
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY SECTION

Received 19 May 2023, accepted 11 June 2023, date of publication 19 June 2023, date of current version 3 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287389

Generalizing a Small Facial Image Dataset Using
Facial Generative Adversarial Networks for
Stroke’s Facial Weakness Screening
PHONGPHAN PHIENPHANICH 1,2, (Student Member, IEEE), NICHAPA LERTHIRUNVIBUL 2,
EKABHAT CHARNNARONG2,3, ADIREK MUNTHULI 1,2,
CHARTURONG TANTIBUNDHIT 1,2, (Member, IEEE), AND NIJASRI C. SUWANWELA4
1Department of Electrical and Computer Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Rangsit Campus,
Khlong Luang, Khlong Nueng, Pathum Thani 12120, Thailand
2Center of Excellence in Intelligent Informatics, Speech and Language Technology, and Service Innovation (CILS), Thammasat University, Rangsit Campus,
Khlong Luang, Khlong Nueng, Pathum Thani 12120, Thailand
3Patumwan Demonstration School, Pathum Wan, Bangkok 10330, Thailand
4Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand

Corresponding author: Charturong Tantibundhit (tchartur@engr.tu.ac.th)

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Review Board of Chulalongkorn University under Application No. 242/61.

ABSTRACT Stroke is a medical emergency resulting from disruption of blood supply to different parts
of the brain which leads to facial weakness and paralysis as the brain is the control center. Stroke is the
leading cause of long-term disability which significantly changes the patient’s life. This paper introduces
the use of facial image dataset containing neutral and smiling expressions to classify facial weakness which
is a common sign of stroke. Our ‘‘real facial image dataset’’ comprises of face images of normal subjects
and stroke patients. However, to increase the dataset, we added another dataset known as ‘‘FaceGAN
dataset’’. This additional dataset contains a pair of neutral and smiling facial image synthesized from public
datasets which were augmented to generate two additional smiling images at eight different age groups.
The faces were divided into left and right side using facial landmark detection technique and corrected for
geometric distortions through affine transformation matrix from Delaunay triangulation. An autoencoder
model composed of ConvNeXt encoder and ConvNet decoder was trained and used to fine-tune a facial
weakness classification model from our proposed architecture. Results from four-fold cross validation
showed that the model validation was less prone to overfitting when used with the FaceGAN dataset, with
an average AUC of 0.76 and F1-score of 71.19%, compared to without FaceGAN data which only achieved
an F1-score of 61.54%. This study shows that the FaceGAN can efficiently generalize models for programs
with a small dataset for use with stroke detection. This work can be further improved and optimized for
clinical application in the future.

INDEX TERMS Facial generative adversarial networks, facial weakness, FAST, small dataset, stroke-
screening.

I. INTRODUCTION
Stroke is a medical emergency that requires immediate atten-
tion as it can become a long-term disability. Moreover, it is
the second leading cause of death worldwide [1]. Screening
for stroke includes history taking, physical examination and
assessment of risk factors such as age or certain cardiovas-
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cular diseases. Signs and symptoms that are indicative of
stroke include facial weakness, arm or leg weakness or numb-
ness, and slurred speech [2], [3], [4]. Hence, the Face, Arm,
Speech, Time (FAST) assessment was devised to stress the
importance of timely diagnosis and management of stroke.
Timely recognition of a stroke can halt the rate of neurons
loss from the process of ischemia as emphasized by the phrase
‘‘time is brain’’ [5].
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Early diagnosis and prompt treatment of stroke can reduce
disease morbidity and mortality. Hence, fast recognition of
stroke is crucial in reducing subsequent post-stroke disabili-
ties [1]. However, diagnosis may be deferred due to several
factors such as delayed recognition or lack of access to
appropriate medical equipment required for diagnosis. Incor-
poration of screening tools using digital images may provide
faster assessment and detection of stroke enabling improved
post-stroke outcomes. In our previous work [3], [6], we cre-
ated a self-screening tool for stroke using the gyroscope
and accelerometer functions in smartphones to detect arm
weakness.

Other than weakness of extremities, facial palsy is also a
sign of stroke. In some cases, weakness may be accompa-
nied by numbness or difficulty speaking [1]. Facial muscle
weakness can be presented as asymmetry of facial features
or differences in the size or shape of one side of the face
compared to the other. Signs of facial palsy include drooping
of the eyelid, corner of the mouth, or lower lip. Patients may
also have difficulty moving certain facial muscles which may
be more pronounced when they are asked to smile or raise
their eyebrows. However, facial weaknessmay be subtlemak-
ing it difficult to detect especially for non-neurologists [7].
Moreover, Brandler et al. [8] demonstrated that paramedics
failed to identify facial weakness in 17% of stroke patients
and incorrectly diagnosed facial weakness in 33% of
cases.

A common differential diagnosis of acute stroke that
presents with unilateral facial weakness is Bell’s palsy.
Unlike stroke which affects the upper motor neuron of the
facial nerve, Bell’s palsy is a lower motor neuron facial
palsy. Clinical differences between the two conditions include
involvement of upper facial muscle paralysis that can be
found in Bell’s palsy but is usually absent in stroke. Clinical
examination is warranted to localize the lesion. Weakness of
the lower face sparing the forehead suggests an upper motor
neuron lesion, whereas weakness of both the lower and upper
face indicates a lower motor neuron lesion [9].

