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ABSTRACT Combining with the dispersion characteristics of ultrasonic guided waves, full waveform
inversion method shows great application potential in the quantificational detections of defects in plate-
and pipe- like structures. Owing to the inversion efficiency problem, the forward modeling is generally
based on the acoustic equation approximation, and a reference signal unaffected by the defects needs to be
artificially selected to correct the approximation forward simulation results. This study presents an auto-
calibration (without artificial selection of the reference signal) and high-precision imaging method based on
the combination of the full waveform inversion and ray tomography algorithm. The ray tomography results
are not only used to automatically select the reference signal based on an auto-calibration process, but also
used as the macro initial model for the full waveform inversion method, which decreases the possibility of
losing in local minimum values during the inversion process and enhances the robustness of the inversion
method. Therefore, compared with the classical guided wave tomography method based on full waveform
inversion, relatively high-frequency transducers can be used to acquire high-frequency signals, and thus, the
imaging accuracy could be effectively improved. Simulation and experiment results have verified that the
global relative error of the auto-calibration method is smaller than the classical method. The good imaging
results of irregular complex defects confirmed the effectiveness and applicability of the new method.

INDEX TERMS Guided wave, ray tomography, full waveform inversion, auto-calibration.

I. INTRODUCTION
Metal materials play a crucial role in metallurgy, energy,
transportation, infrastructure, and other fields because of their
excellent physical, chemical, mechanical, and technological
properties. However, their susceptibility to corrosion is
always an important factor limiting the safety and service
life of metal equipment and facilities in service [1]. The
failure of components caused by corrosion leads to safety
accidents, environmental pollutions, and energy wastes [2].
Various nondestructive testing (NDT) technologies for the
corrosion detection have been developed in recent years [3],
[4], [5], [6]. As an important NDT technology, the ultrasonic
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method can detect subsurface corrosions, delaminations,
cavities, cracks, and other defects in materials with high
resolution [7], [8]. Compared to the traditional point-by-point
sweeping ultrasonic NDT method, guided wave tomography
(GWT) utilizes the dispersive properties of ultrasonic guided
waves and requires only a small number of transducer arrays
around the zone to be inspected, which can provide a good
estimate of the remaining thickness of the corrosion spots.
Owing to its advantages of a large detection range, high
detection efficiency, and low detection cost in estimating the
remaining thickness of corrosion defects, GWT has great
potential application values for the quantitative determination
of corrosion defects [9].

Common GWT algorithms mainly include ray tomogra-
phy, diffraction tomography, and the full wave inversion
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method [10]. The arrival time of guided-wave packets based
on a ray model is used in the ray tomography method to
reconstruct the slowness distribution. Although both straight
and bent rays are used in the tomography process, this method
is valid only when the defects are much larger than the
wavelength of the guided wave because of the neglect of
diffraction effects [11], [12]. The resolution of the diffraction
tomography method can reach half of the wavelength, but
its application prerequisites are that the defects should be
of a limited size and the phase changes of the elastic
waves passing through the defects are sufficiently small [13].
The combination of bent ray tomography and diffraction
tomography methods improves the imaging resolution [14],
[15], [16]. Compared with the above two tomography
methods, the full waveform inversion (FWI) method makes
full use of the frequency, phase, travel time, and amplitude
information of the waveform, which is capable of explaining
both transmitted and diffracted waves, and thus provides
high-resolution imaging results [17], [18].

In recent years, the FWI method has been expanded
from seismic exploration to biomedical engineering and
industrial non-destructive testing. Related scholars completed
the quantitative imaging of the acoustic velocity of the
shin bone and the acoustic velocity and attenuation of
breast tumor based on the single- and multi-parameter
FWI methods [19], [20]. Rao et al. conducted a series
of ultrasonic- GWT experiments on corroded metal plates.
Combined with the dispersion characteristics of the guided
wave, the residual thickness information of the corroded
metal plates was inverted using the FWI method. The multi-
parameter inversion capacity of the FWI method was also
tested to simultaneously obtain the density and velocity
information of metal parts. Those researches confirmed that,
compared with other quantitative tomography methods, the
resolution of imaging results based on the FWI method
is significantly enhanced [21], [22], [23]. With its high-
resolution capacity, the FWI method has been applied to
the delamination inspection of concrete slabs [24], crack
detection of turbine blades [10], and inclusions inspection
of gears [25]. Nguyen et al. achieved high-resolution
imaging results of small defects in complex heterogeneous
structures by combining the FWI method with the reverse-
time migration imaging method [26]. Ratassepp et al. [27]
developed an efficient GWT method based on the FWI
method for characterizing defects in anisotropic plates. The
imaging results of the synthetic and experimental data show
the good performance of the FWI method in determining
the location, shape, and size of the defects in composite
plates.

