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ABSTRACT Autonomous mobile robots use computational techniques of great complexity so that to allow
navigation in various types of dynamic environments, avoiding collisions with obstacles and always seeking
to optimize the best route, ultimately enabling them to operate in a safe and precise manner. In order for
navigation at this level to be possible, a variety of computer vision and intelligent sensing techniques are
used. The potential of an intelligent computer vision system to detect and predict the actions of dynamic
agents on the streets is applied to increase traffic safety with intelligent robotic vehicles. In this paper
we present a systematic review of computer vision models for the detection and tracking of obstacles in
traffic environments. Specifically, we cover works involving 2D and 3D (stereo vision) data fusion for both
internal and external perception, as well as current trends regarding efficient model design and temporally-
aware architectures. We provide a thorough discussion on the main positive and negative points of the
state-of-the-art in Visual Robotic Attention, as well as share our experience and contributions in applying
visual perception for external obstacle detection and tracking, and internal (driver) monitoring. The results
presented should serve as a compilation of the history of visual perception for autonomous mobile robots
(specifically, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles), thus providing the
reader with a comprehensive basis on both the main contributions and the state-of-the-art in the field.

INDEX TERMS Autonomous vehicles, computer vision, deep learning, obstacle detection and classification.

I. INTRODUCTION
Autonomous mobile robots use computational techniques of
great complexity so that it is possible to safely and accurately
navigate in various types of dynamic environments, avoiding
collisions with obstacles and always seeking to optimize
the best route. An area of great interest in mobile robotics
is closely linked to navigation of robotic vehicles. These
vehicles, embedded with a complex stack of modules for
perception, planning and actuation, can assist the driver in
various traffic conditions and, ideally, navigate the environ-
ment without the need for human intervention, and within
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the traffic laws. Therefore, Intelligent Robotic Vehicles are
mainly applied for the benefit of the reduction of traffic acci-
dents, by compensating for human faults and recklessness.

In order for both diver assistive technologies and nav-
igation at autonomous level to be possible, a variety of
Computer Vision, Artificial Intelligence, Automation meth-
ods are applied. When considering sensing techniques, visual
perception is of utmost importance, since it can provide
rich 2D and 3D environmental information, at considerably
reduced costs.

The main objective of this research was the study and
presentation of a set of Computer Vision and Artificial Intel-
ligence techniques and methods, so that to cover important
contributions to 2D and 3D-based visual perception – as well
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as their fusion. Besides that, we share our experience in the
field by presenting works developed by our research group at
the Mobile Robotics Lab (LRM).

A. ADVANCED DRIVER ASSISTANCE SYSTEMS (ADAS)
According to the SAE Levels of Driving AutomationTM

(Fig. 1), vehicle automation technologies are classified into
increasing levels of driver assistance and, consequently,
decreasing levels of driver intervention. Advanced Driver
Assistance Systems (ADAS) are technologies intended to
assist the driver in the driving task, corresponding from levels
0 to 4 in the SAE scale. Several of these systems are based
on Computer Vision [1]. The amplitude of the ADAS goes
beyond the vehicle itself, as it must be defined as a set of sys-
tems and subsystems that allow automation of highways [2].
Thus, ADAS can improve vehicle safety and, consequently,
road safety, reducing or even eliminating possible driver
errors [3]. Since the beginning of ADAS adoption at vehicles
is observed a significant reduction of the fatal victims in road
accidents. In European countries, for example, there was a
reduction between 30% and 40% in fatal accidents as a result
of the implementation of such systems [4].

ADAS can be divided into subcategories according to
their role in supporting management. According to [6], the
categorization is the following: Lateral control, Longitudinal
control, Parking/reversing aids, Vision enhancement, Driver
monitoring, Pre-crash systems, and Road surface/low-friction
warning.

Lateral Control systems prevent unintentional lane depar-
tures or dangerous lane changes. Examples of these types of
systems are shown below:

• Lane Departure Warning helps the driver to keep the
vehicle within the lane, warning when the vehicle is
leaving the current lane, in the way, inappropriately or
dangerously. This system checks for nearby objects and
the activation of signal lights (lane change intention) [7].
Therefore, it is designed to minimize collisions mainly
caused by driver error, distractions or drowsiness.

• The Blind Spot system monitors the area to the side of
the vehicle, mainly the region where drivers cannot see
through the rearview mirrors [8]. If the system detects a
vehicle in this region, acoustic and/or visual signals alert
the driver of the risk of collision.

Longitudinal Control encompasses speed control, distance
control, and reaction times. Examples of these types of appli-
cations are:

• Adaptive Cruise Control automatically adjusts the dis-
tance to the vehicle ahead and the speed, using sensors to
measure the longitudinal distance between vehicles [9].
Its purpose is to improve driving comfort, reduce traffic
accidents and increase traffic flow (average speed).

• High-beam Assist detects the light of vehicles traveling
in the opposite direction or those in front, alternating
between high and medium beam [10].

• Traffic Sign Recognition aims at detecting and subse-
quently classifying traffic signs that define dangers and
limitations on roads [11]. With this system, it is possible
to recognize, for example, the speed limit or sharp curves
ahead.

Parking/reversing aids are obstacle detection systems in
low-speed situations. Park Assist is an example of an
approach in this category, which allows the vehicle to park
itself, involving automatic steering and speed control [12].

Vision Enhancement Systems support the driver in situa-
tions of reduced visibility. An example is Night Vision, whose
objective is to increase the driver’s ability to see obstacles
during the dark hours of the day, uses cameras sensitive to
infrared radiation [9]. While most car headlights can illu-
minate the road about 60 meters ahead of the vehicle, this
system allows drivers to obtain traffic information from up to
150 meters away.

Driver monitoring focuses on the physiological and behav-
ioral state of the driver. With this kind of system, the vehicle
can analyze the driving by a human driver and determines if
it is a security performance. Driving state monitoring can be
divided into two main branches the detection of distractions
and the identification of drowsiness [13, p. 23].

In Road surface/low-friction warning, the main objective
is to alert the driver in case of poor road conditions. The
system can issue warnings or be directly related to the speed
control system, for example, helping the driver to maintain
the appropriate speed for the current road conditions, or even
detecting potholes in the road [14].

Pre-crash systems aim to avoid or minimize the possible
problems of an ongoing accident. They act when the driver
may no longer be able to react. Examples of this category of
ADAS include:

• Airbags are bags inflated very quickly with air when
the vehicle [15] collides. The most common airbags
are the front and side airbags that protect the occupants
of the vehicle.

• The Forward Collision Warning is the system that pro-
vides warnings (visual, auditory or vibration) to the
driver when a probable imminent accident with the vehi-
cle in front is detected [16].

• Object Detection aims to detect objects in the path of
the vehicle. An example of this type of approach is
pedestrian detection in order to alert the conduit. In some
case it can even perform automatic braking or even
deploy external airbags (in the case of an unavoidable
collision) [17].

Figure 2 shows the possible locations of sensors or cameras
for video acquisition of the ADAS. It can also be seen that
the Lane Departure Warning, High Beam Assist, Traffic Sign
Recognition, Forward Collision Warning and Object Detec-
tion systems can use the same video input, starting from a
front camera. However, each of the systems has different
resolution and processing requirements.

Even with the massive adoption of ADAS in vehicles,
it is among the top 8 causes of death for people on the
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FIGURE 1. SAE levels of driving automationTM [5].

planet [19]. Looking at fatal traffic accidents alone, 95% of
these are caused by human error [20]. The three main causes
of human errors in traffic are drunkenness, drowsiness and
driver distraction in general [21].

The adoption of vehicles capable of moving autonomously
is also a current research path. This adoption would reduce
human error to zero, but creates machine errors, which cer-
tainly can be mitigated in order to increase road safety.
A discussion on Autonomous vehicles takes place in the next
section.

B. AUTONOMOUS VEHICLES
Autonomous vehicles correspond to SAE Level 5TM tech-
nologies in the SAE Levels of Driving AutomationTM

(Fig. 1), characterized by the vehicle being able to perform
the driving task under all conditions, ideally not requiring the
driver to take over.

These systems can contribute in diverse ways to the overall
safety and mobility in urban and roadway environments.
In first place, mobility can be increased for people who do
not have the ability to drive a vehicle due to some type of
restriction and wish to have accessibility for fast and safe
locomotion in an urban environment. It also offers advances
in convenience; for example, an autopilot system can support
a driver who needs to rest on a long-distance trip - which also
represents an increase in safety, by avoiding that the driver
operates the vehicle under the influence of drowsiness.

As for safety, societal and economic aspects, Autonomous
vehicles reduce the chances of traffic accidents caused by
human errors. This, in turn, represents a reduction of traffic
victims who, besides possibly becoming unable to work, may
suffer from long-term injuries, with a considerable reduction
in their quality of life. Finally, efficiency can be increased
through the cooperation among autonomous vehicles in order
to reduce traffic congestion.

There are several autonomous driving projects currently
under development, such as the CaRINA [22] developed
together with the ICMC/USP LRM and the Google Self-
Driving Car [23], which show the great effort scientific
development that has taken place in recent years towards
more autonomous vehicles. However, as long as steering
wheels remain in vehicles, even autonomous ones, there will
still be the option for a human driver to request manual control
of the vehicle. And this existence of the steering wheel is due
to the fact that autonomous vehicles need an infrastructure
prepared to operate autonomously and safely [24], so in
certain places, it may not yet be possible to guarantee fully
autonomous driving, requiring intervention and the driving
of the vehicle by a human driver.

