accuracy of 90% is achieved using
the framework.

The authors of [123] suggest an assessment scale for
HD patients to reduce evaluator inconsistencies and provide
a more accurate scale. The study is based on collecting
accelerometer data for 92 subjects, including healthy and HD
patients. A low-pass filter is utilized to filter out noise to pre-
pare the collected data, while Wavelet Packet Decomposition
(WPD) is employed to extract features. The classification is
accomplished using an ensemble classifier and compared to
a linear regression model. This model achieved impressive
classification results with a sensitivity of 97.7%, specificity
of 100%, and accuracy of 98.8%. Report [124] diagnoses
PD utilizing the kinematic characteristics of hand motions.
Using the Leap Motion sensor, 32 participants are subjected
to data collection. The study covers diagnosing three types
of movements finger tapping, hand pronation-supination, and
hand opening-closing. Maximum and lowest points were
determined using parameters such as opening-closing speed
and amplitude to extract features. Classification is performed
using the KNN, SVM, DT, and RF models, with RF attain-
ing the highest accuracy of 98.4% by merging all classes.
Study [55] presents an interpretable visual system (PD-Net)
for quantitatively assessing motor performance. Short video
data was collected for 149 people, comprising 509 videos;
this was augmented with data from two other datasets:
Panoptic Hand [125] and FreiHand [126]. The framework is
separated into three stages: OpenPose was used to identify
hand keypoints, and Frequency filtering, peak detection, and
wave segmentation were used for pattern analysis. The clas-
sification was completed using LR, SVM, extreme gradient
boosting (XGB), and RF. An overall accuracy of 87.6% is
obtained using the RF model. Review [56] provides an in-
depth analysis of existing computational approaches used
in the whole neurodegenerative spectrum, namely for AD,
PD, HD, ALS, and MSA. It proposes a taxonomy of the
specific clinical features and existing computational methods
and provides a detailed analysis of the various modalities
and decision systems employed for each disease. The paper
also identifies and presents the sleep disorders present in
various diseases and represent an important asset for onset
detection, as well as overviews the existing data set resources
and evaluationmetrics. Finally, it identifies current remaining
open challenges and discusses future perspectives.

Upper limb movement abnormalities originating from
other diseases have also been analyzed with the help
of machine-learning methods and algorithms. The authors
of [127] developed an EMG gesture recognition framework
to aid the elderly and others with physical impairments.
Using the Biopac device, the authors recorded EMG sig-
nals from three patients doing 4 different hand movements.
During preprocessing, EMG signals are preprocessed using
a Butterworth bandpass filter, segmented, and transformed
using the Wavelet approach. Regarding feature extraction,
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different statistical measures are applied. ANN was trained
for the recognition process and achieved a classification rate
of 88.4%. Amultiple-trackingmethod is proposed by [128] to
identify qualitative limb movement. Enhanced local connec-
tivity constraint-based identification for small weak markers
is employed in neonate limb videos. NB and KNN models
are used to monitor the market movements on limbs using
the discovered markers. Lastly, for anomaly identification,
a window-averaged noteworthy is employed. The proposed
method shows potential for monitoring the mobility of infant
limbs, which assists in disease diagnosis.

Paper [129] compares several machine learning algorithms
for gait pattern recognition in motor disorders using dis-
criminant features extracted from gait dynamics. The work
also highlights procedures that improve gait recognition per-
formance. The literature analysis shows that kernel PCA
and genetic algorithms are efficient at reducing dimensional
features due to their ability to process nonlinear data and
converge to the global optimum. Comparative analysis of
machine learning performance demonstrates that the SVM
model exhibits higher accuracy and proper generalization
for new instances. Research [130] utilizes machine learning
to recognize and categorize allergic rhinitis motions. Raw
sensor data was acquired from 103 individuals with active
allergic rhinitis. Data is then subjected to feature engineer-
ing and signal processing methods. PCA is used to enhance
machine learning model performance, whereas Grid Search
and Randomized Search improve recognition accuracy by
hyperparameter tuning. The classifier accurately detected
15 allergic rhinitis gestures in a complicated range of head
movements with a 93% accuracy rate. In [131], an approach
based on ML is suggested for identifying gestures made
by neuromuscular patients. Surface electromyogram (sEMG)
signals data is used from UC2018 DualMyo [132] and UCI
datasets. During data preparation, domain time-frequency
and fractal dimension features are retrieved, followed by
selecting features using soft ensemble approaches, such as
t-tests, entropy, and wrapper feature reduction. The SVM
classifier is utilized for gesture recognition and obtained 98%.

Paper [133] suggests a framework for detecting upper limb
motions for stroke patients. The proposed architecture inte-
grates digital signal processing, namely the discrete wavelet
transforms, with the augmented probabilistic neural network
(APNN). SEMG data from the NINAPro database [134] is
utilized for model evaluation. The suggested technique is
compared to SVM, KNN, and probabilistic neural networks
(PNN), where the EPNN model obtained the highest accu-
racy of 75.5%. Research [134] investigates ML algorithms
for Carpel Tunnel Syndrome (CTS) severity classification.
A dataset of 1037 CTS subjects was used for the train-
ing process. Data preparation includes applying manual
feature selection, collinearity testing, normalizing, and one-
hot encoding. Random upsampling and Synthetic Minority
Over-sampling Technique (SMOTE) are applied to address
imbalance difficulties in multi-class classification. ML mod-
els, including XGB, KNN, and RF, are used for assessment.

