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ABSTRACT Over the decades, Artificial Intelligence (Al) and machine learning has become a transforma-
tive solution in many sectors, services, and technology platforms in a wide range of applications, such as
in smart healthcare, financial, political, and surveillance systems. In such applications, a large amount of
data is generated about diverse aspects of our life. Although utilizing Al in real-world applications provides
numerous opportunities for societies and industries, it raises concerns regarding data privacy. Data used in
an Al system are cleaned, integrated, and processed throughout the Al life cycle. Each of these stages can
introduce unique threats to individual’s privacy and have an impact on ethical processing and protection of
data. In this paper, we examine privacy risks in different phases of the Al life cycle and review the existing
privacy-enhancing solutions. We introduce four different categories of privacy risk, including (i) risk of
identification, (ii) risk of making an inaccurate decision, (iii) risk of non-transparency in Al systems, and
(iv) risk of non-compliance with privacy regulations and best practices. We then examined the potential
privacy risks in each Al life cycle phase, evaluated concerns, and reviewed privacy-enhancing technologies,
requirements, and process solutions to countermeasure these risks. We also reviewed some of the existing
privacy protection policies and the need for compliance with available privacy regulations in Al-based
systems. The main contribution of this survey is examining privacy challenges and solutions, including
technology, process, and privacy legislation in the entire Al life cycle. In each phase of the Al life cycle,
open challenges have been identified.

INDEX TERMS Artificial intelligence, machine learning, Al life cycle, privacy risk, privacy legislation,
privacy enhancing solutions.

I. INTRODUCTION of distinguishing between the answers of a person and a

Artificial intelligence (Al) refers to the development of com-
putational agents that can perform tasks associated with
human intelligence, including speech recognition, visual per-
ception, and general problem solving. An Al system is
expected to be able to attain human performance and be
rational by doing the “‘right thing” given the available infor-
mation [1]. Turing was one of the first to challenge the
ability of computer systems to match human reasoning by
asking “Can machines think?”” [2] and consequently devel-
oping the Turing Test. If a human interrogator is incapable
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computer to a series of written questions, then the computer
system passes the Turing Test. Machine learning (ML) is a
branch of Al where computer systems learn from experience,
i.e., from the given data, without explicit programming. Upon
successful learning, these robust models can offer intelligent
decisions and improve different dimensions of our daily lives.
For instance, in the healthcare industry, image recognition
and analysis by ML in applications such as cancer diagno-
sis [3] can help physicians make diagnostic decisions. Other
examples include the use of Al in applications such as fore-
casting stock price variations [4] as well as predicting the
progression and vaccine development for contagious diseases
such as COVID-19 [5]. To successfully implement Al in
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these applications, Al algorithms require computing power,
efficient algorithms, and most importantly representative data
to learn from.

Since Al is fundamentally a data-driven approach, allow-
ing Al systems to access and process our private information
in many day-to-day applications is inevitable. For instance,
people have to submit their personal and financial infor-
mation to determine their eligibility for financial support,
such as mortgages and business loans. Another example is
the collection of cookies and browsing history to provide
personalized advertising when visiting a website [6]. This
increasing trend in accessing and processing personal data
has raised concerns about data privacy. The reason for privacy
concerns is due to the fact that data related to people can
be sensitive. Even if they do not contain explicit and direct
information about their identity, AI methods can be used
to extract sensitive personal information from individuals’
data. A common approach towards solving this problem is
to anonymize records containing sensitive information. For
instance, a dataset containing 100 million anonymous movie
ratings was released by Netflix in 2006 as part of an open
contest to develop an accurate recommendation system. How-
ever, this dataset was de-anonymized in 2008 by researchers
utilizing only a small amount of information from other
public databases [7]. The researchers also concluded that
the revealed information could potentially identify sensitive
information about users, including their political and reli-
gious beliefs.

Loss of privacy can have a devastating impact on indi-
viduals. Loss of reputation, identity theft, biased and unfair
decisions, and legal consequences are only some of the
consequences of privacy breaches and concerns. To guaran-
tee effective privacy preservation mechanisms, organizations
need to consider privacy as an integral component in devel-
oping their technologies and managing sensitive data. This
principle is also known as privacy by design, where the objec-
tive is to proactively integrate solutions to prevent privacy
in the development, operation, and management phases of
information processing technologies [8]. In contrast, privacy
by policy provides guidelines for preserving privacy and
includes mechanisms such as informing users about how
their data is used and enforcing compliance with privacy
legislation. Incorporating privacy into the architecture of
technology, i.e., by design, is considered more reliable than
applying privacy by policy [9]. There is also an increasing
trend in establishing regulations that impact the design and
development of technology solutions such as Al systems. For
instance, the interpretability of Al algorithms and processes
has been the center of attention by some regulations, such as
the Information Commissioner’s Office (ICO) in the United
Kingdom. A comprehensive understanding of the various reg-
ulatory and technical requirements in different developmental
stages is required in order to apply privacy by design to Al
systems. This is because privacy can be compromised in every
phase of the Al development lifecycle and privacy-preserving
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solutions must be incorporated at every stage. Additionally,
to develop new and effective privacy-preserving solutions,
it is essential to investigate existing solutions and identify
their limitations. Finally, the emergence of large language
models like ChatGPT present significant privacy challenges
due to their ability to access and potentially reveal personal
data. To mitigate these challenges, robust data privacy and
security policies must be developed and implemented to
ensure compliance with regulations such as GDPR [10]. Reg-
ular audits of these policies are necessary to identify and
address any potential vulnerabilities. Additionally, models
must be trained on data that does not contain personal infor-
mation, and measures must be taken to prevent unintentional
leakage of personal data.

A comprehensive analysis of the existing literature is
required to understand the research gaps in privacy-focused
Al development. Several surveys have made attempts to
review privacy threats in intelligent systems. Liu et al. [11]
investigated privacy preservation challenges in ML, focus-
ing on deep learning, algorithms that utilize deep neural
networks. Although the paper provides a broad review of dif-
ferent privacy attacks, it does not consider important phases
of Al and ML development, including planning and data
collection. Moreover, [12] discusses various cyber security
threats with an emphasis on adversarial learning and sev-
eral attacks and defense mechanisms across ML algorithms.
Despite the comprehensive presentation of security threats,
the authors did not address privacy concerns from an Al
lifecycle perspective. Boulemtafes et al. [13] reviewed state-
of-the-art solutions that deal with preserving the privacy of
deep learning algorithms. In the learning phase, leakage of
training data and model parameters were identified as threats
to privacy. In the model analysis and deployment phases, the
concerns were with the release of sensitive information and
model parameters, respectively. Similarly, [14] investigated
several privacy and security concerns of deep learning mod-
els. In terms of privacy, the focus was on model extraction
and model inversion attacks. However, both [13] and [14]
do not address the impact of privacy policies on Al devel-
opment and also fail to tackle some of the important phases
in the Al lifecycle. In another survey, Ashmore et al. [15]
investigated the approaches to ensure the ML algorithms
are safe for deployment. By considering the various ML
lifecycle, the authors highlighted the important steps to pro-
vide assurance, i.e., ensure the ML models are accurate for
their intended purpose. However, the privacy aspects in the
context of the Al life cycle were beyond the scope of this
work. Wickramasinghe et al. [16] analyzed the interactions
between Al systems, developers, and users in the Al Life
Cycle to enhance the trustworthiness of Al. Although some
aspects of privacy were discussed, the focus of this work was
on highlighting important principles to facilitate trust in AL

Although various existing works have reviewed privacy
and security challenges related to Al and ML systems, there
is a necessity for examining and addressing privacy concerns
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in Al systems and during all phases of the Al life cycle.
In addition to focusing only on certain phases of the Al life
cycle, existing surveys also pay little attention to privacy
preservation strategies. Consequently, to bridge the gap, this
survey provides an overview of the AI life cycle phases
and investigates privacy risks along with their corresponding
mitigation strategies. Following are the main contributions of
this paper:

« Proposes a novel privacy risk categorization framework
consisting of four groups: risk of identification, risk
of making inaccurate decisions, risk of non-transparent
Al systems, and risk of non-compliance with privacy
regulations.

« Discusses privacy solutions addressing the aforemen-
tioned privacy risks at each stage of Al lifecycle.

o Addresses the impact of data protection practices and
legislation requirements to address privacy risks in the
Al life cycle phases.

« Discusses future research directions and open challenges
in the context of privacy in the Al lifecycle.

The focus of this paper is on the Al lifecycle, encompass-
ing various branches of Al, including ML, expert systems,
and natural language processing (NLP). Expert systems are
computer programs that mimic the decision-making ability of
human experts in a specific domain, while NLP involves the
use of algorithms and models to analyze and interpret text or
speech data. By examining these branches of Al through the
lens of the Al lifecycle, this paper provides a comprehensive
understanding of the potential applications and challenges of
deploying Al systems in different domains.

The rest of this survey is organized as follows. Section II
investigates the need for privacy in Al systems. Section III
presents the Al life cycle concisely and Section IV catego-
rizes privacy risks. Section V highlights privacy risks in each
Al life cycle phase and their solutions. Section VI discusses
the impact of regulations on Al development and hints at
future research directions. Finally, Section VI concludes the

paper.

Il. THE NEED FOR PRIVACY IN ARTIFICIAL

INTELLIGENCE SYSTEMS

Privacy is an essential legal and social concept that gives
people control over who has access to their sensitive infor-
mation. Margulis [17] discussed the work of two theorists,
Alan Westin and Irwin Altman, and their impacts on the
theory of privacy. According to Margulis, Westin’s theory
of privacy revolves around temporarily restricting access
to individuals to protect themselves whereas Altman’s the-
ory of privacy deals with selectively controlling access to
individuals to preserve privacy. Margulis also argues that
based on the two theories, privacy can be understood as a
psychological concept. Although these standard definitions
provide a foundation for developing privacy frameworks,
there is a need to evolve into a modern approach for pri-
vacy, i.e., information privacy [18], that is more suitable
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for technological development. Information privacy can be
defined as ‘“‘the ability of the individual to control infor-
mation about one’s self”” [19]. According to International
Organization for Standardization (ISO), confidentiality (an
attribute of privacy) is defined as “the property, that infor-
mation is not made available or disclosed to unauthorized
individuals, entities, or processes” [20]. The two examples
of privacy definitions indicate a lack of a standard definition
of privacy that explains the privacy requirements and risks
in information systems. The complex and diverse nature of
privacy risks in developing Al systems makes it even more
challenging in addressing them. Therefore, a suitable frame-
work for categorizing privacy risks in light of Al development
is needed. Organizing privacy risks into appropriate cate-
gories will help developers understand them better and make
risk-informed decisions [21]. Privacy risk categorization will
also help developers integrate privacy-preserving solutions
into Al development.

