
Received 27 April 2023, accepted 12 June 2023, date of publication 19 June 2023, date of current version 27 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287145

An Innovative Machine Learning Technique for
the Prediction of Weather Based Smart Home
Energy Consumption
SHAMAILA IRAM 1, HUSSAIN AL-AQRABI 2, HAFIZ MUHAMMAD SHAKEEL 1,
HAFIZ MUHAMMAD ATHAR FARID 3, MUHAMMAD RIAZ 3, RICHARD HILL 1,
PRABANCHAN VETHATHIR1, AND TARIQ ALSBOUI1
1Department of Computer Science, University of Huddersfield, HD1 3DH Huddersfield, U.K.
2Department of Computer Information Science, Higher Colleges of Technology, Sharjah, United Arab Emirates
3Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

Corresponding author: Shamaila Iram (S.iram@hud.ac.uk)

This work was supported by the School of Computing and Engineering, University of Huddersfield, U.K., under Grant COM706.

ABSTRACT The prediction of energy consumption plays a significant role in energy conservation and
reducing the cost of power generation, to improve energy sustainability and economic stability. Current
studies show an increased interest in the application of Machine Learning algorithms to forecast energy
utilisation in smart homes. The performance of these Machine Learning algorithms is evaluated using
accuracy algorithms. The process of manually selecting best-performing Machine Learning algorithms
is still very challenging for data analysts and decision makers because the algorithms might not work
well in a different use case or data-set. To address this, we propose a decision algorithm model using
machine learning based data mining and picture fuzzy operators. First, Machine Learning algorithms are
trained and tested to predict energy consumption of smart home appliances with respect to the weather
information. Second, score values of Lasso Regression are used to understand the patterns and features
of weather information for smart house micro-climate. We then propose a decision matrix using fuzzy
operators to aggregate Machine Learning algorithms, prior to ranking using a score function. Finally, the
electricity consumption of appliances as well as total energy consumed in the smart home is provided in
Kilowatts (KW).

INDEX TERMS Appliances, decision support too, energy consumption prediction, machine learning, smart
home.

I. INTRODUCTION
Effective Energy consumption is believed a leading cause
of carbon emissions, almost 80%, according to recent
reports [1]. This leads the major cause of environmental
instability and climate change. Higher consumption of fossil
fuels is caused the extreme weather conditions and their asso-
ciated impacts on climate change are big hurdles in achieving
Sustainable Development Goals (SDGs). Efficient and clean
energy accessibility and tackling emissions are the two main
groups of 17-point SDGs roadmap that United Nations (UN)
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has set out to achieve by 2030 [2]. In the United States (US)
alone, 30% of the total 100% energy is wasted by residential
and commercial sectors [3]. Human survival is significantly
affected by the climate conditions. There has been a rising
concern that the weather variations might be severe in the
coming days if priormeasures are not planned and carried out.
Current variations in the temperature, across the world, are
seriously increasing the energy consumption [4]. The impact
of weather changes is even more evident in the residential
sectors where operational carbon emissions are associated
with the consumption of smart house appliances such as
lighting, heating, cooling, plug devices (mobiles, comput-
ers, microwave). Therefore, reducing the consumption of
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above-mentioned devices can mitigate the carbon emission at
national level. Moreover, residential sector is more weather
vulnerable than other industrial sectors. This is one of the
main reasons that residential sector is consuming at least 30%
of the total worldwide energy [5], [6].

The information management platforms such as Smart
Homes Energy Management Systems (SHEMs) are widely
deployed to analyse, visualise and to monitor energy usage
patterns of the household appliances. This is mainly possi-
ble by using integrated wireless sensors in the smart home
appliances to collect the relevant data. These datasets, are
then, used to get useful insights of the hidden patterns of
interest to take data-driven future decisions related to energy
management. Smart home’s technologies such as big data
tools, data analysis and data visualisation techniques play
significant role to process large amount of multi-variant
datasets [7]. Smart technologies enabled energy optimisation
helps to reduce energy wastage which ultimately, leads to
more sustainable buildings and environment. Current litera-
ture also demonstrates the effective use of residential energy
feedback technologies to implement energy saving strategies
as well as to maintain energy demand and response [8],
[9]. One such example is of In-Home Displays (IHDs),
which are used in large number of experimental studies
to understand the use of energy using data visualization
techniques [10] in the homes. However, they only provide
whole-home energy feedback and clearly lack the capabilities
of energy control to use it effectively [8]. Literature also
suggests that such smart displays are only useful to realise
energy demand and response to shift energy usage from
peak-time to off-peak times. However, up to 20% of energy
could be saved if they are integrated with load-monitors
and smart appliances. Few studies, in the past, used a
single interface for various appliances, for instance, Res-
idential Electricity Cost Speedometer (RECS) which only
displays present cost per hour for different appliances [11].
Their major drawback is that they are mostly focused on
demand shifting potential instead of energy optimisation
strategies. Another example is of ‘‘Southern California Edi-
son’’ who worked on smart appliances and assessed the
behaviour of appliances for demand side responses and also
shared the various strategies to cope with these responses,
published in [8].

The targets have been set from the United Nations to miti-
gate the emissions from residential buildings by 2050 [12].
The concept of energy saving, and climate neutral houses
and buildings is a global challenge. For this, energy saving
research is encouraging to sustainable urban development.
Existing building net zero greenhouse gas emission and
energy saving plans and guidelines are mainly designed at
reducing electricity consumption [13], [14].The European
Union (EU) has also planned to move from ‘‘zero-energy
buildings to a zero-emission building’’ goal by 2030. This tar-
get has been officially started to implement into the buildings
sector. [15].

Energy consumption is directly linked to the change in
weather conditions in particular areas. For instance, the
amount of energy that is used in a house is dependent on
the contextual information of weather such as climate con-
ditions, temperature and humidity level. These are some of
the factors that ultimately has influence on the consump-
tion of energy and caused seasonal variation in demand
and supply stability. Prediction of energy consumption on
certain locations is predominantly linked with the weather
terms. However, weather conditions, sometimes, are very
unpredictable. This unpredictability in weather conditions
causes variations in the actual energy consumption and the
predicted ones, leaving the energy networks more vulnerable.
Furthermore, renewable energy devices that are installed in
the houses as well as the electrification of the energy systems
are also considered big causes of temperature variations in the
houses [16]. The accurate calculation of weather risk factor
in the modelling of energy system used the average small
amount (1-3 years) of data. The impact of weather behaviour
is important and has been recorded for the future designing
and modelling of energy system. The electricity consumption
behaviour of electrical appliances plays vital role for the
energy management of smart home. Therefore, accurate and
timely prediction of electrical loads can play significant role
to save smart home energy and can also reduce the financial
burden on residents. Similarly, this timely prediction can also
reduce the load and financial burden on national power grid
improving in the stability of power system [17].

According to the latest study published by United King-
dom Office for National Statistics [18] on climate change
impacts, living standards, families, and residential houses or
households. It was observed houses and households are the
main sources to emit greenhouse gases in the UK report-
ing 26%. In 2020, It was observed that Northern Ireland
produced maximum domestic emissions per capita follow-
ing the London for highest emissions per square kilometre.
It was examined that about a third of adults (34%) made no
explicitly changes in their lifestyle to mitigate the emission.
According to a survey [19] on lifestyle and energy consump-
tion and changing in lifestyle can bring energy efficiency in
the houses. The survey stated that a small social experiment
on 77% of adults was conducted and observed that lifestyle
can reduce energy consumption as well as mitigate the emis-
sions. Therefore, both factors (Climate change and lifestyle)
play critical role for the saving of energy consumption in the
residential buildings.