The XGB model has the highest accuracy, with 76.6%.
Paper [135] develops a gesture detection system to aid par-
alyzed patients in conveying basic requirements and urgent
alerts. Using accelerometer sensors and an Arduino micro-
controller, data is collected from patients. To preprocess
the data, motion data cleansing and transformation are per-
formed. To perform gesture recognition on the obtained
dataset, the KNN model is implemented, and a recognition
rate of 97% is attained.

G. ABNORMAL LOWER LIMB MOVEMENTS
The PD-related abnormal lower limb movements have been
studied in the following papers. Study [136] develops a
pattern recognition approach for diagnosing PD during stan-
dardized gait tests. The methodology includes the obtained
EMG data from 10 healthy and PD patients. EMG continuous
signals are segmented and statistically analyzed to extract
features, which are then passed to the forward features selec-
tion method. Through feature selection, kurtosis and mean
frequency are the best features, with kurtosis suggesting a
significant difference. Paper [57] examines relevant studies
for identifying PD motor symptoms using machine learning.
Four specific motor symptoms of Parkinson’s disease are
highlighted, including dyskinesia, bradykinesia, and freez-
ing of gait. Work [137] suggests employing gait Vertical
Ground Reaction Force (VGRF) collected by foot sensors
to determine the severity of Parkinson’s disease automati-
cally. A two-channel model integrating LSTM and CNN is
designed to identify the spatiotemporal patterns underlying
the gait data. The suggested model is tested on a PhysioNet
database [138] consisting of three datasets [139], [140], [141]
and is compared to NB, KNN, LR, RF, DT, SVM, and GBDT.
However, the integration of CNN and LSTM obtained accu-
racies of over 98%.

In [142], the Weighted Random Forest (LWRF) regression
model is proposed to predict PD symptoms using Hoehn
and Yahr (H&Y) and Universal Parkinson Disease Rat-
ing Scale (UPDRS) scale. Ground Reaction Force (GRF)
values are received as input and passed FFT to extract time-
domain features. Compared to KNN, RF, DT, and LR, the
suggested model obtained 99% accuracy and 99.5% speci-
ficity. Paper [143] suggests using a 2D video to assess PD
patients’ gait. During the timed-up-and-go (TUG) test, 16
PD patients and 15 healthy subjects were observed. Simul-
taneously, a pressure sensor was employed to analyze gait.
The OpenPose model is used for joint detection, followed
by the intra-class correlation coefficient (ICC) for statistical
video and sensor data comparison. As a result, gait parame-
ters collected by video tracking in the validation tests have
intraclass correlation coefficients of more than 0.9, which
indicates reasonable agreement with values determined using
GAITRite. Paper [144] evaluates bradykinesia in PD patients
using an SVMmodel. A dataset for 12 PD patients is collected
using a waist-mounted triaxial accelerometer. The gathered
signals were filtered and passed to SVM for classification,
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where an accuracy of 91.8% was achieved. In addition, the
severity was identified and evaluated with less than 10% error
using the UPDRS.

The study of gait disorders is another topic for AI
researchers. Study [145] compares the performance of PCA-
based unsupervised feature extraction algorithms with those
based on time-domain and statistical features. This work
examines three supervised feature extraction: frequency-
based feature extraction, manual time-domain, and statistical
feature extraction. Experiments conducted on the DAPHNet
dataset [146] indicate that using the DT model with unsuper-
vised features achieves 79.09% for the F1-measure. Similarly,
paper [147] utilizes wearable accelerometer data to recognize
gait disorders using ML. Wearable triaxial accelerometers
are used to collect data on 51 participants. The obtained
data are statistically analyzed using Pearson’s correlation
coefficient and PCA. It is found experimentally that the
SVM classifier achieves an accuracy of 88%, outperform-
ing the KNN, DT, and NB methods. Report [129] reviews
machine-learning techniques used for gait pattern detection
in motor diseases. Based on its ability to analyze nonlinear
data, kernel PCA and evolutionary algorithms are found to
be effective in feature dimensionality reduction. Moreover,
the SVM model performs better than other machine learning
algorithms regarding the accuracy and correct generalization
for new data. The study finds that SVMs may provide a fast
and reliable method for assessing the subject’s clinical state.

Research [148] builds a system for detecting gait-related
health issues. The proposed model uses a DNN-based
approach to predict a patient’s 3D body posture using video
records that follow 8 markers. The encoder and decoder
modules of an hourglass network are used for time series
construction, followed by a multi-view fusion approach is
used to the time series. As a final module, DNN is uti-
lized for classification and attained an accuracy of 71%.
Paper [149] proposes a multi-sensor fusion system to detect
gait disturbance patterns and fall detection. Motion data are
collected using a multisensory system. Zero-point correction,
Kalman filtering, and analog-to-digital (AtD) conversion are
applied for preprocessing. As part of a two-stage activity
identification system, a PNN is used to identify falls dur-
ing regular activities, and an ensemble classifier comprised
of SVM, RBFs, and KNN is used to identify gait distur-
bance patterns. Experimentally, the proposed fusion approach
improves detection accuracy to 99.37% and enables quicker
fall detection compared to single-sensor systems (around
205 milliseconds).

Research [150] studies the ability of radar to distinguish
between several types of human-aided and uncontrolled
motion using deep learning. This study includes 127 dis-
tinct predefined features, including 13 physical features,
3 cepstral coefficients, 10 DCT coefficients, and 101 LPC
coefficients. Compared to a multi-class voting SVM classi-
fier trained on 127 pre-defined features, a deep autoencoder
structure is employed for feature extraction and classification.