The rapid development in technology, including Al,
is complicating attempts to safeguard privacy in such sys-
tems. Al systems are inherently data-driven, and considering
their potential to extract hidden information in data, pro-
tecting privacy in the context of Al requires sophisticated
approaches [22]. Al algorithms are generally trained using
high dimensional data. This high dimensional data can con-
tain numerous attributes of an individual, increasing the risk
of identifying an individual by cross-referencing with other
public datasets [23]. This is a threat to privacy because,
in most cases, individuals agreed to share their personal data
for aggregate analysis (in this case, to train the Al system).
However, the identified attributes of an individual may be
used for malicious purposes both online and offline, includ-
ing fraud and harassment. Moreover, Al algorithms can be
utilized by attackers to infer sensitive information about data
subjects, such as their gender and political views [24]. The
wide adoption and deployment of Al models online also poses
a threat to privacy. For instance, it is possible to determine
whether a person has a disease by looking at or analyzing the
clinical records of that person used to train an Al algorithm
to model that disease [25]. Given that the threat to privacy in
Al models can emerge at different phases of development,
including data collection and post-deployment, a compre-
hensive approach is required in developing privacy-focused
Al systems. According to a resolution passed by the 32nd
International Conference of Data Protection and Privacy
Commissioners, to completely protect privacy in any system,
privacy must be embedded into the design, operation, and
management of the system across its entire life cycle [26].
Consequently, to develop privacy-focused Al systems, it is
necessary to analyze and resolve the privacy threats associ-
ated with each stage of the Al lifecycle. Besides developing
privacy-preserving solutions into the technology, developers
should also implement the guidelines defined by various
legislation and policies.

Many privacy legislation and best practices are dedicated
to data collection and processing requirements to protect
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individuals’ privacy. The European Union (EU) introduced
the General Data Protection Regulation (GDPR) in 2016,
which defines personal data as any information about an
identified or identifiable individual (Article 4) [27]. This
means any information that can potentially identify an indi-
vidual is considered personal data and should be protected.
Organization for Economic Co-operation and Development
(OECD) [28], California Consumer Privacy Act (CCPA) [29],
and Information Protection and Electronic Documents Act
(PIPEDA) [30] have similar definitions for personal data.
According to most privacy regulations, including GDPR and
PIPEDA, personal data is also referred to as Personally Identi-
fiable Information (PII) [31]. PII includes information related
to an identified or identifiable person, therefore signifying
that any information linked to an individual is subject to the
privacy protection regulations [32]. Examples of sensitive PII
that can directly identify an individual include social secu-
rity or insurance numbers, driver’s licenses, and biometric
records [33]. On the other hand, information such as age and
gender may be more accessible but cannot identify a person
on their own [34]. However, a study has shown that 87% of
the U.S. population (using the 1990 census) can be uniquely
identified by combining their 5-digit ZIP, gender, and birth
date [35]. In addition to these two categories, there are other
data types that can identify an individual if they show unique
patterns and are linked to a person. For example, mobility
data of individuals may be used to infer their address, people
or places they interact with, and their leisure activities, while
the accuracy of such inferences continues to grow with data
availability [36]. Moreover, in the above legislation and best
practices, an individual has some rights to control when or
how their data can be collected, used, or shared. For instance,
OECD states that personal data should be protected against
risks such as unauthorized access, use, modification, destruc-
tion, or disclosure. The introduction of different data privacy
legislation across the globe [37] further signifies the need to
secure privacy in emerging technologies such as Al

The introduction of privacy regulations has significant
impacts on developing Al systems. The regulations set by
GDPR extend to the processing of personal data of any
individual in the EU, implying that the activities of many
foreign companies fall into the scope of GDPR [38]. These
cross-border privacy rules impose a significant barrier when
it comes to data sharing stages of the Al life cycle will be
presented in the next section.

IIl. Al DEVELOPMENT LIFE CYCLE

The objective of an Al system is to solve sophisticated prob-
lems in a data-driven approach and without the need for
explicit human programming. For instance, an Al system
can be used to provide diagnosis from medical scans almost
instantly and therefore help radiologists decrease their diag-
nosis time. Al systems learn from data to make decisions or
predictions in specific applications. While historical data is
often used to train ML algorithms, other types of Al systems
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may incorporate real-time data or human input to make deci-
sions. The data are collected, preprocessed, analyzed, and
utilized in different stages of Al lifecycle. In this context, data
subjects are individuals whose information has been collected
for the development of Al systems. The GDPR also defines a
data controller as someone who determines the purpose and
means of personal data processing [39]. The data controller
may also authorize a data processor to possess and process
personal data on behalf of the controller.

The development of an Al system can be broken down into
the AI development life cycle, which refers to the cyclical
process that defines the steps to build and use an Al sys-
tem [15]. We refer to this process as the Al life cycle. Figure 1
shows the schematic representation of the Al life cycle in five
phases. Each of these five phases is discussed next.

A. PROJECT PLANNING

Prior to any model development, it is necessary to outline the
objectives of the Al system. This includes defining the scope
of the system and identifying the relevant use cases that the Al
will address. Therefore, understanding the project objectives
and deciding on the required data is the fundamental step
of an Al life cycle. To develop an efficient Al application,
it is necessary to gather comprehensive information about the
project objectives and other development details, such as data
sources and potential system users [40]. Failure to identify
the project objectives will lead to inevitable delays in imple-
mentation and potentially impact the performance negatively.
In the case of medical image diagnosis, for instance, a broader
scope of identifying different kinds of injuries from magnetic
resonance imaging (MRI) scans, including brain and spinal
cord injuries may not be efficient. Instead, based on the data
availability, training the Al model to identify a specific injury
may lead to more accurate results.

The planning phase also requires identifying different skill
sets to support and implement each step of the Al life
cycle [41]. Employing diverse experts such as privacy pro-
fessionals, ethicists, testers, Al developers, data scientists,
and subject-matter experts can facilitate the development
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and review of the system and process requirements. These
requirements may include complying with information pri-
vacy and other legislation to ensure no violations are taking
place as a result of the project’s implementation. Moreover,
the planning phase also ensures the quality of the Al sys-
tem meets the necessary requirement. This is achieved by
identifying comprehensive testing for the model as well as
identifying metrics and benchmarks to compare the perfor-
mance of the model upon training.

B. DATA COLLECTION

Once the objectives have been identified and the scope of
the project is defined, the next phase of the Al life cycle
is data collection. Since Al and ML systems are inherently
data-driven, the acquisition of quality data remains an impor-
tant phase. This phase provides the information needed by
data scientists to implement the use cases and build the Al
model [41]. To enhance the generalization of the Al mod-
els and avoid bias in the deployed model [42], collected
data should cover a diverse representation of the intended
statistical and problem domain. Furthermore, collected data
may be in several types, such as numerical, categorical, time
series, and text [43]. Each data type has its specifications
and complexities for storage, processing, and maintenance
that may impact the risk of vulnerability. To address this
issue, an Al system should follow a standard for securing
data storage from different sources. In addition to the required
data, further information about the data, referred to as meta-
data, is collected in catalogs to facilitate the organization and
usage of the data. Metadata can also hold information about
access rights, data ownership, data controllers, third parties,
usage purpose, retention, or other relevant information about
the maintenance of data and the AI system relevant to pri-
vacy concerns [44]. Therefore, this phase should address the
requirements for both data and metadata.

The data collection phase can also be time consuming and
costly for the project. Identifying existing data sources can
often speed up the data collection step. However, projects
may require specific and new data to implement the necessary
use cases. Therefore, the data collection phase must safeguard
the quality of the collected data in terms of its accuracy and
relevance. Moreover, given that the quality of the collected
data can impact model performance [45], greater attention
is required at this stage to meet the quality requirements.
Furthermore, ethical issues related to data collection must
also be addressed. For instance, data collection in the context
of human or animal experiments is subject to ethical approval.
Therefore, in addition to the quality of the data, this phase
must ensure that the collected data does not violate privacy
and ethical regulations.

C. DATA PREPARATION

The steps taken in preparing the data can impact both the
performance and training time of the model. Depending on
data types, objectives of a project, and model requirements,
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preprocessing steps such as feature selection, feature extrac-
tion, data integration, and data cleaning can enhance the
system performance [40]. Feature selection and extraction
can help deal with high-dimensional data and avoid over
fitting in model training [46]. Moreover, in this phase, data
scientists decide how to deal with incomplete data, missing
values, outliers, and anomalous instances. For example, visu-
alization of data characteristics can help data scientists to
detect and remove anomalous samples [43] and consequently
improve model performance.

Data integration is a system requirement that provides
users with a standard data format residing in different sources
by combining and transforming data into a single coherent
store in heterogeneous conditions. This requires semantic
interoperability, which refers to the ability of systems to
exchange and use data in a uniform platform and make it
possible to work with data from different sources [47]. For
example, when two similar companies need to merge their
databases, the available metadata makes it possible to reach
a uniform structure for data integration [48]. Furthermore,
annotating the collected samples can facilitate tasks, such
as classification and association rule mining. To ensure the
annotation process is accurate and reliable, it is recommended
to use independent annotators. The annotators should ideally
be experts in the domain, and if this is not possible, the anno-
tation must be validated by experts. Also, data annotation
should be free of discrimination to avoid building a biased
model [42]. In cases of dealing with imbalanced datasets,
effective strategies, including oversampling and decomposi-
tion methods [49], should be considered.

D. MODEL DEVELOPMENT
Suitable model selection and development based on the sys-
tem requirements are necessary to obtain strong performance.
Some algorithms, such as k-nearest neighbors, rely on the
extracted rules from samples and do not require a training
or learning phase. Conversely, ML-based models learn from
data in a training phase by optimizing an objective function.
As depicted in Figure 2, most ML algorithms include three
components: input, output, and a model [43]. In supervised
learning, the inputs of the model are the extracted features,
and the outputs of the model are the labels or predictions.
If the output of the model is a specific category, the model
is a classification model and conversely, if the output is
a continuous value, the model is a regression model. The
model’s parameters is learned during training to extract the
relationships between input and output. In cases where anno-
tated data is not available, unsupervised learning such as
clustering, dimensionality reduction, and anomaly detection
can be utilized. These methods are designed to find unknown
structures of the input samples. In this context, the type
of learning and model selection will depend on the dataset
available and the problem being addressed.

The model’s performance depends to a large extent on the
available data and the training procedure. Training a model
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Model parameters

FIGURE 2. Simple Schema of an ML Model.

with limited data and complexity leads to a simple model
that is not capable of accurate predictions, i.e., under fitting.
On the other hand, excessive training may lead to over fitting,
reducing the model’s accuracy on unseen data, i.e., poor gen-
eralization. Over fitting can also make the model vulnerable
to various forms of attacks [50]. In addition to model per-
formance, transparency and interpretability can increase data
subjects’ trust in the models [51]. Interpretable Al refers to
algorithms with understandable behavior [52], which allows
data scientists to better comprehend why specific results have
been obtained.

