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ABSTRACT Fuzzy signatures (FS) are a kind of signature scheme that employs a noisy string (e.g., biometric
data) as the secret key without requiring the user-specific auxiliary data. As the quantum computing era
approaches, some research has been dedicated to developing quantum-resistant FS schemes, which can
be classified into fuzzy extractor (FE) approach and linear sketch (LS) approach. However, the existing
schemes utilizing FEs to obtain (variants of) fuzzy signatures require to produce the user-specific auxiliary
information known as helper data to retrieve secret keys, leading to an additional computational cost. In light
of the circumstance, we seek to construct a fuzzy signature scheme by employing a linear sketch, since this
approach does not require the user-specific auxiliary data to derive secret keys. We modify the linear sketch
which is an essential ingredient of the most practical fuzzy signature proposed by Katsumata et al. (CCS’ 21).
Then we combine it with Lyubashevsky’s lattice-based signature scheme (EUROCRYPT’ 12) to construct
our lattice-based fuzzy signature scheme. Moreover, to further demonstrate the security of our proposed
scheme, we provide a rigorous security proof in the random oracle model. Finally, the comparison indicates
that our proposed FS scheme not only avoids the use of FE but also shows a promising tendency in efficiency
among the existing quantum-resistant FS schemes.

INDEX TERMS Biometrics, fuzzy signatures, lattice-based signatures, quantum resistance.

I. INTRODUCTION
Digital signatures are an indispensable component of mod-
ern cryptography, which is the cornerstone of information
security. It is widely used in the fields of communication,
electronic commerce and national defense because of its non-
repudiation, data integrity and unforgeability. Many kinds of
signatures are proposed to satisfy the needs of the society
towards security services in many different scenarios. A kind
of special digital signature, called fuzzy signature [1], can
offer better usability and security of the secret keys by using
noisy data (e.g., biometric data) instead of traditional number-
based passwords.

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci .

As we all know, the security of modern cryptographic
applications is usually based on the secret keys. Thus the
users need to keep his/her secret keys carefully, and they
may keep their secret keys on a USB token or a smart card
and remember a password to activate it. Hence, carrying
an additional device is unavoidable for the users in such
cases. This limitation causes some inconvenience and reduces
usability. One of the promising solutions is to use biometric
data as secret keys, like fingerprints, iris and faces, since they
are parts of our body, and unique for everyone. Biometrics
has a wide range of applications, especially the cybersecurity
and personal privacy. However, biometric data could not be
directly applied into the cryptographic scheme (as the signing
keys), since it is not uniformly distributed and fluctuates each
time when it is captured. Therefore, there are several meth-
ods proposed to address this issue, such as fuzzy extractors
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(FEs)1 [2], [3], [4], [5], [6] and fuzzy signatures [1], [5], [7],
[8]. FEs rely on the user-specific auxiliary information called
helper data to retrieve its secret keys. In contrast, fuzzy signa-
tures allow users to use their biometric data as secret keys to
generate signatures without relying on user-specific auxiliary
data. Such fuzzy signatures may bring a more straightforward
way to solve the above problem. Therefore, we focus on fuzzy
signatures in this paper.

Fuzzy signatures [1], known as generating a signature with
a noisy string, are a kind of digital signature that utilizes a
noisy string (e.g., biometric data) as a secret key to generate
a signature without depending on the user-specific auxiliary
data. For a fuzzy signature scheme, the key generation takes
a noisy string x and a public parameter ppFS produced by
the setup algorithm as inputs, and outputs a public key pk .
The signing algorithm takes a message m and another noisy
string x ′ as inputs, and outputs a signature σ . The verification
algorithm takes a message-signature pair (m, σ ) and pk as
inputs, and outputs 1 when σ is a valid signature on message
m; Otherwise, outputs 0. That is, a message m signed by the
fuzzy data x ′ can be verified by the public key pk generated
by another fuzzy data x close to x ′.

To our knowledge, using linear sketch [1], [7], [9] to
construct a fuzzy signature is a more promising approach.
The primitive, linear sketch, is an important building block
used to cope with fuzzy data in a fuzzy signature scheme.
Linear sketch (scheme), formally defined by [1], consists
of three algorithms (LS.Setup, LS.Sketch, LS.DiffRec).
The algorithm LS.Sketch takes a public parameter ppLS
produced by the algorithm LS.Setup and a fuzzy data x as
inputs, and outputs a sketch c and a proxy key S (which
is regarded as a secret key). The difference reconstruction
algorithm LS.DiffRec takes ppLS , c, and c′ as inputs, and
outputs the difference 1S = S ′ − S. Therefore, we can get a
secret key S directly by exploiting the fuzzy data x from the
algorithm LS.Sketch. In addition, there are few attentions
on quantum-resistant fuzzy signatures constructed by linear
sketch approach [8]. Hence, it is non-trivial to construct the
quantum-resistant fuzzy signature scheme based on the linear
sketch.

A. OUR CONTRIBUTION
The main contributions of our work are summarized as
follows:
• In this work, we propose a lattice-based fuzzy signature
scheme that is constructed by a modified linear sketch.
More specifically, we provide a mapping h to replace
the universal hash function UH2 used for the linear
sketch proposed by Katsumata et al. [7] so as to make
it applicable to a lattice-based scheme of [10]. Since the

1FE includes two algorithms (Gen,Rep), where Gen takes a noisy string
x as input, and outputs a helper string P and an extracted key r ; Algorithm
Rep takes as inputs another noisy data x′ and the helper string P, then
reproduces r if x and x′ are close enough.

2UH = {UH : D → R} is called universal if for all distinct elements
x, x′ ∈ D, we have that PrUH←UH[UH (x) = UH (x′)] ≤ |R|−1.

modification we made on the linear sketch of [7] keeps
the original functionality and structure, our modified
linear sketch inherits the conceptually clean construction
from Katsumata et al. [7] which proposed the first fuzzy
signature implemented efficiently and securely. That
makes our proposed scheme not only present theoretical
achievements, but also have the probability of being
implemented.

• We modify the Lyubashevsky’s lattice-based signature
scheme [10], and combine it with the above modified
linear sketch to obtain a fuzzy signature scheme whose
security relies on a lattice-based hardness assumption.
To further illustrate the security of our scheme, we give
a rigorous security proof in the random oracle model.
In addition, Table 1 indicates that our scheme obtains
a promising result in efficiency among the existing
lattice-based fuzzy signature schemes.