For the choice of forward modeling engine, FWI-GWT
always exploits the 2D infinite-space acoustic approximation
to efficiently simulate the wavefield. To mitigate the inac-
curacies introduced by those approximations, the preprocess
of observed signals is of great importance. During the FWI-
GWT process, a number of emitting and receiving is carried
out, formulating multiple channels of signal. A reference

channel of signal, unaffected by the defect scattering effect,
is often manually selected to design the matching filter which
bridges the gap between the theoretical approximation and
the actual observation [28]. The improper choice of reference
channel leads to the decrease of imaging resolution and, more
severely, the failure of the FWI process. The consequence
is that those results may not be adequate for positioning
and classifying defects. In addition, a relatively broadband
spectrum is beneficial for FWI [29]. The low-frequency data
are used for the estimation of a macro initial model, which
helps FWI to converge towards the globally optimal model.
The high-frequency data are subsequently used for refining
the structural details, leading to the high-resolution imaging
of defects. However, limited by the bandwidth of ultrasonic
transducers, the selection of a high-frequency excitation band
means the absence of low-frequency data, which may cause
the failure of FWI-GWT when the targets defects are of
complex and irregular distributions.

To address the above issues, a hybrid GWT method is
proposed in this paper by combining ray tomography with
FWI. The ray tomography method is first used to get a
macro model, based on which the reference channel of
signal for FWI can be automatically selected through the
auto-calibration process. In addition, we use the imaging
result (i.e., the macro model) of the ray tomography as the
initial model for FWI, which increases the robustness of
inversion by mitigating the issue of convergence towards
local minimum. Therefore, we can exploit transducers with
higher frequencies for obtaining images at a better resolution.
Compared with the traditional FWI-GWT, the new method
reduces the risk of errors that may be introduced by manual
selection of reference signals. In addition, the new method
reduces the nonlinear effects of the full-waveform inversion
algorithm in the absence of low-frequency information for
imaging complex defects. Compared with the traditional FWI
algorithm, the hybrid method greatly improves the robustness
of the algorithm and increases the imaging resolution. The
rest of this study is structured as follows: the second section
introduces the basic process of the hybrid GWT method; the
third section is the application of the hybrid algorithm to
simulated data; the fourth section presents the imaging results
for the experimental data; and the fifth section provides
conclusions and perspectives.

II. METHODS
The hybrid GWT process consists of three steps: ray
tomography, auto-calibration of the measured data, and FWI
imaging. The ultrasonic signals are first used as the input
for ray tomography to obtain the macro imaging of the
defects. After that, the selection of the reference signals is
selected based on the macro imaging result in an automatic
manner. Accordingly, we calculate the calibration factors to
process the observed ultrasonic signals channel-by-channel.
Next, we input the macro model and calibrated data to FWI
for iteratively updating the parametric model. When the
misfit function reaches the convergence condition, we obtain
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FIGURE 1. Flow diagram of the auto-calibration GWT algorithm based on
FWI.

the residual thickness map by transforming inverted phase
velocity to structure thickness. The flow diagram of the
hybrid algorithm is illustrated in Figure 1.

A. AUTO-CALIBRATION METHOD
In the GWT method based on FWI, to improve the inversion
efficiency, the forward modeling is usually based on the
acoustic wave equation approximation. But the experimental
data or finite element simulation data are elastic modeling.
The calibration factors need to be introduced to reduce
the bias existing between the approximation and actual
models [21]. The calibration factors are expressed as follows:

cali =
fft(ψ0)

fft(dobs,0)
(1)

where dobs,0 represents the actual observation data received
from the emitter-receiver path that is not affected by the
defects. ψ0 denotes the modeling waveforms using the
acoustic wave equation in a homogeneous model without
defects. fft() denotes the fast Fourier transform.

During the imaging process, we prefer not to select the
channel, associated with waves affected by defect, as the
reference. An improper choice of reference channel not
only introduces strong artifacts to the imaging results but
also leads to the failure of the imaging process in severe
cases. In this paper, we derive the automatic selection of the
reference signal and the calculation of the calibration factor
following the approach of Druet [28] who proposed a hybrid
tomography algorithm by combining the ray and diffraction
tomography methods. Taking an aluminum plate as an
example, the data-processing flow of the auto-calibration
method is given in the following.

Figure 2(a) shows the original thickness map of the
aluminum plate. There is a circle defect (50 mm in diameter)
in the center of the plate. A circle array with 30 transducers
(red points in Figure 2(b)) is assembled around the defect.
The ray paths for all emitter-to-receiver pairs are shown as
light blue lines in Figure 2(b). The observation data in (1)
for all ray paths are simulated by the finite element method.

FIGURE 2. Selection of emitter-to-receiver paths based on the ray
tomography result for the models with central defect. (a) Original
thickness map with central defect. (b) Ray paths for all emitter-to-receiver
pairs. (c) Ray paths in healthy area picked out by the threshold method.