In our paper, we examine the following research ques-
tions: how external weather and climate change influences
the energy consumption on smart houses. Which machine
learning technique accurately predict short-term energy con-
sumption using weather data with higher accuracy. How
to automate the selection process of best machine learn-
ing model. Therefore, the objective of this research work
is two-folded; first is to find the best Machine Learning
(ML) algorithms for the forecasting of smart home energy
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consumption to enhance energy efficiency in smart homes
using weather data. The accurate prediction is vital to reduce
the home’s energy consumption while improving the living
comfort. However, because of the multiple types of ML
algorithms and the minimum information about accuracy of
algorithms, it is challenging for the analysts and decision
makers to accurately select the best algorithms for appli-
ances energy consumption. Therefore, the second objective
is imperative to develop a technique for selecting the best ML
algorithm using the score values and fuzzy operators under-
standing the appliances electricity consumption patterns and
features. The overall flow chart of proposed model can be
seen in the Figure 1.

The main contributions of this research work are as fol-
lows:

• An approach for forecasting of smart home appliances
energy consumption using ML algorithms.

• A methodology to find the score values exploring the
pattern and features of home appliances data.

• Fuzzy aggregation operators are developed.
• Design of decision framework for the selection of best
ML algorithm using fuzzy operators.

The rest sections of this research article are organized as
follows; Section II will discuss related literature surveys in
the research area of smart homes technology, energy con-
sumption, weather impact in electricity consumption and ML
techniques in energy forecast and fuzzy decision making
sets. Section III will explain the implementation of ML algo-
rithms. Section IVwill describe the design of decisionmatrix.
Section V will discuss the aggregation operators. Section VI
explains experiment results and discussion of the main ML
techniques and decision matrix, while the last Section VII
will conclude the work and developed model along the future
work of forecasting models.

II. RELATED WORK AND RESEARCH GAP
A. ENERGY CONSUMPTION PREDICTION MODELS
The assessment and forecasting of energy consumption are
essentials for improving energy efficiency and environmen-
tal management for smart houses. In this literature review
section, the importance of energy consumption prediction,
impact of weather information, energy efficiency, and intelli-
gent decision-making algorithms have been reviewed. Intelli-
gent consumption prediction and decision-making algorithms
such as machine learning and fuzzy logic based intelligent
techniques have been designed and implemented to forecast
energy consumption data to enhance and promote energy
efficiency and management for smart buildings [20], [21],
[22], [23], [24], [25], [26].

Reference [27] compared and evaluated the ML models;
Support Vector Regression, Backward Propagation Neural
Network, Extreme Learning Machine, And Adaptive Net-
work based Fuzzy Inference System for predicting energy
consumption for smart buildings. Reference [28] proposed
a hybrid deep learning technique for the forecasting of

household energy consumption. The hybrid model is a
recipe of Long Short Term Memory (LSTM) and Sta-
tionary Wavelet Transform (SWT). In this model, exper-
iments were performed on households’ energy consump-
tion dataset and observed the LSTM model enhances the
accuracy and performance of energy consumption predic-
tion. Reference [29] investigated stochastic learning models
which are ‘‘Conditional Restricted Boltzmann Machine’’
(CRBM) and ‘‘Factored Conditional Restricted Boltzmann
Machine’’ (FCRBM). They examined that ‘‘Factored Condi-
tional Restricted Boltzmann Machine (FCRBM)’’ performed
well on energy consumption dataset with better energy con-
sumption prediction accuracy and outperformed the other
ML models for instance ANN, SVM, RNN. Reference [30]
developed CNN-based WaveNet technique for short term
forecasting and handling noisy data of energy appliances.
They concluded that WaveNet performed well on short
term prediction of electric loads for households. They also
explored the correlation between electric load and tem-
perature using transfer learning. Reference [31] developed
ensemble learning model to predict energy demand for resi-
dential buildings. They integrated extreme learning machine,
extreme gradient boosting, and support vector regression
based linear regression. This article [32], [33] proposed an
approach to predict residential household electricity con-
sumption using human behaviour. In [34] authors used
statistical models (ARIMA and TBATS) for energy consump-
tion prediction for household.

The significance of predicting weather pattern and
behaviour and the impact of this pattern has shown more
severe consequences into the energy system. This review
is particularly aimed to investigate the energy consumption
pattern of smart homes appliances, and also investigate the
impact of changing weather pattern on energy consuming
appliances of smart homes [35]. Reference [36] explored
the relationship between temperature and electricity con-
sumption demand to observe the impact of climate change
on energy consumption pattern at national and international
level. They concluded that there is a certain surge in the
energy consumption loads due to the impact of weather.
This article [37] studied the short term (5 minutes) vari-
ational impact of weather on energy consumption data
which was obtained from residential households. Results
concluded that there is a vulnerable relation between the
weather and energy consumption behaviour of the appli-
ances. Reference [38] explored the significance and impact
of local weather data, load data, and occupancy data on
energy consumption using ‘‘Quasi-Newton Backpropaga-
tion’’ (QNBP), ‘‘Levenberg Marquardt Back-propagation’’
(LMBP), ‘‘Bayesian regularization’’ (BR), and ‘‘Scaled con-
jugate gradient’’ (SCG). They come with the results that the
behaviour of temperature was normal during the winter. Ref-
erence [39] Investigated the increasing abnormal behaviour of
weather on buildings energy supply and demand. The author
explored the various models to develop a framework which
was implemented to calculate the severe impact of irregular
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FIGURE 1. Flow chart of proposed model.

weather performance on electricity generation and consump-
tion and discussed the Britain’s case study of power system to
establish the applicability of the framework. Reference [40]
calculated the impact of weather (temperature) variation on
electricity consumption at national level. They conducted to
examine the correlation between the impact of weather situa-
tion and the electricity consumption of appliances. This study
concluded that electricity consumption increases when there
is an increase in temperature during the day times in sum-

mer. Additionally, the fall in winter temperatures could also
affect the electricity consumption [41]. Another study [42]
that looked into how climate change would affect patterns
of electricity consumption in Spain came to the conclusion
that electricity consumption increased as the temperature
increased in summer day.

In this research work, We use the smart house dataset to
observe the impact of contextual conditions such as weather
information and appliances usage and their behaviour on the
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overall energy consumption of the house. This study pre-
dicted the next two days’ energy consumption data using six
machine learning models, including linear regression, deci-
sion trees, k-nearest neighbours regression, support vector
regression, random forests, and neural networks. Further-
more, the outputs of these ML models are evaluated using
Mean Absolute Error (MAE), Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE).

B. BASIC CONCEPTS FOR PICTURE FUZZY SET
Decision-making challenges are prevalent in a wide variety
of disciplines, including technology, finance, and marketing.
Typically, it has been thought that all data on alternate access
is stored in the form of discrete integers. Since, in real-
world situations, it is critical to manage the imprecision
and uncertainty inherent in data. When it comes to select
anyone, there are supposed to be three possible responses,
namely yes, no, and refusal. However, first most sophisticated
response is ‘‘refusal,’’ which conventional ‘‘fuzzy sets’’ [43]
and ‘‘intuitionistic fuzzy sets’’ (IFSs) [44] may not accurately
represent. To solve these issues, Cuong suggested the ‘‘pic-
ture fuzzy set’’ (PFS) [45], [46]. In PFS, each element in
the set has diverse degrees of ‘‘positive membership degree’’
(PMSD), ‘‘neutral membership degree’’ (NuMSD) and ‘‘neg-
ative membership degree’’ (NgMSD) with values ranging
from [0, 1].