The time-frequency distribution of the received signal is
represented by a short-time Fourier transform (STFT) or
spectrogram. Auto-encoder structure achieved 89% accu-
rate classification, a 17% increase obtained by voting SVM.
Paper [151] compares 2D parameters calculated using a
typical marker-based technique with a pipeline with fewer
markers. A stereophotogrammetric system recorded the body
motions of 10 chronic stroke patients. For preparation pur-
poses, key-point detection and homograph transformation
are used for preprocessing. A statistical parametric map-
ping (SPM) technique is used to study elevation angles, and
ResNet-50 is applied to extract features after proper fine-
tuning. The results show no significant differences between
a set of specified parameters calculated using the standard
and markerless approaches. Study [152] proposes a system
that integrates artificial intelligence technology with certain
sectors of the Korean medical area of rehabilitation. The goal
is to stop bedsores in patients lying down following surgery
by turning them over and observing their range of motion in
the arms and legs. To detect and track joints, OpenPose and
AlphaPose are used for joint tracking. On the MPII Human
Pose dataset, MobileNet obtained a degree of provision of
95% and an angular inaccuracy of fewer than 5 degrees,
making it suitable for recovery confirmation.

In [153], a multi-step classification strategy is developed
to address the challenge of dealing with unbalanced medi-
cal data. The authors utilize sEMG data from 22 different
patients [154]. By partitioning the sEMG signal into dif-
ferent frequency bands, eleven discrete wavelet transform
(DWT)-based features are extracted. Oversampling is also
used to deal with the imbalance issue. This strategy is eval-
uated using six models: Gradient Booster, Classification and
Regression Trees (CART), Bagging, Extra Tree (ET), and RF.
ET performs best, with 93.1% accuracy and an F1 of 85.3%.
Paper [155] aims to employ sEMG from leg muscles to
predict hip and knee angles for humanwalking. Physiological
and correlation analyses are utilized to select and evaluate
two sEMG signals from sevenmuscles duringwalking, which
are filtered and normalized. Fuzzy Wavelet Neural Network
(FWNN) is developed as an intention recognition model
and merged with Zeroing Neural Network (ZNN) to reduce
prediction errors. The result indicates that the FWNN-ZNN
model can more effectively assess human motion intention,
resulting in an R2 value of 99.94%.

III. FINDINGS
While the previous section describes the major goals and
main results of the reviewed papers, this section provides
detailed insights into the analyzed health conditions, the
investigated patients’ activities and abnormal body actions,
the used datasets, the applied data preprocessing techniques,
the implemented methodology and the achieved results that
are obtained in the reviewed papers. The findings are orga-
nized in separate tables according to the body parts. The
acronyms used are listed in Table S1.
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TABLE 1. Abnormal body poses and movements.
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TABLE 1. (Continued.) Abnormal body poses and movements.

IV. DISCUSSIONS: ANALYSIS OF ABNORMALITIES,
DATA, AND METHODOLOGY
From initially collected 180 AI research and review papers
that mention different activities of people with health con-
ditions, diseases, pains, and their relationships to patients’
body motions and postures, we selected 83 papers that clearly
discussed the abnormal activities and the causational rela-
tionships of diseases and pains to abnormal body actions.
The reviews (in Section II) and the detailed findings (in

Section III) are categorized following the hierarchical order:
body parts, health conditions, and body language. Section II
briefly describes the major problems studied in the papers
and the results obtained from the main research methods
applied in these papers. The tables in Section III providemore
details on the health conditions, abnormal activities, abnor-
mal body actions, datasets, methodology, methods, algo-
rithms, and results that are extracted from the studies given
in the research papers. The following two subsections provide
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TABLE 2. Abnormal head poses and movements.

further insights into these findings and mine different statisti-
cal and relational properties using data analysis techniques.
To thoroughly study the findings, we first construct the
dataset (‘‘∼/ai-dataset.csv’’ in Table S1) based on the tables
in Section III. This dataset consists of 80 rowswhere each row
represents a specific health condition concerning abnormal
activities or abnormal body actions, and 28 columns that
provide all the information related to diseases, pains, express-
ible body parts, abnormal activities, abnormal body actions,
data types, datasets, data preprocessing techniques, feature
extraction and selection procedures, methodology, methods,
algorithms, performance evaluation metrics, results, which
are extracted from the reviewed papers.

We use descriptive and exploratory data analysis methods,
i.e., univariate, bivariate, and multivariate analysis tech-
niques, to establish the statistical and relational properties
of all features in the dataset. First, we analyze the ‘‘med-
ical’’ features of the dataset, i.e., the diseases, pains, and
other conditions together with abnormal activities and body
actions caused by these health conditions. Next, we exam-
ine the ‘‘AI’’ features, i.e., the datasets, data preprocessing
techniques, feature engineering procedures, methods, perfor-
mance evaluation metrics, and results. Lastly, we investigate
the methodologies grouping them into ‘‘similarity clusters’’
to identify more powerful and reliable methodologies for
detecting, recognizing, and analyzing abnormal activities and
body actions of people with health conditions.We should also
mention that the current analysis is subjective to the infor-
mation provided in the reviewed papers, which still needs
to be more complete. However, the used approaches and
developed analysis methods and techniques in the research
are applicable and scalable to any extent.