B. OUR APPROACH
The work aims to propose a lattice-based fuzzy signature
scheme by utilizing linear sketch. Since most of the existing
fuzzy signatures constructed by linear sketch [1], [7], [9],
[13] are based on traditional number-theoretical assumptions,
their linear sketch schemes cannot be directly employed in
the lattice-based setting. We modify the linear sketch from
the scheme of [7] which proposed the first fuzzy signature
scheme that can be implemented securely and efficiently,
since we hope that the novel construction of the modified lin-
ear sketch can not only make our scheme have the probability
of being implemented, but also be applicable to the schemes
from lattice. In our approach, we use a mapping h to replace
an universal hash function of the algorithm LS.Sketch of
linear sketch scheme in [7]. This modification makes the
modified linear sketch not only capable of being applied into
a lattice-based signature scheme, but also keep the original
functionality and structure unchanged.

In the security proof part, there are two possible approaches
of responding the signing queries from the forger during
signing, either using the secret key, or directly generating sig-
natures chosen randomly from a distribution without utilizing
secret key. Even though our scheme is based on [10], we do
not prove the security of our scheme in the same way as [10].
We choose the former method, since we could not easily
produce signatures without the help of the proxy key S′ in
the signing queries. Hence, in order to successfully simulate
a signature which can be indistinguishable from the actual
signature during the signing queries, we choose the former
method.

C. RELATED WORK
The concept of fuzzy signatures was first introduced by
Takahashi et al. [1] which not only provided the formal def-
inition of fuzzy signatures including two building blocks,
fuzzy key setting and linear sketch, but also proposed a
generic construction of fuzzy signature from an ordinary
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TABLE 1. Comparison with the related works of lattice-based fuzzy signature schemes in the random oracle mode.

signature satisfying homomorphic property regarding keys.
Then Matsuda et al. [9] provided a relaxed version of fuzzy
signatures by relaxing some requirements on the building
blocks, like employing the ordinary signatures having the
weaker form of homomorphic property, e.g., Waters signa-
tures [14] were replaced with Schnorr signatures [15] in their
proposed instantiations. In 2017, Yasuda et al. [16] claimed
that the linear sketch of [1] and [9] is vulnerable to their
‘‘recovering attacks’’ since the treatment of real numbers
in the linear sketch. After that, Takahashi et al. [13] gave a
treatment of rounding-down operation (or called truncation)
on the decimal part of real numbers to address that problem.
However, such a method caused correctness loss in their
proposed schemes.

Katsumata et al. [7] in 2021 proposed a simpler, more effi-
cient and direct construction of fuzzy signatures by exploiting
the Schnorr signatures [15] with a simpler linear sketch based
on amathematical object, called lattice. They showed that this
fuzzy signature scheme can be efficiently and securely imple-
mented with the help of some novel statistical techniques.
They also gave the experimental results of using the real-
world finger-vein database to show that the finger-vein from
one hand is enough to construct secure and efficient fuzzy
signatures. The work of [7] made a breakthrough for fuzzy
signatures by widening theory oriented research into practical
one.

Furthermore, little attention is paid on (variants of)
quantum-resistant fuzzy signatures [5], [6], [8]. More con-
cretely, a concrete instantiation of reusable fuzzy signature
in [5] was built up on a reusable FE [17] based on learning
with errors (LWE). The work in [6] proposed a variant of
fuzzy signature scheme by utilizing a lattice-based signature
scheme of [10] and a FE of [2]. Specifically, the scheme
of [6] redefined the definition of fuzzy signatures proposed
by [1] and relaxed the security model of [1] by relaxing the
requirement of error distribution of fuzzy data.

To the best of our knowledge, there just exists a fuzzy
signature scheme [8] which is against the quantum computers
and constructed by the linear sketch. The work of [8] pro-
posed a generic construction of fuzzy signatures constructed
by a linear sketch and an ordinary signature scheme6SS, and

then instantiate it by giving a concrete LWE-based signature
scheme and an instantiation of linear sketch. We hightlight
that our scheme is not an instantiation of [8]. The construc-
tion of signing algorithm, verification algorithm, and the
linear sketch of the generic construction in [8] are different
from ours in various viewpoints. Specifically, in the signing
algorithm of [8], it reused the key generation algorithm of
6SS to produce another pair of public/secret keys whose
secret key was used as the input of the signing algorithm of
6SS and the linear sketch. For our scheme, we do not utilize
the key generation algorithm again in our signing phase, and
we just use an output of our linear sketch as the secret key.
Moreover, compared to the scheme of [8], we give a rigorous
security proof in the random oracle model.

In addition, although our scheme seems not to approach
the optimal results in Table 1, it shows a promising tendency
in efficiency among the existing lattice-based fuzzy signature
schemes.

D. ROADMAP
The remainder of this paper is arranged as follows.
Section II introduces some preliminaries used in this paper.
Linear sketch, an essential building block of fuzzy signatures,
is recalled in Section III. In Section IV, we propose our
lattice-based fuzzy signature scheme and give its security
analysis. Furthermore, Section V concludes this paper.

II. PRELIMINARIES
In this section, we recall some basic notations, results and
definitions that will be used in the paper.

A. NOTATION
Throughout the paper, we denoteR,N, andZ by the set of real
numbers, natural number and integers. We use log to denote
the logarithm of base 2. κ ∈ N denotes the security parameter,
and let q be a polynomial-size prime number. Vectors are
denoted by bold lower-case letters (e.g., x), and matrices are
represented by bold capital letters (e.g., X). Let all vectors be
column vectors, and x⊤ will be the transpose of the vector x.
∥x∥2 is denoted by the ℓ2 norm of a vector x. The notation
of ← denotes the random selection of the elements from

62512 VOLUME 11, 2023



M. Zheng et al.: Provably Secure Lattice-Based Fuzzy Signature Scheme Using Linear Sketch

some sets or distributions. We denote deterministic polyno-
mial time (resp. probabilistic polynomial time) by DPT (resp.
PPT). A function f (n) is negligible in n if for any positive
c, large enough n, we have f (n) < n−c. We use standard
notation big-O and big-� to classify the growth of functions
f (x) and g(x) whichmap positive integers to non-negative real
numbers.We say that f (n) = O(g(n)) if there exist c1 > 0 and
N1 ∈ N such that f (n) ≤ c1 · g(n) for all n ≥ N1. And we
say that f (n) = �(g(n)) if there exists c2 > 0 and N2 ∈ N
such that f (n) ≥ c2 · g(n) for all n ≥ N2. Note that all
operations include the elements in Z involved end with a
reduction modulo q. That means we usually omit to write
the modulo q in such equations. For example, the product
of a matrix A ∈ Zn×n

q and a vector y ∈ Zn is a vector
in Zn

q.