So, depending on the user’s destination, the vehicle may
not be able to operate autonomously all or part of the jour-
ney. Therefore, there is still much room for improvement in
vehicular technologies, in order to adapt to scenarios where
conditions are not yet viable for autonomous operation.
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FIGURE 2. View of some ADAS sensors positions. Adapted from [18].

II. CaRINA PROJECT
CarINA is a robotic platform used in the development
of perception, control and decision-making systems for
autonomous and assistive navigation in urban environments.
It has computational control of steering, acceleration and
braking, and several sensors such as: GPS, IMU, cameras and
lasers.

Collaboration project between LRM and the company
Scania presents an autonomous truck fully developed in
Brazil. The platform used within the university campus has a
computational system that processes information obtained by
sensors in real-time, allowing safe and efficient navigation.

When it comes to perception models, the CARINA project
is focused on the development of algorithms for the detection
of obstacles, traffic signs and waterways in urban envi-
ronments from point clouds. Point clouds are created by
various types of sensors such as stereo cameras, laser sensors
(LIDAR 3D).

III. DEVELOPED WORKS
A. DETECTION AND CLASSIFICATION OF OBSTACLES
USING 2D DATA
Images in 2D format images should contribute with great
potential for a computer vision model applied to the obstacle
detection task. They provide rich information on shapes, col-
ors and textures and, also, through the union of two images,
it is possible to estimate depth, very important for the detec-
tion of an obstacle. Currently, Deep Learning networkmodels
behave very well on this type of image, allowing, in addition
to detection, the classification, segmentation and instantiation
of an object.

In recent research, we have applied Deep Learning net-
works to detect and classify traffic signs in 2D images [25],
[26], [27], [28], [29], [30], [31], taking advantage of the
potential of this type of image for detection over long
distances (approximately 100 meters), since in 3D images
detection range (with good resolution) is limited to a few
meters – approximately 30m.

FIGURE 3. Autonomous vehicles of the LRM Lab. / USP. (a) First
autonomous truck in Latin America; (a) The CaRINA 2 project (Intelligent
robotic car for autonomous navigation project).

Deep Learning networks make great contributions to the
detection of objects in 2D images. There are two main struc-
tures for detecting objects in images: (1) three-stage detectors
(detection, classification and instantiation): RCNN [32], Fast
R-CNN [33] and Faster R-CNN [34]. (2) two-stage detectors
(detection and classification): YOLO [35], SSD [36] and
YOLO9000 [37].

Some networks have the potential to detect, segment and
instantiate objects with great precision, however, generating
false positives and false negatives for autonomous vehicle
navigation. The DeepLab network (Figure 4) has a very
important potential for the 2D computer vision area, also
being able to support a system with 2D and 3D sensor
fusion.

This type of approach involving data frommonocular cam-
eras (Figure 4) generally has a low computational and time
cost, presenting good results in its general form. However, our
researches [25], [26], [27], [28], [29], [30], [31] and that of
other researchers in the field of intelligent vehicles, highlight
the importance of 3D data for a better assessment of the
navigable area. In the next section we present the works that
stand out in applications involving the notion of depth of the
scene.
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FIGURE 4. DeepLab: (a) Real Image, (b) Results 1 e (c) Conditional
Random Field (CRF ).

FIGURE 5. Detection of false traffic signs.

1) FALSE DETECTION
2D data is fundamental for a computer vision system to work
effectively, however, there are big problems for vision models
that use only this type of information, since the lack of depth
information generates problems with object recognition and,
also, problems with the identification of the position and
tracking of the detected object. In the example of Figure 5,
a problem of detection and recognition of traffic signs that
come from real images can be observed, however, which do
not represent real rules.

2) DETECTION AND LOCATION
The lack of notion of depth in 2D images also makes it
impossible for a detected object to be evaluated in its loca-
tion in relation to the vehicle. In the example of Figure 6,
a situation can be observed where the vehicle detected two
traffic signs, one for the vehicle that will turn right (30km-h),
and another for the vehicle that continues on the straight road
(80km-h). However, to declare which information must be
obeyed, it is necessary to evaluate the position of the traffic
signs in relation to the vehicle and its route, needing the
coordinates (X, Y, Z).

Aiming at problems of this type (Figure 5 and Figure 6),
our researchs were directed toward the fusion of 2D and 3D
data for detection, classification and tracking of obstacles and
traffic signs. A Computational vision model based on the
YOLO [35] (Figure 5 and Figure 6) model do not support
problems of this type when applied individually, so it is
necessary to merge 2D and 3D data for greater robustness

FIGURE 6. Traffic signs detected in conflict.

of analysis of the perception system. In the next sections, the
computer visionmodels developed will be presented in detail.

B. DETECTION AND CLASSIFICATION OF OBSTACLES
USING 3D DATA
The images based on 3D data must contribute to a detection
model, generating depth and geometry information for each
detected object, these characteristics being very important
to evaluate the tracking and shape of the obstacles. The
fusion of 2D and 3D images allows a computer vision sys-
tem to work with the potential attributes present in these
different image formats, ensuring a more robust and accurate
system.

In our researchwe have presented several works applied for
the detection of vertical traffic signs in 3D images [25], [26],
[27], [28], [29], [30], [31], enabling greater robustness for
computer vision systems in favor of perception for intelligent
robotic vehicles. Through the analysis of 3D images, it was
possible to detect each traffic sign and evaluate its position
in relation to the vehicle and other objects in the scene,
also making it possible to perform a semantic analysis of
the navigation environment to classify the relevance of each
detected traffic sign.

In the work of Srivastava et al. [38], a system was devel-
oped capable of being trained with 3D images generated
through 2D images. The model uses algorithms to generate
images in depth, making it possible to work in the training
phase with images with less noise compared to 3D images
generated by physical sensors. In the testing phase, real 3D
images available in the KITTI dataset were applied.

In a work by McCrae et al. [39], an obstacle detection sys-
tem was developed in 3D images based on LIDARs sensing
data. The system uses a recurring network that makes it
possible to operate on a smaller volume of captured data and
at a higher speed. However, the system does not have color
and texture data of the objects, since it does not use cameras
in its data collection.

In a work developed by Baek [40], an approach was pro-
posed to detect and track curbs and obstacles by merging data
from various sensors: sparse LiDAR data, a mono camera and
ultrasonic sensors. The detection model is based on LiDAR
3D and a monocular camera sensor used to detect charac-
teristics of candidate obstacles and remove false positives
resulting from static and dynamic obstacles.
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FIGURE 7. Depth estimation results on KITTI [42].

In the work ofWeon et al. [41] an algorithmwas developed
to merge 3D LIDAR (Light Detection and Ranging) systems
that receive objects detected in image sensors based on deep
learning and object data in the form of 3D point clouds.
However, depth data is used for depth and tracking estimates
for each obstacle, while 2D data for each camera is applied
to classify the obstacle class.

In summary, we have that the works that approach 3D
image data, focus on the treatment of obstacle tracking
through the notion of depth and also use this data to elimi-
nate false positives. In some works, the fusion of sensors is
applied, also making it possible to unite the potential of 2D
and 3D images.
In the work of Guizilini et al. [42] it was proposed to

use a self-supervised monocular depth estimate. In this
work, a Geometric Unsupervised Domain Adaptationmethod
(GUDA)makes it possible to learn an invariant domain repre-
sentation using a multitasking objective, combining synthetic
semantic supervision. The work also presented a good adap-
tation to the quality and quantity of synthetic data while
improving depth prediction.

Through Figure 7, a depth analysis of the scene can
be observed, preserving a scale learned from the direction
model, improving the depth evolution if compared to standard
fine-tuning methods [42].

One of the major problems for the area of 3D com-
puter vision is related to the imperfection of data from
these sensors, generating a reconstruction of the 3D object
with flaws in its structure. In most cases, pixels are
detected with errors in their depth, and this type of prob-
lem is very common for images generated by a stereo
camera.

Through Figure 8, traffic signals that were detected in
2D images and reconstructed in their equivalent 3D image
can be observed, allowing a more robust evaluation of the
object. However, the good result was possible thanks to our
3D− CSD method and, also, because it is an image captured
with a maximum distance of 30 meters in relation to the
vehicle, more than this distance, the object starts to have
problems in its reconstruction 3D.

FIGURE 8. Depth estimation results on KITTI [42].

The fusion of 2D and 3D data enables a more robust
analysis of objects in traffic, especially in relation to their
shape and position in relation to the road and the vehicle.

As shown, there are several problems related to 2D com-
puter vision for autonomous vehicles, and to solve these
problems, computer vision with 3D data is essential for the
proper functioning of the system.

In our research with the Mobile Robotics Laboratory
(LRM) of the University of Sao Paulo, we have great experi-
ence in extracting and merging 2D and 3D data from cameras
and LIDARs, aiming at a robust perception for the navigation
of autonomous vehicles. In the next sections we present our
main contributions.

C. EXTRACTION OF 3D FEATURES AND CLASSIFICATION
OF 3D OBJECTS
In order to recognize the traffic signs, it is necessary to first
detect and segment 3D objects in the environment scene.
Next, an ANN is used to recognize the point cloud structure
representing a 3D signature of these segmented objects, indi-
cating whether it represents a traffic sign or not.

To detect and recognize the traffic signal object, you must
first extract some characteristics (features). This should allow
the ANN classifier to have enough 3D data to declare whether
a traffic sign object / structure was detected or not.