A. STATISTICAL PROPERTIES OF MEDICAL FEATURES
First, we can observe the distribution of the selected 83 AI
papers for review in the following figure (Figure 3), which
shows that the intensive studies of abnormal activities and
abnormal body actions of patients using AI techniques started
in 2013.

Since our main objective is to analyze abnormal activities
and body actions based on the expressible body parts where
these abnormalities happen, we begin our analysis by iden-
tifying the papers’ distribution accordingly. The distribution
of the papers studying the patients’ abnormal activities and
abnormal body actions caused by diseases and pains in each
body part is depicted in Table 7.

FIGURE 3. The Distribution of the reviewed papers according to the years
of publications.

FIGURE 4. The case apportions of the reviewed papers.

One can notice that the number of papers reviewed (83)
differs from the total (80) in Table 8 because the table includes
only research papers.

Figure 4 demonstrates the apportions of these papers
according to the cases, i.e., diseases, pains, and other health
conditions considered in the papers. Most research papers
(70%) center on the machine learning tasks on abnormal
body actions resulting from diseases, while a smaller percent-
age (20%) tackles abnormal activities of people with health
conditions such as elderliness, immobility, and disability.
A few papers (10%) also analyze pain-caused abnormality
problems.

Moreover, Figure 5 gives a more detailed illustration of
the distributions of the papers according to the body parts,
including the proportions of diseases, pains, and other health
conditions.

Here, we can see that the effect of diseases is observed in
all expressible body parts, pain is spotted mostly on the face,
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TABLE 3. Abnormal facial expressions.

TABLE 4. Abnormal eye movements.

and other health conditions are investigated in relation to the
body (as a whole) and limbs.

Figure 6 represents the distribution of each disease, pain,
and health condition considered in the reviewed papers. The
figure reveals that the reviewed papers highly concentrate on
studying a few diseases, pains, and other conditions, such as
Parkinson’s disease, neurological disorders, musculoskeletal

disorders, health conditions involving elderly people, and
shoulder pain. Parkinson’s disease has been under the special
target of AI research, i.e., the 29% of the reviewed papers
have studied abnormal activities and body actions caused
by Parkinson’s disease. The concentrated application of
machine learning studies in the reviewed papers on neurode-
generative conditions such as Parkinson’s, Alzheimer’s and
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TABLE 5. Abnormal upper limb poses and movements.

FIGURE 5. The distribution of the studies according to the body parts.

neurological diseases, and musculoskeletal disorders can be
rationalized from medical and artificial intelligence perspec-
tives. Such diseases and disorders often lead to involuntary

and uncontrolled body movements and postures, including
tremors, rigidity, balance problems, gait freezing, bradyki-
nesia, and abnormal facial expressions, which are outward
manifestations of the underlying diseases. As such, these
observable symptoms enable the identification, recognition,
and analysis of the abnormal bodily actions induced by these
diseases using machine (deep) learning techniques without
significant exertion.

Looking at it from another angle, we can notice that the
surveyed literature also reveals a distribution of the most
frequently researched unusual behaviors and abnormal body
actions in connection with health conditions (see, Figure 7).
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TABLE 6. Abnormal lower limb movements.

TABLE 7. The distribution of the research papers studied the abnormal
activities and causational relationships of diseases and pains to body
language.

Here, it is observable that the most frequently researched
abnormal activities include ‘‘walking,’’ ‘‘sitting,’’ ‘‘stand-
ing,’’ ‘‘lying,’’ and ‘‘falling,’’ along with abnormal hand,
finger, and arm gestures. Additionally, facial expressions
such as ‘‘sadness,’’ ‘‘happiness,’’ and ‘‘disgust’’ have been
extensively studied.

By contrasting Figures 6 and 7, we can infer the cause-
and-effect relationships between the most extensively studied
health conditions and the most commonly researched abnor-
mal behaviors and activities. In other words, these frequently
occurring anomalies are indicative of symptoms and signs
of the most examined diseases and other health problems.
To gain a broader and deeper understanding of how diseases,
pains, and other health issues correlate with abnormal behav-
iors and body language, it is essential that we accurately

FIGURE 6. The distribution of diseases, pains, and other health
conditions.

scrutinize each study and pinpoint all potential connections
of this nature. The information displayed in the second
and third columns of Tables 1-7, and the assembled dataset
(Table S1), is the output of such meticulous efforts. Tables 8-
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FIGURE 7. The distribution of the examined abnormal activities and body
actions studied in a minimum of three papers.

TABLE 8. The list of the diseases along with the correlated abnormal
body actions and activities.

10 summarize the concise lists of individual diseases, pains,
and other health conditions along with the associated abnor-
mal body actions and activities they induce.

TABLE 9. The list of the pains along with the correlated abnormal body
actions and activities.

TABLE 10. The list of the other health conditions along with the
correlated abnormal body actions and activities.

FIGURE 8. The categorization of machine learning tasks as studied in the
reviewed articles.

B. STATISTICAL PROPERTIES OF AI FEATURES
This subsection comprehensively examines the statistical
characteristics of AI-driven information within the reviewed
papers. Specifically, it involves exploratory and descriptive
analyses pertaining to various aspects such as data types,
datasets, data preprocessing techniques, feature engineering
procedures, methods employed for detection, recognition,
and other machine learning tasks, as well as the evaluation
of performance.

Firstly, it is important to note that the studies that have
been reviewed primarily focus on machine learning tasks,
including the detection, recognition, analysis, and evaluation
of abnormal activities and abnormal bodily movements in
patients with various health conditions, as shown in Figure 8.