B. DIGITAL SIGNATURES
We recall the definition of digital signature schemes.
Definition 1 (Signature Schemes): A signature scheme 6

is a triple (KGen,Sign,Vrfy) of PPT algorithms together
with message space M. It is correct if for any message
µ ∈ M, the algorithm holds Vrfy(pk, µ, σ ) = 1 except
with negligible probability in κ over the choice of (pk, sk)←
KGen(1κ ) and σ ← Sign(sk, µ).
A signature scheme is said to be secure if there is only

a negligible probability that any forger, after seeing sig-
natures of messages of his choosing, can sign a message
whose signature he has not already seen [18]. The standard
security notion for digital signature schemes is existentially
unforgeable under adaptative chosen message attacks (EUF-
CMA) [11], [12] which is usually given as a game. It requires
that a forger F could not be able to come up with a valid
signature of a new message after he adaptively queries the
messages. Formally, consider the following EUF-CMA game
between a challenger C and a forger F .

• KGen: The challenger C first runs (pk, sk) ←

KGen(1κ ). It then sends the public key pk to the forger
F , and keeps secret key sk by itself.

• Signing: The forger F is allowed to query messages
adaptively. When F asks the signature on any fresh
messageM , the challenger C computes and sends σM ←
Sign(sk,M ) to F . The forger can repeat this queries in
any polynomial time.

• Forge: Finally, the forgerF outputs amessage-signature
pair (M∗, σM∗ ), and let Q be the set of all messages
queried by F . The challenger C outputs 1 if M∗ /∈ Q
and Vrfy(pk,M∗, σM∗ ) = 1, else outputs 0.

A signature scheme 6 = (KGen,Sign,Vrfy) is
EUF-CMA secure if there is no PPT forger wins the above
EUF-CMA game with a non-negligible probability.
Definition 2 (EUF-CMA Security): Let κ be the security

parameter. A signature scheme 6 is said to be existentially
unforgeable against chosen message attacks if the advantage
Adveuf−cma

6,F (1κ ) = Pr[C outputs 1] is negligible in κ for all
PPT adversaries.

C. LATTICE AND GAUSSIAN DISTRIBUTION
A (full-rank) m-dimension lattice L(B) = {Bz : z ∈ Zm

}

is the set of all integer linear combinations of m linearly
independent vectors B = [b1, · · · ,bm] ∈ Rm×m. There is
a special lattice family called q-ary lattices, which contains
qZm as a sublattice for some small integer q. Let A ∈ Zn×m

q
be a matrix with some positive n,m, q ∈ Z, and consider the
following m-dimension q-ary lattice:

3⊥q (A) = {v ∈ Zm
: Av = 0 mod q}.

Given a uniformly random matrix A ∈ Zn×m
q , the small

integer solution problem (SISq,m,n,β problem) asks to find
a non-zero vector v ∈ 3⊥q (A) such that Av = 0 mod q
and ∥v∥2 ≤ β. We then give the formal definition of
SISq,m,n,β [19] as follows.
Definition 3: (SISq,m,n,β problem)Given a randommatrix

A← Zn×m
q , find a non-zero vector v ∈ Zm such that Av = 0

mod q and ∥v∥2 ≤ β.
The following useful facts used in our paper are from [10],

[11], [20], and [21].
Definition 4: The continuous Normal distribution overRm

centered at v with standard deviation σ is defined by the

function ρmv,σ (x) =
(

1
√

2πσ 2

)m
e
−∥x−v∥2

2σ2 .
The subscript v of the function ρmv,σ is omitted when v is

taken to be 0. Note that for all v ∈ Zm, ρmv,σ (Zm) = ρmσ (Zm).
Definition 5: The discrete Normal distribution over Zm

centered at v ∈ Zm with standard deviation σ is defined as
Dmv,σ (x) =

ρmv,σ (x)
ρmv,σ (Zm) =

ρmv,σ (x)
ρmσ (Zm)

.

Lemma 1: 1) For any k > 0,Pr[|z| > kσ : z← D1
σ ] ≤

2e
−k2
2

2) For any z ∈ Zm, and σ ≥ 3
√
2π
,Dmσ (z) ≤ 2−m

3) For any k > 1,Pr[∥z∥ > kσ
√
m : z ← Dmσ ] <

kme
m
2 (1−k

2).
Lemma 2: For any v ∈ Zm, if σ = ω(∥v∥

√
logm), then

Pr[Dmσ (z)/D
m
v,σ (z) = O(1) : z← Dmσ ] = 1− 2−ω(logm),

and more specifically, for any v ∈ Zm, if σ = α∥v∥ for any
positive α, then

Pr[Dmσ (z)/D
m
v,σ (z) ≤ e

12/α+1/(2α2)
: z← Dmσ ] = 1− 2−100.

Lemma 3: For any positive integer m ∈ Z, vector y ∈ Zm,
and large enough σ ≥ ω(

√
logm), we have that

Pr
x←Dmσ

[x = y] ≤ 21−m.

Lemma 4: Let d be a small positive integer. For any A ∈
Zn×m
q where prime integer q, positive integer n, andm > 64+

n· log q
log(2d+1) , for randomly chosen s← {−d, · · · , 0, · · · , d}m,

then with probability 1 − 2−100, there exists another s′ ←
{−d, · · · , 0, · · · , d}m such that As = As′.

Rejection sampling is a well-known technique introduced
by John von Neumann [22] to sample from a target proba-
bility distribution f . Specifically, given a source bound to a
different probability distribution g, and a sample x is drawn
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from g and is accepted by probability f (x)
M ·g(x) , where M ∈

R+. We get the following theorem of rejection sampling
from [10].
Theorem 1: Let V be a subset of Zm in which all elements

have norms less than T, σ be some element in R such that
σ = ω(T

√
logm), and h : V → R be a probability

distribution. Then there exists a constantM = O(1) such that
the distribution of the following algorithm A:
1) v← h
2) z← Dmv,σ
3) output (v, z) with probability min

(
Dmσ (z)

MDmv,σ (z)
, 1
)

is within statistical distance 2−ω(logm)
M of the distribution of the

following algorithm B:
1) v← h
2) z← Dmσ
3) output (v, z) with probability 1

M .

More concretely, if σ = αT for any positive α, then M =
e12/α+1/(2α

2), the output of algorithm A is within statistical
distance 2−100

M of the output of B, and the probability that A
outputs something is at least 1−2−100

M .

III. FUZZY SIGNATURES
Before recalling the definition of fuzzy signatures [7], [13],
we first introduce its two important ingredients, fuzzy key
setting and linear sketch. They are used to formalize how to
deal with fuzzy data in a cryptographic scheme.