An important subphase of model development is model
evaluation. This stage allows developers to adjust model
parameters to maximize performance gain. A subset of the
training set, called validation set, is used to assess the perfor-
mance during the training. Developers may also analyze the
impact of specific input features on model performance and
consequently augment or deduct input features. The selection
of appropriate evaluation metrics depend on the type of model
and problem. For instance, there are well-defined evalua-
tion metrics for classification and regression problems [53].
Clustering algorithms have well-defined metrics [54] based
on whether some ground truth (annotated data) is available.
Finally, it is important to assess the performance of the model
on unseen or test data. This step highlights whether the ML
model is capable of making generalized predictions.

E. MODEL DEPLOYMENT

The satisfaction of stakeholders and data subjects is highly
related to the outcome of the deployed product. Therefore,
the final system should be aligned with the objectives that
have been planned in the first phase. Performing excessive
tests before deployment can help assure the system’s accuracy
and ensure the model is free of bias. Successful deployment
should also consider ease of use for end users. For instance,
a suitable application can be developed that allows users to
interact with the final model intuitively. In some cases, such
as detecting traffic violations, real-time use of the Al model
may be required, and such requirements must also be met at
this stage. Model deployment should also ensure the neces-
sary computing and memory resources are available for the
Al algorithm to function. For example, complex models may
not be suitable to be deployed on limited hardware devices,
including mobile phones, and are better suited to be deployed
on the cloud.

61834

After deployment, data distribution may change, end-user
preferences can evolve, and end-user feedback will emerge,
highlighting the importance of regular system maintenance.
While concept drift and changes in the distribution of input
data or the target variable can impact the performance of the
deployed model [55], it is necessary to keep a product up to
date. Since many users have access to the deployed model,
this phase is particularly vulnerable to attacks. In addition to
designing a secure system, predicted data on the model should
be fed back into the pipeline to drive specific decisions [56].
If necessary, the deployed model can also be trained on newly
available data to increase its performance.

Each phase of the Al lifecycle contains different complex-
ities and potential for privacy breaches. For instance, during
the model-building phase, developers can experiment with
privacy-preserving mechanisms and observe their impact
on model performance. However, once the model has been
deployed, frequent changes may not be possible due to the
risk of the model being exposed to attackers. Nonetheless,
integrating necessary solutions into the development of Al
systems across their entire life cycle is crucial to safeguarding
privacy [26]. As such, privacy threats and solutions must be
evaluated in the context of the Al life cycle.

IV. PRIVACY RISK CATEGORIZATION
Privacy standards and regulations are constantly shifting
since Al as a technology continues to evolve and its applica-
tions continue to expand. We are also becoming increasingly
aware of Al technologies’ privacy implications and risks.
Identifying and classifying the privacy risks related to the
development of Al in light of existing privacy regulations
can help mitigate these risks. A privacy risk source can be
defined as an entity, process, or technology whose action may
compromise data subjects’ privacy, leading to intentional or
unintentional privacy harm [57]. The action of the attacker
or adversary may be due to unauthorized data processing
through malicious intent [58]. The compromise may also be
due to unauthorized data processing through malicious intent
of an attacker or adversary, or due to unintentional incident,
error or mistake [59]. Privacy risks can emerge in each phase
of the Al life cycle and need to be proactively addressed.
However, due to the rapid growth in Al-related applications,
the design and deployment of Al algorithms are generally
performed without adequate attention to governance, over-
sight, transparency, and accountability [60]. One of the main
objectives of this work is to define a privacy risk framework
to evaluate the vulnerabilities and risks related to Al develop-
ment. Our proposed risk framework includes four categories,
namely identification, making inaccurate decisions, lack of
transparency in Al systems, and non-compliance with privacy
regulations. Figure 3 presents the taxonomy of the identified
privacy risks and their major contributing factors. These risk
categories are further discussed in the following subsections.
In the context of protecting privacy in Al applications, it is
important to consider the application domain as the context of
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FIGURE 3. The Taxonomy of Privacy Risks.

application dictates the appropriate privacy approach. Differ-
ent applications have different requirements and constraints,
and the level of privacy protection needed may vary depend-
ing on the sensitivity of the data being used, the potential
impact of a privacy breach, and the legal and ethical consider-
ations surrounding the application. For instance, the privacy
requirements for a healthcare Al application that involves
sensitive patient data would be very different from those for
a law enforcement application that involves public security
concerns. In healthcare, privacy is a crucial ethical and legal
requirement that must be protected, whereas in law enforce-
ment, privacy considerations must be balanced with the need
to protect public safety.

A. RISK OF IDENTIFICATION

The risk of identification refers to any action that may
threaten to reveal the data subjects’ identity. The identity of
a data subject may be compromised by a malicious attack
by an adversary [61] or by unintentional actions [62]. For
example, insights generated from the analysis of datasets
may lead to personal identity disclosure, which could occur
without malicious intent. On the other hand, malicious attacks
are more prevalent and require sophisticated approaches
for mitigation [63]. Examples of malicious attacks include
cybercriminals targeting databases to steal or infer personal
information or PII about individuals to commit financial
fraud.

1) UNINTENTIONAL IDENTIFICATION
Research by McAfee demonstrated that 43% of data breaches
are caused by internal actors in an organization and that half
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of those breaches are unintentional [64]. In the context of Al
systems, the analysis of personal data, whether anonymized
or not, may lead to accidentally identifying a data subject.
These unintended activities leading to identification can be
further categorized into two:

« Individual oversight: An individual with access to per-
sonal or sensitive data may harm the identity of data
subjects due to negligence. For instance, mailing sensi-
tive data to incorrect recipients and transferring sensitive
data to personal devices by employees are significant
contributors to data breaches in healthcare [65]. This
risk is exacerbated by the fact that mistakes made by
individuals often go undetected until the disclosure of
personal data has caused irreversible damage to data
subjects.

o Organizational flaws: Unintentional leakage of personal
data may also occur due to a lack of appropriate pre-
ventive measures by organizations. These measures can
include technological solutions such as data leakage
prevention systems [63] and company guidelines for
dealing with sensitive data. The latter can also minimize
employee oversight by promoting a culture of integrity
in the organization by emphasizing the organization’s
responsibility towards privacy [66].

2) DELIBERATE IDENTIFICATION

This category deals with actions that lead to the deliberate
identification of data subjects. The motives of adversaries
vary from financial gains by external actors to corporate
espionage by internal actors. In the context of Al systems,
these attacks are risks that may take place deliberately on each
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part of the system, i.e., input data, model, and output. Such
attacks can target either data or processes to infer and misuse
data subjects’ identities.

a: ATTACKS ON DATA

Attacks on data can compromise data subjects’ identity or
their integrity by targeting databases, i.e., stationary data or
data transfer channels. There are three prevalent forms of
attacks on data that target personal identity:

e Linkage attacks: A database is de-anonymized using a
linkage attack if the adversary using auxiliary infor-
mation about a certain individual can reveal which
record in the database corresponds to that individ-
ual [67]. Moreover, attackers often associate some
available information with auxiliary data from various
mediums, including the internet, public records, and
domain knowledge [68], to identify individuals and
their sensitive information.

e Re-identification attacks: In these attacks, anonymized
or de-identified personal data can be matched with
its owner [69]. The adversary may utilize different
approaches to re-identify an individual, including link-
ing datasets using background knowledge [70] and
comparing mobility traces to infer sensitive informa-
tion [71]. A study by De Montjoye et al. [36] has shown
that it is possible to uniquely identify 95% of individ-
uals by using human mobility data consisting of only
four Spatio-temporal points. While individuals can be
uniquely identified from such data, inferring their iden-
tity often requires the use of additional personally
identifiable information that may not be available from
the mobility data alone.

e Reconstruction attacks: These attacks involve partly
reconstructing a private dataset by using publicly avail-
able information about the dataset. For instance, the
adversary may reconstruct a probabilistic version of
the original dataset used to train a model by using the
model description as well as auxiliary information [72].
Moreover, Dinur and Nissim [73] demonstrated that
adversaries may utilize some random queries to a
database and combine the results of the queries to
reconstruct sensitive data from a database.

e Derivation attacks: These attacks involve inferring sen-
sitive information from non-sensitive data by exploit-
ing correlations or patterns in the data. Consider
the example of an e-commerce website that collects
data on customers’ purchases, such as the purchased
items, product prices, and the frequency of purchases.
An attacker could use this data to make educated
guesses about a person’s income level by analyz-
ing the types of products they buy and their price
range. For example, if a person frequently buys luxury
items, high-end electronics, and expensive clothing,
the attacker could infer that the person has a high
income. In this case, the attacker is exploiting the
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correlation between the purchase history and the per-
son’s income level to derive sensitive information (the
person’s income) from non-sensitive data (the purchase
history).

b: ATTACKS ON PROCESSES

Instead of exploiting data to identify an individual, adver-
saries may explicitly target Al algorithms. Generally, targets
on the algorithm can be categorized into white-box attacks
and black-box attacks. In white-box attacks, the adversary
may possess some knowledge about the model or its original
training data whereas in black-box attacks, the adversary does
not have any information about the algorithm and is forced
to probe the system to infer potential vulnerabilities [74].
Besides contributing to the risk of identification, attacks on
processes can also harm individuals by changing the out-
come of Al models (to be discussed in Section IV-B). There
are three common attacks on processes that may result in
identifiability:

e Model inversion attacks: In these attacks, an adver-
sary gains access to an Al model to learn sensitive
information about individuals [75]. An adversary can
either infer the feature vectors or the general pattern
of data used for model building through the deployed
model. Fredrikson et al. [76] have shown that attackers
can utilize a deployed ML model to recover recogniz-
able images of people’s faces given only their names.
Model inversion usually occurs by the attacker sub-
mitting random input samples to a deployed classifier
and observing the classification confidence for each
input (black-box attack), intending to modify inputs to
maximize the confidence values returned by the model.

e Membership inference attacks: In these attacks,
an adversary utilizes various methods to reveal a
user’s membership to a dataset [77]. For instance,
an adversary can generate a random record and run
it by a deployed Al model to obtain predictions with
confidence or probability values [25]. The adversary
then continues to adjust the original record until a
high probability value is obtained, in which case the
curated record is almost identical to a member of the
dataset. If attackers can ensure that an individual is a
member of a given dataset, it is a positive membership
attack. Likewise, when attackers can establish that an
individual is not a member of a given dataset, it is
referred to as a negative membership attack.

e Reconstruction attacks: In reconstruction attacks to
processes, feature vectors used to design an Al model
are available to the intruder, constituting a white-box
attack. The attacker can use the extracted features to roll
back or re-construct information about data subjects.
Models that include explicit feature vectors of data
samples, such as support vector machine (SVM) [78]
and k-nearest neighbors (K-NN) [79], are more sus-
ceptible to reconstruction attacks. Combining extracted
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features from the original data and the algorithm’s
parameters can lead to more severe reconstruction
attacks.