The synthetic data are first used to perform the straight-ray
GWT. The imaging result is shown as the background of
Figure 2(b) (removing the transducers and ray paths). Based
on the imaging result, for each ray path, a threshold of the
ratio of the inversion thicknesses to the background thickness
can be set to determine whether the ray path passes through
the defects. given in the following. Let the total number of
rays be nrays, the number of transducers be nsensors, and the
ray paths without passing through defects be m, then nrays =

nsensors(nsensors−1) andm ≤ nrays. In this paper, the threshold
is set to be 3%. Thus, the reference signals do not pass through
the defects are picked out. The rays which do not pass through
the defects are shown in Figure 2(c).

As noticed before, the ray tomography algorithm is blind
to the diffraction effect, which means that the rays picked
out in Figure 2(c) have a certain chance of being influenced
by the defects. To explain the influence of the diffraction

62498 VOLUME 11, 2023



J. Wen et al.: Auto-Calibration Algorithm for Hybrid GWT Based on Full Waveform Inversion

FIGURE 3. The distribution characteristics of calibration factors for the
models with central defect or not. (b) is the partial enlargement of (a).
The black pentagram and yellow square scatters respectively represent
the calibration factors for the models with central defects or not. The red
round scatters represent the calibration factors of the ray paths in healthy
area picked out by the threshold method. The green ellipse denotes the
95% confidence ellipse of the red round scatters.

effect, the observation data for the model without defects
are also modeled using the finite element method. The
measuring parameters are the same as the model in Fig 2.
The acoustic approximation modeling waveforms without
defects in (1) are modeled using the finite-difference method.
We calculated the calibration factors for the finite element
simulation model with defects. The calibration factors at
a certain frequency are plotted on the complex plane. The
calibration factors for the corresponding source-receiver pairs
in Figure 2(b) are plotted as shown in the yellow squares in
Fig. 3. The calibration factors for the corresponding source-
receiver pairs in Figure 2(c) are plotted as shown in the
red round scatters in Fig. 3. Similarly, we calculated the
calibration factors for the finite element simulation model
without defects as shown the black pentagrams in Fig. 3.
Finally, we selected 95% confidence ellipses for all red
round scatters (shown as green solid lines). Figure 3(b)
is the partial enlargement of Figure 3(a). The calibration
factors of the model without defects (black pentagram
scatters) distribute comparatively centralized, which are
much closed with the red round scatters (the calibration
factors of the ray paths in healthy area picked out by
the above threshold method) in Figure 3. The rest of the
yellow square scatters represents the calibration factors of
the ray paths that directly pass through the defects, which
significantly stay away from the calibration factors within the
healthy area.

From Figure 3(b), we can see that the distribution area
of the red round scatters is slightly larger than the black
pentagrams, which may be caused by the influence of the
diffraction effect. Therefore, to exclude paths that may be
affected by the scattering effect of defects, a 95% confidence
ellipse (green ellipse in Figure 3) is calculated based on
the distribution of the calibration factors (red scatters)
within the healthy area. After this filtering process, only
q (q< m) factors (red scatters in green ellipse) remained. Let
those q calibration factors be cellipse, which satisfy cellipse ∈

Cq
⊂ Cnrays . Finally, the calibration factors cdefect outside

the ellipse are replaced by the average of the calibration

factors inside the ellipse (cdefect =

q∑
k=1

cellipsek /q), while the

calibration factors inside the ellipse remain unchanged. For
synthetic data, selecting a more stringent region does not
have a significant influence on the imaging results. However,
in actual data processing, the confidence region should be
selected based on the noise level.

B. FULL WAVEFORM INVERSION
In general, FWI method mainly consists of two parts: the
forward modeling to generate synthetic data and the inverse
process to update the model by calculating the gradient of the
misfit function.

1) FORWARD MODELING FOR ULTRASONIC WAVE
PROPAGATION
To improve the efficiency of FWI, the scalar acoustic wave
equation is usually used to approximate the propagation
of guided waves in solid media. The form of the two-
dimensional acoustic wave equation in the frequency domain
can be written as

(∇2
+ ω2m2)ψ(r, ω) = −s(r, ω) (2)

where ∇
2

=
∂

∂x2
+

∂

∂y2
= ∂2x + ∂2y is the Laplace operator;

r(x, y) is the spatial position in the Cartesian coordinate
system. ω is the angular frequency; m = 1/c is the slowness
of acoustic wave; c is the acoustic wave velocity. ψ(r, ω)
is the displacement field; s(r, ω) = s(ω)δ(r − rs) denotes
the source signal; s(ω) is the Fourier transform of the source
signal; δ(r − rs) denotes the Dirac function; rs denotes the
source position.