A. FUZZY KEY SETTING
The primitive, fuzzy key setting [1], [7], is an important build-
ing block of fuzzy signatures. A fuzzy key setting includes
the below five parameters (X ,X , ξ,Φ, ϵ), and it is used to
formally treat fuzzy data in cryptographic schemes.

• Fuzzy data space X : This is the space to which a
possible fuzzy data x belongs. Assume that X forms an
Abelian group.

• Distribution X : The distribution of fuzzy data over X .
That is, X : X → R.

• Acceptance region function ξ : X → 2X : This function
maps from a fuzzy data x ∈ X to a subspace ξ (x) ⊂ X ,
i.e., if x ′ ∈ ξ (x), then x ′ is considered close to x. Two
quantities, the false matching rate FMR3 and the false
non-matching rate FNMR4 [23], are determined based
on ξ . The FMR is defined as:

FMR = Pr[x, x ′← X : x ′ ∈ ξ (x)].

• Error distributionΦ: The distribution models the mea-
surement error of fuzzy data. Assume ‘‘universal error
model’’ where the measurement error is independent of
the users.

3FMR is the rate at which a biometric process mismatches biometric
signals from two distinct individuals as coming from the same individual.

4FNMR is the rate at which a biometric matcher miscategorizes two
captures from the same individual as being from different individuals.

• Error parameter ϵ: The error parameter ϵ ∈ [0, 1]
defines FNMR. That is,

FNMR = Pr[x ← X ; e← Φ : x + e /∈ ξ (x)] ≤ ϵ.

B. LINEAR SKETCH
Linear sketch was first formally defined by [1], and then
the work of [7] proposed a simpler one and gave a specific
construction. Linear sketch is an essential ingredient in the
construction of fuzzy signatures [1], [7], [9], [13], and its
main purpose is to ‘‘bridge’’ fuzzy data and cryptographic
operations. It is related to the fuzzy key setting and consists
of three algorithms. In the following, we describe the formal
definition of linear sketch scheme [7].
Definition 6 (Linear Sketch): Let K = (X ,X , ξ,Φ, ϵ) be

a fuzzy key setting with respect to a (finite) Abelian group
3 = (ψ,+). A linear sketch scheme 6LS for K and 3
consists of the following three polynomial-time algorithms.

• LS.Setup(K,3) → ppLS : The setup algorithm takes
the fuzzy key setting K and the description 3 as inputs,
and outputs a public parameter ppLS .

• LS.Sketch(ppLS , x)→ (c, S): The deterministic sketch
algorithm takes ppLS and a fuzzy data x ∈ X as inputs,
and outputs a sketch c and a proxy key S ∈ ψ .

• LS.DiffRec(ppLS , c, c′) → 1S: The deterministic dif-
ference reconstruction algorithm takes as inputs the
public parameter ppLS and two sketches c and c′ (c′ is
also output by the algorithm LS.Sketch), and outputs
the difference 1S ∈ ψ .

Correctness.We say a linear sketch scheme 6LS for a fuzzy
key setting K and 3 is correct if, for all x, x ′ ∈ X such that
x ′ ∈ ξ (x) and all ppLS ← LS.Setup(K,3), if (c, S) ←
LS.Sketch(ppLS , x), and (c′, S ′) ← LS.Sketch(ppLS , x ′),
then we have that S ′ − S = LS.DiffRec(ppLS , c, c′).
Linearity. We say a linear sketch scheme 6LS satis-

fies linearity if there exists a DPT algorithm Mc satis-
fying the following: for all x ∈ X , e ← Φ, and
ppLS ← LS.Setup(K,3), if (c, S) ← LS.Sketch(ppLS , x)
and (c′,1S) ← Mc(ppLS , c, e), then we get that
LS.Sketch(ppLS , x + e) = (c′, S +1S).

C. FUZZY SIGNATURES
We now give the formal definition of fuzzy signatures [1],
[7], [13], whose messages are signed by the fuzzy data x ′,
and the corresponding signatures can be verified by public
key pk generated by another fuzzy data x, where x ′ ∈ ξ (x).
More specifically, the secret key will not be explicitly defined
in the scheme, since the fuzzy data x can be regarded as the
same role of the secret key in the fuzzy signature scheme.
Definition 7 (Fuzzy Signatures): Let 6FS be a fuzzy sig-

nature scheme for a fuzzy key setting K = (X ,X , ξ,Φ, ϵ)
with massage spaceM consisting of four algorithms.

• FS.Setup(1κ ,K) → ppFS : The setup algorithm takes
the security parameter 1κ and the fuzzy key settingK as
inputs and outputs a public parameter ppFS .
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• FS.KGen(ppFS , x) → pkFS : The key generation
algorithm takes ppFS and a fuzzy data x ∈ X as inputs,
and outputs a public key pkFS .

• FS.Sign(ppFS , x ′,M ) → σFS : The signing algorithm
takes pkFS , a fuzzy data x ′ ∈ X , and a messageM ∈M
as inputs, and outputs a signature σFS .

• FS.Vrfy(ppFS , pkFS ,M , σFS ) → 0/1: The verification
algorithm takes ppFS , pkFS , and the message-signature
pair (M , σFS ) as inputs, output 1 (resp. 0) indicates that
σFS is a valid (resp. invalid) signature of the messageM
under the public key pkFS .

We recall the correctness and EUF-CMA security of fuzzy
signatures [7]. Briefly, the correctness requires that a signa-
ture signed by a fuzzy data x ′ ∈ ξ (x) can be verified by a
public key pkFS generated by the fuzzy data x, and parameter
ϵ is connected to the probability

Pr[x ← X , e← Φ : x + e ∈ ξ (x)] ≥ 1− ϵ.

Formally, the work [7] defined ϵ-correctness and EUF-CMA
security of fuzzy signatures. A fuzzy signature scheme 6FS
for a fuzzy key settingK is ϵ-correct if, for allM ∈M, x ←
X , and e← Φ, the following holds

Pr[FS.Vrfy(ppFS , pkFS ,M , σFS ) = 1] ⩾ 1− ϵ,

where the probability is taken over the randomness
of algorithms ppFS ← FS.Setup(1κ ,K), pkFS ←

FS.KGen(ppFS , x), and σFS ← FS.Sign(ppFS , x + e,M ).
EUF-CMA security of fuzzy signatures is similar to those

of standard signatures except that the challenger uses x ′ ∈
ξ (x) to respond signing queries rather than the original x used
to generate the public key pkFS . The security model of a fuzzy
signature scheme6FS for a fuzzy key settingK is defined by
the following game, which is between a challenger C and a
forger F :
• Setup: The challenger C first runs ppFS ←

FS.Setup(1κ ,K), x ← X , and pkFS ←

FS.KGen(ppFS , x), and then sends the public parameter
ppFS , and public key pkFS to the forger F .