This portion of the study discusses some important notions
linked with PFSs over the set X .
Definition 1 [45], [46]:A ‘‘picture fuzzy set’’ (PFS) in X

is characterized as

χ = {⟨⋎̆, ηχ (⋎̆), ρχ (⋎̆), ℵχ (⋎̆)|⋎̆ ∈ X⟩} (1)

where ηχ (⋎̆), ρχ (⋎̆), ℵχ (⋎̆) ∈ [0, 1], such that 0 ≤ ηχ (⋎̆)+
ρχ (⋎̆) + ℵχ (⋎̆) ≤ 1 for all ⋎̆ ∈ X . ηχ (⋎̆), ρχ (⋎̆), ℵχ (⋎̆)
denote PMSD, NuMSD and NgMSD respectively for some
⋎̆ ∈ X .
We denote this pair as γ ζ

= (ηγ ζ , ργ ζ , ℵγ ζ ), over the
span of this investigation, and designated as PFN under the
circumstances ηγ ζ , ργ ζ , ℵγ ζ ∈ [0, 1] and ηγ ζ +ργ ζ +ℵγ ζ ≤

1 .
When implementing PFNs to actual situations, it is crucial

to categorize them. In this case, the ‘‘score function’’ (SF)
corresponds to the PFN γ ζ

= (ηγ ζ , ργ ζ , ℵγ ζ ) is given as,
Definition 2 [47]: Let γ ζ

=
(
ηγ ζ , ργ ζ , ℵγ ζ

)
be PFN,

then SF η̆ג(γ ζ ) and accracy function (AF) L̂(γ ζ ) for PFN are
defined as follows:

η̆ג(γ ζ ) =
1 + ηγ ζ − ℵγ ζ

2
, η̆ג(γ ζ ) ∈ [0, 1], (2)

L̂(γ ζ ) = ηγ ζ − ℵγ ζ , L̂(γ ζ ) ∈ [−1, 1]. (3)

We will now review the operational principles for combin-
ing PFNs.

Definition 3 [48]: Consider γ ζ
1 = ⟨η1, ρ1, ℵ1⟩ and

γ ζ
2 = ⟨η2, ρ2, ℵ2⟩ are the PFNs, ℶ > 0 then

γ ζ c
1 =

〈
ℵ1, ρ1, η1

〉
(4)

γ ζ
1 ∨ γ ζ

2 =

〈
max{η1, η2},min{ρ1, ρ2},min{ℵ1, ℵ2}

〉
(5)

γ ζ
1 ∧ γ ζ

2 =

〈
min{η1, η2},max{ρ1, ρ2},max{ℵ1, ℵ2}

〉
(6)

γ ζ
1 ⊕ γ ζ

2 =

〈
η1 + η2 − η1η2, ρ1ρ2, ℵ1ℵ2

〉
(7)

γ ζ
1 ⊗ γ ζ

2 =

〈
η1η2, ρ1 + ρ2 − ρ1ρ2, ℵ1 + ℵ2 − ℵ1ℵ2

〉
(8)

ℶγ ζ
1 =

〈
1 − (1 − η1)ℶ, ρℶ

1 , ℵℶ
1

〉
(9)

γ ζ ℶ
1 =

〈
ηℶ
1 , 1 − (1 − ρ1)ℶ, 1 − (1 − ℵ1)ℶ

〉
(10)

Definition 4 [47]: Consider γ ζ
1 =

〈
η1, ρ1, ℵ1

〉
and

γ ζ
2 =

〈
η2, ρ2, ℵ2

〉
are the PFNs and ℶ, ℶ1, ℶ2 > 0 be the

real numbers, then we have,

1) γ ζ
1 ⊕ γ ζ

2 = γ ζ
2 ⊕ γ ζ

1
2) γ ζ

1 ⊗ γ ζ
2 = γ ζ

2 ⊗ γ ζ
1

3) ℶ
(
γ ζ

1 ⊕ γ ζ
2
)

=
(
ℶγ ζ

1
)
⊕

(
ℶγ ζ

2
)

4)
(
γ ζ

1 ⊗ γ ζ
2
)ℶ

= γ ζ ℶ
1 ⊗ γ ζ ℶ

2
5) (ℶ1 + ℶ2) γ ζ

1 =
(
ℶ1γ

ζ
1
)
⊕

(
ℶ2γ

ζ
2
)

6) γ ζ ℶ1+ℶ2
1 = γ ζ ℶ1

1 ⊗ γ ζ ℶ2
2

If ηγ ζ
1

= ργ ζ
1
and ηγ ζ

2
= ργ ζ

2
then from Defi-

nition 3 we get, ηγ ζ
1⊕γ ζ

2
̸= ργ ζ

1⊕γ ζ
2
, ηγ ζ

1⊗γ ζ
2

̸=

ργ ζ
1⊗γ ζ

2
, ηℶγ ζ

1
̸= ρℶγ ζ

1
, η

γ ζ ℶ
1

̸= ρ
γ ζ ℶ

1
. Thus none of the

operations γ ζ
1 ⊕ γ ζ

2, γ
ζ
1 ⊗ γ ζ

2, ℶγ ζ
1, γ

ζ ℶ
1 found to be

neutral or fair indeed. Therefore, our first focus should be on
the development of fair operations amongst PFNs.

III. FAIRLY OPERATIONS ON PFNs
In this subsection, we construct and investigate various fairly
operations involving PFNs.
Definition 5 [49]: Let γ ζ

1 =

〈
ηγ ζ

1
, ργ ζ

1
, ℵγ ζ

1

〉
and

γ ζ
2 =

〈
ηγ ζ

2
, ργ ζ

2
, ℵγ ζ

2

〉
are two PFNs and ℶ > 0. Then

we define, as shown in the equation at the bottom of the next
page.
It can be easily verified that γ ζ

1⊕̃γ ζ
2, ℶ ∗ γ ζ

1 are the
PFNs.
Theorem 1: Consider γ ζ

1 =< ηγ ζ
1
, ργ ζ

1
, ℵγ ζ

1
> and

γ ζ
2 =< ηγ ζ

2
, ργ ζ

2
, ℵγ ζ

2
> are the PFNs. If ηγ ζ

1
= ργ ζ

1
,

ηγ ζ
2

= ργ ζ
2
and ℵγ ζ

2
= ℵγ ζ

2
then we have

(i) ηγ ζ
1⊕̃γ ζ

2
= ργ ζ

1⊕̃γ ζ
2

= ℵγ ζ
1⊕̃γ ζ

2
(ii) ηℶ∗γ ζ

1
= ρℶ∗γ ζ

1
= ℵℶ∗γ ζ

1
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A. PICTURE FUZZY FAIRLY WEIGHTED AVERAGING
(PFFWA) OPERATOR
Definition 6: [49]: Let γ ζ

h = ⟨ηh, ρh, ℵh⟩ be the collec-
tion of PFNs, and PFFWA: Gn

→ G, be the mapping. If,

PFFWA(γ ζ
1, γ

ζ
2, . . . γ

ζ
e)