The finite difference method [30] is used in the forward
simulation process to solve the partial differential equations.
A perfect matching layer (PML) is added around the
computational region to reduce the computational cost and
the influence of reflected waves by the edges of the compu-
tational region. Using the finite difference discretization, (3)
can be expressed as

Aψ = s (3)

where A = ∇
2

+ ω2m2 is the complex-value impedance
matrix, which depends on frequency, material properties,
discrete format, and boundary conditions. The impedance
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matrix A is a l × l matrix. ψ and s respectively represents
the pressure wave-field and source term, which are all
l × 1 vectors.
To reduce the computational cost, the LU factorization can

be used to solve the wave field ψ :

LUψ = s (4)

where L and U respectively denote the upper and lower
triangular matrix from the LU factorization. The factored
matrix A can be used to solve the forward problem of other
source vectors, thus speeding up the computation process.

2) INVERSE THEORY
A least-square norm of the data residuals between the
synthetic and observed data is chosen as the object function,

E(m) =
1
2

∥Pr (ψ) − d∥
2

=
1
2

(
1d

t
)∗

1d (5)

where m = [m1,m2, . . . ,mnxny ]
T is the parameters of

the forward model. Pr is the sampling operator of the
wave field at the receiver position in the forward model.
ψ = {ψi} and d = {di} , i = (1, 2, . . . nr ) respectively
denote the vectors of synthetic data and observed data.

1d =

nr∑
i=1

{pr (ψi) − di}, i = (1, 2, . . . , nr ) is the data

residual (difference between data pr (ψi) calculated using the
current model m and the observed data di). The superscript
t and ∗ denote the transposition and complex conjugate of
vector or matrix, respectively.

Based on Taylor’s theorem, we have

E(m+ δm) ≈ E(m) + g · δm+
1
2
δmt

·H · δm = p (δm)

(6)

where g = ∂E(m)/∂m = ℜe(J t1d∗) is the gradient
vector; J = ∂ψp

(
mq

)
/∂mq, p = (1, 2, . . . , nr ), q =(

1, 2, . . . , nx × ny
)
is the Fréchet derivative matrix, and ℜe

denotes the real part of the complex values. H =
∂2E(m)
∂m2

denotes the Hessian matrix. To minimize the object function
E(m), let dP(δm)

d(δm) = g + Hδm be zero then δm = −H−1
· g.

Therefore, the model can be updated as

mk+1 = mk − εH−1g (7)

where ε denotes the step size. When only the first-
order derivative of the Hessian matrix is considered, the
corresponding method is the fastest descent method whose
implement process is relatively simple. This is a straight-
forward method, but its slow convergence rate limits its
application to large-scale problems. To boost the convergence
rate, the second-order derivative Hessian matrix should be
considered. However, the computational cost and the storage
space required for computing the inverse Hessian matrix
increase sharply. To avoid the direct computation of the
inverse of the Hessian matrix, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method [31] that can

approximately calculate the inverse of the Hessianmatrix was
used in this study.

The convergence criterion Q is defined as:

Q(n)
=

∫∫ ∣∣dn(x, y) − dn−1(x, y)
∣∣ dxdy∫∫

dhealthdxdy
(8)

where dhealth represents the thickness of the plate without
defects; dn(x, y) denotes the thickness at the position (x, y)
in the n-th iteration. In this study, the iterative process is
terminated when Q ≤ 2 × 10−4. Moreover, to avoid the
iteration falling into an infinite loop, when the loop count
is larger than M, the iteration algorithm will stop and the
convergence criterion is considered to be reached. Based on
experience, the loop count M was chosen to be 30.

To quantize the quality of the imaging results, the global
relative error Eglobal is defined as:

Eglobal =

∥∥∥d̃ − d
∥∥∥
2∥∥∥d̃∥∥∥

2

(9)

where d̃ and d respectively denote the actual and inverted
thicknesses of the plate.

3) REGULARIZATION METHOD
In the actual imaging process, because of the influence
of experimental error or the shortcomings of the imaging
algorithm, some noise or artifacts are inevitably generated in
the imaging results. The Gaussian filtering method is often
used in the iterative imaging process to reduce the impact of
the noise and artifacts and increase the imaging accuracy. The
standard deviation of the Gaussian filter directly depends on
the resolution of the tomography algorithm. The resolution of
the ray tomography algorithm is

√
Lλ , where L is the distance

between the transmitting and receiving transducers and λ is
the wavelength. The resolution of the FWI algorithm based on
the elastic model is 1.5∼2 wavelengths [32]. Based on some
test results, the standard deviation for ray and FWI algorithms
are respectively set as 1 and 0.5 wavelengths in this study.