B. RISK OF INACCURATE DECISIONS

Accuracy is among the core requirements for a trustworthy Al
system. An inaccurate decision made by an Al algorithm can
contribute to harmful social, political, and legal outcomes.
For example, qualified applicants may be incorrectly rejected
for employment or loans, or an innocent person may be
arrested unfairly by an incorrect automated decision-making
system. An inaccurate Al system can result from inadequate
data collection, processing, and model design [80]. Inaccurate
training data can impact Al performance significantly and
have real-world consequences in various applications [81].
As an example, the presence of racial bias in the training
set can potentially affect the relevance and accuracy of pre-
dictions for people of color/underrepresented groups [82].
Appropriate pre-processing is also important for improving
the accuracy of several ML algorithms [83]. In terms of
model design, an over fitted model can substantially impact
model performance. A model is over fitting when it performs
exceptionally well in training but fails to deliver generalized
predictions on unseen data. Therefore, to ensure Al systems
are accurate, it is necessary to address flaws in data collection,
processing, and model design.

Additionally, attacks on databases or algorithms may com-
promise data integrity [84] and cause algorithmic biases,
resulting in errors and inaccurate outcomes. Some prominent
attacks that distort the results of the algorithms are as follows:

e Poisoning attacks: These attacks aim to distort the Al
model’s decision and impose biases on the outcome
by contaminating the training dataset [85]. There-
fore, these attacks are independent of the algorithm’s
structure, learning type, and lifelong learning capabil-
ity, potentially impacting deployed models. Attackers
usually perform these attacks on AI models that
need re-training by injecting malicious samples during
operation. Re-training is performed to keep the Al
algorithms up to date. For instance, poisoning attacks
can have devastating consequences in healthcare appli-
cations by causing the models to misdiagnose [86].

e Adversarial attacks: These attacks intend to deceive and
manipulate Al models by injecting malicious inputs
into the system [87], [88]. Usually, AI models are
trained and tested on samples from the same statistical
distribution. However, adversaries may inject data from
different distributions or invalid sources to compromise
the results by exploiting specific vulnerabilities [89].
Consequently, these attacks may impact the model’s
output and move the decision boundary resulting in
inaccurate or biased decisions.

e Evasion attacks: In evasion attacks, an adversary aims
to evade detection by obfuscating data content [90].
To this end, the adversary injects several instances
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with incorrect labels to train an Al model and alter
its outcome [91]. Spoofing attacks against biometric
verification systems [92] are an example of evasion
attacks.

C. RISK OF NON-TRANSPARENT Al

The automated processing of personal data to analyze an
individual’s interests and personality is known as automated
data profiling (ADP). The process of making a decision by
automated means without human involvement, using factual
or inferred data is known as automated decision making
(ADM) [93]. Utilizing Al to attain decisions on credit scor-
ing, hiring, and national security are examples of ADM
that often include data profiling. In contrast, grading mul-
tiple choice questions using a pre-programmed application
is an example of ADM that does not involve data profiling.
According to many privacy legislation and recommendations,
ADM and ADP should be transparent, interpretable, and free
of bias and discrimination. According to OECD, transparency
and explain ability are important principles for developing
Al, and data subjects adversely affected by an Al should
be allowed to challenge an Al-generated decision regarding
them [94]. Interpretability means that decisions and predic-
tions made by an automated system are understandable to
humans [95].

Explainable AI (XAI) [96] is an active field of research
promoting solutions toward increasing the interpretability of
Al algorithms. In contrast to traditional ML algorithms, deep
learning algorithms (that utilize deep neural networks) are
more difficult to explain as they do not have a dedicated
feature selection phase. The lack of explain ability of some
deep learning algorithms is also known as the ‘black box’
phenomenon [97]. These algorithms sacrifice interpretability
for accuracy, and by using complex non-linear associations
and connections across the network, they become inher-
ently uninterpretable to humans [98]. Moreover, it is unclear
whether legislation such as the GDPR requires an expla-
nation of ADM [99], [100]. Wagner [101] argues that due
to frequent algorithmic changes and the algorithm being
considered as intellectual property of an organization, it is
not feasible to explicitly investigate the algorithms to deter-
mine interpretability. Rather, he maintains that important
information about the development of algorithms, includ-
ing the training data and what objectives the algorithms are
optimizing for, can be revealed to the public. This aligns
with the recently proposed Bill C-27 in Canada under the
Al and Data Act, which requires developers to publish a
plain-language description of the system, including how the
system 1is intended to be used and the types of decisions
it intends to make [102]. Lack of transparency in terms of
how the Al system functions and makes decisions about
individuals can lead to public distrust in Al. Therefore, priori-
tizing transparency by making the process of Al development
open to the public can facilitate Al trustworthiness. While
transparency and interpretability are important for promoting
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trust and accountability in machine learning models, they
can also potentially enable privacy attacks. Model explana-
tions, used to enhance transparency and interpretability, can
inadvertently reveal sensitive information about the training
data or the model’s decision-making process [103]. In par-
ticular, counterfactual explanations, designed to show how
changing input features can impact the model’s output, can
be exploited to extract a target model’s parameters and steal
sensitive data [104]. Therefore, developers must carefully
select strategies to enhance transparency in Al models with-
out compromising privacy.

D. RISK OF NON-COMPLIANCE WITH PRIVACY
REGULATIONS

Legislation and organizations such as GDPR [27], PIPEDA
[30], CCPA [29], and OECD [28] have provided recom-
mendations and policies on how to ensure the protection
of individual privacy. Inadequate attempts to comply with
privacy regulations and policy recommendations are a risk to
privacy and can have significant consequences for organiza-
tions. Firstly, most privacy policies impose hefty sanctions on
organizations for privacy-related infringements [27], [102],
potentially causing financial harm in cases of violations.
Moreover, not complying with regulations may hamper the
business competitiveness of organizations as they would
be considered unreliable to their competitors. Finally, non-
compliance with privacy regulations can result in a loss of
public trust in Al. Risks of non-compliance with privacy
principles and best practices include:

e Excessive data collection: Excessive data collection in
Al systems may compromise data subjects’ privacy
by increasing the risk of identification and exposing
data subjects’ behaviors. Furthermore, excessive data
collection can result in additional harm in cases of data
breaches or security attacks as the overall amount of
data leakage is increased. Article 25 of GDPR states
that appropriate technical measures must be taken to
ensure that data collection and processing are limited
to specific purposes [27]. Likewise, Principle 4 of
PIPEDA’s fair information obligates limiting the data
collection only for the specific purpose and by fair and
lawful means [30].

e Lack of transparent legal consent: Not informing the
end-users about how their data is collected, stored,
processed, shared, and disposed of can threaten their
privacy. It is because ADM may utilize profiling to
infer a data subject’s behavior and presumed interests
to provide recommendations. In this context, consent
is necessary to ensure that the data subjects are aware
of the decisions impacting them and have agreed to
the use of their data in making these decisions [101].
Unambiguous, explicit, and comprehensive consent is
also important for mitigating the risk of non-transparent
Al For example, websites collect cookies to facili-
tate users’ access and interaction with the website.
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GDPR requires service providers to provide informed,
specific, and freely given consent for collecting cook-
ies [105] to ensure the data subject is aware of the
service providers tracking practices and, in turn, ensur-
ing the privacy of the data subject is not compromised.
Consent is also required for collecting, processing,
or disclosing personal information according to Prin-
ciple 3 of PIPEDA [30]. Therefore, comprehensive and
transparent legal consent is necessary for data collec-
tion in Al systems. However, such legal consent may
not be applicable for Al systems in certain applications,
such as surveillance and law enforcement.
Unnecessary data retention: The accumulation of data
in the Al system for an indefinite time may compromise
privacy by increasing the risk of composition, linkage,
and intersection attacks. Moreover, not retaining per-
sonal data long after its intended purpose will minimize
the risk of the data being outdated and inaccurate,
which will impact Al performance, and help the orga-
nization reduce security and storage costs. The right to
erasure (Article 17) of the GDPR [27] obligates the data
controller (e.g. service providers) to erase personal data
when it is no longer required for the initial intended
purposes.

Incorrect or outdated data: Inaccurate and outdated data
can potentially misrepresent an individual. Moreover,
in the context of Al, it can lead them to generate
inaccurate decisions about individuals, as discussed in
Section IV-B. Therefore, data controllers must ensure
personal information is kept up-to-date, complete, and
accurate. The need for personal data accuracy is high-
lighted in Article 5 of GDPR [27] and Principle 6 of
PIPEDA [30].

Limited/lack of data portability: Data portability entails
the ability of individuals to receive personal data con-
cerning them and transmit those data to another data
controller [27]. In many best practices and regulations,
individuals have the right to receive their data in a struc-
tured, commonly used, and machine-readable format,
i.e., interoperable format. The right to data portability,
as defined by the GDPR, enables the development of
effective privacy enhancement technologies [106]. The
portability of personal data in Al systems allows data
subjects to attain various Al service providers eas-
ily and promotes competition among these technology
providers.

Vulnerable security in systems: Ineffective security
measures in an Al system can result in data breaches
and disclosure of data subjects’ information [107],
constituting a critical privacy risk. Due to inadequate
security measures, intruders can access the system to
steal personal information. For example, through man-
in-the-middle attacks, an outsider can access personal
information without authorization [108]. Additionally,
Al systems under reconstruction attack may com-
promise the model parameters, leading attackers to
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reconstruct information about data subjects using the
extracted features. The need for developing effecting
security measures to protect sensitive information is
highlighted in Principle 7 of PIPEDA [30]. Similarly,
Article 32 of the GDPR obligates suitable technical and
organizational methods to ensure the processing of data
in a secure manner [27]. OECD also highlights security
and safety as an essential component for trustworthy Al
and that Al systems ‘‘should be robust, secure and safe
throughout their entire lifecycle” [109]. The privacy
challenges and solutions in light of the Al life cycle are
discussed next.

V. PRIVACY RISK AND EXISTING SOLUTIONS IN THE Al
LIFE CYCLE

A. PROJECT PLANNING

Planning is among the most integral phases of the Al life
cycle that directly impacts all other phases and the outcome
of the Al system. Not having well-defined objectives and
requirements may lead to poor model performance, con-
tributing to the risk of inaccuracy. Incomplete and incorrect
requirements are significant contributors to the failure of a
software project [110]. To this end, requirement elicitation is
an integral step in the planning phase. Requirement elicitation
is the process of identifying the necessary requirements of
a system in collaboration with users, customers, and stake-
holders [111] to implement project objectives successfully.
The process of requirement elicitation ensures that developers
have specific targets to meet and an appropriate timeline can
be set for implementing each requirement, thereby enabling
the successful implementation of project objectives. More-
over, it is necessary to include comprehensive documentation
of the project plan, including the objectives, requirements,
and limitations, to mitigate the risk of an inaccurate Al sys-
tem. Developers and data scientists should collaborate with
domain experts to plan data collection and model-building
strategies. For instance, developing an Al system that can
detect cancers from medical scans should involve oncologists
and radiologists, the domain experts in this application. The
project plan should also include strategies to de-identify and
anonymize data, limit access to this highly-sensitive data,
and privacy metrics to evaluate the protection of individual
data. The project plan should identify evaluation methods
to measure the effectiveness and accuracy of the Al system.
Failure to select the correct evaluation metric and strategy will
lead to performance and privacy-related issues after model
deployment.

