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ABSTRACT Homomorphic encryption (HE) is one of the representative solutions to privacy-preserving
machine learning (PPML) classification enabling the server to classify private data of clients while guaran-
teeing privacy. This work focuses on PPML using word-wise fully homomorphic encryption (FHE). In order
to implement deep learning on word-wise HE, the ReLU and max-pooling functions should be approximated
by polynomials for homomorphic operations. Most of the previous studies focus on HE-friendly networks,
which approximate the ReLU and max-pooling functions using low-degree polynomials. However, this
approximation cannot support deeper neural networks due to large approximation errors in general and can
classify only relatively small datasets. Thus, we propose a precise polynomial approximation technique,
a composition ofminimax approximate polynomials of low degrees for the ReLU andmax-pooling functions.
If we replace the ReLU and max-pooling functions with the proposed approximate polynomials, standard
deep learning models such as ResNet and VGGNet can still be used without further modification for PPML
on FHE. Even pre-trained parameters can be usedwithout retraining, whichmakes the proposedmethodmore
practical. We approximate the ReLU and max-pooling functions in the ResNet-152 using the composition of
minimax approximate polynomials of degrees 15, 27, and 29. Then, we succeed in classifying the plaintext
ImageNet dataset with 77.52% accuracy, which is very close to the original model accuracy of 78.31%. Also,
we obtain an accuracy of 87.90% for classifying the encrypted CIFAR-10 dataset in the ResNet-20 without
any additional training.

INDEX TERMS Fully homomorphic encryption, RNS-CKKS, privacy-preserving machine learning, deep
learning, cloud computing.

I. INTRODUCTION
Machine learning as a service (MLaaS) is a service where
a client sends data to a server through a cloud service and
obtains analysis results after the server performs machine
learning. With the innovative development of deep learning
technology, the demand for MLaaS is rapidly increasing.
However, some data such as medical or financial data is
very sensitive, and thus the privacy-preserving technique is
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indispensable for these data to be used in MLaaS. Homomor-
phic encryption (HE) is one of the most promising solutions
for MLaaS that preserves privacy, called privacy-preserving
machine learning (PPML). Using HE, the server can per-
form deep learning on the encrypted data from the client
while fundamentally preventing the privacy leakage of private
data. Thus, the implementation of PPML using HE has been
actively studied [1], [2], [3], [4], [5], [6], [7].

A fully homomorphic encryption (FHE) technique that
supports algebraic operations without the restriction on the
number of operations has been developed, but should be

62062 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9476-3313
https://orcid.org/0000-0002-5270-2405
https://orcid.org/0000-0002-4125-6331
https://orcid.org/0000-0003-0120-3750
https://orcid.org/0000-0003-4114-4935
https://orcid.org/0000-0002-3946-0958
https://orcid.org/0000-0001-9092-4052


J. Lee et al.: Precise Approximation of Convolutional Neural Networks

FIGURE 1. Comparison between the original deep learning model F and the proposed approximate deep learning model Fα with the precision
parameter α. The proposed model is obtained by replacing the ReLU and max-pooling functions of the original models with the proposed approximate
polynomials.

addressed to realize practical FHE techniques. The high-
latency of FHE operations and large bootstrapping errors
have been pointed out as the reason for the low practicality of
the FHE technique. Thus, recent works focus on HE-friendly
networks in leveled HE. Usually, HE-friendly networks have
limited layers and use low-degree approximate polynomi-
als for activation functions and max-pooling. However, this
approach has the critical limitations as follows. First, HE-
friendly networks have not yet achieved high classification
accuracy for large datasets such as ImageNet [8] although
they succeeded in classifying small datasets, e.g., MNIST
and CIFAR-10 [9]. Secondly, for HE-friendly networks, pre-
trained parameters for standard neural networks cannot be
used, and thus training is required to optimize the parameters
of HE-friendly networks. Since training is a costly and time-
consuming process, being able to avoid training is a great
advantage. Furthermore, access to training datasets requires
prior approval of data owners or some regulatory authorities,
and thus, it is not even possible to train for new models in
many real-world applications. Therefore, it is a practically
important research topic to remove the need for designing a
new specialized HE-friendly network and to perform the stan-
dard deep neural network on HE without additional training.

It can be an alternative solution to perform standard deep
neural networks using multi-party computation (MPC) tech-
niques such as Garbled circuits together with HE. Gazelle [1],
Cheetah [2], nGraph-HE [3], and Delphi [4] are representa-
tive works using the MPC techniques. However, the MPC
techniques result in huge communication costs especially
for standard deep neural networks that require a number of
activation functions. According to Delphi [4], an exact ReLU
operation using Garbled circuit requires a communication
cost of about 19kB, and thus several gigabytes of commu-
nication cost per image is required to perform standard deep
neural network such as ResNet-20 or ResNet-32. Thus, this

MPC approach would be impractical for applications that
cannot support sufficient communication resources.

Fortunately, FHE techniques have recently been improved
a lot both in terms of computation time and bootstrapping
accuracy [10], [11], [12], [13], so we can expect to perform
standard deep neural networks with small communication
costs using only FHE. Since FHE supports arbitrarily large
depths of operations, it can support very deep neural net-
works, i.e., neural networks with many layers. However,
non-arithmetic operations such as ReLU and max-pooling
are not supported by word-wise FHE. Hence, it is important
to handle these non-arithmetic operations using word-wise
FHE.

A. OUR CONTRIBUTIONS
1) PROPOSITION OF PRECISE APPROXIMATION BASED ON
THE COMPOSITION OF MINIMAX APPROXIMATE
POLYNOMIALS
In this paper, we propose to replace the ReLU and
max-pooling functions with precise approximate polynomi-
als so that any standard networks can be performed using
pre-trained parameters (trained for standard network) without
the need for designing a new HE-friendly model and addi-
tional training. One might argue that this can be achieved
using just high-degree Taylor approximate polynomials or
minimax approximate polynomials. However, according to
our analysis in Section III-C, precise approximation using
a single polynomial requires a polynomial of degree at
least about 21.0013α−2.8483 for the precision parameter α,
which results in 22(α) number of non-scalar multiplica-
tions and several numerical issues, where the notation 2

represents computational complexity. Thus, we propose a
precise polynomial approximation technique for the ReLU
and max-pooling functions that uses a composition of mini-
max approximate polynomials of low degrees.We replace the
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ReLU and max-pooling functions with the proposed approxi-
mate polynomials in well-studied deep learning models such
as ResNet [14], VGGNet [15], and GoogLeNet [16], and the
pre-trained parameters can be used without retraining. Fig. 1
shows the comparison between the original deep learning
model F and the proposed approximate deep learning model
Fα for the precision parameter α, where F is the function
that outputs the inference result for an input x.

2) THEORETIC ANALYSIS OF THE PROPOSED APPROXIMATE
DEEP LEARNING MODEL
In addition, we theoretically analyze the performance of
our proposed precise polynomial approximation technique.
In Section IV, we prove that the two inference results, Fα(x)
and F(x), satisfy

||Fα(x) − F(x)||∞ ≤ C · 2−α (1)

for a given precision parameter α and a constant C , which
can be determined independently of the precision parameter
α (see Theorem 4). This implies if we increase the precision
parameter α enough, the two inference results would be
almost identical.

3) NUMERICAL ANALYSIS OF THE PROPOSED
APPROXIMATE DEEP LEARNING MODEL
Finally, we provide simulation results of the proposedmethod
for standard deep learning models and real data, which
supports our theoretical analysis. We classify the CIFAR-
10 without retraining using approximate well-studied deep
learningmodels such as ResNet andVGGNet. For classifying
the ImageNet in ResNet-152, we approximate the ReLU and
max-pooling functions using the composition of minimax
approximate polynomials of degrees 15, 27, and 29. Then, for
the first time for PPML using word-wise HE, we successfully
classify the ImageNet with 77.52% accuracy, which is very
close to the original model accuracy of 78.31%. The pro-
posed approximate polynomials are generally applicable to
various deep learning models such as ResNet, VGGNet, and
GoogLeNet for PPML on FHE. Although some simulations
are performed for plaintext data, they can also be performed
for ciphertext since all non-arithmetic operations have been
replaced with polynomial operations. To show the validity of
our results for plaintext data, we also provide the results of a
classification in ResNet-20 and ResNet-32 for the CIFAR-10
dataset on the encrypted data. These show that the classifica-
tion accuracy results for plaintext data are very close to those
for encrypted data.