The auto-calibration process in section II-A is highly sus-
ceptible to the noise in the ray tomography imaging results.
In addition to Gaussian filtering, we also applied threshold
regularization and variable relaxation regularization to elimi-
nate imaging noise [28]. The threshold regularization method
is based on the fundamental assumption that corrosion only
reduces the plate thickness, so that the inverted thickness
values greater than the background thickness are set as the
background thickness. The variable relaxation regularization
method, which is derived from the Tikhonov normalization
method, can accurately reconstruct local defects above the
noise threshold at the expense of the low sensitivity to small
defects. The inverted thickness d ′

ij after the variable relaxation
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FIGURE 4. The geometric diagram of the simulation model.

regularization method can be written as:

d ′
ij =


d̃ +

dij − d̃

(1 +
1
z2ij
)
α
2

0<
∣∣∣dij − d̃

∣∣∣ < γβd̃

dij others

zij =



∣∣∣dij − d̃
∣∣∣

βd̃

∣∣∣dij − d̃
∣∣∣ < βd̃∣∣∣dij − d̃

∣∣∣
0.5β

[
1 − cos(π

∣∣∣dij−d̃∣∣∣−γβd̃
(1−γ )βd̃

)

]
βd̃ ≤

∣∣∣dij − d̃
∣∣∣ < γβd̃

(10)

where d̃ is the reference value for regularization, which
is generally set to the original thickness of the plate; dij
denotes the inverted thickness of the ray tomography method.
α ∈ R+ is a constant that defines the regularization strength.
The higher the value of the parameter, the deeper the defect
will be set to the background thickness. β ∈ [0, 1] is a
fixed value that depends on image noise. The higher the
value of the parameter, the lower the background noise after
regularization; γ ∈ [1,+∞) is the fixed relaxation constant.
The product of γ and β determines the influence range of
the regularization method on the thickness, the higher the
value of the product, the deeper the defect will be affected.
In the actual imaging process these three parameters need to
be set to the appropriate value, the higher the value of the
parameters, the lower the imaging noise, but the greater the
imaging error. However, if the value of the parameters is too
low, there will be a lot of imaging noise, causing problems
for the auto-calibration process. More information of the
influence of these parameters on the imaging results can be
seen in [28]. In this study, the regularization parameters are
set as α = 4, β = 0.1, and γ = 10.

III. NUMERICAL TESTS
Figure 4 shows the numerical simulation model, a 10-mm-
thick aluminum plate with defects (density is 2700 kg/m3,
elastic modulus is 70 GPa, and Poisson’s ratio is 0.33).
A circle array with 30 transducers was assembled on the
surface of the plate. The diameter of the circle array was
300 mm. The numerical simulations of the propagation

FIGURE 5. Source signal used in the simulation process. (a) Excitation
signal of the 5-cycle Hann-windowed tone-burst signal with a center
frequency of 50 kHz. (b) Its corresponding frequency spectrum.

of the three- dimensional elastic waves were performed
using the finite element method. To excite a relatively pure
A0 mode, an out-of-plate displacement source was applied
to the emitter transducer. The source function was a 5-cycle
Hann-windowed tone-burst signal whose central frequency is
50 kHz, with a bandwidth of approximately 15 dB from 35 to
65 kHz (as shown in Figure 5). In the simulation process, one
transducer was an emitter and the other 29 transducers were
receivers. Repeating this operation up to all the transducers
have acted as an emitter and a 30 × 29 signal data matrix
would be obtained. To investigate the ability of the auto-
calibration method to identify defects located at different
positions, two data matrixes were simulated on the model in
Figure 4 with defects located in the center of the circle array
or not.

A. CENTRAL DEFECT
Figure 6(a) displays the thickness map of the plate with a
defect located at the center of the circle array. The defect
is shown as a trapezoidal cylindrical alcove whose top and
bottom diameters are respectively 60 and 40 mm. The cross-
section thickness distribution located at Y = 0 mm (the
white dashed line in Figure 6(a)) is shown as the solid
black line in Figure 6(c). The synthetic data matrix was first
calibrated according to the auto-calibration method and the
results of the calibration process are shown in section II-A.
The data matrix after calibration is used for the FWI process.
The inversion process is performed with a moving frequency
from 35 kHz to 60 kHz to mitigate the nonlinearity of the
inversion problem. The 60 kHz imaging result of GWT based
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FIGURE 6. Inverted thickness distribution maps for the model with
central defect. (a) Original thickness map. The white dashed line marks
the position to extract the cross-section thickness distribution maps in (c)
and (d). (b) The thickness distribution maps inverted by the
auto-calibration method. (c) The successive-frequency inversion results of
the cross-section in (a) at 35, 45, and 60 kHz. (d) The inversion results by
the auto-calibration method and the classical method.

on the successive-frequency inversion method is shown in
Figure 6(b). Although there are some faintly discernible
artifacts in the imaging zone, the shape and outline of the
defects are well inverted. To further display the details of
the imaging result, we extract the cross-section thickness

TABLE 1. Global relative error eglobal by classical calibration and auto
calibration methods (synthetic data).