=
(
W1 ∗ γ ζ

1⊕̃W2 ∗ γ ζ
2⊕̃ . . . , ⊕̃We ∗ γ ζ

e
)

(11)

then PFFWA is called ‘‘picture fuzzy fairly weighted averag-
ing (PFFWA) operator’’, here Wi is the weight vector (WV)
of γ ζ

i with Wi > 0 and
∑e

i=1 Wi = 1.
In addition, as proved in the following theorem, we can

investigate PFFWA operator.
Theorem 2: [49]: Consider γ ζ

h = ⟨ηh, ρh, ℵh⟩ is the
family of PFNs, we can evaluate PFFWA operator by

PFFWA(γ ζ
1, γ

ζ
2, . . . , γ

ζ
e)

=



∏e
i=1 (ηi)

Wi∏e
i=1 (ηi)

Wi +
∏e

i=1 (ρi)
Wi +

∏e
i=1 (ℵi)

Wi
×(

1 −
∏e

i=1 (1 − ηi − ρi − ℵi)
Wi

)
,∏e

i=1 (ρi)
Wi∏e

i=1 (ηi)
Wi +

∏e
i=1 (ρi)

Wi +
∏e

i=1 (ℵi)
Wi

×(
1 −

∏e
i=1 (1 − ηi − ρi − ℵi)

Wi
)
,∏e

i=1 (ℵi)
Wi∏e

i=1 (ηi)
Wi +

∏e
i=1 (ρi)

Wi +
∏e

i=1 (ℵi)
Wi

×(
1 −

∏e
i=1 (1 − ηi − ρi − ℵi)

Wi
)


where Wi is the WV of γ ζ

i with Wi > 0 and
∑e

i=1 Wi = 1.
Example 1: Assume γ ζ

1 = ⟨0.425, 0.255, 0.155⟩, γ ζ
2 =

⟨0.340, 0.335, 0.120⟩ and γ ζ
3 = ⟨0.475, 0.145, 0.110⟩ are

three PFNs with WV γ ζ
= (0.399, 0.276, 0.325), then

PFFWA(γ ζ
1, γ

ζ
2, γ

ζ
3)

=



∏3
i=1 (ηi)

Wi∏3
i=1 (ηi)

Wi +
∏3

i=1 (ρi)
Wi +

∏3
i=1 (ℵi)

Wi
×(

1 −
∏3

i=1 (1 − ηi − ρi − ℵi)
Wi

)
,

∏3
i=1 (ρi)

Wi∏3
i=1 (ηi)

Wi +
∏3

i=1 (ρi)
Wi +

∏3
i=1 (ℵi)

Wi
×(

1 −
∏3

i=1 (1 − ηi − ρi − ℵi)
Wi

)
,

∏3
i=1 (ℵi)

Wi∏3
i=1 (ηi)

Wi +
∏3

i=1 (ρi)
Wi +

∏3
i=1 (ℵi)

Wi
×(

1 −
∏3

i=1 (1 − ηi − ρi − ℵi)
Wi

)


= (0.426140, 0.235385, 0.132880)

The presented AO satisfies a number of particular character-
istics, which are outlined in the theorems that follow.
Theorem 3: Let γ ζ

i = ⟨ηi, ρi, ℵi⟩ be the collection of
PFNs and γ ζ

⋄ = ⟨η⋄, ρ⋄, ℵ⋄⟩ be the PFNs such that, γ ζ
i =

γ ζ
⋄∀i. Then

PFFWA(γ ζ
1, γ

ζ
2, . . . , γ

ζ
e) = γ ζ

⋄ (12)

Theorem 4: Let γ ζ
i = ⟨ηi, ρi, ℵi⟩ be the accumulation of

PFNs. Then for PFFWA(γ ζ
1, γ

ζ
2, . . . , γ

ζ
e) = ⟨ηx , ρx , ℵx⟩,

we have

min
i

{ηi + ρi + ℵi} ≤ ηx + ρx + ℵx ≤ max
i

{ηi + ρi + ℵi}

γ ζ
1⊕̃γ ζ

2 =



(
ηγ ζ

1
ηγ ζ

2

ηγ ζ
1
ηγ ζ

2
+ ργ ζ

1
ργ ζ

2
+ ℵγ ζ

1
ℵγ ζ

2

)
×(

1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)(
1 − ηγ ζ

2
− ργ ζ

2
− ℵγ ζ

2

))
,(

ργ ζ
1
ργ ζ

2

ηγ ζ
1
ηγ ζ

2
+ ργ ζ

1
ργ ζ

2
+ ℵγ ζ

1
ℵγ ζ

2

)
×(

1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)(
1 − ηγ ζ

2
− ργ ζ

2
− ℵγ ζ

2

))
,(

ℵγ ζ
1
ℵγ ζ

2

ηγ ζ
1
ηγ ζ

2
+ ργ ζ

1
ργ ζ

2
+ ℵγ ζ

1
ℵγ ζ

2

)
×(

1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)(
1 − ηγ ζ

2
− ργ ζ

2
− ℵγ ζ

2

))



ℶ ∗ γ ζ
1 =



( ηℶ
γ ζ

1

ηℶ
γ ζ

1
+ ρℶ

γ ζ
1
+ ℵ

ℶ
γ ζ

1

)
×

(
1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)ℶ)
,

( ρℶ
γ ζ

1

ηℶ
γ ζ

1
+ ρℶ

γ ζ
1
+ ℵ

ℶ
γ ζ

1

)
×

(
1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)ℶ)
,

(
ℵ

ℶ
γ ζ

1

ηℶ
γ ζ

1
+ ρℶ

γ ζ
1
+ ℵ

ℶ
γ ζ

1

)
×

(
1 −

(
1 − ηγ ζ

1
− ργ ζ

1
− ℵγ ζ

1

)ℶ)


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Theorem 5: Assume that γ ζ
i = ⟨ηi, ρi, ℵi⟩ and γ ζ

i∗ =

⟨ηi∗ , ρi∗ , ℵi∗⟩ are the assemblages of PFNs, and also consider

PFFWA(γ ζ
1, γ

ζ
2, . . . γ

ζ
e) = γ ζ

= ⟨η, ρ,ℵ⟩

and

PFFWA(γ ζ
1∗ , γ ζ

2∗ , . . . γ ζ
e∗ ) = γ ζ

∗ = ⟨η∗ , ρ∗ , ℵ∗⟩.

Then,

η+ρ+ℵ ≤ η∗ + ρ∗ + ℵ∗ , if ηi + ρi + ℵi ≤ ηi∗ + ρi∗ + ℵi∗

IV. ENERGY CONSUMPTION FORECASTING BASED ON
MACHINE LEARNING
A. DATASET DESCRIPTION
In this research work, we use smart home dataset that is
collected from the kaggle platform.1 The dataset is comprised
of the meter readings of the total electricity consumption,
electricity consumption readings of the households’ appli-
ances and weather behavior data. The dataset had total
503910 entities and 32 total properties. We divided the total
characteristics into two groups; first was weather impact
monitoring and second was appliances electricity consump-
tion monitoring can be seen in the Figure 2.