B. RELATED WORKS
PPML using HE can be classified into PPML using bit-wise
HEs and PPML on word-wise HEs. PPML using the fast
fully homomorphic encryption over the torus (TFHE) [23],
which is one of the most promising bit-wise HEs, was stud-
ied [24], [25], [26], [27]. This PPML has advantages in that
it can evaluate some non-arithmetic operations, such as the

TABLE 1. Comparison Between Previous Word-wise HE PPML and the
Proposed Method.

ReLU and max-pooling functions exactly on the encrypted
data. However, word-wise HEs such as Cheon-Kim-Kim-
Song (CKKS) [28] scheme have a great advantage in terms of
computation time because they can perform many operations
of real numbers or integers simultaneously using packing.
In this paper, we focus on PPML using word-wise HE.

So far, most studies using word-wise HEs require HE-
friendly networks to perform classification with small depth
consumption. HE-friendly networks use low-degree poly-
nomials to replace non-arithmetic activation functions. For
instance, CryptoNets [5], SEALion [6], HCNN [17] and
BAYHENN [18] used x2 as an activation function, and Faster
CryptoNets [7] used a quantized approximate ReLU function
polynomial (ReLU-AQ) 2−3x2 + 2−1x + 2−2. The authors
in [19] used polynoimals of degree 2–4, approximated by
least square method. CryptoDL [20] used a cubic polynomial,
which is an integration of approximate sigmoid function,
motivated by the similarity between the sigmoid function and
the derivative of the ReLU function. TensorHE [21] used
a similar method as CryptoDL, integrating the approximate
step function instead of the sigmoid function. CHET [22]
used ax2 + bx as an activation function, where a and b are
learnable parameters that can be obtained in a training phase.
Since these HE-friendly networks do not allow the use of
pre-trained parameters for standard networks, they require
the whole process of training. Table 1 shows the comparison
between the previous PPML using word-wise HEs and the
proposed method.

Recently, with the progress in efficient computation tech-
niques for FHE scheme, the technological advancement in
implementing deep neural networks has made it possible
not only for simple models like HE-friendly networks but
also for deeper networks that achieve high performance. The
authors in [29] successfully classified encrypted CIFAR-10
data for the first time by implementing ResNet-20 using
the residue number system variant CKKS (RNS-CKKS)
scheme [30]. Also, the authors in [31] used multiplexed
parallel convolution to minimize boostrapping runtime and
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imaginary-removing boortrapping to reduce the error while
evaluating deep circuit. In this paper, we leverage this imple-
mentation to evaluate the proposed precise approximation of
standard neural networks. This paper does not include the
details of such implementation methods as in [29] and [31],
but focuses on approximating non-arithmetical operations to
polynomials.

II. PRELIMINARIES
A. RNS-CKKS SCHEME
To preserve the privacy of data, one can encrypt the data with
a cryptographic system before sending the data to the server.
If we use the FHE scheme as a cryptographic system, some
homomorphic operations are available between ciphertexts
without any information leakage of plaintexts. Let us denote
Enck (m) as the ciphertext, which encrypts of the message m
with secret key k . The RNS-CKKS scheme encrypts m, the
vector of real (or complex) numbers, as the pair of polyno-
mials (a, b) ∈ R2

Q, where RQ = ZQ[X ]/⟨XN + 1⟩ for some
large integer parameters N and Q. There are homomorphic
operations between ciphertexts to perform arithmetic opera-
tions without decrypting any ciphertexts. Theword-wise FHE
scheme supports the homomorphic addition⊕ and homomor-
phic multiplication ⊗, which satisfies:

• Enck (m1) ⊕ Enck (m2) = Enck (m1 + m2),
• Enck (m1) ⊗ Enck (m2) = Enck (m1 × m2),

wherem1+m2 andm1×m2 denote the componentwise vector
addition and multiplication between plantexts, respectively.
The detailed techniques about these homomorphic operations
are described in [28] and [30].

B. DEEP LEARNING ON FULLY HOMOMORPHIC
ENCRYPTION
This subsection illustrates the progress of deep learning infer-
ence for fully homomorphically encrypted data.

Let x denote the input data that the client owns, and F
denote the deep learning model circuit owned by the server.
The client aims to obtain the inference resultF(x). Due to the
privacy issue, the client cannot send x directly to the server.
Therefore, prior to sending the data to the server, the client
encrypts the data using the FHE scheme as Enck (x), where k
denotes the client’s own secret key.

The primary objective of the server is to obtain a ciphertext
encrypting F(x), namely Enck (F(x)), without decrypt-
ing any ciphertexts. If the server can send the ciphertext
Enck (F(x)) to the client, the client can decrypt the ciphertext
using the secret key and obtain the inference result F(x). The
server can empoly homomorphic operations, such as ⊕ and
⊗, to execute the circuit F .
Unfortunately, the server cannot obtain the exact encryp-

tion of the inference result F(x) if the circuit F includes
non-arithmetic operations like ReLU and max-pooling func-
tions. One approach to address this issue is to approximate
non-arithmetic operations using polynomials. Let Fα denote
a circuit in which all non-arithmetic operations in F are

substituted with polynomials. Consequently, the server can
replace every addition and multiplication in the circuit Fα

with the homomorphic operations ⊕ and ⊗, respectively.
Let F̄α be such a circuit. Since F̄α is composed solely of
homomorphic operations, the following equation holds:

F̄α(Enck (x)) = Enck (Fα(x)).

Therefore, the decryption of the ciphertext F̄α(Enck (x)) is
the same as Fα(x).
In summary, the server approximates the non-arithmetic

operations present in the original circuit F and constructs
the circuit F̄α . Then, the server obtains the ciphertext
F̄α(Enck (x)) and transmits it to the client. The client
decrypts the received ciphertext and get the approximate
inference result Fα(x).

C. MINIMAX COMPOSITE POLYNOMIAL
Since the word-wise FHE schemes do not support
non-arithmetic operations such as ReLU and max-pooling,
these non-arithmetical functions should be approximated
by polynomials. Recently, the authors of [32] proposed a
composite polynomial namedminimax composite polynomial
that optimally approximates the sign function with respect to
the depth consumption and the number of non-scalar multi-
plications. The definition of minimax composite polynomial
is given as follows:
Definition 1: Let D be [−b, −a] ∪ [a, b]. A composite

polynomial pk ◦pk−1 ◦ · · · ◦p1 is called a minimax composite
polynomial on D for {di}1≤i≤k if the followings are satisfied:

• p1 is the minimax approximate polynomial of degree at
most d1 on D for sgn(x).

• For 2 ≤ i ≤ k, pi is the minimax approximate polyno-
mial of degree at most di on pi−1 ◦ pi−2 ◦ · · · ◦ p1(D) for
sgn(x).

For ϵ (0 < ϵ < 1) and β > 0, a polynomial p(x)
that approximates sgn(x) is called (β, ϵ)-close if it satisfies
|p(x) − sgn(x)| ≤ 2−β for x ∈ [−1, −ϵ] ∪ [ϵ, 1] [33].
Then, the optimal (β, ϵ)-close composite polynomial p(x) is
the minimax composite polynomial on [−1,−ϵ] ∪ [ϵ, 1] for
{di}1≤i≤k , where {di}1≤i≤k is obtained from Algorithm 5 for
inputs β and ϵ in [32].

D. HOMOMORPHIC MAX FUNCTION
To perform the max function on the encrypted data, called the
homomorphic max function, a polynomial that approximates
the max function should be evaluated on the encrypted data
instead of the max function. The approximate polynomial
of the max function, m(a, b), should satisfy the following
inequality for the precision parameter α > 0:

|m(a, b) − max(a, b)| ≤ 2−α for a, b ∈ [0, 1]. (2)

By considering max(a, b) =
(a+b)+(a−b) sgn(a−b)

2 ,
a polynomial m(a, b) that approximates max(a, b) can be
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TABLE 2. The Optimized Max Function Factor, Degrees of the Component
Polynomials, and Depth Consumption for Evaluating mα(a, b) According
to the Precision Parameter α [32].

obtained by

m(a, b) =
(a+ b) + (a− b)p(a− b)

2
, (3)

where p(x) is an approximate polynomial for the sign func-
tion [33]. In [32], the authors proposed a polynomial m(a, b)
that approximates the max function using a minimax com-
posite polynomial for p(x) and (3) [32].
Specifically, for a precision parameter α and the optimized

max function factor ζα > 0, an (α − 1, ζα · 2−α)-close
minimax composite polynomial pα(x) = pα,k ◦ · · · ◦ pα,1(x)
was obtained by using the optimal degrees obtained from
Algorithm 5 in [32], whichminimizes the depth consumption.
Then, it was shown that mα(a, b) =

(a+b)+(a−b)pα(a−b)
2 from

pα(x) satisfies the error condition in (2). Table 2 lists the
values of ζα , corresponding depth consumption for evalu-
ating mα(a, b), and degrees of the component polynomials
pα,1, · · · , pα,k according to α. This approximate polynomial
mα(a, b) has the best performance up to now.