FIGURE 7. Selection of emitter-to-receiver paths based on the ray
tomography result for the models with eccentricity defect. (a) Ray paths
for all emitter-to-receiver pairs. (b) Ray paths in healthy area picked out
by the threshold method.

distributions of the inversion results in the successive-
frequency process. The cross-section thickness distributions
at Y = 0 mm at 35 kHz, 45 kHz and 60 kHz are shown
in Figure 6(c). From the comparison, we can see that the
higher the frequency, the smaller reconstruction error for
the deepest defects. The minimum error at the center of the
defects is 0.08mm. Figure 6(d) shows a comparison between
the classical method (artificially selecting one available
reference signal) and the auto-calibration method for the
thickness distributions at Y = 0 mm. Although the thickness
distribution of the auto-calibration method at 60 kHz is
essentially the same as the classical method, the global error
of the auto-calibration method is slightly smaller than the
classical method (shown in Table 1).

B. ECCENTRICITY DEFECT
In this section, the same trapezoidal cylindrical alcove
defect in section III-A is located 50 mm to the right of
the center of the circle array. Similar to the process in
section III-A, the synthetic data matrix is first used as the
input of the ray tomography algorithm. The imaging result

62502 VOLUME 11, 2023



J. Wen et al.: Auto-Calibration Algorithm for Hybrid GWT Based on Full Waveform Inversion

FIGURE 8. The distribution characteristics of calibration factors for the models with eccentricity defect or not. (b) is the
partial enlargement of (a). The black pentagram and yellow square scatters respectively represent the calibration factors for
the models with central defects or not. The red round scatters represent the calibration factors of the ray paths in healthy
area picked out by the threshold method. The green ellipse denotes the 95% confidence ellipse of the red round scatters.

FIGURE 9. Inverted thickness distribution maps for the model with the eccentricity defect. (a) Original thickness map. The
white dashed line marks the position to extract the cross-section thickness distribution maps in (c) and (d). (b) The thickness
distribution maps inverted by the auto-calibration method. (c) The successive-frequency inversion results of the cross-section
in (a) at 35, 45, and 60 kHz. (d) The inversion results by the auto-calibration method and the classical method.

reconstructed by the straight-ray tomography is shown in
Figure 7(a). The red points in Figure 7(b) represent transduces
of the circle array. The light blue lines denote all transmit-
receive paths. The selected ray paths that do not pass
through the defect zone by the threshold method is shown
in Figure 7(b).

Similar to the case of a central defect, most of calibration
factors of the ray paths in Figure 7(b) (red round scatters in
Figure 8(a)) have a comparatively centralized distribution,
which are much closed to the calibration factors of the model
without defects (black pentagram scatters in Figure 8(a)). The
calibration factors of the ray paths passing through the defects
are further away from the distribution of the black pentagram
scatters. Although there are only a little of the red round

scatters are further away from the central area due to the loss
of the symmetrical properties of the defect, the calibration
process can also be completed by selecting a 95% confidence
ellipse of the red round scatters in Figure 8 and substituting
the calibration factors out of the confidence ellipse by the
mean of the factors in the ellipse. Figure 9(a) and 9(b)
respectively display the original model and the imaging result
of FWI with auto-calibration. The cross-section thickness
distributions at Y = 0 mm of the successive-frequency
inversion method is shown in Figure 9(c). The cross-section
thickness distributions of the auto-calibration and classical
calibration methods are compared in Figure 9(d). Similar
to the imaging result in section III-A, the auto-calibration
method can get the quite accuracy with the classical method
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FIGURE 10. Schematic diagram of the experimental procedure. (a) The
10 mm thick aluminum plate with double defects. (b) Measuring
equipments and process.

and its global error is slightly smaller than the classical
method.

IV. EXPERIMENTAL TESTS
To test the performance of the new algorithm, we conducted
experiments on a 6061-type aluminum plate. The dimensions
of the plate are 1000× 1000× 10mm (density is 2700 kg/m3,
elastic modulus is 70 GPa, and Poisson’s ratio is 0.33). The
schematic diagram of experiment is shown in Figure 10.
A 5-cycle Hann-windowed tone-burst signal with center
frequencies 50 kHz and 70 kHz were respectively used as
the exciting signal. The received signals were amplified
by the pre-amplifier and recorded by the oscilloscope.
Two piezoelectric transducers (diameter is 10 mm and the
center frequency is 50 kHz) were respectively assembled
on two mechanical arms with the same center and turning
radius (shown in Figure 10(a)). According to Rao J [21],
the minimum number of transducers in a circular array
to correctly sample the wave-field can be expressed as
N > 4πr/λ where r denotes the radius of the transducer
arrangement and λ denotes the wavelength. At 80 kHz
(λ = 30.1 mm), around 125 transducers would be needed
to correctly reconstruct the image for an area of 300 mm
in radius. However, it is not practical to have too many
transducers in the experiment and therefore the number of
transducers is limited to 60 in this study. One was emitter
transducer and the other was receiver transducer. In the data
acquisition process, the position of the emitter transducer
kept unchanged and the receiver transducer rotated every

FIGURE 11. Lamb wave dispersion curves for a 10-mm-thick aluminum
plate.