B. DATA PRE-PROCESSING
Data preprocessing in the key activity which involves data
preparing and data transforming into suitable data analysis
format to facilitate data analysis stage. The objective behind
the data preparation is to reduce the data size by cleaning,
eliminating outliers, normalizing variables, exploring rela-
tionships between variables in order to extract the required set
of features [50]. During the data preprocessing, the columns
of ‘‘KW’’ were removed, the columns for Kitchen and Fur-
nace joined into new separate column. The NaN row was
eliminated from dataset. The invalid entities of cloud cover
column were replaced with actual and valid values. There
were also duplicate entities in the dataset and these values
were excluded and adjusted. The column ‘‘House overall’’
and ‘‘use’’ were combined into ‘‘Overall_usage’’ and the
coefficient correlation factor observed which was 0.95. Pan-
das library used to change the date-time data type from object
type to ‘‘datetime64[ns]’’ type. After using pandas library in
Python language,2 the format of data-time was extracted in
the format of hour, day, month, and year columns. There-
fore, with hour variable, the exact time of observed day was
retrieved, for instance, morning time, afternoon time, evening
time, or night time.

C. ENERGY DATA ANALYSIS AND VISUALIZATIONS
1) IMPACT OF WEATHER ON ENERGY CONSUMPTION
We used matplotlip library in the smart home dataset setting,
we used the variable ‘‘overall usage’’ versus ‘‘time’’ and

1https://www.kaggle.com/code/malekzadeh/smart-home-data-
processing-weather-vs-energy/data

2https://github.com/pandas-dev/pandas

observed that electricity consumption was at peak in the July,
August, and September months. This behavior can be seen in
the Figure 3 line. This behavior can also be observed in the
second subplot between ‘‘temperature and time (months)’’.
This behavior shows that the electricity consumption was low
when the temperature was low. Whenever, the temperature
started to rise the rise in electricity consumption was also
observed in the months of July, August, and September. The
comparisons evaluation graph between Weather (tempera-
ture) and Furnace can be shown in the Figure 4 below. The
pattern in the graph shows there is a clear evidence that
temperature has direct influence on the Smart Home Furnace
electricity consumption behavior.

2) ENERGY CONSUMPTION BY ROOMS AND APPLIANCES
The behavior of appliances electricity usage inside different
rooms for every single day can be seen in the Figure 5 below
and can be observed that Furnace and Barn consumed higher
number of electricity units. From the Figure 6 below, the
electricity usage behavior for appliances and rooms can be
observed. It can be seen that Furnace, barn, and refrigerator
consumed higher number of electricity units.

3) ENERGY CONSUMPTION BY ROOMS
The Figure 7 below explains the appliances electricity usage
inside rooms of Smart Home. It shows that the office room in
home consumed the highest electricity units and the Kitchen
consumed least number of units likened to other Smart Home
rooms.

4) ENERGY CONSUMPTION BY APPLIANCES
It can be seen the monthly electricity usage behavior of Smart
Home appliances from the Figure 8 below. It can be observed
from the graph that Furnace consumed comparatively more
electricity than any other appliance. The other appliances
which showed high consumption of electricity after Furnace
are Refrigerator and Dishwasher. From the Figure 9, it can
also observed that microwave, well, and garage consumed
less electricity units. It was observed that Furnace consumed
highest percent of electricity and was responsible about
63.49 % of total Smart Home’s appliances electricity and
Refrigerator ranked second accounting 17.10% of electric-
ity consumption. The other appliances such as microwave,
dishwasher, garage door, well etc of Smart Home jointly
consumed 19.4% electricity consumption.

The appliances showed identical consumption behavior of
in all other months except, the highest number of electricity
units consumed in the month of August and can be seen in the
Figure 10.
It was observed and can be seen in the Figure 11 that Home

Office room consumed maximum electricity units about 36%
of total Smart Home’s electricity, Barn was on second num-
ber, consumed about 26%. Living Room and Wine Cellar
consumed 34% of electricity jointly. Kitchen was the room
which consumed least number of electricity units about 4.3%.
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FIGURE 2. Dataset description.

5) ENERGY CONSUMPTION BY DAYS
Total electricity consumption (kilowatts) of every single day
in the whole week can be seen in the Figure 12 below. It is evi-
dent from the graph that users consumedmaximum electricity
on the day of Monday during the whole week andWednesday
bar chart showed the lowest electricity consumption during
the week. The electricity consumption was measured in KW.
It was observed that maximum electricity consumed during
the night time which was 140,000 kW for Smart Home. The
following 120,000 kW and 90,000 kW reading were observed
during Morning and Evening time, respectively and the after-
noon time showed the lowest consumption approximately,
which is 70,000 kW.

6) CORRELATION OF ENERGY CONSUMPTION DATA USING
HEATMAP
The correlation between energy appliances can be seen in the
Figure 14. The graph shows that there is no clear evidence of
correlation among various appliances.

The weather information can be seen in the form of
heatmaps in the Figure 15:
Temperature is correlated to dewpoint and apparent-

Temperature. CloudCover is correlated to precipIntensity,
visibility, apparentTemperature and humidity. Humidity is
associated to dewpoint, cloudCover, and windSpeed. Vis-
ibility is associated to precipIntensity, cloudCover, and
windSpeed. PrecipIntensity is correlated to cloudCover and
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FIGURE 3. Temperature and electricity consumption.

FIGURE 4. Impact of furnace and outside temperature on electricity
consumption.

FIGURE 5. Per day electricity consumption by appliances and rooms.

FIGURE 6. Per month electricity consumption by appliances and rooms.

visibility. DewPoint is correlated to humidity, temperature,
and apparentTemperature.

FIGURE 7. Per month electricity consumption by rooms.

FIGURE 8. Per month electricity consumption by appliances.

FIGURE 9. % Electricity consumption by appliances (in percentage).

From the correlation heatmaps in the Figure 16 of appli-
ances with weather data, it was observed that appliances
behavior was influenced by weather information and related
factors. Wine cellar consumption was influenced and asso-
ciated to dew point, temperature, and apparent temperature.
Furnace consumption was influenced and associated to dew
point, temperature, apparent temperature, and wind speed.
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FIGURE 10. Home office room electricity consumption (in percentage).

FIGURE 11. % Total electricity consumption by rooms (in percentage).

FIGURE 12. Per time total electricity consumption (kW) in a day.

Fridge consumption was influenced and associated to dew
point, temperature, and apparent temperature.

7) FEATURE TRANSFORMATION
Feature transformation helps to deal with the selection of
feature values and feature evaluation using machine learning

FIGURE 13. Per day total electricity consumption (kW) in a week.

FIGURE 14. Correlation between electrical appliances.

FIGURE 15. Correlation of weather information.

models. Some machine learning models have showed better
prediction accuracy in terms of feature selection with less
training time and well convergence rate [51].
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FIGURE 16. Correlation of appliances and weather information.

a: STANDARD SCALER
We used sklearn.preprocessing library and the Standard-
Scaler function for the scaling of raw data. In this process,
we removed the variable ‘‘Overall Usage’’ from the dataset
to better examine the scaling of dataset.

b: PRINCIPAL COMPONENT ANALYSIS
We employed Principal Component Analysis (PCA) using
sklearn.decomposition function to minimize the dimension-
ality issue. We observed that after implementing the Principal
Component Analysis (PCA), the dataset condensed the
columns length from 29 to 22 columns length with the vari-
ance rate of 95%.

8) TRAINING/ TESTING DATA SPLIT
For this project, we used dataset of 350 days. We split up the
dataset into 348 days for training module and 2 days data for
testing module to observe the prediction accuracy of selected
machine learning models.

a: MODEL IMPLEMENTATION
This section is divided into two subsections; training section
and testing section using smart home energy consumption
dataset.