III. PRECISE POLYNOMIAL APPROXIMATION OF THE
ReLU AND MAX-POOLING FUNCTIONS
The ReLU and max-pooling functions can be approximated
by Taylor polynomials or minimax approximate polynomi-
als [34]. However, these approximate polynomials with min-
imal approximation errors require many non-scalar multipli-
cations. Hence, we approximate the ReLU and max-pooling
functions using pα(x) and mα(a, b), which are defined in
Section II-D. Although we focus on the ReLU function, the
proposed approximation method can be extended to other
activation functions such as the leaky ReLU.

A. PRECISE APPROXIMATE POLYNOMIAL OF THE ReLU
FUNCTION
In this subsection, we propose a polynomial that precisely
approximates the ReLU function, which is the most widely
used activation function. For a given precision parameter α,
it is required that the approximate polynomial of the ReLU
function, r(x), satisfies the following error condition:

|r(x) − ReLU(x)| ≤ 2−α for x ∈ [−1, 1]. (4)

Since ReLU(x) =
x+x sgn(x)

2 , we propose the following
approximate polynomial of the ReLU function, rα(x) =
x+xpα(x)

2 . Fig. 2 shows the component polynomials of pα(x)

and the proposed rα(x) with the precision parameter α = 11.
The following theorem shows that the proposed rα(x) satisfies
the error condition of the ReLU function in (4).
Theorem 1: For any α > 0, rα(x) satisfies the following

inequality:

|rα(x) − ReLU(x)| ≤ 2−α for x ∈ [−1, 1].
Proof: The proof is given in Appendix A.

Approximation range. The value of polynomial rα(x) is
close to the ReLU function value only for x ∈ [−1, 1]. Since
input values of the ReLU function during deep learning are
not limited to [−1, 1], the approximation range should be
extended from [−1, 1] to a larger range [−B,B] for some
B > 1. Thus, we propose a polynomial r̃α,B(x) := Brα(x/B)
approximating the ReLU function in the range [−B,B]. Then,
we have

|r̃α,B(x) − ReLU(x)|

= |Br̃α,B(x/B) − ReLU(x)|

= |Br̃α,B(x/B) − BReLU(x/B)|

= |B(r̃α,B(x/B) − ReLU(x/B))| ≤ B2−α

for x ∈ [−B, B]. There is a trade-off relation between the
input range and the approximation error.

B. PRECISE APPROXIMATE POLYNOMIAL OF THE
MAX-POOLING FUNCTION
The max-pooling function with kernel size k × k outputs the
maximum value among n = k2 input values. To implement
the max-pooling function for the homomorphically encrypted
data, we should find a polynomial that approximates the
max-pooling function.

We define a polynomial Mα,n(x1, · · · , xn) that approxi-
mates the maximum value function max(x1, · · · , xn) using
mα(a, b). To reduce the depth consumption of the approxi-
mate polynomial of the max-pooling function, we construct
Mα,n by compositing polynomial mα(a, b) with a minimal
number of compositions. We use the following recursion
equation to obtain the approximated maximum value among
{x1, · · · , xn}. We defineMα,n(x1, · · · , xn) as

Mα,n(x1, · · · , xn) = mα

(
Mα,⌊ n

2⌋

(
x1, · · · , x⌊ n

2⌋

)
,

Mα,n−⌊ n
2⌋

(
x⌊ n

2⌋+1, · · · , xn
))

, (5)

where n > 1, and x1 where n = 1.
The following Theorem shows an upper bound of approx-

imation error ofMα,n(x1, · · · , xn).
Theorem 2: For given α > 0 and n ∈ N, the polynomial

Mα,n(x1, · · · , xn) obtained from the recursion equation in (5)
satisfies

|Mα,n(x1, · · · , xn) − max(x1, · · · , xn)| ≤ 2−α
⌈log2 n⌉ (6)

for x1, · · · , xn ∈ [(⌈log2 n⌉ − 1)2−α, 1− (⌈log2 n⌉ − 1)2−α].
Proof: The proof is given in Appendix B.

Approximation range.To extend the approximation range
[(⌈log2 n⌉ − 1)2−α, 1 − (⌈log2 n⌉ − 1)2−α] to [−B,B] for
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FIGURE 2. The component polynomials of pα(x) and the proposed rα(x) with precision parameter α = 11. (a): the first component polynomial pα,1(x),
(b): the second component polynomial pα,2(x), (c): the third component polynomial pα,3(x), (d): pα(x) = pα,3 ◦ pα,2 ◦ pα,1(x), the composition of
pα,1(x), pα,2(x), and pα,3(x), and (e): rα(x) =

x+xpα (x)
2 , which is the approximate polynomial of the ReLU function. The degrees of pα,1(x), pα,2(x), and

pα,3(x) are 7, 7, and 27, respectively.

B > 1, we propose the following polynomial M̃α,n,B
(x1, · · · , xn) as an approximation polynomial:

M̃α,n,B(x1, · · · , xn)

= B′
·

(
Mα,n

(x1
B′

+ 0.5, · · · ,
xn
B′

+ 0.5
)

− 0.5
)

,

where B′
= B/(0.5 − (⌈log2 n⌉ − 1)2−α). Since

xi
B′

+ 0.5 ∈ [(⌈log2 n⌉ − 1)2−α, 1 − (⌈log2 n⌉ − 1)2−α]

for x1, · · · , xn ∈ [−B,B], we have∣∣∣M̃α,n,B(x1, · · · , xn) − max(x1, · · · , xn)
∣∣∣

=

∣∣∣B′Mα,n

(x1
B′

+ 0.5, · · · ,
xn
B′

+ 0.5
)

−(max(x1, · · · , xn) + 0.5B′)
∣∣

= B′

∣∣∣Mα,n

(x1
B′

+ 0.5, · · · ,
xn
B′

+ 0.5
)

−max
(x1
B′

+ 0.5, · · · ,
xn
B′

+ 0.5
)∣∣∣

≤ B′
· 2−α

⌈log2 n⌉

by Theorem 2. Note that this extension is valid for 0.5 −

(⌈log2 n⌉ − 1)2−α > 0.

C. COMPARISON BETWEEN THE MINIMAX
APPROXIMATE POLYNOMIAL AND THE PROPOSED
APPROXIMATE POLYNOMIAL FOR THE ReLU AND
MAX-POOLING FUNCTIONS
In this subsection, we compare the proposed approximation
method using rα(x) and the existing minimax approximate
polynomial. For simplicity, let the approximation range of
the ReLU function be [−1, 1] for both methods. Then, for
a given degree d , the minimax approximate polynomial of
degree at most d for ReLU(x) can be obtained by the Remez
algorithm [34]. The precision parameter α corresponds to the
logarithm of the minimax error using base two.

Fig. 3 shows the relation between precision parameter α

and log2 d . By using regression, we obtain the following
equation:

α = 0.9987 log2 d + 2.8446. (7)

FIGURE 3. The achieved precision parameter α according to the logarithm
of the polynomial degree (base two).

Because the Remez algorithm for a high-degree polynomial
has the difficulties of 1) using high real number precision and
2) finding extreme points with high precision, we obtain the
polynomials for only up to d = 200.

1) HOMOMORPHIC ReLU FUNCTION
Table 3 compares the minimax approximate polynomials and
the proposed approximate polynomial rα(x) for the ReLU
function. The required number of non-scalar multiplications
for evaluating a polynomial of degree d is O(

√
2d) [35],

and thus, 22(α) non-scalar multiplications are required for
the precision parameter α. The exact number of non-scalar
multiplications is obtained using the odd baby-step giant-step
algorithm for polynomials with only odd-degree terms and
using the optimized baby-step giant-step algorithm for other
polynomials [36].