FIGURE 12. Experimental waveform data received by one receiver.
(a) Time-domain waveform data. The back line represents the original
waveform. The red line represents the time-window function. The blue
line denotes the direct A0 mode waveform extracted from the original
waveform. (b) Spectral magnitude of the direct A0 mode wave.

six degrees and recorded data. When all the data of the
receiver position were recorded, the emitter rotated six
degrees. Repeating the above process, the data matrix by the
virtual ring array (displayed in Figure 10(b)) was recorded.
The radius of the virtual ring array was 300 mm. Due to
the limitation of the fixture, a few receiver points close
to the source could not be acquired. The nearest central
angle of the transmitter-to-receiver was 18 degrees and a
60 × 55 data matrix was recorded.
As shown in Figure 11 and 12, high-quality A0-mode

Lamb waves were generated, followed by the reflection
waves of the plate edges. In this paper, only the first arrival
A0-mode waves are used for the GWT. The band-pass
filtering and time window method were used to extract the
required A0 mode. The pre-processing result of one channel
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FIGURE 13. Inverted thickness distribution maps for the experimental model with eccentricity defect. (a) Original thickness map.
The white dashed line marks the position to extract the cross-section thickness distribution maps in (e) and (f). (b) The thickness
distribution maps inverted by the ray tomography. (c) The regularization result of (b). (d) The thickness distribution maps
inverted by the auto-calibration method. (e) The successive-frequency inversion results of the cross-section in (a) at 40, 50, and
64 kHz. (f) The inversion result by the auto-calibration method and the classical method.

waveform data is shown as the blue line in Figure 12(a).
After extracting the desired mode waves, the signal envelopes
were obtained using the Hilbert transform, and 50% of the
envelope peaks were taken as the travel time of A0 mode to
perform the straight-ray tomography algorithm. Similar to the
process of synthetic data in section III, the imaging results of
different experimental models are displayed in the following
section.

A. SINGLE DEFECT
Figure 13(a) shows the thickness map of the aluminum plate
with a defect machined by the CNC milling system. The
defect is shown as a trapezoidal cylindrical alcove whose top
and bottom diameters are respectively 50 and 30 mm. The
center of the defect is located at (−40 mm, −132 mm). The
experimental data was first used to perform the straight-ray

tomography algorithm and the inverted thickness map is
shown in Figure 13(b). The imaging result inevitably has a
certain amount of noise and artifacts, which is detrimental
to the auto-calibration process. Hence, the threshold regular-
ization and variable relaxation regularization methods were
used to reduce the negative effect of the artifacts and the
result are shown in Figure 13(c). From the comparison of
Figure 13(b) and 13(c), we can see that the noises and artifacts
have greatly decreased. The imaging result of GWT based
on the successive-frequency FWI inversion method is shown
in Figure 13(d). Although the noises and artifacts of the
imaging results are slightly larger than the synthetic data
in section III, the shape and outline of the defect are well
inverted. The cross-section thickness distributions at Y =

−132mm for different frequencies are shown in Figure 13(e).
With the frequency increasing, imaging accuracy gradually
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FIGURE 14. Inverted thickness distribution maps for the experimental model with double defects. (a) Original thickness map.
The white dashed line marks the position to extract the cross-section thickness distribution maps in Figure 15. (b) The thickness
distribution maps inverted by the ray tomography. (c) The regularization result of (b). (d) The thickness distribution maps
inverted by the auto-calibration method.

FIGURE 15. The cross-section thickness distribution maps for the experimental model with double defects along the white dash
line in Figure 14(a). The successive-frequency inversion results along the (a) vertical and (c) horizontal white dash line at 40, 60,
and 80 kHz. The inversion results along the (b) vertical and (d) horizontal white dash line by the auto-calibration method and the
classical method.
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FIGURE 16. Inverted thickness distribution maps for the experimental model with double defects when the low-frequency data
absence. Thickness map inverted by the (a) classical method and (b) the auto calibration method. The inversion results along the
(c) vertical and (d) horizontal white dash line in Figure 14(a). The red and blue lines represent the inverted result by the
auto-calibration method at 60 and 80 kHz using both the low- and high- frequency data. The green line denotes the inversion
results by the auto-calibration method using the high-frequency data only.

TABLE 2. Global relative error eglobal by classical calibration and
auto-calibration methods (experimental data).

improves. At the highest frequency (64 kHz), only 0.01 mm
is underestimated at the center of the defect. Figure 13(f)
shows the reconstructed cross-section thickness distributions
using the auto-calibration and classical methods. In the
case of the experimental data, the FWI based on the auto-
calibration method has better reconstruction accuracy. The
global relative error at 64 kHz of the auto-calibration method
for a single defect is slightly smaller than that of the classical
method (shown in Table 2).