Figure 9 demonstrates that the studies utilize various data
types such as videos, images, audio, motion, EMG, and
sEMG signals. This assortment of data is collected using a
range of sensors, as indicated in Figure 10.
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FIGURE 9. The distribution of the data types used in the studied tasks.

FIGURE 10. The distribution of the devices used for data collection.

The utilization of datasets varies across the studies exam-
ined in our review, as illustrated in Figure 11. Among
the total number of studies scrutinized, 64 produced their
own datasets, while 19 employed either publicly accessible
datasets or datasets that they made available to the public
under a specific name. Four studies utilized the UNBC-
McMaster dataset, created to support and simplify research
on pain, particularly regarding facial expressions. Further-
more, two studies used PhysioNet, an extensive collection
of well-characterized digital recordings of physiological sig-
nals, time series, and related data designed for use by the
biomedical research community. These results emphasize the
significance of considering the origin of the dataset when
carrying out research, as it can influence the precision and
dependability of the results obtained. Additionally, the avail-
ability and accessibility of public datasets can advance the
progress of research in the AI-powered healthcare domain.

Though the research in the reviewed papers mainly aims
to solve a few machine learning tasks (Figure 8) and use the
data of a few types (Figure 9), the papers use a relatively
larger number of data preprocessing techniques and feature
engineering methods to transform raw data to the input data

FIGURE 11. The distribution of the datasets used in the reviewed papers.

FIGURE 12. The data preprocessing techniques exploited in a minimum
of two papers.

FIGURE 13. The feature engineering strategies utilized in a minimum of
two papers.

for the considered models. Figures 12 and 13 illustrate the
variety of these techniques and methods used in at least two
papers. It is important to highlight that various data pre-
processing techniques such as normalization, segmentation,
Kalman filtering, Principal Component Analysis, and sam-
pling are used universally across different data types. On the
other hand, methods such as cropping and defining regions
of interest are mostly employed for video data. Although
statistical methods and Principal Component Analysis are the
most prevalent techniques for feature engineering in the data
preparation phase, the use of vectorization and Histogram
of Oriented Gradients is specific to motion data. Similarly,
Fast Fourier Transform and peak finding techniques are
exclusively employed with video data. The complete lists of
data preprocessing and feature engineering techniques can be
found in Tables S2 and S3.

The papers under review also highlight the wide range
of machine learning, deep learning, and other AI-based
techniques and algorithms employed for detection, recog-
nition, and evaluation tasks. Figure 14 provides a visual
representation of the distribution of these techniques and
algorithms in relation to the problems addressed in these
papers. Notably, relatively simple models such as SVM,
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FIGURE 14. The distribution of the methods in relation with machine
learning tasks, which are utilized in at least two papers.

FIGURE 15. The distribution of the methods in connection with the data
types, which are utilized in at least two papers.

KNN, and DTs are more commonly used than complex deep-
learning approaches.

Two factors can explain this phenomenon. First, the studies
conducted so far have widely utilized non-visual data such as
motion, EMG, and sEMG data. Second, despite the primary
data for the models being visual data (videos and images),
the data preprocessing and feature engineering techniques
simplified them into a format that could be more efficiently
processed using basic machine learning methods. While less
complex than deep learning methods, this approach yielded
better performance results that were either on par with or
exceeded those of the more complex methods. Figure 15
illustrates the distribution of methods and algorithms in ratio
to the data types, providing evidence for this assertion. The
complete list of algorithms and methods used in the reviewed
papers can be found in Table S4.

The performance of the implemented models for the tasks
mentioned in the papers has been evaluated using the stan-
dard evaluation metrics, mostly with accuracy, though recall,
specificity, and F1-score are also used in many papers.
In Figure 16, the distribution of evaluation metrics is shown
based on the tasks addressed by the models used in the
studies. The figure reveals that most studies solely relied on
accuracy as their evaluation metric. However, using accuracy
alone can be problematic since it needs to account for impor-
tant factors such as class imbalance, false positives, and false

FIGURE 16. The distribution of the evaluation metrics used in the
machine learning tasks.

FIGURE 17. The evaluation metrics employed in the most frequently used
machine learning models.

negatives. While a few studies incorporated other metrics like
recall (20), specificity (15), and F1-score (12), the number of
studies using these metrics is significantly lower compared
to the accuracy metric (55). As a result, studies may consider
incorporating metrics such as recall, specificity, and F1-score
to provide a more comprehensive understanding of how well
their models are performing. This could lead to more robust
and accurate evaluations of ML models, which, in turn, may
promote greater trust in the model’s results.

Figure 17 provides a clear visual overview of the prevailing
trends in performance evaluation for abnormal body language
analysis algorithms. It shows that accuracy is the most com-
monly used metric across almost all algorithms, reflecting
its importance as a basic performance measure in this field.
Among the algorithms, SVMs are the most frequently evalu-
ated across all metrics, suggesting their popularity.