The minimax approximate polynomials by the Remez
algorithm require exponentially high degrees for high pre-
cision parameters α. These high degree polynomials lead
to many non-scalar multiplications. Furthermore, numerical
issues such as high precision of the real number arise when
finding high-degreeminimax approximate polynomials using
the Remez algorithm, but research has not yet been conducted
to overcome these issues. On the other hand, the proposed
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TABLE 3. Comparison of Degrees and Number of Non-scalar
Multiplications for the ReLU Function. The Degrees of the minimax
Approximate Polynomials and the Degrees of the Component
Polynomials of pα(x) are Shown. Asterisk(*) Indicates that the Degree is
Obtained Using the Regression Equation of (7).

composition of polynomials can effectively reduce the num-
ber of multiplications as shown in Table 3 and does not have
such numerical issues since the composition of polynomials
uses low-degree component polynomials.

2) HOMOMORPHIC MAX FUNCTION
Considering max(a, b) =

a+b+|a−b|
2 , we obtain the mini-

max approximate polynomial p(x) on [−1, 1] for |x|. Then,
m(a, b) =

a+b+p(a−b)
2 can be used as an approximate polyno-

mial of the max function max(a, b). Since ReLU(x) =
x+|x|
2 ,

the approximation of |x|/2 andReLU(x) are equivalent. Thus,
when the max function is approximated with the minimax
approximate polynomial, an exponentially large degree is
also required to achieve a high precision parameter α.

IV. THEORETICAL PERFORMANCE ANALYSIS OF
APPROXIMATE DEEP LEARNING MODEL
In this section, we propose an approximate deep learning
model for homomorphically encrypted input data, replac-
ing the original ReLU and max-pooling functions with
the proposed precise approximate polynomials r̃α,B(x) and
M̃α,n,B(x1, · · · , xn) in the original deep learning model.
In addition, we analytically derive that if the pre-trained
parameters of the original deep learning model are available,
classification would be accurate if we adopt a proper preci-
sion parameter α. In more detail, we estimate the L-infinity
norm of the difference between the inference results F(x)
and Fα(x), i.e., ∥Fα(x) − F(x)∥∞. Here, F(x) and Fα(x)
denote the inference results of the original deep learning
model F and the proposed approximate deep learning model
Fα with the precision parameter α, respectively. Here, F
and Fα share the same pre-trained parameters. The main
conclusion of this section is that we can reduce the difference
∥Fα(x) − F(x)∥∞ by increasing α, which implies that the
proposed model shows almost the same performance as the
original pre-trained model.

To estimate ∥Fα(x) − F(x)∥∞, we attempt to decompose
the original deep learning model, analyze each component,
and finally re-combine them. First, we decompose given
deep learning model F as An ◦ An−1 ◦ · · · ◦ A0, where
Ai is called a block. Each block can be a simple function:

convolution, batch normalization, activation function, and
pooling function. It can also be a mixed operation that cannot
be decomposed into simple operations. Here, all of the inputs
and outputs of block Ai’s are considered as a one-dimensional
vector. Also, we denote Aα

i as the corresponding approximate
polynomial operation of each block Ai with precision param-
eter α. If block Ai contains only a polynomial operation, Aα

i is
the same asAi since there is nothing to approximate. Then, the
approximate model Fα can be considered as a composition
of approximate blocks, Aα

n ◦ Aα
n−1 ◦ · · · ◦ Aα

0 .
If there is only a single approximate block in the approxi-

mate deep learning model, the difference in inference results
can be easily determined. However, the model Fα composed
of more than two approximate blocks makes the situation
more complicated. Consider an input vector x, two consec-
utive blocks A1 and A2, and their approximation Aα

1 and Aα
2 .

The block Aα
1 makes an approximation error which can be

measured as e := ∥Aα
1 (x)−A1(x)∥∞. For a given input x, the

magnitude of the error e is only determined by the intrinsic
feature of block A1. However, the output error of the second
block is quite different. Note that we can write the second
block error as ∥Aα

2 (y + e) − A2(y)∥∞, where y = A1(x)
and e = Aα

1 (x) − A1(x). Considering ∥e∥∞ = e, both block
A2 and the magnitude of e affect the second block error. Then,
we define a new measure for each block, error propagation
function.

In this study, all inputs x in the deep learning models
belong to a bounded set for a given dataset. We should set
the approximation range [−B,B] for the proposed approxi-
mate polynomials for the ReLU and max-pooling functions.
We assume that we can choose a sufficiently large B such
that the inputs of all blocks fall in [−B,B]. That is, for a
given deep learning model F = An ◦ An−1 ◦ · · · ◦ A0 and the
corresponding approximate modelFα

= Aα
n ◦Aα

n−1◦· · ·◦Aα
0 ,

we have ∥Ai◦· · ·◦A0(x)∥∞ ≤ B and ∥Aα
i ◦· · ·◦Aα

0 (x)∥∞ ≤ B
for i, 0 ≤ i ≤ n − 1 and every input x. In fact, we confirm
through numerical analysis that these are satisfied for an
appropriately large B in Section V. We define error propa-
gation function as follows:
Definition 2: For a block A, an error propagation function

of A, Eα
A (·), is defined as

Eα
A (e) := sup

∥x+e∥∞≤B,∥e∥∞≤e
∥Aα(x + e) − A(x)∥∞,

where e denotes the magnitude of output error of the previous
block of A.

Roughly speaking, block Aα propagates the input error e
(or the output error of the previous block) to output error
Eα
A (e). With this error propagation function, we can estimate

the difference between final inference results of F and Fα

straightforward as in the following theorem.
Theorem 3: If the original modelF can be decomposed as

An ◦ An−1 ◦ · · · ◦ A0, then we have

∥Fα(x) − F(x)∥∞ ≤ (Eα
An ◦ Eα

An−1
◦ · · · ◦ Eα

A0 )(0)

for every input x.
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Proof: The proof is given in Appendix C.
This theorem asserts that we can achieve an upper bound

of inference error of the whole model by estimating an error
propagation function for each block.

We analyze the error propagation function for four types
of single blocks: i) linear block, ii) ReLU block, iii) max-
pooling block, and iv) softmax block, commonly used in deep
neural networks for classification tasks. From now on, we call
these four types of blocks basic blocks, and deep learning
model contains only basic blocks basic deep learning models
for convenience. Note that convolutional layers, batch nor-
malization layers (for inference), average pooling layers, and
fully connected layers are just linear combinations of input
vectors and model parameters. Therefore, it is reasonable to
include all these layers in a linear block.We can express linear
blocks as A(x) = Ax + b for some matrix A and vector b.
The following lemma shows practical upper bounds of error
propagation function for basic blocks. Because the kernel size
of the max-pooling function is not greater than ten in most
applications, we constrain the kernel size not greater than ten
in the following lemma.
Lemma 1: For the given error e, the error propagation

functions of four basic blocks are upper bounded as follows:
(a) If A is a linear block with A(x) = Ax + b, then Eα

A (e) ≤

∥A∥∞e, where ∥ · ∥∞ denotes the infinity norm of matrices.
(b) If A is a ReLU block, then Eα

A (e) ≤ B2−α
+ e. (c) If A is a

max-pooling block with kernel size k0 ≤ 10 and α ≥ 4, then
Eα
A (e) ≤ 10B⌈log2 k

2
0⌉2

−α
+ e. (d) If A is a softmax block,

then Eα
A (e) ≤ e/2.
Proof: The proof is given in Appendix D.

Since the upper bounds of error propagation functions of all
basic blocks have been determined, we can obtain an upper
bound of the inference error theoretically as in the following
theorem.
Theorem 4: For α ≥ 4 and a basic deep learningmodelF ,

there exists a constant C such that ∥Fα(x)−F(x)∥∞ ≤ C2−α

for every input x, where the constant C can be determined
independently of the precision parameter α.

Proof: The proof is given in Appendix E.
Therefore, the performance of the proposed approximate
basic deep learning model can be guaranteed theoreti-
cally by Theorem 4 if the original model F is well
trained.

Practical application of Theorem 4. Theorem 4 is valid
for a basic deep learning model, and VGGNet [15] is a
representative example. However, there are also various
deep learning models with non-basic blocks. For example,
ResNet [14] contains residual learning building block, which
is hard to decompose into several basic blocks. Thus, the
generalized version of Theorem 4 is presented in Appendix F,
which is also valid for ResNet. Numerical results in Section V
also support that the inference result of the original deep
learning model and that of the proposed approximate deep
learning model are close enough for a practical precision
parameter α.

V. RESULTS OF NUMERICAL ANALYSIS
In this section, the simulation results are presented of the
proposed methods for the plaintext input data1 (Section V-A
and V-B) and the ciphertext input data (Section V-C). Overall,
our results show that using the high precision parameter α

obtains high performance in the proposed approximate deep
learning model, which confirms Theorem 4. The simula-
tions in Section V-A and V-B are performed by NVIDIA
GeForce RTX 3090 GPU along with AMD Ryzen 9 5950X
16-Core Processor CPU. In Section V-C, the simulations are
performed by AMD Ryzen Threadripper PRO 3995WX at
2.096 GHz (64 cores) CPU with 512 GB RAM.