Additionally, a well-documented plan will improve the
transparency of the Al system. It is also necessary to describe
the system in non-technical and plain language based on the
recommendations of various privacy policies [102]. To fur-
ther increase trust and transparency in the Al system, other
stakeholders, including the business team and sponsors,
should be involved in the planning stage and agree on the
vision and goals of the project [110]. This process will ensure
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all stakeholders agree on the necessary requirements and the
privacy goals of the project. It is also essential to interview
potential users and data subjects to understand and consider
their privacy requirements at the planning stage. The require-
ment elicitation process should consciously embed features
that can make the Al system more transparent. The trans-
parency of an Al system can be enhanced by making the
source code available among the stakeholders, and ensuring
the project is well documented highlighting the data use,
project requirements, and expected outcomes.

A limited understanding of the project requirements and
poor planning may also increase the risk of identification.
A retail company may, for example, analyze personal data,
revealing insights about customers, which was not necessary
for designing the AI model for forecasting company annual
sales. Therefore, a thorough examination of the project’s
objectives and planned implementation strategy by utilizing
the Privacy Impact Assessment (PIA) can mitigate these pri-
vacy risks to a great extent. PIA can establish that program
managers and system owners have consciously integrated
privacy protections throughout the development life cycle of
a system [112]. PIA can help analyze the risks related to
collecting, using, sharing, and maintaining sensitive infor-
mation [113] and minimize privacy risks proactively. To be
effective, PIA should be planned in light of the project’s
objectives, scope, and limitations [114]. In addition to PIA,
the risk of identification can also be mitigated by preemptive
security measures such as strong authentication, encryp-
tion, and access control strategies. Strong authentication and
access control methods can prevent unauthorized access, and
robust encryption methods can preserve confidentiality in
case of illicit access. Besides introducing security measures,
establishing privacy-focused ethics and guidelines on dealing
with sensitive data can mitigate the risks of unintentional
identification to a great extent. This includes organizing
workshops to educate employees on best practices and com-
mon mistakes when dealing with sensitive data. Finally, the
requirement elicitation process should also plan for effective
anonymization and de-identification methods to ensure PII is
removed from the collected data.

Integrating the recommendations and mandates of pri-
vacy regulations in the project requirements can alleviate
the risks of non-compliance with privacy policies. These
recommendations should be integrated proactively through
privacy by design. The fundamental principles to be imple-
mented throughout the project development include data
minimization, transparent consent, limited data retention,
data accuracy, secure data storing, interoperability, and trans-
parency. The planning phase should also include strategies
for developing consent management, data interoperability,
effective system security, and methods for rectification or
update of personal data. In addition, regulations and best
practices recommend de-identification and anonymization of
personal data at the source, i.e., irrevocably removing any PII
and ensuring no trace back to identifiable information. To pre-
vent Al systems from being attacked, identifying strategies
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for extensive privacy and security testing is critical. Various
privacy regulations also require the implementation of appro-
priate technical and organizational measures to guarantee
privacy [27]. To this end, privacy metrics can help assess
the protection and susceptibility of data in revealing private
information [115]. Furthermore, privacy metrics can quantify
the level of privacy acceptable by compliance officers and
data subjects. The use of privacy metrics and PIA can also
help demonstrate compliance with regulations. The planning
phase should identify the necessary requirements for imple-
menting PIA and privacy metrics. Finally, engagement of
various user groups of the Al system, including data subjects
and end users, through the Al development lifecycle will be
instrumental to understanding and implementing their privacy
needs.

B. DATA COLLECTION

This section outlines some privacy issues that may arise dur-
ing data collection, transfer, and storage. Most of the privacy
risks in this phase fall under the risk of non-compliance with
privacy regulations. To alleviate the risk of excessive data
collection, most privacy legislation recommend data mini-
mization, i.e., personal data processing should be adequate,
relevant, and limited to the intended purpose [116]. Per-
sonal data can be reduced after collection to further decrease
the risk of excessive personal data processing. Attributes
containing certain PII, including names and addresses, are
not relevant to model training in most applications and
therefore, should be removed or not collected in the first
place. In applications where some PII, such as gender and
age, are important learning features for the Al model, de-
identification and anonymization methods should be applied.
For instance, Goldsteen et al. [117] proposed reducing the
granularity of input features by removing certain features or
generalizing them. To handle the trade-off between reducing
the collected data and imposing a minimum impact on the
model’s accuracy, they employed the knowledge encoded
within the model to produce a generalization.

The integration of an appropriate consent management
framework is necessary for data collection according to most
privacy regulations. The collection and utilization of personal
data without data subjects’ consent is an invasion of their pri-
vacy. To facilitate this, Castelluccia et al. [118] recommend
providing a data agreement, e.g., terms and conditions, for
data subjects to have their consent prior to data collection.
This agreement should elaborate on how personal data are
collected, how they are transmitted and stored, why and how
data are processed, and when data are deleted. The agreement
should be clear, easy to understand, and accessible to data
owners. It is also necessary to ensure that the data agreement
is presented to the data subjects in a non-disruptive manner,
without repeated requests for approval [118]. Data subjects
should also have the right to accept or reject being subject
to the data collection and processing. Furthermore, the con-
sent should be part of a legal document known as a privacy
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policy [119] or privacy statement. This document should also
include a privacy notice informing the data subjects when
their data is collected and what data is collected. In addition to
demonstrating compliance with privacy regulations, privacy
policies also help with increasing Al transparency.

Retaining sensitive data for longer than necessary, i.e., data
accumulation increases the risk of data loss through attacks.
Moreover, the collected data may become outdated, impact-
ing decisions about data subjects and contributing to the risk
of inaccurate Al systems. Therefore, personal data may only
be retained in the system until the contract terminates or data
subjects are willing to keep their data for longer. Furthermore,
companies should ensure that all available data are accurate
and up to date, and individuals have the right to rectify
their outdated or incorrect data [120]. Data controllers should
introduce technical design and implementation [121] to facil-
itate the rectification or removal of specific data related to
a data subject from all their servers and backups. A mobile
or web interface can be introduced to enable data subjects to
rectify or update their personal data. Interactive tutorials can
be provided by the data subjects to ensure the interfaces are
accessible and user-friendly for data subjects. It is also the
responsibility of the data controllers to ensure third parties
(other controllers and data processors) comply with data col-
lection and data practices that have been established through
consent, including data retention and rectification.

Under GDPR and other privacy regulations, data sub-
jects have the right to receive a copy of their data, in a
machine-readable format. To comply with the GDPR prin-
ciple, an interoperable and standard data format [122]
should be made accessible to data subjects. For example,
Jaleel et al. [123] designed a framework to present medical
data interoperability and standardization through the col-
laboration of healthcare devices. Interoperability also has
other benefits in large systems that receive data from diverse
sources, including data integration and processing. Moreover,
data standardization, referred to as semantic interoperabil-
ity, can help bring data into a commonly accepted format
and definition that allows for data sharing, data integra-
tion, and collaborative research [124]. Bezuidenhout [125]
investigated what infrastructures and resources for data
standardization are needed to make data more accessible,
interoperable, and reusable. Data controllers should provide
suitable documentation and tutorial for data subjects to facil-
itate data portability. The documentation should explain how
data subjects can access their data and have them transferred
to another organization. Data controllers should also ensure
safety measures when transferring data to data subjects or
other platforms.

Safe data storage and transition are crucial to mitigate
both the risk of an insecure system and the risk of identi-
fication. According to GDPR, data storage should comply
with security and safety standards to protect data [126].
Also, GDPR mandates reporting personal data breaches
to authorities in less than 72 hours. Attacks on data can
occur during two phases; data-at-rest attacks occur on stored
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databases, whereas data-in-motion attacks occur during the
transition of data from one platform to another. Data link-
age and re-identification attacks are examples that threaten
data subjects’ identification by targeting data-at-rest, while
man-in-the-middle attacks target data-in-motion. According
to Jain et al. [127] encryption techniques, including identity-
based encryption, attribute-based encryption, and storage
path encryption, are fundamental solutions for privacy pro-
tection during data storage. Additionally, a firewall between
the storage server and the network [128] should be installed
to enhance the privacy and security of the systems and
defend against attacks. The firewall can control incom-
ing and outgoing packets and filter out suspicious packets.
Another preventive solution to manage data access is by
using high-security protocols and access management. For
example, a data catalog, which provides a structured list-
ing of data assets in the available database to facilitate
accessibility and security [129], can be used as a suitable
protocol and access management tool. Data catalog uses
metadata to help organizations manage their data and per-
form data governance by organizing data based on their
importance. Furthermore, an appropriate identity and access
management framework [130] is particularly important in
collaborative projects, where multiple institutions access dis-
tributed resources. Such frameworks ensure personal data
is only handled by authorized users. Local differential pri-
vacy [131] can be an effective solution in mitigating the
risk of identification for various applications. In this con-
text, individual perturbs their data before sharing it with
the data collector, adding a small amount of random noise
to their data in a way that preserves the overall statistical
properties. For example, consider a survey asking people
whether they have ever committed a crime. Each respon-
dent would add a small amount of random noise to their
answer before submitting it. This would make it difficult
for the data collector to determine the exact response of
any individual, but still provide insightful information about
the overall population without compromising the privacy of
individuals.

To safeguard against the risk of non-transparent Al,
data controllers should integrate metadata to provide data
integrity. The metadata should address how the data will be
accessed, who has access to the data, what data is to be
collected, and for how long will the data be stored. Providing
metadata can also help data subjects demonstrate compli-
ance with privacy regulations and authorities. In addition,
meta-data can help interoperability by providing a standard
format and definition for data transiting and processing. It is
also the responsibility of the data controller to determine
whether sensitive PII is part of the collected data and cate-
gorize any direct or indirect identifiers. Lack of transparency
can also arise due to incomplete or non-existent consent of
data subjects. Arnold et al. [132] proposed employing a com-
prehensive and transparent document or ‘FactSheet’ for Al
systems to address transparency concerns. Such a document
should contain sections on all relevant factors related to data
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privacy in Al systems, such as data collection, consent of data
subjects, and intended use.