• Signing: The forger F is allowed to query messages
adaptively. When F asks the signature on any fresh
messageM , the challenger C randomly samples e← Φ

and computes σM ← FS.Sign(ppFS , x + e,M ). Then C
sends the signature σM to F . The forger can repeat this
queries in polynomial time.

• Forge: Finally, the forgerF outputs amessage-signature
pair (M∗, σM∗ ), and let Q be the set of all messages
queried by F . The challenger C outputs 1 if

M∗ /∈ Q ∧ FS.Vrfy(ppFS , pkFS ,M∗, σM∗ ) = 1.

Otherwise, it outputs 0.
If the challenger C outputs 1, we say that the forger F wins
this game. The advantage of the forger F in the game is
defined as

Adveuf−cma
6FS,F (1κ ) = Pr[C outputs 1].

IV. A FUZZY SIGNATURE SCHEME FROM LATTICE
In this section, we first provide an instantiation of linear
sketch, which is modified from an existing linear sketch
in [7]. Then we introduce our concrete fuzzy signature from
lattice, and finally give a rigorous proof of our scheme.

A. THE MODIFIED LINEAR SKETCH
Katsumata et al. [7] utilized a mathematical object called lat-
tice [24] to construct their specific linear sketch. Lattice
has the property of discretization and linearity, which can
properly represent the fuzzy data, and associate fuzzy data
and cryptographic operations together.
In the following, we first recall the basic definition of lat-

tice, and declare several primitives related to lattice. Then we
give ourmapping hwhich is used to replace the universal hash
function in the linear sketch proposed by [7]. Furthermore,
we give the detail explanation for this modification without
compromising the functionality and structure of the original
linear sketch in [7]. We finally provide the modified linear
sketch scheme.
Let m ∈ N and a lattice L = L(B) = {Bz : z ∈ Zm

} is the
set of all integer linear combinations of basis B ∈ Rm×m. For
a vector x ∈ Rm, the closest lattice point of x in lattice L is a
vector y ∈ L, denoted by

CVL(x) := {y : ∥x− y∥ ⩽ ∥x− Bz∥}

for any z ∈ Zm. The Voronoi region of y ∈ L, denoted by
VRL(y), is defined by

VRL(y) = {x : y = CVL(x)}.

In addition, since the symmetry of lattices, we have

VRL(y) = VRL(0)+ y.

Let gL : X → L be the function gL(x) = B⌊B−1x⌋.

1) THE MAPPING h
Let vector v ← Zk where k ∈ N, and h : Zm

q →

{−d, · · · , 0, · · · , d}m×k be a mapping satisfying linearity
(under the modulo (2d + 1)). More precisely, let

h(y) = h(B,v)(y) = B−1yv⊤ mod (2d + 1).

Hence we have that

h(B,v)(y1 + y2) = (h(B,v)(y1)+ h(B,v)(y2)) mod (2d + 1).

The above explains that linearity property of the function h
is under modulo (2d + 1), which leads to linearity of the
modified linear sketch also under the same situation.

We use themapping h to replace the universal hash function
used in the linear sketch scheme proposed by [7], since this
modification made on the mapping h not only makes the
mapping h achieve the properties of pre-image resistance and
collision resistance like the universal hash function in [7],
but also makes the modified linear sketch capable of being
adapted into the lattice-based setting. Hence, the modified
linear sketch can benefit from the original construction of [7],
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while being applicable to the lattice-based setting. The anal-
ysis of the mapping h satisfying the properties of pre-image
resistance and collision resistance is in the following.

For the function h(B,v)(y) = B−1yv⊤ mod (2d + 1),
we assume that B−1y = (x1, · · · , xm)⊤, v⊤ = (v1, · · · , vk ).
Let h(B,v)(y) = Z = (zij)m×k where i ∈ {1, 2, · · · ,m}, and
j ∈ {1, 2, · · · , k}. Thereby, we have that

zij = xivj mod (2d + 1).

Since the hash value Z and v⊤ is public, there is a chance
of ⌊ q

2d+1⌉/q getting the value of xi (i.e., B−1y). After that,
we can easily get y by having a left multiplication on B−1y
bymatrixB. Hence, with a probability of at most 1

(2d+1)m , one
can reveal vector y by knowing the hash value Z such that

Z = h(B,v)(y) = B−1yv⊤ mod (2d + 1).

The parameters of our scheme are inherited from [10], so the
probability of 1

(2d+1)m is small enough.
We now analyze the probability of getting a collision pair

of function h. Assume that there exist two different vectors
y, y′ such that h(B,v)(y) = h(B,v)(y′). Rearranging the equa-
tion, we can get that

B−1y = B−1y′ mod (2d + 1)

H⇒ B−1(y− y′) = 0 mod (2d + 1).

Since |B−1| ̸= 0, we obtain y = y′ mod (2d+1). This shows
that if y′ = y + k(2d + 1) for k ∈ Zm, there exists a pair of
collision y and y′ such that h(B,v)(y) = h(B,v)(y′). However,
we need to consider its specific application scenario. Since
the mapping h is used in the algorithm Sketch(ppLS , x) to
produce the proxy key S, and the input of h is actually kept
private. Hence, if fixing a vector y (unknown to others), there
is a chance of at most 1

(2d+1)m to obtain the vector y′ by guess
such that h(B,v)(y′) = h(B,v)(y). Thus, it is hard to find a
collision pair of function h under this circumstance.

2) THE MODIFIED LINEAR SKETCH
Let K = (X ,X , ξ,Φ, ϵ) be a concrete fuzzy key setting with
respect to a lattice L, where X = Rm, X has the property
that if x ← X , then B−1x ∈ [0, q)m, the acceptance region
function of vector x is ξ (x) = ξL(x) = {x′ : CVL(x − x′) =
0}, and Φ is any efficiently samplable distribution over X
such that FNMR ≤ ϵ.
Combining all the above building blocks, the detail of

the modified linear sketch 6LS is described as the Fig. 1.
The auxiliary algorithm Mc in Fig. 1 is used for proving the
linearity property of 6LS.