A. NUMERICAL ANALYSIS ON THE CIFAR-10 FOR THE
PLAINTEXT DATA
Wefirst use the CIFAR-10 [9] as the input data, which has 50k
training images and 10k test images with 10 classes. We use
ResNet and VGGNet with batch normalization as backbone
models for the proposed approximate deep learning models.
To verify that the proposed approximate deep learningmodels
work well for a various number of layers, we use ResNet with
20, 32, 44, 56, and 110 layers and VGGNet with 11, 13, 16,
and 19 layers proposed in [14] and [15], respectively. In order
to obtain pre-trained parameters for each model, we apply the
optimizer suggested in [14] on both ResNet and VGGNet for
the CIFAR-10.

To adopt the proposed approximate deep learning model,
the approximation range [−B,B] should be determined.
We examine the input values of the approximate polynomials
of the ReLU and max-pooling functions and determine the
value of B by adding some margin to the maximum of the
input values. For the CIFAR-10, we choose B = 50 for
both the approximate polynomials of ReLU and max-pooling
functions.

The inference results of deep learning models with
low-degree polynomial activation function in previous
HE-friendly network and the proposed approximate ReLU
are given in Table 4. First of all, neither the activation func-
tions x2 (suggested in [5] and [6]) nor 2−3x2 + 2−1x + 2−2

(suggested in [7]) achieves good performance in our back-
bone models. These activation functions achieve classifica-
tion accuracy around 10.0% with our pre-trained parameters.
We claim that it is hard to find an appropriate low-degree
polynomial for the parameters trained with exact ReLU func-
tions, which implies the importance of the proposed precise
approximate polynomial for PPML in ResNet and VGGNet.
On the other hand, Table 4 shows that if we adopt a high
precision parameter α, the proposed model becomes more
accurate, confirming Theorem 4.We achieve the polynomial-
operation-only VGG-16 model with 91.87% accuracy for the
CIFAR-10 using α = 14 without any retraining. In addi-

1We provide the codes of the simulations for the plaintext data
(Section V-A and V-B) at: https://github.com/snu-ccl/
approxCNN
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TABLE 4. The Top-1 Accuracy of Each Approximate Deep Learning Model with Respect to α for the Plaintext CIFAR-10 Dataset. Baseline Means the
Accuracy of the Original Deep Learning Model. The Accuracies of the Approximate Deep Learning Models with a Difference Less Than 5% From the
Baseline Accuracy are Underlined, and Less Than 1% Are Underlined with Boldface.

TABLE 5. The Top-1 Accuracy of Each Approximate Deep Learning Model
for the Plaintext ImageNet Dataset with α = 14. The Accuracies Are
Underlined and Boldfaced in the Same Manner as in Table 4.

tion, the proposed approximate deep learningmodel performs
almost similarly (1% difference) to the original deep learning
model when α = 12–14.

As we mentioned, obtaining high-degree polynomial with
the Remez algorithm with high precision has some difficul-
ties. Therefore, we did not compare between the performance
of the approximate deep learningmodel using singleminimax
polynomial introduced in Section III-C and the proposed
approximate polynomial.

B. NUMERICAL ANALYSIS ON THE ImageNet FOR THE
PLAINTEXT DATA
We also analyze the classification accuracy of the pro-
posed approximate deep learning model for the ImageNet
dataset [8], which has 1.28M training images and 50k valida-
tion images with 1000 classes. We simulate various models
whose pre-trained parameters are available for inference of
the ImageNet. The models that we use and their inference
results are summarized in Table 5. The values of B we
choose for each model are also denoted in Table 5. Without
any training, we easily achieve a polynomial-operation-only
model with an accuracy of 77.52% for the ImageNet. From
this result, it can be seen that even if the dataset is large,
the proposed model shows high performance, similar to the
original model.

C. NUMERICAL ANALYSIS ON THE CIFAR-10 FOR THE
ENCRYPTED DATA
To justify the simulation results of classification accuracy
for the plaintext data, we encrypt the CIFAR-10 dataset with
the RNS-CKKS scheme and perform ResNet models using
the SEAL library [38] as described in [31]. Since the oper-
ations performed for encrypted data are all homomorphic
operations, the security of performing ResNet models with
the encrypted images can guarantee the security of RNS-
CKKS scheme.

TABLE 6. The Top-1 Accuracy and a Classification Runtime for a Single
Image of Each Approximate Deep Learning Model for the Ciphertext
CIFAR-10 Dataset with α = 13. The Accuracies Are Underlined and
Boldfaced in the Same Manner as in Table 4.

To perform the RNS-CKKS scheme, we set proper security
parameters, such as the degree of ciphertextsN ormodulusQ,
to achieve enough security level. We follow the same param-
eter setting of the experiment in [31]. We set N = 216 and
Q as a product of 51-bit primes. Also, we encrypt a message
with the Hamming weight of the secret key 128. With these
settings, we achieve the standard 128-bit security level.

We choose the precision parameter α = 13 and the
approximation range [−50, 50]. We classify the whole 10k
test images for the ResNet-20 model, and the first 1,000 test
images for the ResNet-32. Table 6 summarizes the results. For
the ResNet-20 model, we obtain top-1 accuracy of 87.90%,
which has a difference of less than 1% from the baseline accu-
racy of 88.36%. In addition, the top-1 accuracy of 87.90%
is very close to the accuracy of 88.01% obtained from sim-
ulation for plaintext data, which implies that the simulation
for the plaintext data is also valid for the encrypted data. For
the ResNet-32 model, we obtain top-1 accuracy of 88.20%,
which has a difference of less than 2% from the baseline
accuracy of 89.38%. The simulation results support that the
proposed approximate deep learning models perform well
on the encrypted image dataset and achieve the comparable
classification accuracy of the original models.

D. DISCUSSION
Although the numerical analyses in Sections V-A and V-B
were performed for plaintext data rather than encrypted data,
these simulations can all be performed on the RNS-CKKS
since all non-arithmetic operations have been replaced with
polynomial operations. In the simulation for the encrypted
data, bootstrapping error should also be considered as a
potential factor that may reduce the classification accuracy
on the RNS-CKKS scheme. However, a recent developed
high-precision bootstrapping technique [10] can achieve up to
40-bit precision. Thus, the accuracy obtained from simulation
on the encrypted data using sufficiently high-precision boot-
strapping will be very close to that obtained in the simulation
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for plaintext data. The implementation results of ResNet on
the encrypted data in Section V-C supports the validity of
simulation for the plaintext data.

VI. CONCLUSION AND FUTURE WORKS
We proposed the polynomials that precisely approximate
the ReLU and max-pooling functions using a composition
of minimax approximate polynomials of small degrees for
PPML using FHE. We showed theoretically and numeri-
cally that if the precision parameter α is large enough, the
difference between the inference result of the original and
the proposed approximate models becomes small enough.
Furthermore, for the first time for PPML using word-wise
HE, we achieved high performance for ImageNet classifi-
cation using the proposed approximate polynomials. Finally,
we performed the ResNet models with encrypted CIFAR-10
dataset to show the validity of simulation for the plaintext
data.

For utilizing PPML using FHE in the actual industry,
we are considering two issues as our future work. One of the
important topics is to optimize the components of the deep
learningmodel so that inference can be effectively performed.
Since the runtime for PPML inference is still impractical
(as seen in Table 6,) the proposed approximate deep learn-
ing model needs to be optimized to reduce the runtime.
Acceleration using hardware accelerators, optimization of
the RNS-CKKS algorithm, and more efficient approximation
methods for polynomials should be considered. Also, we will
apply these optimizations and perform the classification with
encrypted data not only for the ResNet but also for other pop-
ular networks such as VGGNet. Another topic of our future
work is the training of deep learning models using encrypted
data. In the real world of industries utilizing cloud computing,
there may not be much accessible data for training models
due to privacy issues. There are many interesting points to be
considered for training deep learning models using encrypted
data (e.g., stochastic gradient descent or backpropagation),
and these points will be significant future research topics.

APPENDIX A
PROOF OF THEOREM 1
From the definition, pα(x) satisfies the following inequality:

|mα(a, b) − max(a, b)|

= |
(a+ b) + (a− b)pα(a− b)

2
− max(a, b)| ≤ 2−α,

for a, b ∈ [0, 1]. Then, for x ∈ [0, 1], we have

|rα(x) − ReLU(x)| = |
x + xpα(x)

2
− x|

= |mα(x, 0) − max(x, 0)| ≤ 2−α.