To generate a standard entry with recognizable patterns
for the ANN, the so-called ‘‘object signature’’, 3D-Contour
Sample Distances method [43] has been applied. The features
extracted by the 3D-CSD are based on the principle that each
object class has a unique 3D outline appearance. For this to
be possible, the point cloud of the three-dimensional object
is converted into a vector representing the surface contour
distances related to a central point of the object, providing a
3D signature recognizable by Machine Learning techniques.
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FIGURE 9. 2D view of sphere generation process.

The 3D-CSD descriptor is applied by measuring the dis-
tances from the center of mass of the object to the specific
surface points of the object (‘‘external contour’’ or ‘‘surface
hull’’), according to the selected and predefined key points
in a circumscribed sphere. More simply, te 3D object is
placed within a virtual sphere that has a predefined number
of scattered (usually equally spaced) points on its surface.
By means of virtual rays, the measurements (center of mass
of the object) are drawn from the center of the sphere towards
each of these key points scattered over the surface of the
sphere. A video1 was produced to explain this procedure.
Thereafter, the measured distance values are interpolated to
an appropriate (normalized) range and provided as input data
from the machine learning classifier.

1) 3D-CSD FEATURE EXTRACTION
The first step is to estimate a surface mesh for the point
cloud of the object by converting the sparse point cloud into
a set of polygons (surface mesh) and obtaining the solid
representation of the 3D shape object. We use the 3D Convex
Hull algorithm for this task, so that the approximate contour
of the object (shell of the object) can be obtained.

Next step, consider a sphere circumscribing the 3DConvex
Hull (Figure 9). The sphere’s center is positioned at the
object’s center of mass, and the radius is the furthest object’s
point from center. Figure 10 illustrates this process.

The next step is to select the various key points on the
sphere. Each key point will correspond to a single distance
measure and therefore a position in the vector of final dis-
tances. The key points should be equally distributed or, as a
priority, the most representative areas of objects. For traf-
fic signals, a generic strategy for distributing points along
the surface of the sphere can be performed by defining an
azimuth angle and constant altitude for the point distribution
(Figure 4).

After selecting the points, the 3D-CSD (object distance
vector) descriptor can be generated. For each key point pi
on the surface of the sphere, it is then considered a straight
line from the center of pi for the sphere. If this straight line
crosses the surface of the object at a point di, calculate the

13D-CSD Feature Extraction explained in vídeo – Sphere, Virtual Rays
and the Vector of Distances concepts – Available at: https://goo.gl/K5×5yB

FIGURE 10. ANN architecture.

Euclidean distance from point di to the center of mass of the
object. If not, return −1.

2) PATTERN RECOGNITION
In order to be able to recognize the 3D signature of the
segmented object given by the 3D-CSD feature, an ANN
Multi-Layer Perceptron (MLP) is used because of its good
capabilities for capturing complex, non-linear underlying fea-
tures with a high degree of accuracy. Figure 10 shows the
ANN architecture.

The supervised learning method of ANN requires a set of
training data that must be generated a priori. It is necessary
to assemble a representative set of examples, composed of
a large set of objects from different scenes, applying the
descriptor 3D-CSD and labeling each example of object.
In order to be able to recognize objects from different
points of view (different orientations), additional examples
of objects in different rotations are included in the training
dataset.

D. ALGORITHM FOR DETECTION OF TRAFFIC SIGNS
WITH 3D DATA
An Artificial Neural Network (ANN) with binary output has
been trained with these various cases where boards (sign
plates) and other elements can be found. The ANN was
applied to solve this problem of classification and sign plate
detection. For this to be possible, each type of case was
modeled (Figure 11) based on the Velodyne LIDAR (Light
Detection and Ranging) data and considering also a pair of
stereo cameras, thus enabling the ANN network to respond if
it is a board or an object that is not a sign plate.

In case of the neural network algorithm informs the system
that a board (traffic sign candidate) has been detected in the
environment, then a second classifier based onDeep Learning
CNN is activated to classify the type of traffic sign that
was detected in image RGB-D (Red, green, blue + Depth):
maximum speed, cones for route deviation, stop, preferential,
pedestrian or also other types of traffic signs.

In this situation, the 3D computer robotic vision system
in conjunction with the ANN informs the detection and the
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FIGURE 11. Traffic signs detected in different contexts (a) detected on a
thin metallic pole (b) detected on a concrete pole (c) and (d) two sign
plates detected on the same pole (e) traffic sign detected with a light
signal.

coordinates where the possible traffic sign occurs (Figure 12).
Given this information, the 2D image of the traffic sign
detected is labeled and segmented, and submitted to the
classifier based on the Deep Learning CNN, thus making it
possible to identify which type of traffic sign was detected
(Figure 12).
Deep Learnning CNN classification is applied to the 2D

data (image-RGB), which takes advantage of the available
textures and color information to recognize the different
specific traffic signs. The recognition power of Deep CNN
Networks (DCNN-inception V3), is also a big advantage,
once they can recognize and classify images very well
(including images with occlusion, damaged and in pre-
carious lighting conditions), and on the other hand, this
task can be very difficult if considering only the 3D data
(shapes-Depth).

In Figure 13, the 3D perception (visual attention) and
computer vision system can be observed in action generating
the point cloud of one scene using the stereo camera data
from the KITTI Dataset. Still, it can be observed that the
traffic sign and other objects were detected with texture in
the point cloud, these are some of the cases (Figure 13)
trained in the ANN and used for detecting traffic signs
objects.

Given Figure 13 it is possible to observe 2 types of
segmented objects that are used to train our traffic signal
detection system. Since one of them is not a traffic sign (b)
and the other one is a sign used for stretches of highway (a).

Each segmented object (Figure 13) will be sent to a 3D
feature extraction method. After that, the data extracted from
each object will be applied as the input of an ANN-MLP for
the classification of the detected object type.

By detecting a cone, our 3D vision system for auxil-
iary routes is activated, thus enabling the detection of an
unmapped auxiliary route.

E. VISUAL ATTENTION
1) FUZZY VISUAL ATTENTION: DECISION MAKE
The decision-making process should be able to make an
assessment of a finite information set, thus deciding the most
appropriate action according to a set of fuzzy values. Making

FIGURE 12. Detection of cones in a scene using 3D data - real scene with
data provided by stereo vision camera system.

FIGURE 13. 3D-segmented objects (a) Cone - traffic sign, (b) Cyclist.

it possible to classify the pertinence of the detected traffic
sign.

This work adopted an approach based on Multiple
Attribute Decision-Making (MADM) for decision making,
which was a class of arbitrary capable deals with the decision
by evaluating a set of different criteria. According to Chen
and Hwang [44], MADM applies very well to our problem,
because it specializes in problems with finite sets of alterna-
tives and enables evaluation in the decision steps [45].

2) ANALYTIC HIERARCHICAL
In the Analytic Hierarchical Process (AHP) technique, a hier-
archical structure is created, thus making it possible to relate
the components of the decision problem. With this feature of
decomposition, the decision maker can make a comparison
between the elements and classifies them into their priority
level [45]. The step by step of this process can be followed in
the work of Pachego and Bruno [45].

3) FUZZY REGIONS OF INTEREST: MULTIPLE ATTRIBUTE
A Fuzzy set is used with Multiple Making Attribute Deci-
sion Making (MADM) methods to model uncertainty and
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subjectivity in decision analysis. Chen and Hwang [44]
described some approaches to MADM steps. In this work we
use fuzzy sets to represent the importance of each traffic sign
detected in its regions of interest, thus, defining the priorities
for each detected sign [45].

As we are working on the fuzzy linguistic model, the
method will be applied by the two steps described below:

• Step 1: Convert linguistic terms into fuzzy numbers
The approach we apply in this paper uses a finite set of
linguistic terms that can be adjusted to best describe the
nature of attributes, where, for example:

U = {very high, high to very high, high, fairly high,
medium, fairly low, low, low to very low. }.

The first step of fuzzy logic identifies a conversion scale
(from 0 to 1) that represents the subset used to charac-
terize the attribute. By means of Figure 14 it is possible
to observe an example of them. Since the fuzzy numbers
on these scales can replace the linguistic terms [45].

• Step 2: Convert fuzzy numbers into crisp score
Then, after identifying the corresponding scale of each
value and replacing the linguistic terms with diffuse
numbers, we have that a scoring method is applied to
convert those numbers into sharp data. For this task,
we propose a fuzzy scoring method for estimates µT ,
called total score of the fuzzy number M , using the
left (µL) and right (µR) scores, the maximizing and
minimizing sets (µmax and µmin, respectively) and the
membership function ofM (µM ), where [45]:

µL(M ) = sup
x
[µM (x) ∧ µmax(x)]

µR(M ) = sup
x
[µM (x) ∧ µmin(x)]

µT (M ) =
[µR(M ) + 1 − µL(M )]

2

Finally, replace each fuzzy number with the correspond-
ing sharp score, the method results in an array with only
sharp data, thus enabling the classic methods of MADM
to classify the alternatives [45].

Through MADM it is possible to solve the decision
problem using a M matrix, where the lines represent the
alternatives, A, and the columns are the attributes, T , that
evaluate the alternatives. The matrix M can be expressed
as [45]:

Mm,n =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...

xm,1 xm,2 · · · xm,n


where we have: A = {a1, a2, · · · , am}, T = {t1, t2, · · · , tn},
and xi,j, with i = 1, 2, · · · ,m and j = 1, 2, · · · , n, are the
values of each attribute.

4) TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO
IDEAL SOLUTION
To rank the ideal solution, we use the algorithm based on
Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) with the central concept that this approach is
able to find the best alternative through the closest Euclidean
distance to the ideal solution. The main steps of TOPSIS are
shown below [44], [45]:

Algorithm 1 TOPSIS Algorithm
Step 1: Calculate the normalized decision matrix

ri,j =
xi,j√∑n
k=1 x

2
k,j

, j = 1, · · · ,m

Step 2: Calculate the weighted normalized decision matrix

vi,j = wjri,j,

with i = 1, 2, · · · ,m and j = 1, 2, · · · , n.
Step 3: Determine the ideal and negative-ideal solutions:

A+
=

{(
max
i
vi,j | j ∈ J

)
,

(
min
i
vi,j | j ∈ J ′

)}
(1)

where i = 1, 2, · · · ,m and J is the benefit attributes and
J ′ is the cost attributes. For the decision problem, we tried
to maximize J and minimize J ′. The same is applied to the
negative-ideal.
Step 4: Calculate the separation measures
In this step the distance of each alternative from the ideal
positive and negative solution must be calculated.
Step 5: Calculate the relative closeness to ideal solution
Relative closeness is defined as:

ci+ =
si−

si+ + si−
, 0 < ci+ < 1, i = 1, 2, · · · ,m

Step 6: Rank the preference order
Through the relative closeness ci+ of each alternative is pos-
sible to rank them.

5) FUZZY KNOWLEDGE BASE: ATTRIBUTES THE SYSTEM
The input variables of the visual attention system are mapped
to the following fuzzy sets:

6) REGIONS OF FUZZY INTEREST
In the graph of Figure 14 it is possible to observe the regions
of fuzzy interest in their linguistic terms and which are gener-
ated to represent visual attention at their levels of importance
and which are best visualized in Figure 15-(b).

By means of Figure 15-(a) it is possible to observe the
trapezoid that is generated to define the navigation area
(Equation 2). Every traffic sign detected within the trape-
zoid has higher priority than those outside. Thus, the closer
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FIGURE 14. Regions of fuzzy interest - Legend:(HPBB = Hard Priority
Bounding-Box; PBB = Priority Bounding-Box; MPBB = Medium Priority
Bounding-Box; LPBB = Low Priority Bounding-Box; VLPBB = Very Low
Priority Bounding-Box).

a traffic sign is to the edge of the highway, or outside
it, the trapezoidal function should generate a smaller value
(Figure 15-(b)).

trap(x; a, b, c, d) = max(min(
x − a
b− a

, 1,
d − x
d − c

), 0) (2)

7) FUZZY DISTANCES
Fuzzy distances: this feature is linked to the Euclidean dis-
tances of the traffic sign analyzed and the cluster of other
transit objects of the scene (cones, vertical traffic signs, traffic
lights) (Figure 16). The Euclidean distances of the objects are
applied to an analysis related to the connection of the objects
of the scene.

8) CONNECTIVITY FACTOR
The connectivity factor is linked to the degree of connec-
tion between major traffic signs and scene elements (cluster:
cones, signs inside the highway, stop signs and people).
A) Relation between the distances of the regions of interest
and B) finally, of weight each connection that is given by the
level of importance of each element in the scene in relation
with traffic sign detected.

9) BASIS OF FUZZY RULES
The attributes were selected through the capabilities of the
computer vision system (Image processing + machine learn-
ing for detection and classification) capabilities available in
this work, as well as the knowledge and experience of the
authors about robotic and human visual attention problems
(Specialist Knowledge). The most common problems were
listed for analysis by the fuzzy rules based machine learning
algorithm - TOPSIS. The attributes are (Table 1).

The attributes are based on the important characteristics
of a traffic sign to be evaluated. The alternatives define the
choice of the traffic sign that is most relevant for the nav-
igation of the vehicle in a certain section of the highway
(Table 1).

TABLE 1. Attributes and alternatives for the diagnostic analysis.

TABLE 2. Linguistic terms to diagnostic attributes values.

Through a based on Fuzzy Inference Systems auxiliary
layer between the detection and decision-making system it
was possible to evaluate the priority of each traffic sign for
navigation of the vehicle. For this to be possible, a fuzzy
rule base has been developed to support the inference system.
The visual attention system was able to handle the proposed
problem situations.

F. SEMANTIC SEGMENTATION: AN OVERVIEW
Semantic segmentation can be defined as a dense clas-
sification problem, where each pixel in the input image
is associated with a given label from the set of classes
under consideration. Initially, the task was addressed from
a hand-crafted perspective, where feature extraction through
image processing techniques - such as SIFT and HOG
descriptors [46], [47] - and classification were performed
in separate steps. Nonetheless, besides involving several
processing steps for feature extraction and classification,
hand-crafted methods were not robust to different situations,
delivering the best performances in scenarios they were
tuned for.

It was in 2015 that a major breakthrough took place: the
proposition of Fully Convolutional Networks (FCNs) [48],
which first tackled semantic segmentation as a dense clas-
sification problem by leveraging Deep Learning. Based
on Convolutional Neural Networks (CNNs), FCNs made
it possible to automatically and robustly perform end-
to-end feature extraction and classification for images at
any input resolution. Based on the advantages offered by
FCNs, and contemporary works [49], [50], the literature on
Deep Learning-based Semantic Segmentation (Deep Seman-
tic Segmentation, or DSS) witnessed major improvements
in robustness and precision, originating an accuracy-oriented
research line.
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FIGURE 15. Region trapezoidal of fuzzy interest (a) Detection of highways and (b) Corresponding trapezoidal function.

FIGURE 16. Calculation of the Euclidean distances between the traffic
signs.

Among the main strategies employed for accuracy
improvement, stand out: complex feature fusion schemes [51],
local and global context modeling by means of dilated [52]
and deformable convolutions [53], feature pyramids [54]
and attention [55], as well as alternative approaches,
such as spatial-aware operations for data-driven behavior
[56], [57], [58].

Although current accuracy-oriented models produce very
consistent results in terms of precision, reaching almost 87%
accuracy in urban scene segmentation tasks,2 this comes at
the cost of high computational requirements. In addition to
that, current literature on DSS is still limited in terms of
3D and temporal reasoning capabilities. An outline of the
following sections is presented in Fig. 17. Table 3 presents
a compilation of the main characteristics of the DSS methods
covered in this review.

1) EFFICIENCY-ORIENTED SEMANTIC SEGMENTATION
The development of efficient models is of utmost importance
in systems where multiple processes run in parallel, or where

2Benchmark Suite - Cityscapes Dataset. Available: https://www.
cityscapes-dataset.com/benchmarks/

a full stack of processesmust complete execution in real-time,
under a limited set of hardware resources.

ADAS and autonomous vehicles are good examples of
such systems. In first place, perception setups are composed
by a diverse set of sensors, which operate in parallel for a
robust understanding of the environment. Besides that, con-
sidering that perception is the first step in a more complex
stack of modules for autonomous navigation, it should be per-
formed efficiently and as quick as possible, then propagating
its results to subsequent localization, mapping, planning and
actuation modules. Current accuracy-oriented DSS models,
however, do not match these requirements, thus finding lim-
ited application in such scenarios.

As a result of that, a recent trend in DSS research concerns
the reduction of computational costs by means of the design
of efficient strategies, which can be divided into input-level,
architecture-level, and operation-level techniques.

Input-level techniques involve reducing the resolution [56]
or cropping the input images [59], [60], [61], so that to limit
the computational costs of model inference. However, it may
lead to loss of spatial details, mainly related to small objects.

Architecture-level techniques propose to save resources
either by adopting lightweight backbones, sharing weights
and layers, reducing and reusing features, employing knowl-
edge distillation, or designing modules and models from
scratch.

Asymmetric encoder-decoder architectures follow the
intuition that decoders can be kept smaller than encoders,
thus saving computations [62], [63], [64], [65]. Similarly,
multi-branch asymmetric methods apply separate asymmet-
ric encoder branches for context and detail extraction [66],
[67], [68]. Another common technique concerns the con-
struction of models on top of lightweight pre-trained back-
bones [59], [63], [65], [69], [70], [71], such as ResNet-18 [72]
and MobileNet [73], [74]. Although allowing to leverage
pre-trained weights, inserting new elements can be challeng-
ing, and fine-tuning is required for dealing with domain
shift.
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FIGURE 17. Outline of the discussion on efficiency-oriented, depth-aware and temporally-aware Deep Semantic Segmentation methods applied to urban
scenes.

Layer and weight sharing reduce model complexity by
sharing encoding layers. In Faster BiseNet [75], STDC
Net [76] and EACNet [77] the first encoding layers are
shared; afterwards, the extracted features follow to separate
detail and semantic branches. In Fast-SCNN [78], a ‘‘learning
to downsample’’ module performs shared low-level feature
extraction to feed multi-resolution branches.

Feature reuse is usually leveraged in video semantic seg-
mentation frameworks [79], [80], [81], where redundancy
between adjacent frames can be used for feature and label
propagation, hence skipping considerable processing steps.

Reducing feature size is also an alternative, generally
achieved by fast down-sampling [82] or by reducing feature
map dimensions [68], [70], [83], [84]. The main drawback
concerns reduced learning capability: feature size reduction
leads to loss of spatial information, while channel pruning
harms modeling ability.

Knowledge distillation describes the process where a
lightweight student network tries to mimic the behavior of
a larger teacher model, with minimal loss in accuracy. It can
be done by aligning the models’ outputs [85], [86] or both
outputs and some of their intermediate stages [87], [88].