C. DATA PREPARATION
Ineffective data collection and technical faults, including
faulty sensors and data loggers, may result in missing, dis-
torted, or inaccurate values. Inaccurate and incomplete data
can contribute to the risk of inaccuracy and impact decisions
about data subjects. In cases when data is clean and free of
incorrect values, the transformation of input features (e. g.
normalization of numeric values) and labels (e. g. one-hot
encoding) can improve model performance [133]. Privacy-
preserving data cleaning can be utilized for interpolating
missing data. For instance, Jagannathan and Wright [134]
proposed a lazy decision-tree imputation method for data
partitioned between two parties without revealing the com-
puted model to either party, thus preserving privacy. Data
refinement and statistical approaches to handling missing
data [135] are other preprocessing techniques to mitigate
the risk of inaccurate Al systems. Moreover, outliers and
anomalous data can mislead the model and cause it to pro-
duce inaccurate outcomes. In this context, unsupervised ML
approaches are popular for outlier detection. For example,
the isolation forest algorithm can perform multivariate outlier
detection by isolating anomalous data points and considering
their relationship with other points in a tree structure [136].
Data visualization is another approach for outlier detection,
enabling data scientists to analyze data distribution and deter-
mine the expected data range. Consequently, instances falling
outside the expected range are denoted as outliers [137].
Furthermore, an illegitimate data point may be generated by
an adversary [138] after the data collection phase. Such data
points may be statistically similar to other legitimate points,
making them difficult to isolate using the aforementioned
approaches. In this case, generative adversarial-based net-
works are suitable for detecting such malicious data points by
learning the adversarial features [139]. Detection and removal
of incorrect values and outliers in the data preparation phase
can improve the model’s accuracy and generalization. Finally,
feature engineering, which transforms raw data into meaning-
ful representation using human expertise [140], is necessary
to improve the performance of supervised ML algorithms.
Examples of feature engineering include extracting informa-
tion such as month and year from time-series data. In other
cases, new features can be generated by mathematical trans-
formations, including trigonometric transformation.
Developers can also integrate preemptive solutions in the
data preparation phase to mitigate risks of personal data
identification. In this context, the de-identification of per-
sonal data is necessary. De-identification refers to eliminating
identifiable information, including names and phone num-
bers, from personal records to protect the privacy of data
subjects. Similarly, pseudonymization is a preventive solution
to preserve data privacy [141]. Pseudonymization replaces
features that can identify a data subject with a value that does

61841



IEEE Access

S. Shahriar et al.: Survey of Privacy Risks and Mitigation Strategies in the Al Life Cycle

not imply the data subject’s identification, i.e., a pseudonym.
Substituting student names with student numbers for course
grade announcements is a simple example of pseudonymiza-
tion. However, de-identification and pseudonymization alone
are insufficient for providing privacy effectively and must
be combined with other solutions, including dimensionality
reduction. To this end, Jaidan et al. [142] demonstrated that
using dimensionality reduction in privacy-preserving algo-
rithms can decrease the risk of re-identification. Moreover,
Principal Component Analysis (PCA) is an effective method
for dimensionality reduction that provides linear transfor-
mation of features [143]. Besides PCA, other non-linear
and autoencoder-based transformations [144] can be utilized
to reduce dimensionality. These methods help anonymize
data by transforming the raw data, which is more suscep-
tible to identification, into a more complex representation.
Linkage and re-identification are attacks on data, whereas
reconstruction attacks are privacy threats on extracted fea-
tures in the preprocessing phase. Reconstruction attacks may
target the available feature vectors in the dataset or during
model building. Naehrig et al. [145] proposed cryptography
models such as homomorphic encryption to mitigate the risk
of reconstruction attacks. Homomorphic encryption uses a
public key for data encryption and an algebraic system to
work with encrypted data. The main advantage of homo-
morphic encryption is that Al models can be developed with
encrypted data without decryption. This method can ensure
data privacy because only data controllers with the matching
private key can decrypt data when needed. To mitigate the
risk of adversarial attacks, adversarial feature desensitization
using generative adversarial networks (GANSs) [146] should
be applied during feature engineering. Natural and adversar-
ial data cannot be discriminated if the learned features are
invariant towards adversarial perturbations.

D. MODEL DEVELOPMENT

Developing an accurate Al model is one of the main objec-
tives during the model design phase. Developers can make
changes to an Al system iteratively and evaluate perfor-
mance until the desired outcome is obtained. For instance,
an interactive model and human-in-the-loop (HITL) sys-
tem [147] can help developers track changes and determine
the best-performing conditions. HITL leverages the power of
Al and human intelligence to optimize Al models. To this
end, an expert supervises training, tuning, and testing tasks,
especially in edge points where the algorithm has low confi-
dence in decisions or encounters a problem. Xin et al. [148]
proposed a Helix HITL system that is fast and effective
for improving model accuracy. Responsive feedback and
automation are the main advantages of such systems. In addi-
tion, using appropriate evaluation metrics to measure model
performance is essential to mitigate the risk of inaccurate
Al systems. For instance, in imbalance classification prob-
lems, commonly used metrics such as classification accuracy
may be influenced by the majority class [149] and thus
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fail to represent model performance accurately. In this con-
text, Al developers must be aware of various evaluation
metrics and their limitations as it applies to a given prob-
lem. It is also necessary to use evaluation strategies that
minimize prediction errors. For instance, training error and
standard k-fold cross-validation contain biases that must be
adjusted [150]. Therefore, appropriate evaluation metrics and
strategies should be selected in collaboration with data scien-
tists and Al researchers. Moreover, determining the optimal
model parameters, i.e., hyperparameter tuning, can improve
model performance [151]. In this context, developers should
experiment with various strategies, including grid search
and Bayesian optimization [152], to determine the set of
optimal model parameters. Overfitting [153] is a significant
challenge in training deep learning algorithms and can ham-
per model performance. A model overfits when it performs
exceptionally well on the training set but fails to generalize to
unseen data. Developers should integrate various techniques,
including dropouts of weights [154] and regularization [155],
to avoid overfitting.

The lack of interpretability in some AI models con-
tributes to the risk of non-transparency [156]. Utilizing
inherently interpretable algorithms, such as decision trees,
logistic regression, and linear regression, that include mean-
ingful parameters to explain their predictions [157] can
improve model transparency. Certain properties of a model,
including linearity, monotonicity, and interaction, can help
explain some of the results. In monotonic models, such
as logistic regression and one-layer neural networks, the
relationship between input features and target outcomes is
correlated; therefore, mapping input features to the target
can explain the decision-making procedure. Although it
may be feasible to track the interactions between the input
and output of the model in simple problems, the trace-
ability of the model decreases for more complex models.
On the other hand, in black-box models, i.e., algorithms
with many parameters such as deep neural networks, it is
not feasible to track processes and interpret the reason for
a decision. Several post-hoc interpretation algorithms have
been developed [158] to achieve a level of interpretabil-
ity in black-box models. Post-hoc interpretation algorithms
and XAI can convert black-box algorithms into ‘glass-
box’ by adding interpretability to the Al models [98]. For
example, Ribeiro et al. [159] proposed an interpretable and
model-agnostic explanation of classifiers by learning model
explainability locally around the predictions and framing
submodular optimizations. Also, Lundberg and Lee [160]
provided model interpretability by assigning feature impor-
tance values for each prediction. Integrating such techniques
during model development can increase Al transparency. Pre-
dictions made by tree-based models can also be explained by
the Shapley additive explanation (SHAP) framework [161].
SHAP computes the contribution of each feature in making a
prediction. The Shapley values are computed based on game
theory, and they indicate the impact of the features on a
prediction.
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The presence of bias and discrimination in an Al
model [162] contributes to the risk of inaccurate Al. Bias
and discrimination also hinder the trustworthiness of Al mod-
els and contribute to the risk of non-transparency. Although
bias and discrimination can be minimized by appropriate
data collection, an ineffective model development may also
contribute to Al bias. A three-stage approach to manag-
ing bias in Al systems was proposed by [42] that includes
managing bias during pre-design, model development, and
deployment of an Al system. The study also recommended
engaging the stakeholders to provide feedback to mitigate
the risk of bias in Al systems. Moreover, in imbalanced
classification problems, there is a potential for bias toward
the majority class. To overcome this problem, oversampling
minority classes and cost-sensitive learning are effective
solutions [163]. Other solutions to the class imbalance prob-
lem include data augmentation [164] and algorithmic level
modifications [165]. Bias in classifiers can also result from
multi-modal datasets. In this context, Gat et el. [166] pro-
posed a regularization approach based on functional entropy
to promote equal contributions from each modality.

The risk of identification needs to be addressed proactively
during the model development phase. The most prevalent
reconstruction attacks utilize feature vectors in Al mod-
els. Therefore, algorithms that store explicit feature vectors,
including SVM and K-NN, are more susceptible to these
attacks [167]. Reconstruction attacks can be mitigated by
encoding the feature vectors before storage. For instance,
Haghighat et al. [168] demonstrated that the encryption of
facial features in a biometric database minimizes information
leakage without compromising model performance. Some
attacks, such as membership inference and model inver-
sion, rely on model prediction output and the outcome of
the algorithms, i.e., class labels in classification or pre-
dicted values in regression methods. The effectiveness of
such attacks can be minimized by limiting the intruder’s
knowledge about the system’s results [89]. For instance,
reporting only the predicted class labels of a classifier instead
of probability values make it difficult for adversaries to
perform these attacks. Moreover, differential privacy can pre-
vent several attacks on AI models, including linkage and
reconstruction attacks [169]. Various forms of differential
privacy have been developed to reinforce Al models against
adversarial attacks. For example, Agrawal and Srikant [170]
demonstrated that adding random noise to the input data
through differential privacy can resist attacks on Al sys-
tems. Similarly, Kim and Winkler [171] randomized data
by multiplying noise with a known statistical distribution.
The reconstruction of the original values is more difficult
in the noise multiplication approach, making it suitable
for preserving privacy. Despite many benefits of differen-
tial privacy, Ding et al. [172] demonstrated that there is no
guarantee to confront the attacks by these methods com-
prehensively. Therefore, it is necessary to run a candidate
algorithm numerous times and test it to detect violations of
a specific differential privacy algorithm.
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As previously discussed, data under homomorphic encryp-
tion can be used in building a model without decryption,
providing complementary assurance in privacy-preserving
methods. In collaborative applications, when different stake-
holders want to attain a common objective but not share their
data, training an Al algorithm is difficult due to limited data
availability. For example, hospitals may only have a limited
number of patient data for a specific medical application
and thus require collaboration with other hospitals to obtain
meaningful results. In this context, decentralized process-
ing methods like federated learning [173] are instrumental
in addressing privacy concerns while allowing collabora-
tive learning. Decentralized learning approaches can provide
secure multi-party computation, shared data storage, and a
high level of privacy [174]. In the case of a central learn-
ing model, datasets can remain locally in each device and
do not need to be transferred between edges. Variations of
federated learning, including horizontal, vertical, and transfer
learning, have been proposed to address privacy and security
concerns [175]. Despite many benefits of federated learning,
data locality during the training process cannot guarantee the
privacy of centralized algorithms. Consequently, for compre-
hensive protection against adversarial attacks, it is necessary
to integrate different types of protective algorithms.

Since model evaluation is an important subphase of model
development, some privacy solutions should be specifically
considered during this stage. The developers should ensure
that the model is tested with representative data to avoid any
potential risk of inaccuracy. When a dataset is partitioned
into validation and testing sets, a random split may cause
data from specific classes (in classification) or distribution
to be excluded in a subset. To avoid such sampling biases,
strategies such as stratified sampling [176] and stratified
cross-validation [177] should be used. Moreover, XAl-based
approaches remain important solutions in this subphase
to mitigate risks of non-transparency and non-compliance.
However, some XAI methods can be privacy-invasive, and
therefore, XAl methods should be selected with privacy in
mind. Haque et al. [178] highlight that trust, transparency,
understandability, usability, and fairness are the significant
XALI factors that impact Al adoption and use.