The figure also reveals a notable imbalance in using differ-
ent evaluation metrics, with accuracy being utilized far more
frequently than other measures like AUC, precision, recall,
and F1 score. This tendency could be attributed to several
factors. Firstly, accuracy is a straightforward and intuitive
measure of an algorithm’s performance, as it simply repre-
sents the proportion of total correct predictions. This makes it
an appealing choice for researchers when they wish to convey
their findings in a manner that is easily understandable to a
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broad audience, including those who may need to be more
experts in ML. However, other metrics might be more appro-
priate depending on the problem’s specific nature. Precision,
recall, and F1 score are particularly relevant for problems
where the classes are imbalanced or when the cost of dif-
ferent types of errors (false positives versus false negatives)
is not the same. For instance, in a body language analysis
task where false positives (incorrectly predicting a certain
body language gesture when it did not occur) are much more
costly than false negatives (failing to predict a gesture when
it did occur), precision (which focuses on the proportion of
true positives among all positive predictions) would be a
more relevant measure. The underutilization of these metrics
suggests that many studies in body language analysis using
ML focus on overall accuracy at the expense of consider-
ing the specific costs and implications of different types of
errors. This might indicate an area where the methodological
rigor of this field could be improved. In addition, certain
metrics may be less commonly used with specific algorithms
due to the characteristics of those algorithms. For instance,
precision is less commonly used to evaluate HMMs, CNNs,
and LSTMs. These algorithms are often used for sequence
prediction tasks, where measures based on individual pre-
dictions, like precision, might be less relevant compared to
other metrics that consider the sequence structure. Overall,
these observations suggest that while accuracy is a crucial
basic measure, a more balanced use of different evaluation
metrics could provide a more nuanced understanding of an
algorithm’s performance in body language analysis tasks,
taking into account the specific nature of the task and the
characteristics of the algorithm being used.

Finally, the complete relationships of all parts of the
studies, i.e., data collection sensors, data types, data, data
preprocessing techniques, feature engineering procedures,
models, and algorithms, as well as the performance eval-
uation metrics, are shown in the ‘‘research flow network’’
(Figure 18) that clusters all the elements of the flow based on
the methodologies used. Different elements of the method-
ologies’ steps are represented with different colors. The
thickness of a node corresponding to a methodology step and
the edges from this node to other nodes demonstrate the ratio
of the step’s usage in all reviewed studies. From this flow
network, we can identify more reliable methodologies for dif-
ferent machine learning tasks involving abnormal activities
and abnormal body actions of patients.

Wearable sensors, RGB cameras, motion capture systems,
and eye trackers are among the most utilized data collection
methods for studies that constructed their own datasets. Sub-
sequently, motion, video, image, and eye gaze data are the
most generated and utilized for data preprocessing. Regard-
ing motion data, various data preprocessing and feature
engineering techniques are employed. For instance, normal-
ization and filtering as part of data preprocessing and finding
peaks and FFT for extracting motion features. Segmentation
and normalization are among the frequently utilized prepro-
cessing techniques for video and image data – as they are

similar in nature. Most studies opt to utilize statistical mea-
sures for extracting features from motion, video, and image
data.

Moreover, key points extraction is primarily used by video
and image data. Some studies do not perform any data pre-
processing or feature extraction and directly apply machine
learning algorithms to the data. SVM was by far the most
frequently used algorithm for recognition, detection, assess-
ment, and analysis. Moreover, tree-based algorithms, such as
RFs and DTs, were employed alongside SVMs – due to their
higher degree of explainability. It is evident from our find-
ings; machine learning algorithms have significantly higher
adoption as compared to deep learning algorithms – this could
be due to the small, generated dataset, the task at hand being
less complex, a need for smaller models, or the unavailability
of computational resources or technical knowledge in the
field of deep learning to utilize the algorithms effectively.
Few studies do not use any evaluation metrics as they were
concerned with data analysis.

Nevertheless, accuracy, specificity, recall, and F1-score are
the most used evaluation metrics to assess the performance
of the trained models. Accuracy had the highest adoption
compared to the other metrics; however, it is important to note
that accuracy may be misleading in cases where the dataset
is imbalanced. Hence, adopting other performance metrics
such as F1-score, Cohen’s kappa, and ROC-AUC is more
appropriate.

Figures 19-21 present the unique methodological steps for
image, video, and motion data types, showing the complete
process for each. Starting from data collection, the edges are
depicted as the pale shade of lavender, which is then linked
to the data types in a soft shade of mint green. The data does
not always go through data preprocessing (a light shade of
yellow-green) and can link directly to either feature engi-
neering (a warm shade of peach) or methods & algorithms (a
bright shade of coral). Lastly, the task (a soft shade of pink)
links to the evaluationmetrics used (a light shade of grey). For
clarity, we focus on specific data types and their relationships
with the steps in the methodology. The flow network diagram
for the image data type is shown in Figure 19. We can
observe a series of adopted data preprocessing techniques
such as PCA, normalization, and data sampling. However,
there are cases where the data is directly utilized for training.
Distinct feature engineering techniques are applied to the
preprocessed image data, which indicates the diverse sets of
techniques that can be adopted depending on the task. SVM
and KNN are the most adopted for detection and recognition.

Figure 20 shows the methodologies for the video data
type. Most studies used RGB cameras to create datasets.
Data sampling, segmentation, filtering, and normalization are
the frequently utilized techniques for improving data quality.
Some studies extracted key points from data without applying
any preprocessing techniques. Statistical measures, dimen-
sionality reduction, and Viola-Jones are common for feature
extraction and selection. Our findings indicate the diverse set
of preprocessing, feature selection, and extraction techniques
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FIGURE 18. A Sankey diagram that illustrates the research flow network based on different methodology steps. The diagram uses lines (or links) of
varying thicknesses to indicate the magnitude and direction of the flows between the different categories. The bars (or nodes) from left to right are
labeled as follows: data collection, data type, data preprocessing, feature engineering, techniques and algorithms, task, and evaluation metrics (the
interactive chart can be accessed via https://bit.ly/sankey-figure).