Finally, other approaches rely on designing modules and
models from scratch [64], [89], according to the application’s
needs. Neural Architecture Search (NAS) has also been used
for automatic efficient model design [90], [91]. One major
drawback of hand-crafted models and NAS is the need for
training the model from scratch, missing a huge regulariza-
tion opportunity offered by knowledge transfer from larger
and more diverse recognition datasets [63].

Operation-level strategies build or remodel operations,
so to reduce computational requirements. Convolution fac-
torization and simplified feature fusion schemes are some
examples.

Convolution factorization, such as Depthwise Separable
Convolutions [92] and Asymmetric Convolutions [93], [94],
[95], works by rearranging convolution operations, result-
ing in considerably less computations. In ERFNet [93]
and FASSD-Net [95], plain convolutions are replaced by
sequences of 1D convolutions. EACNet [77] employs depth-
wise asymmetric convolutions and dilated convolutions,

while ESPNet [96] designs a sequence of point-wise convo-
lutions and spatial pyramid of dilated convolutions.

Simplified fusion operations, such as element-wise addi-
tion [62], [63] and channel-wise concatenation [59], [77], are
also common practices. More sophisticated gating and atten-
tion mechanisms, despite yielding better results, incur more
computations and memory consumption [61]. This problem
can be tackled by changing the order of operations [70],
reducing the dimensions of attention maps [87] and interme-
diate representations (key, query and value) [97], as well as
by limiting the search regions [98], [99] - although reducing
complexity, the introduction of priors in the form of limited
search regions may harm model’s flexibility.

The aforementioned efforts led to significant improve-
ments in model efficiency, with some architectures achieving
inference rates above 100 FPS [51], [59], [68], [77], [89],
[90], [95]. Nonetheless, efficiency comes at the cost of
reduced learning capabilities, making it difficult for efficient
models to match the precision of their accuracy-oriented
counterparts. In this context, depth and temporal reasoning
are promising alternatives for accuracy improvement, while
preserving model efficiency.

2) DEPTH-AWARE SEMANTIC SEGMENTATION
Before the popularization of 3D sensors, 2D data fostered
important advances in Computer Vision; in fact, the majority
of the literature on Deep Semantic Segmentation of urban
scenes is based on 2D perception. Nonetheless, relying solely
on 2D data may limit perception in complex scenes. For
instance, regions with no clear distinctions in the RGB space,
although belonging to different classes, can be easily identi-
fied in depth maps [100] (Fig. 18). Depth also gives the model
additional geometric cues about the scene, allowing it to
distinguish between illustrations and real elements (Fig. 19),
as well as to more robustly model elements with strong
geometric priors, such as road, sidewalk and walls [101],
reducing issues related to inconsistent and incomplete seg-
mentations (Fig. 20). Finally, in scenarios of data scarcity, the
auxiliary supervision offered by depth in multi-task learning
setups can be useful for extracting complementary informa-
tion for the target semantic segmentation task.

VOLUME 11, 2023 69731



D. R. Bruno et al.: CARINA Project: Visual Perception Systems Applied for Autonomous Vehicles and ADAS

FIGURE 18. Regions without clear distinction in the RGB space can be
identified in the associated depth map [100].

FIGURE 19. Examples of errors in 2D perception [102].

The use of depth information in depth-aware DSS
models can be categorized into: depth-as-input, depth-as-
operation, depth-as-prediction, depth-as-pretraining, depth-
as-augmentation, and depth-as-regularization.

Depth-as-input strategies treat depth information as an
additional input to the network, either in the form of an
additional channel [103], [104] to RGB images, or processed
as a separate input by a dedicated branch [105], [106] - some
works even feed the stereo pair to the network [107], [108],
[109]. Input fusion, although being faster, yields limited
performance, while multi-branch approaches can get com-
putationally expensive, due to the use of modality-specific
encoders.

In depth-as-operation, depth is embedded into typical CNN
operations, such as convolution and pooling, so to guide
their behavior. Depth-aware convolution and pooling oper-
ations are proposed in [100], where neighboring pixels are
weighted according to their depth similarity to a central pixel.
The Spatial Information guided Convolution (S-Conv) [56]
employs depth do adapt both the receptive field and convo-
lutional weights. A depth-guided pyramid pooling has also
been proposed in recent literature [110], [111]. In summary,

depth-as-operation allows to directly embed depth into the
network at a relatively cheap computational cost. Nonethe-
less, it still finds limited application, one of the main reasons
being the non-fixed, and possibly deformed, receptive field
generated when depth is used as a modifier for sampling
locations, which leads to sub-optimal suitability for current
accelerators, when compared to plain convolutions.

Depth-as-prediction usually describes multi-task learning
setups, where depth is employed as source of auxiliary super-
vision for the extraction of complementary features, leading
to amore robust perception. In fact, some authors support that
depth estimation and semantic segmentation are correlated in
terms of sample difficulty [112]. According to [113] domain-
robust correlations between semantics and depth – e.g., sky
is always far away, while roads are always flat – have the
potential to largely improve the target semantic segmenta-
tion performance in the presence of a domain shift. Depth
can be predicted as an additional channel to the segmenta-
tion output [114], or as a separate output from an auxiliary
head [115], [116]. One of the main advantages of leveraging
depth as prediction is that it does not require depth sensors
during inference, what allows the use of cheaper camera
sensors - nonetheless, in most cases, depth is required for
supervised training. One intrinsic limitation is that multi-task
learning can lead to very complex and computationally heavy
setups.

Depth-as-pretraining employs depth as a proxy task for
weight initialization, followed by fine-tuning on semantic
segmentation (target task) [117]. Some approaches dealing
with domain adaptation and cross-domain learning propose a
similar method [101], [118], [119]. One of the main advan-
tages of this approach is that it allows depth to be embedded
into the network without the need for side structures, such
as task-specific encoders and decoders. Besides that, domain
shift issues can be tackled by employing data from the target
domain during pre-training, so that to start the fine-tuning
process with weights from the same domain as the target
task.

Depth-as-augmentation aims to generate depth-coherent
new (pseudo) samples out of existing labeled data, usually
through blending mechanisms [101], [112].

Finally, depth-as-regularization explores depth informa-
tion as an additional term or a weighting factor in the loss
function. It can be used to penalize inconsistent boundaries
between semantic and depth predictions [120], or to give
more importance to closer objects in the per-pixel cross-
entropy loss [121]. The main advantages of this technique
are (i) the possibility of explicitly focus on certain ranges,
according to the requirements of the task at hand, and
(ii) the increase in accuracy without additional structures.
Nonetheless, it explicitly adds inductive bias, thus reducing
flexibility – in [121], for instance, model attention is directed
to closer elements.

As a final remark, the majority of the literature on Deep
Learning-based 3D perception concerns indoor scenarios,
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FIGURE 20. Inconsistent segmentations inside large classes (yellow), ghost (green) and incomplete (red) segmentations are some of the
common errors in Deep Semantic Segmentation. Adapted from [82].

where 3D perception can be performed from structured light,3

and depth ranges are limited. In urban scenarios, though,
the use of structured light is not possible, and greater depth
ranges are preferred, specially for critical applications, such
as ADAS and autonomous vehicles. Hence, stereo vision is
employed, allowing the dense perception of 3D structure,
and at a fraction of the cost of other sensors - LiDAR, for
instance. Nonetheless, its use for Semantic Segmentation
is relatively under-explored, with works mainly relying on
Multi-task Learning (MTL) setups. Some of the reasons are:
limited range - compared to LiDAR -, noisy readings for
higher depths, and failures related to reflexive and low-texture
regions. Therefore, there is still much room for improvements
in this research area.

3) TEMPORALLY-AWARE SEMANTIC SEGMENTATION
Although delivering more robust results, RGB-Depth Seman-
tic Segmentation lets untouched another important factor
to video DSS: temporal reasoning. Great part of current
methods treats input frames independently. This neglects the
possibility of exploiting temporal correlations in order to
leverage redundancy, coherence and motion as additional
cues to improve accuracy and reduce computations. Current
temporally-aware DSS models can be classified according
to their main goal, which can be: reduce computational
costs, improve accuracy, or reduce the need for labeled
data.

The intuition that semantic information changes at a slower
pace are what allows us to explore redundancy between
nearby frames for reducing the computational burden in
video semantic segmentation. Works under this category
are usually characterized by adaptive processing schedules.

3Kinect for Windows - Windows apps | Microsoft Learn. Available at:
https://bit.ly/3T44Hs2

Clockwork [122] proposes a network update mechanism,
where deeper layers, with stronger semantics, are updated
less frequently than shallower ones. Another strategy widely
adopted is asymmetric frame processing, where a video is
divided into key and non-key frames. While for key frames
low and high-level features are extracted, non-key frames
pass through lighter architectures where only low-level fea-
tures are computed; high-level features, in turn, are obtained
by the propagation and aggregation of high-level features
from the key frame [79]. In Accel [123], key frames are
processed by a reference branch, while non-key frames
are processed by a smaller update branch (Fig. 21). Finer
granularity is studied in DVSNet [124], where, instead of
asymmetric frame processing, the authors propose asym-
metric region processing. It’s worth noting that some
authors argue that such an unbalanced processing scheme
is harmful to model performance [125]. Distributed/shared
processing is also a strategy for reducing computations.
TDNet [87] distributes the computation of high-level fea-
tures to several low-level feature computations from previous
frames, performed by shallower networks. Temporal con-
sistency can also be used to guide knowledge distillation
mechanisms [126].