B. DOUBLE DEFECTS
Figure 14(a) displays the thickness map of the aluminum
plate with double defects. Compared with Figure 13(a),
an irregular defect was machined by the CNCmilling system.
To get relatively broadband signals, the experimental data
with different exciting frequencies were recorded. The center
frequencies of the exciting signal were 50 kHz and 70 kHz,
respectively. The thickness map inverted by the straight-ray
tomography with double defects is shown in Figure 14(b).
The result processed by the threshold regularization and
variable relaxation regularization methods is shown in

Figure 14(c). The experimental data were automatically
calibrated and then inverted sequentially from low to high
frequencies at five frequencies of 40, 50, 60, 70, and 80 kHz.
The inversion result at 80 kHz is shown in Figure 14(d).
The cross-section thickness distributions at X = 4 mm
(the white vertical dashed line in Figure 14(a)) in different
frequencies is shown in Figure 15(a). The cross-section
thickness distributions at Y = 20 mm (the white horizontal
dashed line in Figure 14(a)) in different frequencies is shown
in Figure 15(c). It can be seen that the reconstruction error for
the defects gradually decreased as the frequency increased.
The comparison of the cross-section thickness distributions
using the classical and auto-calibration method is shown in
Figure 15(b) and 15(d), respectively. Although the 5 mm
defect cannot be well reconstructed due to the increased
complexity of the defects, compared to the classical method,
our auto-calibrationmethod is still able to guarantee a slightly
smaller global error (Table 2).

C. IMAGING RESULTS FOR LOW-FREQUENCY
ABSENCE DATA
In the actual imaging process based on FWI, a relatively
broadband data is needed for the meticulous depiction of
the irregular and intricate defects. The high-frequency data
represents the high wave number information of the model,
which depicts the influence of the small-scale perturbation
quantity of the defect. This greatly increases the nonlinearity
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TABLE 3. Global relative error eglobal by the auto-calibration method
using both low- and high- frequency data and using low-frequency data
only. (experimental data).

of the inverse problem, so the low-frequency data is used to
provide a macro initial model to ensure the conduct of FWI.
From the above imaging results of synthetic and experimental
data, we can also find that the higher the frequency, the
smaller the reconstruction error for the defects. However,
limited by the bandwidth of the ultrasonic transducer, twice
data records with different exciting frequencies like that
in section IV-B, will sharply decrease the efficiency of
nondestructive testing. To improve the imaging accuracy as
much as possible, high-frequency exciting means the absence
of low-frequency data. This will bring a great challenge for
the FWI method, especially for the irregular and intricate
defects in the actual nondestructive testing. This is because
the absence of low-frequency data means the macro initial
model has a lot of uncertainties, which will easily cause the
iterative inversion process to lose in local minimum values,
in severe case, even can result in the failure of the FWI
algorithm.

Figure 16(a) displays the reconstructed thickness map for
the double defects in section IV-B by the classical FWI
method. It is worth noting that only the high-frequency
exciting data (center frequency is 70 kHz) measured in
section IV-B is used. Compared the inverted thickness
map in Figure 16(a) with the original thickness model in
Figure 14(a), we can find that the shape and outline of the
defects have obvious differences. This may be influenced
by the absence of low-frequency data (center frequency is
50 kHz). Figure 16(b) shows the inverted thickness map
for the double defects by the auto-calibration method. The
same as Figure 16(a), only the high-frequency data is used.
However, with the help of the macro initial model by the
ray tomography, the imaging results shows fairly accuracy
with the inverted result in Figure 14(d) (both low- and high-
frequency exciting data are used). The cross-section thickness
distributions in Figure 16(c) and 16(d) state that the imaging
accuracy using only high-frequency data is higher than that
using only low-frequency data, but slightly lower than that
using the full band data. This is acceptable because broadband
data facilitates imaging results. The global relative errors
of the imaging results are shown in Table 3, which also
demonstrates that the auto-calibration algorithm enhances the
robustness of the FWI algorithm and improves the imaging
accuracy when data bandwidth is limited.

V. CONCLUSION
This study proposes a hybrid GWTmethod by a combination
of the ray tomography and FWI method. Both synthetic and

experimental imaging results show that the new method can
obtain a smaller global error (difference between the original
and inverted thickness map) than the classical method, which
further illustrates the applicability and practicability of the
new method. The two main improvement of the new method
is as follows:

(1) Comparedwith the classical method (artificial selection
method), the risk of the wrong selection greatly decreases
and, with the help of ray tomography reconstruction result,
the new method enables the automatic selection of the
reference signal to calibrate the forward modeling error
caused by using the acoustic equation approximation in the
FWI process.

(2) The good imaging results of the complex and irregular
defects at the absence of the low-frequency data valid that,
using the macro model inverted by the ray tomography
method as the initial model of the FWI algorithm can
significantly decrease the possibility of losing in local
minimum values and enhance the robustness of the FWI
method.
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