9) TRAINING THE ML MODELS
a: SUPPORT VECTOR REGRESSION MODEL (SVR)
The environment for support vector regression was initiated
using ‘‘sklearn.svm’’ command and variable ‘‘svr’’. After
that, the dataset was trained.

b: LINEAR REGRESSION MODEL
The environment for support vector regression was also initi-
ated using ‘‘sklearn.svm’’ command and variable ‘‘lm’’. After
creating this environment, the dataset was trained using the
package ‘‘sklearn.model_selection package’’.

c: RANDOM FOREST REGRESSOR MODEL
The environment and variable for random forest regres-
sor was also initiated using ‘‘sklearn.ensemble’’ package
command and variable ‘‘Rfr’’. After creating this ML
environment, the dataset was trained using the package
‘‘sklearn.model_selection package’’.

d: DECISION TREE REGRESSOR MODEL
The environment and variable for decision tree regressor
was also initiated using ‘‘sklearn.tree’’ package com-
mand and variable ‘‘dtreg’’. After creating this ML
environment, the dataset was trained using the package
‘‘sklearn.model_selection package’’.

e: K NEAREST NEIGHBORS REGRESSOR MODEL
The environment and variable for k-nearest neighbors regres-
sor was also initiated using ‘‘sklearn.neighbors’’ package
command and variable ‘‘knn’’. After creating this ML
environment, the dataset was trained using the package
‘‘sklearn.model_selection package’’.

f: ARTIFICIAL NEURAL NETWORKS
The environment for neural network model was initiated
using tensorflow and the function ‘‘tensorflow.keras.models’’
package command and dense function ‘‘tensorflow.keras.
layers’’ was also operated using three activation layers con-
nected with four nodes showing output having single node
with it.

10) TESTING THE REGRESSION MODELS
a: SUPPORT VECTOR REGRESSION MODEL
After training of dataset using Support Vector Regression
model, the testing was applied using variable ‘‘svr’’ to
examine the prediction accuracy using two days data. The
predictions were observed and recorded under the variable
‘‘preds svr.’’.

b: LINEAR REGRESSION MODEL
After training of dataset using Linear Regression model, the
testing was applied using variable ‘‘lm’’ to examine the pre-
diction accuracy using two days data. The predictions were
observed and recorded under the variable ‘‘preds_lr.’’.

c: RANDOM FOREST REGRESSOR MODEL
After training of dataset using Random Forest Regressor
model, the testing was applied using variable ‘‘rfr’’ to
examine the prediction accuracy using two days data. The
predictions were observed and recorded under the variable
‘‘preds rfr.’’.

d: DECISION TREE REGRESSOR MODEL
After training of dataset using Decision Tree Regression
model, the testing was applied using variable ‘‘dtreg’’ to
examine the prediction accuracy using two days data. The
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FIGURE 17. Feature importance score using lasso model.

predictions were observed and recorded under the variable
‘‘preds_dt.’’.

e: K NEAREST NEIGHBORS REGRESSOR MODEL
After training of dataset using k Nearest Neighbors Regres-
sor model, the testing was applied using variable ‘‘knn’’ to
examine the prediction accuracy using two days data. The
predictions were observed and recorded under the variable
‘‘preds_knn.’’.

f: ARTIFICIAL NEURAL NETWORKS
After training of dataset using k Nearest Neighbors Regressor
model, the testing was applied using variable ‘‘model’’ to
examine the prediction accuracy using two days data. The
predictions were observed and recorded under the variable
‘‘preds_nn.’’.

11) FEATURE IMPORTANCE
Lasso Regression: In this subsection, Lasso Regression
model is employed and examined to understand and observe
the behaviour of features which had high impact during calcu-
lating prediction accuracy. The score value of lasso regression
was recorded and showed that the impact of weather informa-
tion (dew point, temperature, cloud cover etc.) is important
for predicting the behaviour of electricity consumption.

It can be observed from the lasso model, the scores values
of various features such as weather, appliances, timing, rooms

had high score values and can be seen in the Figure 17.
Among all features, furnace showed highest score value.

V. EXPERIMENTAL RESULTS
The dataset of total 348 days is used to train all the Machine
Learning models. The models are, then, tested on 2 days
data to evaluate their performances. This section describes the
evaluation outcome of all the models.

A. SUPPORT VECTOR REGRESSION (SVR)
The Support Vector Regression (SVR), at first,is trained on
the dataset of 348 days. Rest of the data is used for the energy
consumption prediction for the next two days. The regression
plot of SVR is demonstrated in Figure 19. The evaluation
matrix shows that the errors values of Mean Absolute Error
(MAE) is 0.13, Mean Squared Error is 0.37 and Root Mean
Error is 0.19. The correlation is also observed between SVR’s
prediction and the actual energy consumption.

The energy consumption predicted by the support vector
regression model and the actual energy consumption using
the smart home’s data are shown in the graph demonstrated
in Figure 20. This clearly shows that the model accurately
forecasts the results with better predictions accuracy.

B. LINEAR REGRESSION (LR)
The same training and testing process as it was previously
applied on SVM is again applied on the Linear Regression
Model i.e., 348 days data for training and 2 days data for test-
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FIGURE 18. Overall flowchart (Step-by-Step process to develop decision
matrix).

ing. The regression plot of LR is demonstrated in Figure 21.
The evaluation matrix shows that the Mean Absolute Error
(MAE) is 0.42, Mean Square Error (RME) is 0.28, and Root

FIGURE 19. Regression plot of support vector regression model.

FIGURE 20. Line chart representing the actual and support vector
regression model’s predicted energy consumption.

Mean Error (RME) is 0.53. It is also observed that the predic-
tion performance of Linear Regression model was relatively
low. This prediction performance is shown in the graph that
is presented in Figure 22.

It is evident from the graph (shown in Figure 22) that
comparing the actual energy consumption to that predicted by
the linear regression model, the model overpredicts or fails to
understand the values.

C. RANDOM FOREST REGRESSOR (RFR)
The evaluation of RFR shows the following error rates; Mean
Absolute Error (MAE) is 0.17, Mean Square Error (MSE)
is 0.07, and Root Mean Error (RME) is 0.26. It was also
observed that the prediction performance of Random Forest
Regressor model was appeared relatively high. The regres-
sion plot of RFR is displayed in Figure 23. The output of the
prediction on 2-days data is demonstrated in the Figure 24.
Random Forest Regressor model predicted energy con-

sumption effectively, but it was also observed that Random
Forest Regressor often overpredicted the consumption pattern
which can be shown in the figure below.

D. DECISION TREE REGRESSOR (DTR)
DTR shows the following error rates; Mean Absolute Error
(MAE)=0.25, Mean Square Error (MSE)=0.16, and Root
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FIGURE 21. Regression plot of linear regression model.

FIGURE 22. Prediction of electricity consumption by actual and linear
regression model.

FIGURE 23. Regression plot of random forest regressor model.

Mean Error (RME)=0.39. Regression plot of DTR is demon-
strated in Figure 25. The prediction performance of DTR

FIGURE 24. Prediction of electricity consumption by actual and random
forest regressor model.

FIGURE 25. Regression plot of decision tree regressor model.

FIGURE 26. Prediction of electricity consumption by actual and decision
tree regressor model.

is demonstrated in Figure 25 which clearly shows lack of
accuracy in certain patterns of energy consumption over the
2-days timescale. This also indicates that there is inadequate
correlation between the actual energy used in the smart home
and the expected energy consumption numbers from the deci-
sion tree regressor model.