Improving accuracy in videos is usually related to also
improving temporal stability, so that to build perception mod-
els that are able to maintain consistency through time by the
aggregation of past information, as well as to robustly adapt to
sudden changes, based on current data. Temporal instability
(Fig. 22) refers to the presence of considerable fluctuations
between consecutive predictions. This is particularly danger-
ous in autonomous navigation, since it can lead to the loss of
previously identified objects, such as vulnerable road users
(Fig. 22a), as well as the confusion between safe and unsafe
regions through time, such as road and sidewalk (Fig. 22b).
According to Fig. 22, both short and long-term temporal
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FIGURE 21. Accel architecture [123]. The authors propose a reference
branch and a smaller update branch in order to process key and non-key
frames, respectively.

instability may occur. Methods for accuracy improvement
can be divided into: feature/label propagation and refine-
ment, and memory networks. The first family of methods
employs propagation of features and/or labels to neighboring
frames, and then corrects discrepancies in the warped repre-
sentations, usually based on motion cues [79], mismatching
and uncertainty [127], [128], or previous features [123],
[129]; afterward, these corrected representations are aggre-
gated with the representations extracted for the frame under
consideration, for feature refinement. In Memory Networks,
features computed from previous frames are stored using a
memory or backup mechanism, and subsequently recovered
to enhance the segmentation of the current frame, which is
used as a query to retrieve highly-correlated information in
attention-based memory read [70], [83], [98], [99].

Finally, methods for increasing labeling efficiency address
the problem of label scarcity in semantic segmentation sce-
narios. Due to the costs involved in data labeling, the most
adopted video datasets for autonomous driving, such as
Cityscapes and KITTI [130], do not have labels for all their
frames. Instead, they provide labels for singular frames in a
video sequence – e.g., Cityscapes only provides labels for the
20th frame of its 30-frame video snippets. In this scenario,
various works try to leverage unlabeled frames and previ-
ous knowledge to overcome label scarcity, with pseudo-label
generation being one the most common approaches in the
recent literature. Some authors demonstrate that training
segmentation models on datasets augmented by synthesized
samples leads to significant improvements in accuracy [60].
Temporal consistency with respect to neighboring unla-
beled frames is explored in [126] and [131]. In [61] and
[128], pseudo-labels are employed as auxiliary source of
supervision.

G. SEMANTIC SEGMENTATION APPLIED TO ADAS AND
AUTONOMOUS VEHICLES
Semantic Segmentation has been widely adopted in the work
development by the Mobile Robotics Lab (LRM). Particu-
larly, semantic segmentation is greatly explored for navigable
and non-navigable region segmentation. Aligned with the
history of the field, initial contributions were based on sep-
arate steps for feature extraction and classification. With the
advent of Deep Learning and Fully Convolutional Networks,
end-to-end segmentation was explored. The concern with
efficiency and the use of depth information are fundamental
characteristics of works developed in the lab, and have been
present since the first contribution was proposed. The use of
temporal information, on the other hand, still finds limited
adoption in our research on semantic segmentation for visual
perception/navigation. Finally, in recent works, semantic seg-
mentation has been explored as auxiliary task for dealing
with domain shift issues and improving learning ability in
hybrid supervised/reinforcement learning setups. A summary
of the main characteristics of the contributions on Semantic
Segmentation made by the LRM is shown in table 5.

1) SAFE AND UNSAFE REGION DETECTION
For vehicles to be able to safely navigate in outdoor environ-
ments, the detection of safe and unsafe regions is of utmost
importance. In this respect, semantic segmentation plays
critical role in segmenting the road from the input image.
Initial works explored block-based classification methods,
where the image is divided into square blocks. For each
block, features - statistical measurements such as mean,
probability, entropy and variance - are extracted manually,
considering different color spaces (RGB, HSV and YCbCr).
Afterwards, an artificial neural network is used for the classi-
fication of such elements into navigable and non-navigable
regions [159], [160], [161]. The subdivision of the image
into blocks also improves efficiency, allowing the method to
operate in real-time.

Shinzato et al. [162] additionally apply a horizon identi-
fier so that to only process the region below horizon line,
and consequently improve system performance. The idea of
only processing a Region of Interest (RoI) is also explored
in [163]. Dias and Osório [164], implement and analyze a
fixed-point Neural Network Ensemble for image segmen-
tation applied to visual navigation, in order to improve
efficiency.

Souza et al. [165] propose a vision-based navigation sys-
tem, composed of navigable region segmentation, template
matching to identify the geometry of the road ahead, a finite
state machine to filter some input noise and reduce classifica-
tion and/or control errors, and a template memory algorithm,
which, based on an ANN and memory of templates from pre-
vious steps, generates steer angle and speed for vehicle con-
trol. This was the first example of temporal reasoning in one
of our works. A detailed description of the system is depicted
in Fig. 23. A similar approach is adopted in [166] and [167],
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TABLE 3. Main characteristics of the Semantic Segmentation methods covered in our literature review.
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FIGURE 22. Single frame-based models may result in short-term (a) or long-term instability (b).

TABLE 4. Characteristics of the main datasets used for visual perception in autonomous vehicles.

where the environment is represented by a topological map in
which each state is related to a specific track shape.

Semantic segmentation can also be used to identify lane
markings, in order to localize and keep the vehicle on track.
In [163], the authors only apply image processing techniques,

not relying on any machine learning method. A filter is first
applied to accumulate differences of intensity between pixels;
then, Otsu thresholding is applied for image binarization.
Finally, a Probabilistic Hough Transform is employed to
detect all possible straight lines. Temporal data is used for
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FIGURE 23. General outline of the vision-based autonomous navigation system proposed in [168].

road marker estimation, when the model is not able to detect
them correctly.

Parallel to the aforementioned contributions, depth has also
been explored in order to improvemodel robustness. In [169],
the authors propose a method for obstacle and free space
detection based on disparity maps and a series of processing
steps based on graphs and a cost value considering a local
neighborhood of points. Shinzato et. al [170] propose to use
depth from stereo camera, along with other features based on
color, to detect the road region bymeans ofMachine Learning
techniques. Camera-LiDAR sensor fusion is used in [171] for
road and obstacle segmentation.

We also emphasize the importance of rich contextual infor-
mation to a more precise perception of the environment.
Mendes et al. [172] employ an ANN for classification of
hand-crafted features. A given reference block is classified
based on features extracted for itself, as well as for a given
context covered by the termed contextual blocks - Fig. 24.
Besides that, road blocks are selected as references for visual
information related to roads, in order to give more cues for
the classification model.

Similarly to previous works in the lab, the method in [173]
explores patch-wise classification of the image. However, the
expansion of the receptive field is explored in order to cover
more contextual information for the classification of a central
square in the patch. Aligned with the advances in the field, the
authors now employ CNNs for image segmentation, instead
of ANNs.

FIGURE 24. Illustration of the mechanism proposed in [172] for the
processing of additional contextual information. The classification block
is shown in red, the contextual blocks in orange, the possible support
block in blue and the road blocks in green.

2) SEMANTIC SEGMENTATION IN MULTI-TASK LEARNING
One of the goals of semantic segmentation is to provide a
summarized representation of the image, with a description
of its elements in terms of classes, instead of the raw image
information - color, texture, depth - acquired through vision
sensors. Aligned with that, the contributions described in
the previous section were mainly based on binary seman-
tic segmentation, in which input images were translated
into representations where only road and non-road classes
were usually considered. Considering a greater number of
classes, however, can bring more meaningful information
about the environment, contributing to autonomous naviga-
tion. In this sense, recent works developed by our members
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apply multi-class semantic segmentation instead of its binary
version. Horita et al. [174], for instance, apply semantic seg-
mentation as both proxy task for model pre-training, as well
as auxiliary task in multi-task learning by leveraging both
supervised and reinforcement learning. The authors prove
that the proposed strategy leads to better robustness to noise
and environmental adverse conditions, as well as allows faster
convergence and lower variance during training.

3) FUTURE DIRECTIONS OF SEMANTIC SEGMENTATION
Semantic segmentation has proven to be essential in visual
perception for autonomous navigation. In great part of the
works developed in the Mobile Robotics Lab, semantic
segmentation has played fundamental role in the identifica-
tion of navigable regions, obstacles, and also as auxiliary
task for increasing robustness and dealing with domain
divergence issues related to transfer learning. Besides that,
depth has been widely adopted as additional source of
information from the environment, helping in increasing per-
ception performance. Additionally, efficiency is of utmost
importance to autonomous navigation systems, and, there-
fore, has been a major concern in our work, mainly in the
form of hardware optimization and network simplification
strategies.

Despite that, there is still much room for improve-
ments concerning not only semantic segmentation, but visual
perception in general. First, video sequences are the nat-
ural source of visual information acquired from cameras;
nonetheless, although being critical to guaranteeing percep-
tion stability, the correlation and redundancy among frames
in video sequences have not yet been explored to their
full potential in our work. In second place, efficiency
has been tackled mainly from the perspective of simpli-
fied inputs and hardware for image processing; adopting an
efficiency-oriented line of design in our models seems to be
the natural path for improving perception efficiency, accord-
ing to the literature. Finally, depth has been used in our work
as either pre-processing steps or additional inputs; in spite of
that, employing depth as additional source of supervision in
multi-task learning setups for improving model performance,
as well as embedding depth into network operations so that to
improve efficiency and depth-awareness with reduced costs,
seem to be promising directions.

In summary, we believe that the future of semantic seg-
mentation for visual navigation is intimately related to
efficiency-oriented design, depth-aware models and opera-
tions, as well as temporal reasoning for model robustness and
stability.