FIGURE 19. A Sankey chart that illustrates a clearer research flow network for the image data type. The nodes and links are color-coded based on the
different methodology steps: data collection (a light shade of blue-purple), data type (pale green-blue), data preprocessing (a light shade of
yellow-green), feature engineering (a warm shade of peach), techniques and algorithms (a bright shade of coral), tasks (a soft shade of pink), and
evaluation metrics (a light shade of gray). Three methods of data collection were used to generate image data. The studies conducted little data cleaning,
as PCA and normalization were among the frequently utilized techniques for data preprocessing. Various feature engineering techniques, such as
Viola-Jones, pyramid histogram, and local binary pattern, were employed. SVMs, in particular, were the most adopted technique for recognition tasks (the
interactive chart can be accessed via https://bit.ly/sankey-for-image).

adopted across the different studies for video data types. As a
result, no predominant techniques are utilized for studying
video data types. Surprisingly, only DTwas not used on video
data. Deep learning methods (e.g., LSTM, ResNet, and CNN)

had more adoption for video data as compared to other data
types.

Figure 21 illustrates the methodologies applied to motion
data. Sensors and motion capture systems were the primary
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FIGURE 20. A Sankey chart that presents a clear research flow network for the video data type. The nodes and links are color-coded based on the
different methodology steps such as data collection (a light shade of blue-purple), data type (pale green-blue), data preprocessing (a light shade of
yellow-green), feature engineering (warm shade of peach), techniques and algorithms (bright shade of coral), tasks (soft shade of pink), and evaluation
metrics (a light shade of gray). A diverse set of data collection methods were used, including cameras of different types such as RGB, RGB-D, infrared, and
3D cameras. Normalization, segmentation, and filtering were frequently employed for data preprocessing, while statistical measures, dimensionality
reduction, and Viola-Jones were frequently utilized for feature engineering. The chart shows that a diverse set of techniques were employed for video
data, with a higher adoption rate of DL techniques compared to image data (the interactive chart can be accessed via https://bit.ly/sankey-for-video).

FIGURE 21. A Sankey chart that presents a clear research flow network for the motion data type. The nodes and links are color-coded based on the
different methodology steps: data collection (a light shade of blue-purple), data type (pale green-blue), data preprocessing (a light shade of
yellow-green), feature engineering (a warm shade of peach), techniques and algorithms (a bright shade of coral), tasks (a soft shade of pink), and
evaluation metrics (a light shade of gray). Most studies utilized wearable sensors and motion capture systems to generate motion data. Normalization,
Kalman filtering, dimensionality reduction, and STFT were frequently adopted as preprocessing techniques. Finding peaks, statistical measures, and PCA
were frequently used for feature engineering. While SVMs were the most commonly adopted classification technique, ensemble techniques had a higher
adoption rate (the interactive chart can be accessed via https://bit.ly/sankey-for-motion).

methods of data collection. Kalman filtering, normalization,
dimensionality reduction, and STFTwere the frequently used

techniques for data preprocessing on motion data. As for
feature engineering, finding peaks, statistical measures, and
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correlation analysis had higher adoption. Similarly, with other
data types, SVM was the go-to algorithm for detection,
recognition, and assessment, using accuracy as the evaluation
metric.

V. CONCLUSION
The paper reviewed and analyzed 83 AI papers (out of
180 collected ones) that investigated machine learning tasks
such as detection, recognition, and assessment of abnormal
activities of people with some health conditions and abnor-
mal body actions (i.e., postures, movements, gestures, and
expressions) caused by some diseases and pains. Section II
(the ‘‘review’’ phase) identified the correlations of diseases,
pains, and other health conditions with abnormal activities
and body actions and associated machine learning problems
with abnormality analysis and acquired outcomes. Section III
(the ‘‘summarization’’ phase) provided essential information,
including details about data, research framework components
such as data preprocessing and feature engineering tech-
niques, machine learning methods, performance evaluation
metrics, and results in the tables, which formed the foun-
dation for subsequent data analysis. In both sections, the
findings were organized with respect to the body parts where
the abnormalities happened.

Before thoroughly analyzing the review findings, we con-
structed the dataset based on the tables in Section III. Each
row of this dataset represented a unique research paper. Its
columns provided all the information related to both ‘‘medi-
cal’’ features such as diseases, pains, expressible body parts,
abnormal activities, abnormal body actions, and abnormal-
ity patterns, and ‘‘AI’’ features such as data types, data
collections devices, datasets, data preprocessing techniques,
feature extraction and selection procedures, methodologies,
methods, algorithms, performance evaluation metrics, and
results, which were extracted from the papers. Representing
the mined information as the dataset enabled us to carry out
descriptive and exploratory analyses of the findings. These
investigations considered in Section IV offered comprehen-
sive insights into all medical and AI characteristics and their
interconnections found in the reviewed articles.