E. k NEIGHBORS REGRESSOR (KNR)
The following error rates were observed in the KNR model;
Mean Absolute Error (MAE) = 0.15, Mean Square Error
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FIGURE 27. Regression plot of k nearest neighbors regressor model.

(MSE) = 0.04, and Root Mean Error (RME) = 0.21.
It was also observed that the prediction performance of
k-Neighbors Regressor model was appeared relatively high.
This prediction performance can be shown in the Picture 27.
The significant correlation was observed between k Neigh-
bors Regressor’s prediction and the actual outcome. This is
demonstrated in the Figure 28.

F. NEURAL NETWORKS (NNs)
The performance evaluation of NNs shows the following
error rates; Mean Absolute Error (MAE) = 0.11, Mean
Square Error (MSE) = 0.02, and Root Mean Error (RME)
= 0.14. It is also observed that the prediction performance of
Neural Networks model is remarkably high. The regresson
plot of NNs is demonstrated in Figure 31.

The graph that is demonstrated in Figure 32, compares
the performance of two days energy consumption data and
to the energy consumption predicted by the neural network
model. The amount of energy that consumed appears to be
well predicted by the model.

G. MODEL PERFORMANCE COMPARISON
According to errors measures, Support Vector Regressor,
Neural Networks, and k Nearest Neighbors Regressor are the
top models in terms of low error rates of Mean Absolute
Error (MAE), Root Mean Error (RMSE), and Mean Square
Error (MSE). The SVR and neural network models outper-
formed other models in forecasting the smart house’s energy
consumption with error values of 0.19 kW and 0.14 kW,
respectively (minute frequency).

The model’s performance as determined by the evaluation
metrics is summarised in the Figure 29. In order to investigate
the error rates of all examined models, the actual and forecast
energy consumption data is re-sampled to investigate and
evaluate the models performance from minute prediction rate
to calendar day prediction rate. With a Root Mean Error

TABLE 1. Linguistic terms for DMs.

(RMSE) 40.15, the support Vector Regressor model per-
formed well after re-sampling the energy consumption data.
K-nearest neighbours and Neural network have 48.99 and
58.97 RMSE.

Figure 30 shares information of errors in the form of eval-
uation metrics on the machine learning model’s performance
after re-sampling the data.

VI. PICTURE FUZZY AGGREGATION APPROACH
We analyse an MCDM conundrum by comparing each of the
n distinct solutions to a set of m distinct qualities. In this
circumstance, it is crucial to supply a team of p experts whose
ratings must be more than zero, but whose aggregate is one.

As you probably recalled, the Aj (j = 1, 2, . . . , n) alter-
native must be provided by a Dk (k = 1, 2, . . . , p) team of
experts. The attributes Ci (i = 1, 2, . . . ,m) were likewise
chosen by experts after deliberation, hence the evaluation

result is expressed in terms of PFNs, γ ζ p
ji =

〈
η
p
ji, ρ

p
ji, ℵ

p
ji

〉
under the conditions, 0 ≤ η

p
ji, ρ

p
ji, ℵ

p
ji ≤ 1 and 0 ≤ η

p
ji + ρ

p
ji +

ℵ
p
ji ≤ 1. Moreover, take Rγ

t is the WV for the attributes Ci
conforming to the limitations, Rγ

t ≥ 0 and
∑m

t=1 Rγ
t = 1.

The recommended operator is used to construct an MCDM
for the PF data, which includes the following steps:
Step 1: Determine the DM ratings represented as PFNs

using ‘‘linguistic terms’’ (LTs). LTs are given in Table 1.
Assume ϒk =

〈
ηk , ρk , ℵk

〉
is the PFN for k-th DM. Conse-

quently, the amplitude of the k-th DM, ζk , can be calculated
as obeys::

ζk =
ϒk∑p
k=1 ϒk

, k = 1, 2, 3, . . . , p (13)

where ϒk = ηk+(1 − ηk − ρk − ℵk)
(

ρk
ηk+ρk+ℵk

) (
ℵk

ηk+ρk+ℵk

)
and Clearly

∑p
k=1 ζk = 1

Step 2: Evaluate the decision matrix E G
(p) = (Y(p)

ji )n×m
using the PFNs by the DMs.
Step 3: Establish an integrated PF assessment matrix. It is

crucial to note that, while generating the aggregated PF deci-
sion framework utilising a group decision-making approach,
all separate perspectives must be summed and included to
establish a collective viewpoint. The proposed AO will pro-
vide the accompanying to this end:

Let H =

(
Hji

)
n×m

be the aggregated PF decision matrix,
where

Hji = PFFWA
(
Y

(1)
ji , Y

(2)
ji , . . . ,Y

(p)
ji

)
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FIGURE 28. Line chart representing the actual and k nearest neighbors regressor model’s predicted
energy consumption.

FIGURE 29. Performance evaluation.

FIGURE 30. After resampling performance evaluation.

For convenience, we take Hji as Hji =

〈
ηji, ρji, ℵji

〉
Step 4: Using the accompanying formula, normalise the

PFNs if necessary by transforming any price type features
(ℵc) to benefit kind attributes (ℵb).

(ℵNji )n×m =

{
(Hji)c; i ∈ ℵc

Hji; i ∈ ℵb.
(14)

where (Hji)c show the compliment of (Hji). The normalised

decision matrix will be 0N =

(
ℵ
N
ji

)
n×m

=

(
η̆ji, ρ̆ji, ℵ̆ji

)
n×m

.
Step 5: Construct the score matrix by include the SF of the

PFNs as 9 =

(
η̆ג

(
ℵ
N
ji

))
n×m

.

TABLE 2. Criterion for regression models and forecasting.

Step 6: The weighted total of the scores of all options Aj is
given by the scoring matrix notion 9.

¥(Aj) =

m∑
i=1

Rγ
i η̆

ג
(
ℵ
N
ji

)
, (j = 1, 2, . . . , n).

where, Rγ
1, R

γ
2, . . . R

γ
m be the WV of the given criterion.
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FIGURE 31. Regression plot of neural networks model.

FIGURE 32. Line chart representing the actual and neural networks
model’s predicted energy consumption.

Assume that the weights are indeterminate and that prod
represents a collection of them. To compute these inde-
terminate weights, we apply the preceding mathematical
framework,

Max g =

m∑
i=1

¥(Aj)

under the constraints
∑m

i=1 Rγ
i = 1. Using this approach,

our normalised WV can be calculated. To calculate the
weights of criterion within the constraints of this circum-
stance, we adopt a linear programming paradigm in this
instance.
Step 7: Construct the consolidated weighted PF decision

matrix by using a normalised decision matrix 0N and theWV
Rγ . We utilised the following suggested AOs.

PFFWA(ℵNj1, ℵ
N
j2, . . . ,ℵ

N
jm)

TABLE 3. Linguistic terms for DMs.