Since the proof process of correctness and linearity of
6LS in the Fig. 1 are similar to the proof in [7], we briefly
introduce the proof process. Linearity of ourmapping is under
modulo (2d + 1), hence correctness and linearity of 6LS are
also under the same situation.
Proof of correctness. For correctness, we need to
prove that 1S = (S′ − S) mod 2d + 1 where

1S = LS.DiffRec(ppLS , c, c′), (c,S)← LS.Sketch(ppLS , x),
and (c′,S′) ← LS.Sketch(ppLS , x′) for x, x′ ∈ X satisfying
x′ ∈ ξ (x), and ppLS ← LS.Setup(K,3). In the algorithm
LS.DiffRec of 6LS, 1y←CVL(c− c′) can be written as

1y = CVL(c− c′) = CVL((x− y)− (x′ − y′))

= CVL(x− x′)+ y′ − y = y′ − y

where CVL(x− x′) = 0 since x′ ∈ ξ (x). Hence we have

1S = h(B,v)(1y) = h(B,v)(y′ − y)

= (S′ − S) mod 2d + 1.

Proof of linearity. For linearity, we use the auxiliary
algorithm Mc to prove it. Let

(c,S) = (x− gL(x), h(B,v)(gL(x))) = LS.Sketch(ppLS , x),

and

(c′,S′) = ((x+ e)− gL(x+ e), h(B,v)(gL(x+ e)))

= LS.Sketch(ppLS , x+ e).

Enlightened by [7], we get that the following equation:

(c+ e− gL(c+ e), h(B,v)(gL(c+ e)))

= (c′, (S′ − S) mod 2d + 1) (1)

where the first item of the above (1) is the output
of Mc(ppLS , c, e) is sufficient to show linearity of 6LS.
By applying the related elements of 6LS to the first item of
the above (1), it is easy to get the equality. Here we complete
the proof.

We now illustrate why sketch c of 6LS does not leak the
information of fuzzy data x and the proxy key S. To ensure
the privacy of fuzzy data x, we require one quantity, the con-
ditional false matching rate (ConFMR) as [7], to guarantee
it. The definition of ConFMR is as follows:

ConFMR

= Pr

 x, x′← X
c← x− gL(x)
c′← x′ − gL(x′)

: x′ ∈ ξ (x)

∣∣∣∣∣∣ c = c′

 .
Here we require ConFMR ≈ 2−κ is small, which indicates
that with a low probability 2−κ , one can get a ‘‘collision’’
pair of (x, c), (x′, c′) such that c = c′ and x′ ∈ ξ (x). For the
proxy key S, since the randomness of the vector v, the value
of S← h(B,v)(y) is statistically close to an uniformly random
element even given c. Refer to [7] for more detail.

B. OUR SCHEME
In this section, we propose our concrete lattice-based fuzzy
signature scheme. We first give the parameter setting. Most
parameters in our scheme are inherited from the scheme
in [10]. Let κ ∈ N be the security parameter, and q be prime
integer. Let m, n, k, d ∈ Z+ and small η > 1. LetM = O(1),
and σ ∈ R+. Let hash function H : {0, 1}∗ → {−1, 0, 1}k ,
and matrix E ∈ Zm×k where all entities are small integers.
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FIGURE 1. The modified linear sketch.

The modified linear sketch 6LS utilized in our lattice-based
fuzzy signature scheme 6FS is given in the Section IV-A.
Please see our concrete scheme 6FS in Fig. 2.
ϵ-Correctness. From the definition of the fuzzy key setting
K, we have

Pr[x← X , e← Φ : x+ e ∈ ξ (x)] ≥ 1− ϵ.

Hence, to show correctness of our scheme, it is sufficient to
shows that if x′ ∈ ξ (x), then a signature generated by x′ can
be accepted under a public key pkFS generated by x.
We now consider the execution of the verification

algorithm. From the scheme, we have that the actual dis-
tribution of z is DmS′h,σ . From Theorem 1, we get that the
actual distribution of z is statistically close to the distribution
in which z is chosen from Dmσ . Hence we tailored z to be
distributed according to Dmσ . By Lemma 1, we have that
∥z∥ ≤ ησ

√
m with probability at least 1 − 2−m. Moreover,

from Lemma 3, we get that finding a y′ ∈ Dmσ such that y′ = y
is at most with a probability of 21−m. Hence Y = Ay being
public does not compromise the security of our scheme.

From correctness of linear sketch, we get that

LS.DiffRec(ppLS , c, c′) = 1S = (S′ − S) mod (2d + 1),

which indicates that there must exist a matrix E ∈ Zm×k such
that

S′ = S+1S+ (2d + 1)E ∈ {−d, · · · , d}m×k (2)

Hence the ephemeral public key T′ can be written as

T′ = AS′ = T+ A(1S+ (2d + 1)E).

Furthermore, since z = S′h+ y, we easily get that

Az = A(S′h+ y) = T′h+ Y (3)

where h = H (Y,m). Hence, such matrix E satisfying the
above (2) also meets the equation of (3). Therefore, the signa-
ture σFS = (z,Y, c′) is accepted by the verification algorithm.
Hence σFS is a valid signature of the messagem.
We now give the way to calculate matrix E ∈ Zm×k .

The parameters of our scheme are inherited from the scheme
in [10] which gave two instantiations of d = 1 and d = 31,
respectively. Even though the concrete value of S, S′ are
unknown, we still know that the range of them are from
{−d, · · · , 0, · · · , d}m×k , and 1S is public. Thus, from the

above (2), we can get that the possible values of elements of
matrix E are {−1, 0, 1}.
More concretely, for d = 1, if one element of 1S is
−1, the corresponding element of E has two possible values,
1 with probability of 1

3 , and 0 with probability of 2
3 ; If one

element of 1S is 0, the corresponding element of E is also
0; If one element of 1S is 1, the corresponding element of
E has two possible values, −1 with probability of 1

3 , and
0 with probability of 2

3 . The randomness of choosing S is used
to calculate the above probability of the values of E. Then
we start to calculate the matrix E. First of all, we set all the
elements of E are 0. Then we calculate the value of

T′h+ Y = (T+ A(1S+ (2d + 1)E))·h+ Y (4)

to compare with the value of Az. Since 1S is public, we can
get the positions of the elements (−1, 0, 1) of 1S. Hence,
for the unmatched elements between the comparison result
of the value of Az, and the above (4), if the values of the
corresponding positions of the unmatched elements in 1S is
−1 (1), we change 0 to 1 (−1) in the corresponding positions
of E. Therefore, we can just calculate the above (4) once to
get the value of E. For d = 31, it also has a similar pattern.

C. SECURITY PROOF
Before giving the full security proof, we give a statement to
illustrate that compared to [10], why our scheme can skip one
signing hybrid ( which is the Hybrid 2 in [10] ) in the security
proof process, since we use another approach to prove the
security of our scheme.
Statement. Our fuzzy signature scheme 6FS is based on the
scheme of [10], but we do not adopt the same method as [10]
to prove the security of our scheme.