The analysis established several important facts on health
conditions, abnormal body actions, and their interconnections
in the first part of the section. We identified that neurodegen-
erative diseases, musculoskeletal disorders, and health issues
associated with the senior population are the most studied
health conditions (Figure 6), together with abnormal activi-
ties related to walking, sitting, standing, falling, and abnormal
upper and lower limb movements (Figure 7). Moreover, this
subsection provided detailed lists of the cause-and-effect rela-
tionships between diseases, pain, and other health conditions,
with all considered abnormal body actions that are mined
from the reviewed articles (Tables 8-10).
The second part of the section laid down all important

facts related to individual stages of the implemented machine
learning frameworks and diverse interconnections between
the stages. Firstly, the data analysis approach assisted us in

categorizing machine learning tasks considered in the papers
(Figure 9) and determining the varieties of the data employed
(Figure 10), the data gathering devices deployed (Figure 11)
as well as the datasets utilized for executing machine learn-
ing models (Figure 12). The initial stages of the research
methodologies, i.e., data preprocessing and feature engineer-
ing techniques, were fully extracted from the reviewed papers
(Tables S2 and S3). More importantly, the study identified
that normalization, segmentation, Kalmar filtering, PCA, and
data sampling were the most universal data preprocessing
techniques (Figure 12). At the same time, statistical measures
and PCA were the most prevalent methods for feature engi-
neering (Figure 13). It was also determined that relatively
simple models such as SVM, KNN, and DT-based models
were predominantly utilized across the investigated machine
learning tasks, even in processing intricate data types such
as videos and images, rather than complicated deep learning
models (Figures 14 and 15). The analysis revealed that the
standard performance evaluation metrics, including accuracy,
recall, specify, and F1-score, were extensively employed in
most studies. Furthermore, it was noted that most studies
primarily depended on the accuracy metric alone (Figure 16).
From the ‘‘algorithmic’’ perspective, it was once again con-
firmed that these evaluation metrics were integral to all ML
models (Figure 17).
After analyzing individual stages and pairwise relations

in the utilized research methodologies, our analysis focused
on determining the most reliable methodologies for spe-
cific machine learning tasks by constructing a ‘‘methodology
flow network,’’ which described the whole problem-solving
processes in the reviewed papers by categorizing the steps
of methodologies into ‘‘similarity clusters.’’ (Figure 18).
To provide a clearer depiction of the methodology flow
network and obtain more reliable data preprocessing and
feature engineering techniques, methods, and algorithms,
as well as performance evaluation metrics in machine learn-
ing pipelines, we examined sub-flow networks based on
predominantly utilized data types such as images (Figure 19),
videos (Figure 20) and motion data (Figure 21).

To summarize, we can firmly assert that our data-driven
analysis carried out contributes significantly to understand-
ing the causational associations of health conditions with
abnormal behaviors or body actions.Moreover, it aids in iden-
tifying effective strategies for addressing machine learning
problems related to abnormal activities and body movements.
Consequently, we can develop trustworthy AI-powered intel-
ligent systems that accurately analyze and monitor patients’
health conditions, which can be employed in two slightly
distinct tasks. Firstly, machine (deep) learning systems that
detect, recognize, and assess abnormal activities of peo-
ple with health conditions and patients’ body language can
clearly identify body abnormalities caused by a specific
disease or pain and precisely analyze any changes in the phys-
ical and psychological conditions of the patients. Secondly,
sophisticated systems equipped with comprehensive knowl-
edge of all diseases and pains causing specific abnormal body
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actions can enhance the automatic diagnosing proficiencies
of healthcare systems utilizing patients’ body abnormalities
as external signs and symptoms of diseases and pains.

As previously stated, the current analysis is reliant on
the information provided in the papers we have reviewed.
A lack of adequate information may cause significant down-
sides in developing the most robust, reliable, and efficient
AI-powered research frameworks for analyzing abnormal
activities of people with health conditions and patients’
abnormal body language, which, in its turn, adversely impacts
the quality of the healthcare integrated intelligent systems that
are built upon these frameworks.

One of the core challenges in AI-based studies centered
around analyzing patients’ abnormal body language is the
lack of robust domain (healthcare and medical) knowledge
about all possible abnormal movements, postures, gestures,
and expressions caused by diseases and pains. The standard
approach for examining abnormalities in AI studies is to
select certain but not exhaustive abnormal body actions based
on some criteria. Starting with such selections, albeit all-
inclusive, a sufficient amount of data is collected, potent
data preprocessing and feature engineering techniques are
utilized, powerful machine (deep) methods and algorithms
are applied, and high-performance results are achieved, but
the outcomes are still constrained by the selected scope. From
an AI perspective, the acquired results are consistent and
robust, yet, through a healthcare lens, they remain still incom-
plete due to the limited domain knowledge employed in the
AI studies. Consequently, such AI research-based intelligent
systems have limitations: they are unable to detect all disease-
caused abnormal actions happening in different parts of the
body, subtly distinguish abnormality patterns, and as a result,
precisely analyze the external signs and symptoms of diseases
and pains.

An approach to overcoming such limitations present in
AI studies is to conduct a comprehensive review and anal-
ysis of domain research articles focused on investigating
the causational relationships of diseases and pains with
patients’ abnormal body language. These researches carried
out by healthcare andmedical experts have identified possible
abnormal movements, postures, gestures, and expressions
happening in various body parts as consequences of diseases
and pains. Since these outcomes have been driven through
rigorous patient assessments in reliable clinal or laboratory
settings, they provide strong support for considering the
established abnormal body actions as the causational effect
of the corresponding diseases. Consequently, AI researchers
can more comprehensive and accurate lists of possibly all
abnormal bodily movements caused by diseases and pains in
a cost-effective and efficient manner. The data collected and
synthetically generated (for training purposes) in accordance
with these abnormalities result in developing more accurate,
trustworthy and complete machine learning models for ana-
lyzing and monitoring healthcare patients through their body
language. Thus, our next paper aims to review and analyze
healthcare and medical research papers from an artificial

intelligence perspective to identify the strong causational
relationships of diseases and pains with abnormal movements
and postures happening in all expressible parts of the body.
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