H. DRIVER MONITORING
The high cost of implementing fully autonomous vehicles
with a high degree of reliability leads us to believe that
autonomous vehicles will need to share the streets and roads
with traditional vehicles driven by humans, at least for a
relatively long period of time.

In this sense, an important step to minimize errors in traffic
is the possibility of the vehicle monitoring the driver, so that
to detect monitor, and analyze behaviors of vehicle drivers,
making it possible to indicate their ability or inability to
operate the vehicle.

This subsection deals with works related to driver monitor-
ing and safe/unsafe driving verification. Among these stand
out the detection of drunkenness (Seção III-H1), drowsiness
(Seção III-H3) and the use of a cell phone by the driver
(Section III-H3). In addition, vehicle driving evaluator and
classifier systems are also relevant for driver monitoring
(Seção III-H4).

1)
There are different methods for detecting a drunk driver.
The drunk driver detection system developed by [175] and
improved in [176] uses a path between sensors (arranged in
parallel) through which the driver needs to drive the vehicle.
A normal driver can stay in a safe/normal region within the
path. The sensors are portable, hollow and must be posi-
tioned on the ground. When the vehicle’s tire is placed on
a sensor, its internal volume is reduced and signal lamps are
activated, or even other devices, thus indicating the driver’s
ineptitude.

In the case of ignition control systems, one can mention
the system proposed by [177] that checks the alcohol content
in the driver’s blood using a transdermal sensor incorpo-
rated into the steering wheel of the vehicle. Being above
a threshold, the system prevents the vehicle from starting.
The measurement of alcohol content is done by neural algo-
rithms previously trained to receive information from sensors.
Another proposal of this nature is that of [178] whichworks in
a similar way, however, the alcohol content is measured by the
intensity of the wavelengths emerging from the driver’s fin-
ger. A microprocessor correlates the collected intensity with
the alcohol content. To ensure that a finger of the vehicle’s
main driver is the one being analyzed, the system identifies
the fingerprint.

The [179] system is based on a sensor for human breathing
that detects whether the driver is drunk or not (above a per-
missible limit of alcohol in the breath). The sensor is installed
and measures the alcohol concentration in the region close to
the driver’s seat.

Reference [21] presented a non-intrusive system that
detects if a driver is under the influence of alcohol by mea-
suring the driver’s pulse. A window of 180 seconds is used to
compare the acquired driver data with a database of normal
and drunk people. Thus, the system is able to predict between
a drunk driver and a normal one.

The solution presented by [180] focuses on the detection,
using inertial sensors, of dangerous driving performed by a
drunk driver. A program installed on the cell phone computes
data from an accelerometer and an orientation sensor, then
comparing it to a dataset with typical patterns of a drunk
driver to identify improper driving. The system can alert the
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FIGURE 25. Multi-task learning architecture proposed in [174], for joint exploration of supervised (semantic
segmentation) and reinforcement learning (action and policy).

TABLE 5. Main characteristics of the works on Semantic Segmentation from our Mobile Robotics Lab (LRM).

local police automatically by phone call in places where there
is cellular coverage.

Reference [181]’s proposal identifies whether a driver is
drunk by the way he drives the vehicle on the roadway. The
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system locates the center of the roadway and the curvature
of the road, comparing them to the steering wheel angle
over a period, it is possible to distinguish the behavior of
a sober individual from an alcoholic one. The model of
distinction between sober and drunk was obtained using a
data set obtained by drivers in a simulator. The method
generates personalized models (sober and drunk) for each
driver, that is, the driver needs to be identified the moment he
starts driving the vehicle. Thus, with individual models, the
system achieved high fidelity. The method uses online tech-
niques that update the drivers’ models while driving. In the
case of generating sober and drunk generic models (suitable
for any driver), the method presents high uncertainty in its
detection.

2) DROWSINESS DETECTION
Among the works in the area, the approach by [182] stands
out, which uses a camera facing the driver. The proposal
locates the face and then the eyes of the driver using the
Viola-Jones [183] region detection technique. Using the
Hough Circular Transform [184] in the eye region it is possi-
ble to identify the iris and the two eyelids. The state of the eyes
is obtained by classifying two characteristics, one non-linear
and the other non-stationary, thus allowing the detection of
sleepiness.

Reference [185]’s work presents a system that extracts
characteristics of ocular amplitude, such as the amplitude
itself, energy, maximum and average speeds of closing and
opening the eyes, and characteristics linked to duration, such
as frequency of closing and opening, closed dwell time
and the PERCLOS [186]. PERCLOS is the rate that the
driver’s eyes remain closed over a period of time (one of
the most common characteristics in drowsiness detection
systems), with PERCLOS greater than or equal to 80% being
considered a risk. Using data from real and simulated exper-
imentation with 43 individuals in a total of 67 hours, it was
possible to reach an accuracy of 82% in detecting sleepiness.
The real tests were carried out with 18 people who had
their data collected using a route of 260 km on highways in
Germany, during the daytime (between 9-13 hours) and with
little traffic on the highways.

Reference [187]’s proposal detects drowsiness based on
physiological signals (electrodes placed on the driver’s head)
and on the detection of eye closure time. The eyes are detected
using Viola-Jones [183] starting from images acquired from a
camera. In each frame it is classified whether the driver’s eyes
are open or closed. A Fuzzy technique is employed to analyze
the physiological and closure data to detect sleepiness.

Another system is presented by [188], which performs
driver segmentation by skin color and uses SURF (Speeded
Up Robust Feature) [189] as a model for extracting facial
features, used to determine whether the eye is closed and
its rate of closure. The method uses these two pieces of
information to detect drowsiness.

The algorithm proposed by [190] uses mathematical mor-
phology in the segmentation of the driver’s eyes, and the

detection of the state of the eye, such as being open or closed,
is possible with the aid of the Gabor filter (local spatial
frequency distribution). Drowsiness detection occurs using
PERCLOS.

In [191]’s work on sleepiness detection, the state of the
eyes is identified by the presence or absence of the retina.
Mathematical morphology is used to detect whether the
eye is open or closed, and PERCLOS is used to detect
drowsiness.

3) CELL PHONE DETECTION
There are active efforts to develop methods to detect mobile
phone use by drivers while driving. The simplest way to solve
this problem is to help the driver not to answer phone calls
while driving. Usually this can be obtained using a specific
mobile application, but in this case the driver needs to actively
collaborate with the system for it to work. The ‘‘Hands on
the Wheel’’ [192] system, developed by the Brazilian gov-
ernment, blocks any notification on a cell phone for a period
of time, that is, while the driver is driving the vehicle. Calls
are also automatically answered via text messages between
cell phones, informing the person trying to contact the driver
that he is momentarily unavailable as he is driving. As for
receiving SMS, the app blocks message notifications. That is,
if the driver receives a text message, he will not be notified,
being able to view it as soon as he disables the application.
However, whoever sent the SMS does not receive the notifi-
cation that the person is driving. The start and duration of the
block are indicated by the driver. The system alone does not
prevent misuse of the cell phone.

Reference [193]’s approach uses software running on the
cell phone to capture and process high-frequency sound sig-
nals sent by the vehicle’s sound equipment. The sound signals
are used to measure the position where the cell phone is, so it
is possible to know if it is the driver who is using it, thus
blocking the operation of the device. The proposal obtained
a classification accuracy of more than 90% in detecting the
driver, being experimented with two different models of cell
phones and using two different vehicles. But this system
depends on the mobile operating system and software needs
to be continuously enabled. The great advantage of the tech-
nique is that it works even when using the cell phone with
headphones (hands-free).

The [194] method uses software on the driver’s cell phone
and device sensors (accelerometer, gyroscope, compass and
microphone) to detect events, the events make it possible
to know if a driver is wanting to use the cell phone while
driving. Examples of detected events are ‘‘walking towards
the vehicle’’, ‘‘standing close to the vehicle and opening one
of the vehicle’s doors’’, ‘‘entering the vehicle’’, ‘‘closing the
door’’ and ‘‘ starting the engine’’. To reduce the chance of
false detection of events, the method employs a state machine
for the logical sequence of events. The position where the cell
phone entered the vehicle is also identified, so the system
is able to distinguish between a driver and a passenger. All
activities are identified through the analysis and fusion of
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the sensors, allowing the total blocking of the device if an
ongoing driver distraction is detected.

The [195] method is an intrusive method and uses elec-
troencephalography (physiological signals) to identify when
the driver is talking on the cell phone or not. However,
this system needs an initial configuration of the sensors and
some electrodes (intrusive) distributed across the driver’s
chest.

The work done by [196] aims to achieve the detection and
classification of car driver activities using a computer vision
algorithm that detects relative motion based on the driver’s
skin segmentation. Another study using skin segmentation
is presented by [197], where the driver’s skin is detected
through adaptive segmentation. From the binarized image of
the driver’s skin, two characteristics are extracted, the Hand
Percentage (PM) and the moment of Inertia (first Moment of
HU) [198]. The PM is the ratio of pixels of skin in two specific
regions. Through these two characteristics, cell phone use can
be predicted in each frame. If the presence of a cell phone is
observed in at least 65% of the frames processed in a period
of 3 seconds, the use of the cell phone by the driver (in the
period) is declared by the system. The system is hybrid and
also uses a system for detecting the movement of hands/arms
(optical flow) as parameterization of the pattern recognition
system. Both methods use a camera to acquire a sequence of
images of the driver, but the first uses a driver’s side camera
while the second uses a driver’s front camera. Image-based
systems have some limitations due to problems with lighting
and shadows.