For the scheme in [10], there are two possible methods of
responding the signing queries of the forger during signing,
either using the simulated secret key to generate signatures
(method A), or programming the random oracle accordingly
and generating z directly from the distribution Dmσ without
utilizing the secret key (method B). More precisely,method
A can just utilize Hybrid 1 of [10] (which is using a randomly
chosen element to replace the actual hash value), and another
one, method B, employs two hybrids shown in [10]. These
two hybrids of [10] both obtain the property of the distribution
of signatures generated by these two hybrids independent of
the secret key. For Hybrid 1, it utilizes the rejection sampling
to approach it as the actual signing algorithm, and signatures

VOLUME 11, 2023 62517



M. Zheng et al.: Provably Secure Lattice-Based Fuzzy Signature Scheme Using Linear Sketch

FIGURE 2. Our fuzzy signature scheme from lattice.

generated by Hybrid 2 are randomly chosen without employ-
ing the secret key. Moreover, by appropriately choosing the
parameters of σ and M in the scheme of [10], the statistical
distance between the distribution of signatures from Hybrid
1 and from Hybrid 2 in [10] is small which indicates the
difference caused by signatures generated from these two
hybrids are slight.

Moveover, the scheme of [10] can actually use the above
two methods in its proof. The author in [10] chosemethod B
because hewould like to be able to still use the same lemma of
security proof with another section which proposed another
schemes that can just usemethod B to proof their schemes.
As for our scheme, we prefer to use method A since

the ‘‘ephemeral’’ public key T′, which is utilized in our
verification algorithm, cannot be directly obtained like the
public key T in the proof of [10]. More specifically, the
linearity of our mapping h is satisfied under modulo 2d + 1,

so the ‘‘ephemeral’’ public key T′ cannot be derived just by
employing the public key and the signature. In the signing
queries, we simulate the secret key to generate signatures
which can be indistinguishable from the actual one. That is
why we skip Hybrid 2 of [10], since we manage to simulate
the signing key to generate signatures in the signing queries
phase by using method A which can just employ Hybrid
1 of [10].

In addition, we use the auxiliary algorithm Mc in the
Hybrid 1 to get the sketch c′ without knowing the knowledge
of the fuzzy data x ′. Then we construct an algorithm solving
the SISq,m,n,β assumption by simulating adversary against
EUF-CMA security game by running algorithm Mc. We now
prove the security of our signature scheme as follows.
Theorem 2: If there is a polynomial-time forger who

makes at most s queries to the signing oracle and g queries
to the random oracle H, and breaking the EUF-CMA secu-
rity with probability δ, then there exists a polynomial-time
algorithm solving the SISq,m,n,β problem for β = (2ησ +
2dk)
√
m with probability ≈ δ2

2(g+s) .

This theorem is proved in a sequence of two lemmas.
In the Lemma 5, we illustrate that the actual signing algorithm
can be replaced with Hybrid 2, and the statistical distance
between these two outputs is at most ϵ′ = s(s + g)2−n+1.
For the Lemma 6, we assume that a forger produces a forgery
with probability δ when the signing algorithm is replaced
with Hybrid 2. Then we can use it to recover v such that
∥v∥ ≤ (2ησ + 2dk)

√
m and Av = 0 with probability at least

δ2

2(g+s) . Please see two signing hybrids in Fig. 3.
Lemma 5: Let D be a distinguisher which can query the

random oracle H and either the actual signing algorithm or
Hybrid 2. If he can make g queries to random oracle H and
s queries to the signing algorithm that he can access to, then
for all but a e−�(n) fraction of all possible matrices A, the
advantage of the distinguisher D in distinguishing the actual
signing algorithm from the one in Hybrid 2 is at most s(s +
g)2−n+1.

Proof: First, we show the outputs of the actual signing
algorithm and Hybrid 1 exactly follow the same distribution.
Instead of directly using the Sketch algorithm of 6LS again
with input of fuzzy data x ′ to generate the sketch c′ in the
actual signing algorithm, we use the auxiliary algorithm Mc
of 6LS with inputs of c and e. Since the linearity of 6LS, the
distribution of c′ generated in the actual signing algorithm and
in the Hybrid 1 are identical.

We then declare that the distinguisher D has the advan-
tage of at most s(s + g)2−n+1 to distinguish an output of
Hybrid 1 from an output of Hybrid 2. The only difference
between these two Hybrids is the output of the random ora-
cle H . In Hybrid 2, the outputs of H are randomly chosen
from {−1, 0, 1}k and then programmed as the response of
H (Y,m) = H (Az − T′h,m) = h without checking (Y,m)
is set or not. For each time the Hybrid 2 is called, the prob-
ability of getting a vector y such that Ay is equal to the one
queried before is at most 2−n+1. By [10], we know that with
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FIGURE 3. Signing hybrids.

probability at least 1 − e−�(n), the matrix A can be written
in ‘‘Herimte Normal Form’’ as A = [Ā∥I]. Then, for any
t ∈ Zn

q,

Pr[Ay = t : y ∈ Dmσ ] = Pr[y1 = (t− Āy0) : y ∈ Dmσ ]

≤ max
t′∈Znq

Pr[y1 = t′ : y1← Dnσ ]

≤ 2−n+1

where y = [y0∥y1]⊤. Since D can call random oracle H
g times and the signing algorithm s times, there is at most
s + g values of (Y,m) set. Thus, for each time Hybrid
2 accessed, the probability of getting a collision is at most
(s+g)2−n+1. Therefore, the probability that a collision occurs
after s queries from Hybrid 2 is at most s(s + g)2−n+1.
Hence, the statistical distance between the output of the actual
signing algorithm and Hybrid 2 is at most s(s+ g)2−n+1. □
Lemma 6: Suppose that there exists a polynomial-time

forger F who makes at most s queries to the signer in
Hybrid 2, g queries to the random oracle H, and suc-
ceeds in forging with probability δ. Then there exists a
polynomial-time algorithm B that for a given A ← Zn×m

q ,
finds a non-zero vector v ∈ Zm such that ∥v∥ ≤ (2ησ +
2dk)
√
m and Av = 0 with probability at least δ2

2(g+s) .
Proof: We now give the construction of algorithm

B, which simulates the attack environment for F , and
solves solving SISq,m,n,β assumption with probability at
least δ2

2(g+s) . The algorithm B receives a challenge instance
A ← Zn×m

q , and computes ppLS ← LS.Setup(K,3). B
randomly chooses x ∈ X , computes c = x − gL(x), and
S = h(B,v)(gL(x)) where the function gL and h(B,v) are
defined in IV-A. Then algorithm B computes T = AS. Let
(ppLS ,A,T, c) be public and keep S private.
When F asks to see a signature of certain message, B runs

the signing algorithm of Hybrid 2 to produce a signature. Let
DH = {−1, 0, 1}k denote the range of the random oracle H ,
and let t = g + s be the bound on the number of times the
random oracle H is called or programmed during the attack

from F . The algorithm B will conduct as follows: B first
picks up the values r1, · · · , rt ← DH that will correspond
to the responses of the random oracle H . Note that a random
oracle query can be made by the forger F directly, or it can
be programmed by the signing algorithm when the forger F
makes some signing queries on some messages. Thus, during
signing or when F makes queries to the random oracle, the
random oracle H will be programmed by B, and the response
of H will be the first unused ri in the list (r1, · · · , rt ) every
time. At the same time, B keeps a table of all queries to the
random oracle H , so when the same query is made twice, the
previously answered ri will be replied. After making at most
s + g random oracle queries, F outputs a forged signature
(ẑ, Ŷ, ĉ′) on message m̂.