In addition, for x ∈ [−1, 0], we have

|rα(x) − ReLU(x)| = |
x + xpα(x)

2
|

= |
−x + xpα(x)

2
+ x| = |mα(0, −x) − max(0, −x)| ≤ 2−α.

Thus, we have |rα(x) − ReLU(x)| ≤ 2−α for x ∈ [−1, 1].

APPENDIX B
PROOF OF THEOREM 2
To prove this theorem, we require two lemmas.
Lemma 2: For n ∈ N, let S and T satisfy

(⌈log2 n⌉ − 1)2−α
≤ S < T ≤ 1 − (⌈log2 n⌉ − 1)2−α.

Then, for x1, x2, · · · , xn ∈ [S,T ], the following is satisfied:

Mα,n(x1, · · · , xn) ∈ [S − ⌈log2 n⌉2
−α,T + ⌈log2 n⌉2

−α].
Proof: We will use mathematical induction to show that

Lemma 2 holds for all n ∈ N . For n = 1, it is trivial because
Mα,n(x1, · · · , xn) ∈ [S − ⌈log2 n⌉2

−α,T + ⌈log2 n⌉2
−α] if

and only if x1 ∈ [S,T ].
For n = 2, we have 0 ≤ S < T ≤ 1. We have to show

that Mα,2(x1, x2) = mα(x1, x2) ∈ [S − 2−α,T + 2−α] for
x1, x2 ∈ [S,T ]. We note that

|mα(a, b) − max(a, b)| ≤ 2−α for a, b ∈ [0, 1]. (8)

Because |mα(x1, x2) − max(x1, x2)| ≤ 2−α , we have

−2−α
+ S ≤ mα(x1, x2) − max(x1, x2) + S

≤ mα(x1, x2) − max(x1, x2) + max(x1, x2)

= mα(x1, x2).

Also, we have

mα(x1, x2) = mα(x1, x2) − max(x1, x2) + max(x1, x2)

≤ 2−α
+ max(x1, x2)

≤ 2−α
+ T .

Thus, Lemma 2 holds for n = 2. Now, we assume that
Lemma 2 holds for n, 1 ≤ n ≤ m − 1 for some m ≥ 3.
It is enough to show that Lemma 2 also holds for n = m.
(i) m = 2k
We have

(⌈log2 2k⌉ − 1)2−α
≤ S < T ≤ 1 − (⌈log2 2k⌉ − 1)2−α,

(9)

which is equivalent to (⌈log2 k⌉)2
−α

≤ S < T ≤ 1 −

(⌈log2 k⌉)2
−α. Then, we have to show that

Mα,2k (x1, · · · , x2k )∈ [S−⌈log2 2k⌉2
−α,T+⌈log2 2k⌉2

−α],

for x1, · · · , x2k ∈ [S,T ]. Because Lemma 2 holds for n = k
by the intermediate induction assumption, we have

Mα,k (x1, · · · , xk ),Mα,k (xk+1, · · · , x2k )

∈ [S − ⌈log2 k⌉2
−α,T + ⌈log2 k⌉2

−α]

From the inequality in (9), we have 0 ≤ S − ⌈log2 k⌉2
−α

and T + ⌈log2 k⌉2
−α

≤ 1. Thus, we have

Mα,k (x1, · · · , xk ),Mα,k (xk+1, · · · , x2k ) ⊆ [0, 1].

Then, from Lemma 2 for n = 2, we have

Mα,2k (x1, · · · , x2k )

= mα(Mα,k (x1, · · · , xk ),Mα,k (xk+1, · · · , x2k ))

∈ [S − ⌈log2 k⌉2
−α

− 2−α,T + ⌈log2 k⌉2
−α

+ 2−α]

= [S − ⌈log2 2k⌉2
−α,T + ⌈log2 2k⌉2

−α].
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Thus, Lemma 2 holds for n = m = 2k .
(ii) m = 2k + 1
We have

(⌈log2(2k + 1)⌉ − 1)2−α
≤ S < T

≤ 1 − (⌈log2(2k + 1)⌉ − 1)2−α.

This is equivalent to

(⌈log2(k + 1)⌉)2−α
≤ S < T ≤ 1 − (⌈log2(k + 1)⌉)2−α

(10)

because ⌈log2(2k + 1)⌉ = ⌈log2(2k + 2)⌉ for every integer
k ≥ 1. Then, we have to show that

Mα,2k+1(x1, · · · , x2k+1)

∈ [S − ⌈log2(2k + 1)⌉2−α,T + ⌈log2(2k + 1)⌉2−α],

for x1, · · · , x2k+1 ∈ [S,T ]. Because Lemma 2 holds for n =

k and n = k + 1 by the intermediate induction assumption,
we have

Mα,k (x1, · · · , xk )

∈ [S − ⌈log2 k⌉2
−α,T + ⌈log2 k⌉2

−α] and

Mα,k+1(xk+1, · · · , x2k+1)

∈ [S − ⌈log2(k + 1)⌉2−α,T + ⌈log2(k + 1)⌉2−α].

From the inequality in (10), we have 0 ≤ S−⌈log2(k+1)⌉2−α

and T + ⌈log2(k + 1)⌉2−α
≤ 1. Thus, we have

Mα,k (x1, · · · , xk ),Mα,k+1(xk+1, · · · , x2k+1)

∈ [S − ⌈log2(k + 1)⌉2−α,T + ⌈log2(k + 1)⌉2−α]

⊆ [0, 1].

Then, from Lemma 2 for n = 2, we have

Mα,2k+1(x1, · · · , x2k+1)

= mα(Mα,k (x1, · · · , xk ),Mα,k+1(xk+1, · · · , x2k+1))

∈ [S − ⌈log2(k + 1)⌉2−α
− 2−α,

T + ⌈log2(k + 1)⌉2−α
+ 2−α]

= [S − ⌈log2(2k + 2)⌉2−α,T + ⌈log2(2k + 2)⌉2−α]

= [S − ⌈log2(2k + 1)⌉2−α,T + ⌈log2(2k + 1)⌉2−α].

Thus, Lemma 2 holds for n = m = 2k + 1.
Then, Lemma 2 holds for all n ≥ 1 by mathematical

induction.
Lemma 3: For a, b, c, d ∈ R, we have
|max(a, b) − max(c, d)| ≤ max(|a− c|, |b− d |) (11)

Proof: Let max(a, b) = a without loss of general-
ity. We denote the left-hand side and right-hand side of the
inequality in (11) by LHS and RHS, respectively.
1) max(c, d) = c

We have LHS = |a − c|. Thus, the lemma holds in this
case.

2) max(c, d) = d
We have LHS = |a− d |.

a) a ≥ d
We have a ≥ d ≥ c. Thus, we have LHS = |a− d | ≤

|a− c| ≤ RHS.
b) a < d

We have b ≤ a < d . Thus, we have LHS = |a−d | ≤

|b− d | ≤ RHS.
Thus, the lemma is proved.

Now, we prove the theorem using Lemma 2 and 3. For
convenience, we write the interval [(⌈log2 n⌉ − 1)2−α, 1 −

(⌈log2 n⌉ − 1)2−α] as In. We have to show the inequality (6)
for x1, · · · , xn ∈ In.
We use mathematical induction to show that the inequality

in (6) holds for all n ∈ N. First, for n = 1, we have

|Mα,1(x1) − max(x1)| = |x1 − x1| = 0 = 2−α
⌈log2 1⌉.

Therefore, the inequality in (6) holds for n = 1. We assume
that the inequality holds for all n, 1 ≤ n ≤ m − 1. Then,
it is enough to show that the inequality in (6) also holds for
n = m. Suppose that x1, · · · , xm ∈ Im.
(i) m = 2k

We have to show that

|Mα,2k (x1, · · · , x2k ) − max(x1, · · · , x2k )| ≤ 2−α
⌈log2 2k⌉

for x1, · · · , x2k ∈ I2k . We have Mα,2k (x1, · · · , x2k ) =

mα(Mα,k (x1, · · · , xk ),Mα,k (xk+1, · · · , x2k )) from the recur-
sion formula (5).