=



∏m
j=1

(
η̆jη(i)

)Rγ
i∏m

j=1
(
η̆jη(i)

)Rγ i
+

∏m
j=1

(
ρ̆jη(i)

)Rγ i
+

∏m
j=1

(
ℵ̆jη(i)

)Rγ i
×

(
1−

∏m
j=1

(
1 − η̆jη(i) − ρ̆jη(i) − ℵ̆jη(i)

)Rγ
i
)

,∏m
j=1

(
ρ̆jη(i)

)Rγ
i∏m

j=1
(
η̆jη(i)

)Rγ i
+

∏m
j=1

(
ρ̆jη(i)

)Rγ i
+

∏m
j=1

(
ℵ̆jη(i)

)Rγ i
×

(
1−

∏m
j=1

(
1 − η̆jη(i) − ρ̆jη(i) − ℵ̆jη(i)

)Rγ
i
)

,∏m
j=1

(
ℵ̆jη(i)

)Rγ
i

∏m
j=1

(
η̆jη(i)

)Rγ i
+

∏m
j=1

(
ρ̆jη(i)

)Rγ i
+

∏m
j=1

(
ℵ̆jη(i)

)Rγ i
×

(
1−

∏m
j=1

(
1 − η̆jη(i) − ρ̆jη(i) − ℵ̆jη(i)

)Rγ
i
)


Step 8: Using SF, determine the score value of the over-

all weighted aggregated result. Evaluate each alternative
depending on the SF, and then choose the alternate with the
greatest SF(s).

A. DECISION-MAKING PROCESS
The specific statement about the regression models and fore-
casting is described as follows:

If we consider there are six models, namely A1 = support
vector regression model, A2 = artificial neural networks,
A3 = decision tree regressor model, A4 = random forest
regression model, A5 = linear regression model and A6 = k
nearest neighbors regressor model. Three experts/decision-
makers will be selected to analyze the regression models
based on the indications listed in Table 2.
Step 1: LTs for each DM (doctor) given in Table 3. By the

LTs find the DMs weights by the Equation 13, Then the DMs
weight are ζ1 = 0.28, ζ2 = 0.33 and ζ3 = 0.39.
Step 2: Obtain the decision matrix E G

(p) = (Y(p)
ji )n×m in

the format of PFNs from DMs. The judgement values, given
by three DMs, are given in Table 3, Table 4 and Table 5.
Step 3: To develop the consolidated PF decision matrix, all

single views must be summed and combined to establish a
collective viewpoint.
H =

(
Hji

)
5×4

be the consolidated PF decision matrix,
where

Hji = PFFWA
(
Y

(1)
ji , Y

(2)
ji , Y

(3)
ji

)
=

(
ζ1 ∗ Y

(1)
ji ⊕̃ζ2 ∗ Y

(2)
ji ⊕̃ζ3 ∗ Y

(3)
ji

)
.

Aggregated PF decision matrix given in Table 7.
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TABLE 4. Assessment matrix acquired from D1.

TABLE 5. Assessment matrix acquired from D2.

TABLE 6. Assessment matrix acquired from D3.

Step 4: There is no cost type feature, hence the normalised
decision matrix is 0N =

(
ℵ
N
ji

)
n×m

=

(
η̆ji, ρ̆ji, ℵ̆ji

)
5×4

,
given in Table 8.
Step 5: Construct the score matrix, by utilizing the SF of

PFNs as 9 =

(
η̆ג

(
ℵ
N
ji

))
6×4

.

C1 C2 C3 C4



A1 0.647409 0.636285 0.664695 0.652938

A2 0.620746 0.464140 0.546148 0.597231

A3 0.498141 0.396716 0.520744 0.509427

A4 0.521758 0.576489 0.582377 0.532917

A5 0.467515 0.554385 0.447495 0.391809

A6 0.575705 0.641226 0.498895 0.464264

Step 6:Consider that the DMs provide the following partial
weight details about the attribute weights:

9 = 0 ≤ Rγ
1 ≤ 0.45, 0.10 ≤ Rγ

2 ≤ 0.50,

0.10 ≤ Rγ
3 ≤ 0.35, 0.70 ≤ Rγ

4 ≤ 0.85

Relying on this data, the following optimization framework
can be developed:

Max g

= 0.647409Rγ
1 + 0.620746Rγ

1 + 0.498141Rγ
1

+ 0.521758Rγ
1 + 0.467515Rγ

1 + 0.575705Rγ
1

+ 0.636285Rγ
2 + 0.464140Rγ

2 + 0.396716Rγ
2

+ 0.576489Rγ
2 + 0.554385Rγ

2 + 0.641226Rγ
2

+ 0.664695Rγ
3 + 0.546148Rγ

3 + 0.528909Rγ
3

+ 0.582377Rγ
3 + 0.447495Rγ

3 + 0.498895Rγ
3

+ 0.652938Rγ
4 + 0.597231Rγ

4 + 0.509427Rγ
4

+ 0.532917Rγ
4 + 0.391809Rγ

4 + 0.464264Rγ
4

such that,

0≤ Rγ
1≤0.45, 0.10≤Rγ

2 ≤ 0.50, 0.10≤Rγ
3≤0.35,

0.70≤ Rγ
4 ≤ 0.85, Rγ

1 + Rγ
2 + Rγ

3 + Rγ
4 = 1,

Rγ
1, R

γ
2, R

γ
3, R

γ
4 ≥ 0.

By solving this model we get, Rγ
1 = 0.10, Rγ

2 =

0.10, Rγ
3 = 0.10, Rγ

4 = 0.70
Step 7: Evaluate the aggregated weighted PF decision

matrix by using proposed AOs given by Table 9.
Step 8: Compute the score values of all alternatives.

η̆ג (A1) = 0.652338

η̆ג (A2) = 0.579894

η̆ג (A3) = 0.497076

η̆ג (A4) = 0.541342

η̆ג (A5) = 0.417550

η̆ג (A6) = 0.493467

At the end, the final ranking will be

A1 ≻ A2 ≻ A4 ≻ A3 ≻ A6 ≻ A5.

As a result, option A1’s status is the most suitable.
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TABLE 7. Aggregated PF decision matrix.

TABLE 8. Normalized PF decision matrix.

TABLE 9. Aggregated weighted PF decision matrix.

Figure 18 presents a complete framework to demonstrate
step-by-step process of Data processing, Feature selection,
and Features evaluation using Machine Learning algorithms,
to design decision matrix that can support in ranking the
Machine Learning algorithms based on their performances.

VII. CONCLUSION AND FUTURE WORK
In this research work, we, first, employed six machine learn-
ing algorithms to predict energy consumption of smart home
appliances. The dataset used in this research contains energy
consumption values of various home appliances as well
as total energy consumption in the house. This dataset is
processed with respect to the contextual information, for
instance, weather information. Principal Component Analy-
sis (PCA) is applied on the data for dimensionality reduction
using an explained variance of 0.95. We also used Lasso
Regression to understand the patterns and features of weather
information for smart house micro-climate and its impact
on energy consumption of appliances.The evaluation matrix
comprises of Mean Absolute Error, Mean Squared Error, and
RootMean Squared Error to evaluate the performance of each

employed Machine Learning Model. It is observed from the
evaluation matrix that Support Vector Regression, when re-
sampled, outperformed the performance of other models with
highest prediction accuracy.

Secondly, in order to validate the proposed results as well
as to automate the decision making process, we proposed an
automatic decision matrix using fuzzy operators to aggregate
all six Machine Learning algorithms. The ranking of best
Machine Learning algorithm was determined using score
function. In this algorithm, a fairly multicriteria decision
making algorithm is developed using fairly AOswithmultiple
decision makers’ evaluations and partial weight information
under PFSs. By using this decision-making algorithm,we val-
idate our proposed results. The performance of the model
can be improved in the future for better forecast results by
gathering accurate weather information from meteorological
institution, and by hyper parameter tuning the model.
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