The methods by [199] and [200] detect cell phone use
using infrared surveillance cameras, in an attempt to avoid
some problems with lighting. The systems locate the face
of the driver (ROI). ROI is graded between cel use and
non-use

4) UNSAFE DRIVING DETECTION
The system presented by [201] is capable of monitoring the
driver using two image capture cameras, one positioned in
front of the driver and the other in front of the vehicle. Using
the internal camera, the system detects the direction in which
the driver is looking. The direction of the road ahead is
detected using the second (external) camera on the vehicle.
These two extracted orientations are converted to the same
coordinate system and correlated. Thus, the state of driving
can be inferred between: safe, risky and very risky. A Hidden
Markov Model (HMM) [202] analyzes the same correlation
to detect 4 driving patterns, which are: straight track, curve in
track, changing lanes and making a turn.

Reference [203]’s driving style detector system classifies
the vehicle driver into typical (non-aggressive) and aggres-
sive, using a software operating on a cell phone properly
positioned on the car’s windshield. The cell phone needs to
contain a camera, an accelerometer, a gyroscope, a magne-
tometer and a GPS for the system to operate. The system
detects whether or not the driver is aggressive by performing
a non-linear mapping (Dynamic Time Warping) between the

data currently acquired by the sensors and data from a small
training set (models).

The DriveSafe application [204], available for iPhone-type
cell phones, detects inattentive behavior and dangerous driv-
ing. The software evenmeasures the driving quality and alerts
you when this score is low. The definition of driving quality is
based on detecting drowsiness and distractions. Drowsiness
is detected through the way the driver drives the vehicle
through the roadway (position and involuntary exit from the
track), which is detected through the rear camera of the cell
phone positioned to observe the roadways in front of the
vehicle. The distraction detection uses the accelerometer,
the gyroscope and the GPS, so it is possible to detect the
levels of acceleration, braking and yaws made by the vehicle.
The system does not operate in urban city traffic, only on
highways, so it only works when the vehicle speed is greater
than 50 km/h.

The system proposed by [205] diagnoses the driver’s direc-
tion using a GPS to acquire the position, speed, acceleration
and the turns made by the vehicle. These data are compared
with previously cataloged rules for driving in the region, with
rules based on law and safety techniques. A system based
on Logic Fuzzy is responsible for qualifying the performed
direction.

5) CONSIDERATIONS
This section presented works related to the detection of cell
phone use in traffic, drowsiness, drunkenness and unsafe
driving within the scope defined for this work. The systems
raised in this section act in the monitoring of the driver,
in the qualification of the direction or before the vehicle
is started, thus allowing the detection of disturbances and
distractions. The Table 6 shows the comparison between the
systems presented in this section.

Some of the works raised [182], [187], [188], [190], [191],
[196], [197], [200], [201], [206] that monitor the driver use
RGB cameras for this purpose. These cameras rely on light-
ing and, moreover, a certain constancy and homogeneity of
lighting to detect and target the driver correctly. The accuracy
of driver segmentation can be impaired by the presence of
interior parts of the vehicle with colors close to human skin.
In a real situation, the incidence of lighting can vary, which
makes this a very relevant problem. For example, in the parts
where sunlight hits, the pixels of the acquired image saturate,
that is, they tend to present the white color as can be seen
in Figure 26. The movement of the vehicle also causes the
displacement of the region of incidence of light. All these
problems make it difficult to use a camera-based system to
acquire driver data for a real environment.

A camera is capable of capturing 2D information from the
scene, that is, we have no idea of pixels depth in relation
to the camera. The use of a 3D Sensor that already uses its
own lighting that is not visible and is tolerant of sunlight
is interesting for this type of solution. Thus, 3D data (point
cloud) can be used to track the movements and actions of the
driver inside the vehicle, without any influence of color or
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TABLE 6. Comparison table between related works and the developed system.

light intensity captured by a passive device. The 3D Sensor
can be installed in a position in front of the driver and that
does not affect the vehicle’s drivability, but thus providing
the system with the ability to observe all the upper parts of
the human body (head, neck, shoulders, arms and hands) in
their usual positions when driving the vehicle, thus enabling
the perception of unusual poses and actions for a driver in
perfect driving conditions. Reference [206] is an example of a
method that employs a 3D Sensor (Kinect v2) but uses sensor
fusion and, therefore, is still dependent on RGB data and the
incidence of the sun. Reference [207]’s work, on the other
hand, uses only 3D information (based on a Kinect v2 sensor)
to track the driver’s pose and thus observe distractions and
disturbances. By using only data from an active sensor (3D)

it is resistant to solar interference and can operate during the
night.

Cell phone use, in certain positions, may not be properly
detected by the internal sensor used to monitor the driver.
For example, when sending an SMS, the driver can leave
the cell phone in a region outside the sensor’s field of view,
or even occluded by other objects. Telephone conversations
using hands-free may not be detectable by the vehicle’s
internal data (driver movement). Despite the focus of this
project’s detection of cell phone use using the conventional
way (holding the cell phone to the ear), it is possible to
differentiate some situations of cognitive distraction caused
by sending an SMS or hands-free conversation using the
external characteristics that allow qualifying the driving of
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FIGURE 26. Examples of frames difficult to segment due to direct incidence of sunlight.

the vehicle and, therefore, noticing the change in the driving
pattern.

The position of the data capture sensor in driver monitoring
is extremely important, as it allows the correct functioning
of the system and obtaining driver data within the most
accurate region of the sensor. In addition, an inappropriate
choice canmake the system unfeasible in everyday situations.
Reference [196]’s work uses a driver-side camera, positioned
on the passenger door (inside the vehicle). Due to this choice,
it is not possible to have a passenger sitting in front of the
vehicle (between the camera and the driver), which results in
a reduction in the vehicle’s carrying capacity. For this reason,
the position in front of the driver adopted in [197]’s work is
the most common sensor position among the observed driver
monitoring works.

The use of an intrusive system, as for example adopted
by [185], [187], and [195], should also be avoided. Since this
type of system can cause discomfort to the driver because they
need electrodes or other equipment in contact with their skin,
in addition to that, they obligatorily need the driver’s consent
for their operation.

The issue of driver consent is very important, as one should
not need any assistance from the driver [176], [180], [185],
[187], [193], [194], [195], [203], [204], i.e. the driver must
not participate directly in the system to identify distractions
and disturbances. The interesting thing is that the driver of the
vehicle does not even notice that the system is in operation
and observing his actions, thus tending to perform more
natural and spontaneous actions.

Another relevant point in driver disturbances and dis-
tractions is re-education. An ADAS system should not just
be limited to detecting improper driving by the driver,
that is, the driver needs to be aware of his assessment in
real time. Alerting the driver of his momentary difficulty
driving, due to cell phone use or any other distraction,
paves the way for his awareness that he needs to drive
the vehicle with more responsibility. The works by [199]
and [200] make it impossible to instantly re-educate the
driver because they function as a traffic radar, that is, the

driver would be alerted later when receiving traffic violation
notices.

Another key point for a driver risk detection system is
to ensure that the driver is being evaluated while driving.
Systems such as [192], do not have any verification that
a driver is being used. In the case of [195], the electrodes
responsible for detecting distraction could be installed on a
passenger, allowing risky driving situations to go unnoticed
by the system. Reference [177]’s ignition lock system allows
a passenger’s blood alcohol concentration to be measured,
that is, a passenger can impersonate a driver when the vehicle
is started and after the vehicle is turned on system no longer
performs tests.

The constitution of a generalist system, that is, capable of
operating by evaluating data from drivers not used in training
and in its constitution, is interesting. Systems such as [181]
only operate with previously registered drivers, that is, all
new drivers need to go through the creation of a personalized
model that will enable the detection of risks while driving.
In the [21] system, on the other hand, the driver’s accuracy
worsens when he spends too much time driving, that is,
the pattern observed by the system changes, impairing the
detection of driver disturbances and distractions.

Monitoring the driver and his way of driving the vehi-
cle can benefit several businesses, such as bus companies
and vehicle rental companies (insurers). Thus, you can have
subsidies on line or offline (black box) of how employ-
ees or customers are managing vehicle fleets. Therefore,
drivers who expose themselves to unnecessary risks can be
penalized.

IV. CONCLUSION
In this article we present a literature review together with
our work developed at the LRM (Mobile Robotics Labora-
tory) on detection, classification and tracking of obstacles in
2D and 3D images (external view) and also driver analysis
systems (view inside the vehicle). Intelligent robotic vehicle
applications require accuracy and real-time response, as they
are defined as critical applications of embedded systems.
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In the area of computer vision for vehicles, there are
numerous researches from large development centers, but
we still need to evolve further, enabling safe and flawless
navigation.

Through the knowledge of our computer vision team,
we believe that for the evolution of the state of the art in per-
ception systems, we need to advance mainly with the models
of algorithms applied for depth estimation, since we currently
do not reach good accuracy in long distances (> 30 meters).
We also need to advance in obstacle tracking models, making
it possible to involve the temporal analysis of each situation
evaluated in the scene. We also apply data collection and
analysis in Brazilian traffic environments, making it possible
to adapt our algorithms to particular situations that happen in
our country in real data.

In ADAS systems, our proposal is to evaluate the driver
and what happens outside the vehicle (external and internal
perception together), making it possible to detect serious
failures in the task of driving and supporting the avoidance
of serious accidents in situations of drunkenness, drowsiness
or human error.
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