Let P = max(x1, · · · , xk ), Q = max(xk+1, · · · , x2k ),
P̃ = Mα,k (x1, · · · , xk ), and Q̃ = Mα,k (xk+1, · · · , x2k ). Since
x1, · · · , x2k ∈ I2k ⊆ Ik , we can apply the intermediate
induction assumption for n = k as

|P̃− P| = |Mα,k (x1, · · · , xk ) − max(x1, · · · , xk )|

≤ 2−α
⌈log2 k⌉,

|Q̃− Q| = |Mα,k (xk+1, · · · , x2k ) − max(xk+1, · · · , x2k )|

≤ 2−α
⌈log2 k⌉.

The left-hand side of the inequality in (6) for n = m becomes
|mα(P̃, Q̃)−max(P,Q)|. From Lemma 2 for n = k , we have
P̃, Q̃ ∈ [0, 1]. Then, we have

|mα(P̃, Q̃) − max(P,Q)|

≤ |mα(P̃, Q̃) − max(P̃, Q̃)| + |max(P̃, Q̃) − max(P,Q)|

≤ |mα(P̃, Q̃) − max(P̃, Q̃)| + max(|P̃− P|, |Q̃− Q|)

(from Lemma 3)

≤ 2−α
+ max(|P̃− P|, |Q̃− Q|) (from (8))

≤ 2−α
+ 2−α

⌈log2 k⌉ = 2−α
⌈log2 2k⌉ = 2−α

⌈log2 m⌉.

(ii) m = 2k + 1
We have to show that

|Mα,2k+1(x1, · · · , x2k+1) − max(x1, · · · , x2k+1)|

≤ 2−α
⌈log2(2k + 1)⌉

for x1, · · · , x2k+1 ∈ I2k+1. From the recursion formula (5),
we have Mα,2k+1(x1, · · · , x2k+1) = mα(Mα,k (x1, · · · , xk ),
Mα,k+1(xk+1, · · · , x2k+1)).
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Let P = max(x1, · · · , xk ), Q = max(xk+1, · · · , x2k+1),
P̃ = Mα,k (x1, · · · , xk ), and Q̃ = Mα,k+1(xk+1, · · · , x2k+1).
Since x1, · · · , xk ∈ I2k+1 ⊆ Ik and xk+1, · · · , x2k+1 ∈

I2k+1 ⊆ Ik+1, we can apply the induction assumption for
n = k and n = k + 1 as

|P̃− P| = |Mα,k (x1, · · · , xk ) − max(x1, · · · , xk )|

≤ 2−α
⌈log2 k⌉,

|Q̃− Q| = |Mα,k+1(xk+1, · · · , x2k+1)

− max(xk+1, · · · , x2k+1)|

≤ 2−α
⌈log2(k + 1)⌉.

The left-hand side of the inequality in (6) for n = m
becomes |mα(P̃, Q̃) − max(P,Q)|. From Lemma 2 for n = k
and n = k + 1, we have P̃, Q̃ ∈ [0, 1]. Then, we have

|mα(P̃, Q̃) − max(P,Q)|

≤ |mα(P̃, Q̃) − max(P̃, Q̃)| + |max(P̃, Q̃) − max(P,Q)|

≤ |mα(P̃, Q̃) − max(P̃, Q̃)| + max(|P̃− P|, |Q̃− Q|)

(from Lemma 3)

≤ 2−α
+ max(|P̃− P|, |Q̃− Q|) (from (8))

≤ 2−α
+ 2−α

⌈log2(k + 1)⌉

= 2−α
⌈log2(2k+2)⌉=2−α

⌈log2(2k + 1)⌉=2−α
⌈log2m⌉

since ⌈log2(2k+2)⌉ = ⌈log2(2k+1)⌉ for every integer k ≥ 1.
Thus, the inequality in (6) holds for n = m, and the theorem
is proved by mathematical induction.

APPENDIX C
PROOF OF THEOREM 3
For convenience, we write the composition of the functions
{fi}

j
i=0, fj◦· · ·◦f0 asCji=0fi in this proof. Equivalently, we have

to show that∥∥∥∥[
n
C
i=0

Aα
i

]
(x) −

[
n
C
i=0

Ai

]
(x)

∥∥∥∥
∞

≤

[
n
C
i=0

Eα
Ai

]
(0). (12)

We will prove it by mathematical induction. First, we will
prove for n = 0.

∥Aα
0 (x) − A0(x)∥∞ ≤ sup

∥x∥∞≤B
∥Aα

0 (x) − A0(x)∥∞

= sup
∥x+e∥∞≤B,∥e∥∞≤0

∥Aα
0 (x + e) − A0(x)∥∞ = Eα

A0 (0).

Thus, the inequality in (12) holds for n = 0.
Next, we assume that the inequality in (12) holds for n = k ,

that is,∥∥∥∥[
k
C
i=0

Aα
i

]
(x) −

[
k
C
i=0

Ai

]
(x)

∥∥∥∥
∞

≤

[
k
C
i=0

Eα
Ai

]
(0).

for some k ≥ 0. It is enough to show that the inequality in (12)
also holds for n = k + 1, that is,∥∥∥∥[

k+1
C
i=0

Aα
i

]
(x) −

[
k+1
C
i=0

Ai

]
(x)

∥∥∥∥
∞

≤

[
k+1
C
i=0

Eα
Ai

]
(0).

We have∥∥∥∥[
k+1
C
i=0

Aα
i

]
(x) −

[
k+1
C
i=0

Ai

]
(x)

∥∥∥∥
∞

=

∥∥∥∥Aα
k+1

([
k
C
i=0

Ai

]
(x) + (

[
k
C
i=0

Aα
i

]
(x) −

[
k
C
i=0

Ai

]
(x))

)
−

[
k+1
C
i=0

Ai

]
(x)

∥∥∥∥
∞

.

Let x′
=

[
k
C
i=0

Ai

]
(x) and e′

=

[
k
C
i=0

Aα
i

]
(x) −

[
k
C
i=0

Ai

]
(x).

Because ∥x′
+ e′

∥∞ =

∥∥∥∥[
k
C
i=0

Aα
i

]
(x)

∥∥∥∥
∞

≤ B, we have∥∥∥∥[
k+1
C
i=0

Aα
i

]
(x) −

[
k+1
C
i=0

Ai

]
(x)

∥∥∥∥
∞

= ∥Aα
k+1(x

′
+ e′) − Ak+1(x′)∥∞

≤ sup
∥x+e∥∞≤B,∥e∥∞≤∥e′∥∞

∥Aα
k+1(x + e) − Ak+1(x)∥∞

= Eα
Ak+1

(∥e′
∥∞)

= Eα
Ak+1

(∥∥∥∥[
k
C
i=0

Aα
i

]
(x) −

[
k
C
i=0

Ai

]
(x)

∥∥∥∥
∞

)
≤ Eα

Ak+1

([
k
C
i=0

Eα
Ai

]
(0)

)
(∵ Eα

Ak+1
(·) : increasing)

=

[
k+1
C
i=0

Eα
Ai

]
(0).

Thus, the inequality in (12) holds for n = k + 1, and the
theorem is proved by mathematical induction.

APPENDIX D
PROOF of LEMMA 1
(a) For A(x) = Ax + b, Aα

= A. Then Aα(x + e) −

A(x) = Ae. Therefore, Eα
A (e) = sup∥e∥∞≤e ∥Ae∥∞ ≤

sup∥e∥∞≤e ∥A∥∞∥e∥∞ = ∥A∥∞e.
(b) For A(x) = ReLU(x), Aα(x) = r̃α,B(x). Therefore,

Eα
A (e) = sup

∥x+e∥∞≤B,∥e∥∞≤e
∥r̃α,B(x + e) − ReLU(x)∥∞

≤ sup
∥x+e∥∞≤B,∥e∥∞≤e

(∥r̃α,B(x + e) − ReLU(x + e)∥∞

+ ∥ReLU(x + e) − ReLU(x)∥∞)

≤ sup
∥x+e∥∞≤B,∥e∥∞≤e

(B · 2−α
+ ∥e∥∞) = B · 2−α

+ e.

(c) If A is a max-pooling block with kernel size k0,
sup∥x+e∥∞≤B,∥e∥∞≤e ∥Aα(x + e) − A(x)∥∞ becomes

sup
∥x+e∥∞≤B,∥e∥∞≤e

|M̃α,k20 ,B(x1 + e1, · · · , xk20
+ ek20

)

− max(x1, · · · , xk20
)|,

where x = (x1, · · · , xk20
) and e = (e1, · · · , ek20

). Similar tech-
nique of proof for (b) and from Theorem 2, we have Eα

A (e) ≤

B′
⌈log2 k

2
0⌉2

−α
+e, whereB′

= B/(0.5−(⌈log2 k
2
0⌉−1)2−α).