E. MODEL DEPLOYMENT

The design and development of a secure and privacy-
enhanced Al system do not completely guarantee its safety
post-deployment. Therefore, preemptive measures should be
taken to mitigate the risk of identification after deployment.
The outputs of a deployed model may reveal excessive
information about the original dataset [179]. Consequently,
an adversary can query a deployed model and infer sen-
sitive information related to the data (model inversion and
membership inference attacks) used for model building. The
deployed model should reveal as little information as possible
to prevent such threats. For instance, a classification model
should only provide predictions of classes and not probability
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values. However, embedding privacy requirements in a sys-
tem lead to other restrictions on the system. For example,
adding noise to data or features may impact the model’s
performance, whereas adding interpretability may increase
model complexity. As such, there is a trade-off between
the level of privacy and the model’s performance and com-
plexity. For instance, a facial recognition model trained on
a large dataset of photos may be more accurate than a
model trained on a smaller dataset, but the larger dataset
could also contain sensitive information such as people’s
identities and locations. Additionally, the security measures
implemented pre-deployment should be audited periodically
to minimize attacks. The developers should perform regular
security updates and integrate the latest security features into
the system.

The deployed system should be safeguarded against intru-
sion that changes the system’s outcome, leading to the risk
of inaccuracy. Several attacks, including poisoning, adver-
sarial, and evasion, inject distorted data into the deployed
models to alter model outcomes. Handling extensive attacks
on Al systems is impossible without taking intelligent defen-
sive actions. Therefore, frameworks, such as cyber threat
intelligence [180], should be integrated into the Al system.
In addition to using intelligent defensive systems, educating
the system’s end-users and making them aware of probable
risks can reduce unintentional privacy issues and prevent sev-
eral attacks on the system. Furthermore, it is also necessary
to retrain the model with time to keep the outcomes relevant.

The statistical properties of data may change with time, and
consequently, the model performance may decrease. In this
context, an automatic retraining algorithm [181] can facilitate
keeping the model up to date. The retraining process should
consider necessary security measures so that adversaries can-
not inject malicious data. For example, retraining the model
online may potentially expose the parameters and training
data to adversaries. On the contrary, it is wiser to perform
the retraining offline and re-deploy the model after training.

The developers should continue to engage with data
subjects post-deployment to understand their privacy require-
ments. The developers should also consider data subjects’
privacy expectations and include data subjects in testing
the deployed model. The AI system should be extensively
evaluated for performance, transparency, and security using
effective software testing methods. This includes testing the
deployed Al system using Alpha testing, Beta testing, and
user acceptance test [182] by engaging the end-users and
stakeholders.

Moreover, privacy policies and other legal documents
should be accessible to data subjects and should change with
the data and technology practices of the organization. Some
privacy commissions provide privacy policy templates [183]
to organizations to enable them to write complete and read-
able privacy policies. An appropriate notice mechanism
should be implemented to inform data subjects about system
changes. To this end, Audich et al. [184] recommended the
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automatic categorization of privacy policies using NLP. Due
to the complexity of privacy policies in terms of their length
and language, NLP tools allow data subjects to engage with
privacy policies conveniently. The deployed model should
also be periodically audited for privacy issues to increase
trustworthiness and demonstrate compliance with regula-
tions. It is necessary to ensure that the auditors are external
to avoid potential conflicts of interest. The auditing system
should be comprehensive, allowing auditors to monitor data,
data distribution, and Al system performance.

The privacy risks and their solutions are categorized in
Table 1 by the different phases of the Al life cycle.

VI. DISCUSSION AND FUTURE RESEARCH DIRECTIONS
Although privacy legislation such as GDPR and organizations
such as OECD aims to recommend best practices to address
privacy concerns in Al systems, many complex applications
and requirements of Al have not been fully considered. For
example, autonomous vehicles integrate sensory technologies
and Al algorithms to make more accurate real-time deci-
sions [185]. However, decisions made by Al algorithms in
such cases require analyzing the benefits and risks that are not
straightforward. For instance, the Al algorithm may decide to
cause a minor accident to avoid a potentially significant

collision with other vehicles. In such cases, it is challenging
to recognize Al behavior, ethics, and policies and define
accountability in regulations. Thus, establishing rules to har-
ness Al applications in an ethical and privacy-preserving
manner is more complicated and requires further attention
and a nuanced approach. Considering the emerging under-
lying changes in Al technology, evaluating and updating the
rules regularly alongside the changes in processes is needed.
However, due to the evolving nature of Al, newer algorithms
may not be fully comprehended by lawmakers. Regulatory
bodies should therefore involve Al researchers and scientists
along with legal experts to present emerging Al algorithms in
a more non-technical approach.

In addition, standards and risk management frameworks,
such as the ISO/IEC 23894:2023,! provide direction on man-
aging risks associated with the development, deployment, and
utilization of Al. These standards can provide risk assessment
and risk treatment, including the identification of potential
threats, vulnerabilities, and impacts on privacy and security.
Moreover, they can enable developers to communicate pri-
vacy risks to stakeholders, including users, customers, and
regulators.

The emergence of generative Al, such as large language
models, poses significant privacy and trust risks. These mod-
els are capable of generating highly realistic text, images, and
videos, which can create convincing deepfakes, impersonate
individuals, and spread misinformation. This can have serious
consequences for individuals and organizations, including
reputational damage and financial losses. Furthermore, the

1 https://www.iso.org/standard/77304.html
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TABLE 1. Privacy Risks and Solutions in the Al Life Cycle.

Al life cycle phase

Privacy risks

Solutions

Project Planning

Risk of inaccurate Al systems

Comprehensive documentation of project plan.
Requirement elicitation [111].
Identify appropriate evaluation metrics and strategies.

Collaborate with domain experts.

Risk of non-transparent Al

Document project in plain language [102].
Engage stakeholders and interview data subjects.

Ensure data use, project requirements, and expected outcomes are highlighted.

Risk of identification

Privacy impact assessment [112], [114].

Preemptive security measures such as strong authentication, access control,
and encryption.

Establish privacy-focused ethics and guidelines on dealing with sensitive data.
Plan for effective anonymization and de-identification methods to ensure PII is

removed from the collected data.

Risk of non-compliance

Integrate recommended principles like data minimization, transparent consent,
limited data retention, interoperability, and transparency throughout the Al
development.

Identify strategies for extensive privacy and security testing.

Identify project impact assessment and privacy metrics [115].

Engage various user groups, including data subjects and end users, throughout

the Al development.

Data Collection

Risk of non-transparent Al

Include metadata with relevant data collection information.
Provide comprehensive and transparent document or ‘FactSheet’ describing

data collection and processing [132], [118], [119].

Risk of identification

Identify PII and non-PII elements.

Embed firewall in the system [128].

Manage data access by high-secure protocols, encryption, and access
management [127], [130].

Local differential privacy [131].

Risk of non-compliance

Remove PII from the dataset not relevant to model training.
De-identification and anonymization at source for other PII.

Provide comprehensive and transparent data consent [118].

Introduce a mobile or web interface for subjects to maintain data accuracy.
Provide data interoperability and standardization [122], [123].

Embed firewall, encryption, and security in system [127].

Data Preparation

Risk of inaccurate Al systems

Data transformation including normalization and encoding [133].
Privacy-preserving data imputation and outlier detection [134], [136].

Feature engineering using domain knowledge and transformation [140].

Risk of identification

De-identification of PII and pseudonymization [141].
Dimensionality reduction using PCA [143] and autoencoders [144].
Homomorphic encryption [145].

Adversarial feature desensitization [146] using GANs.
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TABLE 1. (Continued.) Privacy Risks and Solutions in the Al Life Cycle.

Model Development Risk of inaccurate Al systems

Introduce iterative approaches like human-in-the-loop [147].

Utilize appropriate evaluation metrics and strategies [150].

Remove model bias by engaging stakeholders.

Resampling of data and cost-sensitive learning to remove bias in class

imbalance problems [163].

Risk of non-transparent Al

Use interpretable algorithms such as decision trees and linear regression [157].
Include Post-hoc interpretation algorithms [158] and XAI concepts in model
design [98].

SHAP framework for tree-based models [161].

Remove model bias by engaging stakeholders.

Risk of identification

Encrypt features to minimize information leakage [168].
Limit intruder’s knowledge to system by providing minimal output.
Integrate a version of differential privacy [169], [170], [171].

Utilize decentralized learning methods including federated learning [173].

Model Deployment Risk of inaccurate Al systems

Introduce intelligent defensive systems to avoid poisoning and other attacks
that impact performance [180].

Introduce model retraining with time and ensure offline retraining [181].

Risk of non-transparent Al

Continue to engage system users and stakeholders.
Make privacy statements conveniently available and reduce complexity using
NLP [184].

Implement a notice mechanism to inform data subjects about system changes.

Risk of identification

Introduce intelligent defensive systems such as cyber threat intelligence [180].
Educate the system’s end-users to avoid compromising privacy.
Test the deployed system using Alpha, Beta, and user acceptance testing

[182].

Risk of non-compliance

Introduce comprehensive audit system, allowing auditors to monitor data, data
distribution, and Al system performance.

Ensure the audit is performed by external auditors.

data used to train these models can also contain sensitive
information, such as personal or financial data, which can
be exposed if the models are not adequately secured. It is
thus necessary to implement robust data protection measures,
such as data anonymization and encryption, and to ensure that
access to the models is restricted to authorized individuals.
Additionally, transparency and explainability are crucial for
establishing trust in these models, as users need to under-
stand how the models work. Privacy risks and mitigation
of generative Al needs specific research attention to help
identify and address the privacy and trust risks associated with
generative Al

While all the stages in Al development remain significant,
project planning is perhaps the most important; failing to
plan is planning to fail! The planning stage sets the blueprint
for data handling throughout the project. Even though the
direct risk of privacy breach is low at this stage since no data
has been collected yet, the decisions made during this phase
have a substantial impact on privacy risks in later stages.
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Neglecting relevant privacy regulations or failing to antic-
ipate the need for PETs can set the stage for significant
privacy risks in the latter phases. During data collection,
without proper plans set earlier, privacy risks can emerge in
the form of collecting more data than necessary, failing to
adequately de-identify data, or not obtaining consent from
the data subjects. The data preparation stage can compound
these risks, as poor handling of sensitive information, poor
anonymization, or biases can lead to inaccurate decisions.
In the model development phase, the use of certain algorithms
could cause explainability and trust issues, potentially leading
to biased or incorrect models. Therefore, strict adherence
to best practices, industry guidelines, and meticulous doc-
umentation of project planning can notably reduce privacy
risks in Al development. Amidst the global proliferation
of Al systems, researchers must prioritize all stages of Al
development, particularly data collection and preparation due
to their substantial privacy risks that require technical solu-
tions. By refining data collection and preparation techniques,

VOLUME 11, 2023



S. Shabhriar et al.: Survey of Privacy Risks and Mitigation Strategies in the Al Life Cycle

IEEE Access

researchers can minimize privacy breaches while ensuring
effective Al development. Introducing clear standards and
best practices for these stages can guide responsible data
handling. Furthermore, it is vital to study other privacy con-
cerns related to Al model interpretability, the potential for Al
systems to be used in ways that infringe on privacy, and the
legal and ethical considerations of Al.