Recall that with probability δ,F will output a message m̂
with its corresponding signature (ẑ, Ŷ, ĉ′) such that ∥ẑ∥ ≤
ησ
√
m and Aẑ = T̂′h + Ŷ where H (Ŷ, m̂) = H (Aẑ −

T̂′ĥ, m̂) = ĥ, T̂′ = AŜ′, and

Ŝ′ = S+1Ŝ′ + (2d + 1)E1 ∈ {−d, · · · , 0, · · · , d}m×k .

(5)

The above (5) shows the existence of the secret key Ŝ′, since
the secret key S, 1Ŝ′ ← LS.DiffRec(ppLS , c, ĉ′), and the
matrix E1 ∈ Zm×k that can be calculated are known by
the algorithm B. If the random oracle H was not queried or
programmed on some input w = Ŷ = Aẑ − T̂′ĥ, then F
only has a probability of 1

|DH |
to produce a vector ĥ such

that ĥ = H (w, m̂), so ĥ is one of the ri’s with probability
1− 1

|DH |
. Thus the probability that F succeeds in forging and

ĥ is one of the ri’s, is at least δ − 1
|DH |

. Let j be such that

ĥ = H (Ŷ, m̂) = rj.
In the above case, B records the forged message-signature

pair ((ẑ, Ŷ, ĉ′), m̂), and then generates fresh random elements
r∗j , · · · , r

∗
t ← DH . Then B returns the forger F the same

randomness tape and answers to the random oracle H as the
previous run until j-th query. By the General Forking Lemma
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of Bellare and Neven [25], we have that the probability that
r∗j ̸= rj and F uses r∗j this random oracle response in his
forgery, is at least(

δ −
1
|DH |

)(
δ − 1

|DH |

t
−

1
|DH |

)
,

thus with the above probability, F outputs another forged
signature (z∗,Y∗, c′∗) on the message m̂, where Y∗ = Ŷ,
r∗j = h∗ = H (Y∗, m̂). Hence, the algorithm B gets that

Aẑ− T̂′ĥ = Az∗ − T′∗h∗ (6)

where T′∗ = AS′∗, and

S′∗ = S+1S′∗ + (2d + 1)E2 ∈ {−d, · · · , d}m×k . (7)

The above (7) shows the existence of the secret key S′∗, since
the secret key S, 1S′∗ ← LS.DiffRec(ppLS , c, c′∗), and the
matrix E2 ∈ Zm×k that can be calculated are known by the
algorithm B. Then B rearranges terms in the above (6) and
plugging in T̂′ = AŜ′,T′∗ = AS′∗, then we have that

A(ẑ− z∗ + S′∗h∗ − Ŝ′ĥ) = 0.

Thus, the algorithm B outputs ẑ − z∗ + S′∗h∗ − Ŝ′ĥ as its
own solution of the SISq,m,n,β instance. Since ∥ẑ∥, ∥z∗∥ ≤
ησ
√
m, and ∥Ŝ′ĥ∥, ∥S′∗h∗∥ ≤ dk

√
m, we have that

∥ẑ− z∗ + S′∗h∗ − Ŝ′ĥ∥ ≤ (2ησ + 2dk)
√
m.

Now, we analyze the probability of

ẑ− z∗ + S′∗h∗ − Ŝ′ĥ ̸= 0. (8)

From Lemma 4, we know that for any S
← {−d, · · · , 0, · · · , d}m×k , there is at least a proba-
bility of 1 − 2−100 existing another secret key S1 ∈
{−d, · · · , 0, · · · , d}m×k such that all the columns of S1,
except the column i, are the same as S, and AS = AS1.
Hence, assume that Ŝ′1 and S′∗1 are two another secret keys
corresponding to Ŝ′ and S′∗, respectively. Therefore, if ẑ −
z∗+ S′∗h∗− Ŝ′ĥ = 0, then we have at least ẑ− z∗+ S′∗1 h

∗
−

Ŝ′ĥ ̸= 0 or ẑ− z∗ + S′∗h∗ − Ŝ′1ĥ ̸= 0. Morever, the signing
key S = h(B,v)(gL(x)) where elements x and v are chosen at
random, hence S can be regarded as being chosen randomly.
From the way of computing Ŝ′ and S′∗, we get that Ŝ′ and S′∗

can also be treated as being chosen at random. Thus we will
have a non-zero answer with probability at least 1

2 , since the
forgerF does not knowwhich signing keys we used, and each
key (S, Ŝ′ or S′∗) has an equal probability to be chosen since
they can be regarded as being randomly chosen. Hence, if the
forger F succeeds in forging in this EUF-CMA game with
probability δ, then the algorithm B can use him to recover a
non-zero vector v = ẑ−z∗+S′∗h∗−Ŝ′ĥ such thatAv = 0 and
∥v∥ ≤ (2ησ + 2dk)

√
m with probability at least(

1
2
− 2−100

)(
δ − 2−100

)(δ − 2−100

g+ s
− 2−100

)
≈

δ2

2(g+ s)
.

This finally completes the proof. □

V. CONCLUSION
In this work, we proposed a lattice-based fuzzy signature
scheme which is constructed by linear sketch. We modified
the linear sketch proposed by [7], and combined it with
the signature scheme of [10] to obtain our lattice-based
fuzzy signature scheme. Specifically, the modified linear
sketch can not only benefit from the original construction
of linear sketch in [7] which can be implemented securely
and efficiently, but also be capable of being employed into
the lattice-based setting. Moreover, Table 1 shows that our
scheme has a promising tendency in efficiency among the
existing lattice-based fuzzy signature schemes. In addition,
our proposed fuzzy signature scheme is provably secure in
the random oracle model. As our future work, we plan to
construct the generic fuzzy signature scheme from linear
sketch.
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