Since k0 ≤ 10 and α ≥ 4, (⌈log2 k
2
0⌉−1)2−α < 0.4, therefore

B′ < 10B, which leads the conclusion.
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(d) Let us denote softmax block A as an RN
→ RN

function with A(x) = ( exp(xi)∑
j exp(xj)

)1≤i≤N for x = (x1, · · · , xN ).
Then mean value theorem for multivariate variable functions
gives

∥A(x′) − A(x)∥∞ ≤ sup
z∈[x′,x]

∥J(z)∥∞ · ∥x′
− x∥∞,

where J(z) denotes the Jacobian matrix of softmax block A.
For a given vector z = (z1, · · · , zN ) ∈ RN , the infinity norm
of J(z) is given as ∥J(z)∥∞ = maxi

∑
k |

∂
∂zk

exp(zi)∑
j exp(zj)

|. Note
that

∣∣∣∣∣ ∂

∂zk

exp(zi)∑
j exp(zj)

∣∣∣∣∣ =


exp(zi) exp(zk )

(
∑

j exp(zj))2
, k ̸= i

exp(zi)
∑

j̸=i exp(zj)

(
∑

j exp(zj))2
, k = i

and thus∑
k

∣∣∣∣∣ ∂

∂zk

exp(zi)∑
j exp(zj)

∣∣∣∣∣
=

exp(zi)
∑

k ̸=i exp(zk )

(
∑

j exp(zj))2
+

exp(zi)
∑

j̸=i exp(zj)

(
∑

j exp(zj))2

= 2pi(1 − pi),

where pi =
exp(zi)∑
j exp(zj)

. Therefore, ∥J(z)∥∞ = maxi 2pi(1 −

pi) ≤ 1/2 for any vector z ∈ RN , and this gives

∥Aα(x + e) − A(x)∥∞ = ∥A(x + e) − A(x)∥∞ ≤ ∥e∥∞/2,

which leads the conclusion.

APPENDIX E
PROOF OF THEOREM 4
From Theorem 3, it is enough to show that

(Eα
An ◦ · · · ◦ Eα

A0 )(0) ≤ C2−α (13)

for some constant C and n ≥ 0. To show that this inequality
holds for all n ≥ 0, we use mathematical induction. First, for
n = 0, assume that F has one block A. The upper bounds of
Eα
A (0) for the four basic blocks suggested in Lemma 1 have

forms of C0 ·2−α , where C0 can be zero. Thus, the inequality
in (13) holds for some constant C and n = 0.

Then, we assume that the inequality in (13) holds for n = k
and some constantCk , that is, (Eα

Ak ◦· · ·◦Eα
A0
)(0) ≤ Ck2−α for

someCk . Then, it is enough to show that the inequality in (13)
holds for n = k + 1 and some constant Ck+1. Eα

Ak+1
(Ck2α) is

not greater than
(i) ∥A∥∞Ck2−α when Ak+1 is a linear block with A(x) =

Ax + b,
(ii) (B+ Ck )2−α when Ak+1 is a ReLU block,
(iii) (10B⌈log2 k

2
0⌉ + Ck )2−α when Ak+1 is a max-pooling

block with kernel size k0,
(iv) 1

2Ck2
−α when Ak+1 is a softmax block

by Lemma 1. For each case, we can determine a constant
Ck+1 that satisfies (Eα

Ak+1
◦ · · · ◦ Eα

A0
)(0) ≤ Eα

Ak+1
(Ck2α) ≤

Ck+12−α . Thus, the theorem is proved.

APPENDIX F
GENERALIZATION OF THEOREM 4 FOR ResNet MODEL
ResNet model cannot be decomposed of basic blocks, since
it contains a ‘‘residual block’’. The authors of [14] suggest an
operation R that satisfies

R(x) = G(x) + Px,

where G(x) denotes the residual mapping which will be
learned, and P is a linear projection matrix to match the
dimension of G(x). In this section, we call such operation R as
a residual block. In the residual block designed in ResNet, all
residual mapping G(x) is a composition of basic blocks [14].
Therefore, by Theorem 4, we can determine a constant CG
that satisfies ∥Gα(x)− G(x)∥∞ ≤ CG2−α . In case of P, there
are two methods of constructing projection in ResNet: the
first one pads extra zeros, and the second one uses 1× 1 con-
volution [14]. We note that both methods can be considered
as linear blocks, and thus the approximate block Rα(x) can
be represented by Gα(x) + Px. Considering this situation,
we generalize the original Theorem 4 so that it is also valid
for ResNet model.
Theorem 5 (Generalized version of Theorem 4): For

α ≥ 4 and a basic deep learning model F , there exists a
constant C such that ∥Fα(x) − F(x)∥∞ ≤ C2−α for every
input x, where the constant C can be determined only by
model parameters.

Proof: We prove this statement by obtaining error prop-
agation function Eα

R (e) of residual block R(x) = G(x) + Px.
From the definition of error propagation function, we have

Eα
R (e) = sup

∥x+e∥∞≤B,∥e∥∞≤e
∥Rα(x + e) − R(x)∥∞

≤ sup
∥x+e∥∞≤B,∥e∥∞≤e

(∥Rα(x + e) − R(x + e)∥∞

+ ∥R(x + e) − R(x)∥∞)

≤ sup
∥x+e∥∞≤B,∥e∥∞≤e

(∥Gα(x + e) − G(x + e)∥∞

+ ∥G(x + e) − G(x) + Pe∥∞)

≤ CG2
−α

+ ∥P∥∞e

+ sup
∥x+e∥∞≤B,∥e∥∞≤e

∥G(x + e) − G(x)∥∞,

where CG is the constant that satisfies ∥Gα(x) − G(x)∥∞ ≤

CG2−α . To estimate ∥G(x + e) − G(x)∥∞, we decompose
residual mapping G into Gk ◦ · · · ◦ G0, where Gi’s are basic
blocks. At first, we define

1A(e) = sup
∥x+e∥∞≤B,∥e∥∞≤e

∥A(x + e) − A(x)∥∞

for a block A and magnitude of the error, e. (Note that the
definitions of 1A(e) and Eα

A (e) are different.) Then 1A(e) is a
non-decreasing function of e for every block A. Thus, similar
argument in the proof of Theorem 3 shows that

∥G(x + e) − G(x)∥∞ ≤ (1Gk ◦ · · ·1G0 )(∥e∥∞) (14)
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for every error vector e. Also, similar argument in the proof
of Lemma 1 shows that

1A(e)≤


∥A∥∞e, A : linear block, A(x)=Ax+b
e, A : ReLU
e, A : max-pooling
e/2 A : softmax

(15)

for every basic block A and e ≥ 0. (These inequalities for
1A(e) corresponds to the inequalities for Eα

A (e) in Lemma 1
when the precision parameter α goes to infinity.) From two
inequalities (14) and (15), there exists a constant C ′

G that
satisfies ∥G(x + e) − G(x)∥∞ ≤ C ′

G∥e∥∞ since Gi’s are all
basic blocks. Therefore, we have

Eα
R (e) ≤ CG2

−α
+ (∥P∥∞ + C ′

G)e

for every e ≥ 0.
Now, we prove the theorem using mathematical induction.

Let F be a deep learning model which can be decomposed
into An ◦ · · · ◦ A0 where Ak ’s are all basic blocks or residual
blocks. First, for n = 0, assume that F has one block A.
The upper bounds of Eα

A (0) for the four basic blocks and
residual blocks have forms of C02−α , where C0 can be zero.
Inductively, for n = k , (Eα

Ak ◦ · · · ◦ Eα
A0
)(0) ≤ Ck2−α for

some Ck . For n = k + 1, we can determine a constant Ck+1
that satisfies (Eα

Ak+1
◦· · ·◦Eα

A0
)(0) ≤ Ck+12−α when Ak+1 is a

basic block (see the proof of Theorem 4). If Ak+1 is a residual
block with Ak+1(x) = G(x) + Px for some residual mapping
G(x) and linear projection matrix P, then

Eα
Ak+1

(Ck2α) ≤ CG2
−α

+ (∥P∥∞ + C ′

G)(Ck2
α) = Ck+12−α

where Ck+1 = CG + (∥P∥∞ + C ′

G)Ck which is independent
of α. Therefore,

(Eα
Ak+1

◦ · · · ◦ Eα
A0 )(0) ≤ Eα

Ak+1
(Ck2α) ≤ Ck+12−α,

which completes the proof.
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