A. IMPACT OF PRIVACY REGULATIONS ON Al
DEVELOPMENT

The introduction of various privacy legislation and best prac-
tices or recommendations has impacted the development of
technology and the deployment of websites and applica-
tions [186]. This section summarizes the potential impacts of
privacy legislation on Al development.

e Most policies recommend a privacy-by-design or
privacy-first approach to technological development.
Thus, developers are required to possess a comprehen-
sive knowledge of the Al lifecycle and apply a software
engineering approach to developing Al applications.

e The timeframe required for Al developers to obtain
the necessary data to develop Al applications may be
significantly longer, mainly due to the various require-
ments and restrictions by privacy legislation in data
collection. Some of the requirements include compre-
hensive and transparent consent and data minimization.
Moreover, integrating privacy-preserving techniques
throughout the AI lifecycle and extensive testing to
guarantee privacy increases the development time.
Therefore, the completion of any Al project will require
a longer timeframe.

e Integrating privacy-enhancing technologies into Al
development may also require technical expertise in
other domains or experts with interdisciplinary skills.
For instance, safeguarding against the risk of identifica-
tion requires collaboration with cybersecurity experts
in implementing technologies such as access control
and firewall. Consequently, this increases the devel-
opmental cost of Al, making Al applications more
expensive.

e Privacy regulations and best practices are continu-
ously evolving, and some policies apply nationally or
regionally while others on a global scale. Therefore,
Al developers should collaborate with legal experts to
fully comprehend and abide by privacy regulations.
Similarly, developers should collaborate with external
auditors to demonstrate compliance with privacy reg-
ulations. These collaborations increase the timeframe
required for project completion along with the costs.

e PIA and regular privacy audits post-deployment are
necessary to guarantee the privacy of Al applications.
However, these requirements restrict developers from
deploying Al applications. For instance, developers
should design and deploy AI algorithms to facili-
tate audits post-deployment without interrupting the
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application service. Therefore, developer’s need to
have advanced software engineering skills to fulfill the
requirements of Al deployment.

B. FUTURE RESEARCH DIRECTIONS

The privacy solutions discussed in the previous section con-
tain several limitations that should be addressed in future
research. There is also a need to develop new solutions that
apply to specific phases of the Al lifecycle. This section
highlights open research challenges to mitigate privacy risks
in the Al lifecycle.

Privacy metrics are an essential tool in the planning phase
of the AI lifecycle for improving the safety and reliabil-
ity of the Al system by evaluating the susceptibility of Al
models in disclosing PII. Moreover, privacy metrics can help
demonstrate compliance with privacy legislation. However,
the lack of standard privacy metrics for Al systems is an
open challenge that should be addressed in future research.
The development of standard privacy metrics will enable
researchers to obtain benchmarks on the adequate level of
privacy required in Al development. The development of
privacy metrics should be in collaboration with research
scientists, policymakers, and Al developers. Privacy metrics
should be comprehensive and cover various Al applications,
including supervised learning, unsupervised learning, and
reinforcement learning. Privacy metrics are also relevant in
the development and deployment phases of the Al lifecycle.

Data minimization is essential for preserving privacy in
the data collection phase. However, it is challenging to deter-
mine the minimal amount of data required to build the Al
model while reaching the desired outcomes. Therefore, future
research needs to investigate the optimal amount of data
for training an Al model without compromising privacy.
Introducing a framework to determine the required data for
developing effective Al algorithms would allow develop-
ers to demonstrate compliance with regulations and enable
officers to hold accountable organizations that fail to mini-
mize data. Moreover, comprehensive and transparent consent
is necessary for personal data collection. In many cases,
consent and privacy notice are presented in a lengthy and
complex format for data subjects to comprehend. Therefore,
a standard and concise consent form should be introduced
by researchers for data collection. The performance of an
Al system may be compromised when the available data is
insufficient. In such cases, generating synthetic data can help
the AI model learn the necessary parameters. Although there
are various algorithms for generating synthetic data, there is
a need to introduce a privacy-preserving model for synthetic
data generation.

The performance and privacy levels of the AI system
can be significantly improved in the data preparation phase.
Specifically, in larger systems, a unified and interoperable
framework allows receiving data from diverse sources to
improve model performance. However, the lack of a reli-
able protocol for providing interoperable systems remains
a research challenge. Consequently, future research should
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focus on data portability and interoperability of Al sys-
tems to improve collaborative research. Moreover, various
data-cleaning approaches are available for numeric and
categorical data to improve model performance. However,
privacy-preserving data cleaning approaches for time series,
audio, and image data need to be investigated in future
research. This includes developing a suitable transformation
of these data formats to enhance performance and maximize
privacy.

In the model development phase, detecting and manag-
ing bias and discrimination in Al applications is crucial
to mitigate the risks of inaccuracy and non-transparency.
However, detecting and eliminating bias in Al systems have
not been sufficiently addressed in the existing literature.
Therefore, researchers need to collaborate in setting up guide-
lines and recommendations to mitigate bias in various forms
of Al Moreover, handling the trade-off between the final
model’s accuracy, complexity, and interpretability should be
addressed in future research to increase Al trust. Furthermore,
decentralized learning approaches are essential in providing
collaborative learning securely. Differential privacy can also
be integrated into federated learning systems for enhanced
privacy [187]. However, communication bottlenecks of fed-
erated learning and the inference attack over exchanged
messages during the training phase are still limitations of
these methods that need to be addressed in future research.
Additionally, blockchain-based solutions enhance privacy,
security, and performance [188], [189], [190] and should
be investigated for privacy guarantees in decentralized data
processing. For instance, Freund et al. [191] discussed the
influence of different phases of the data lifecycle on the
compliance of the GDPR principles in the treatment of data
using blockchain technology. Such analysis should also be
conducted from an Al lifecycle perspective.

Privacy is an essential consideration for Al applications
running on resource-constrained devices like microcon-
trollers and wearables. These devices often collect sensitive
data about their users, such as biometric data or location
information, and transmit it over networks with limited
security capabilities. Without proper privacy protections,
this data could be vulnerable to interception and misuse
with potentially harmful outcomes. More complex privacy
solutions may not be suitable for model training on these
devices due to their limited computation power. Therefore,
investigating privacy-preserving techniques in Al appli-
cations for resource-constrained devices is an important
research area to safeguard the privacy and security of users’
data.

There is also a need for the scientific community, devel-
opers, government, and the general public to collaborate in
advancing our understanding of trustworthy Al system, stan-
dardization of ethical and trustworthy concepts, and metrics
to measure and evaluate those concepts. A framework should
be developed to enhance collaboration in the Al research
community for knowledge transfer and sharing research con-
tributions on emerging and novel Al system attacks and
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mitigation strategies. In addition to increasing Al trans-
parency, such collaborations would also positively impact
research in Al development.

Auditing and PIA are essential strategies for assessing the
level of privacy protection. However, existing compliance
tools and PIA provides a general measure of privacy in a
system. Since Al systems are more complex and contain
different phases of development with a greater possibility
of privacy breaches, there is a need for novel auditing and
compliance tools for privacy-preserving Al systems. More-
over, interoperability in Al systems is necessary to provide
data portability to data subjects. Consequently, a platform
approach [192] is needed to enhance semantic, operational,
and legal interoperability in Al systems.

Itis necessary to evaluate the level of privacy in Al systems
periodically after deployment to address existing vulnerabil-
ities and emerging threats. External auditors can continue to
assess the privacy risks in deployed models. However, the
lack of a standard protocol for deploying Al systems makes
it challenging for auditors to access deployed models for
privacy evaluation. In many cases, the auditors may need
technical expertise to perform extensive tests on deployed
models. Therefore, to facilitate audits and post-deployment
privacy impact assessments, there is a need for a standard
protocol for deploying Al systems. For instance, it is nec-
essary to ensure that only the auditors have access to the
deployed model for assessment and that deployed Al systems
are audited offline to avoid malicious attacks.

Following are the most notable future research directions:

e Develop comprehensive privacy metrics for assessing
vulnerabilities in Al systems.

e Introduce a standard and concise consent form for data
collection.

e Explore a privacy-preserving mechanism for synthetic
data generation.

e Focus on data portability and interoperability of Al
systems to improve collaborative research.

e Develop guidelines and recommendations to mitigate
bias and inaccuracy in Al

e Explore blockchain-based machine learning solutions
for increased privacy, security, and performance.

e Investigate privacy-preserving techniques for resource-
constrained devices.

e Develop a standard protocol for deploying Al systems
to facilitate audits and post-deployment privacy impact
assessments.

C. RESEARCH IMPACTS

This paper highlighted the need for privacy in developing Al
algorithms and discussed state-of-the-art solutions to mitigate
privacy risks that apply to various stages of Al development.
There are several important implications of this paper. First,
it sheds light on Al as a lifecycle or process and highlights the
need to approach privacy in the context of the Al lifecycle.
This approach complements the privacy-by-design concept
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and allows AI developers to design algorithms with pri-
vacy embedded as a core component. The breakdown of Al
development into key phases enables developers to integrate
privacy-preserving solutions more comprehensively. In many
cases, there are technical barriers between Al researchers and
lawmakers due to the emerging and complex nature of Al
algorithms. Therefore, introducing a framework to categorize
relevant privacy risks facilitates collaboration between pri-
vacy lawmakers and Al developers. The paper also discusses
state-of-the-art solutions to various privacy risks associated
with each phase of the Al lifecycle, which enables Al devel-
opers to identify and leverage existing privacy solutions in
their development. Furthermore, the potential impacts of
privacy legislation on Al development were discussed in
this paper, enabling Al projects to manage their resources
efficiently. Finally, identifying existing research gaps allows
researchers and scientists to focus on developing new tech-
nologies to mitigate various privacy risks in the Al life cycle.

VIi. CONCLUSION

Al algorithms can help organizations, industries, and govern-
ments to improve core business processes and make better
decisions. However, due to the data-driven nature of Al, pri-
vacy preservation in Al is more complex than traditional data
privacy protection. Compromising privacy in each stage of
an Al project can influence the entire system. As a result, this
survey investigated privacy challenges throughout the Al life
cycle. To this end, the privacy risks were examined in five Al
life cycle phases: planning, data collection, data preparation,
model building, and deployment. The paper also introduced a
framework to classify privacy risks into four categories: risks
of identification, inaccuracy, non-transparency, and lack of
compliance. The privacy-enhancing technology and solutions
were discussed to address the risk categories in the context
of each phase of the Al life cycle. The paper also discussed
the implications of the survey and the impacts of privacy
regulations on Al development. Open challenges and research
gaps were also identified, including the need for standard
privacy metrics and interoperability in Al systems.
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