Other differences include onset of symptoms and associ-
ating signs and symptoms such as arm or leg weakness in
stroke or decreased lacrimation and salivation in Bell’s palsy.
Treatment of acute stroke is initiation of thrombolysis. On the
other hand, Bell’s palsy is treated with early administration of
steroids and eye protection to prevent ocular complications.
Hence, it is crucial to correctly differentiate between the two
etiologies of facial palsy to avoid misdiagnosis and delayed
appropriate treatment, and also to prevent overreliance on
neuroimaging [9].

Due to the unprecedented COVID-19 outbreak, all sub-
jects had to wear masks at all times in the hospital and
we had to discontinue our data collection process decreas-
ing the number of facial images. Furthermore, concerns
regarding subject’s privacy and confidentiality, as our work
focused on facial features, also limited the amount of data
collected. Hence, we had to find other alternatives to increase
and generalize our dataset. Other options include adding

images and videos from public data sources like Google or
Youtube [4], which we did not incorporate because these
real-world images come in different image sizes and reso-
lution making it difficult to use with our program. Instead,
we chose to use Facial Generative Adversarial Networks
(FGAN) which is a deep-learning and auto-encoder model
trained from a large-scale collection of face images to gener-
ate new face images [10].

FGAN combines specific features and random values,
called latent vector, to create new face images that closely
resembles the actual image which poses a challenge for the
discriminant model to classify between real and fake face
images. These models [10], [11] can generate a wide variety
of facial appearances such as age, skin-color, ethnicity, emo-
tional expressions, and facial features such as facial hair and
glasses. Therefore, we chose FGAN over public databases
to increase our dataset and generalize our model. Further-
more, FGANs have been used to reconstruct 3D heads in full
360-degree view from 2D facial images as demonstrated by
PanoHead [12].

We recognize the importance of a timely diagnosis of
stroke for improved patient outcomes. Hence, we propose
an algorithm to create a screening tool for early stroke
detection with good performance using two facial images,
a neutral and smiling state. Moreover, we aim to develop a
tool that is easily accessible by smartphones and tablets with-
out requiring much resources. During the process, we also
incorporated FGANs to synthesize more facial images and
alternative smiling phases which overcomes the limitations in
datasets.

II. RELATED WORKS
Facial weakness detection from a single image can be done
using a simple programming model which involves three
main processes. Firstly, the model identifies the person’s
face and mouth. Facial landmark detection plays an impor-
tant role in locating the face then rotating it to a neutral
position. A widely-used facial landmark model, the 68-
landmarks model [2], [4], [13], [14], [15], [16], [17] allocates
20 points in outlining the shape of the mouth that can be
used to detect lip drooping. Other work [18] uses the 106-
landmarks model which differs from the 68-landmarks model
in that it assigns more points to the eyes. However, both
models have the same efficacy in detecting changes in lip
shape.

Feature extraction is the next step. Many programs use
hand-craft features which analyze the distances between
landmark points such as the relation between the corner of
the mouth to the eye [13], [16], [17], [18]. This technique is
efficient but heavily depends on accurate detection of facial
landmarks. Therefore, someworks [19], [20] requiredmanual
re-annotation on images of facial palsy patients because the
facial landmarks models were trained on healthy subjects
in public datasets. Many studies [2], [4], [17] employ the
histogram of oriented gradients (HOG) for facial recognition.
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HOG is a technique that counts occurrences of gradient ori-
entation in a selected portion of an image, then uses the
principal component analysis (PCA) method to simplify the
image into a lower dimensional space. Other works [15],
[21] use deep learning techniques such as Convolutional
Neural Network (CNN), to embed face region to features
vector.

The HOG and deep learning techniques require training
on an extensive amount of data points in order to create an
embedded space that can adequately differentiate between
normal and facial palsy subjects. A study by Zhuang et al. [4]
included 437 subjects with diverse demographics and sep-
arated subjects based on skin color and gender. However,
many studies [13], [14], [15], [16], [17] including this study
recruited less than 200 subjects from a more specific demo-
graphic. However, to overcome the limited dataset, data
augmentationwas employed. Data augmentation [22] enables
iterative use of data points by flipping the facial image
and adjusting image brightness and contrast among other
methods.

The last step is using features vector to classify facial
weakness. Most studies [2], [15], [16], [17], [18], [19]
employ machine learning techniques, such as support vec-
tor machine (SVM), random forest, and k-nearest neighbors
(kNN), to classify facial abnormalities. These machine learn-
ing programs analyze one single image making the process
compact and fast. However, there are limitations in accu-
rately detecting facial landmarks and selecting the target
image. Additionally, healthy subjects in real-world samples
usually have asymmetrical faces in neutral position which
can be further challenged by various facial expressions.
A feature-based recognition model designed for expressive
facial images had lower accuracy in identifying the nose and
mouth areas as compared to the eyes in expressive image
variants [23].

As opposed to using static images, training models with
dynamic facial expression videos can enhance its perfor-
mance at the expense of reduced reliability [24]. Facial
weakness classification from video clips requires a more
complex process which involves localization of facial fea-
tures and movements in each frame from neutral to smiling
state to increase accuracy. Zhuang et al. [4], improved their
accuracy by assigning frame features to recurrent neural
network (RNN), such as bidirectional long short-term mem-
ory (BiLSTM). Classification from videos require more
resources making it incompatible with our previous work [3]
which aims for use with budget smartphones to increase
accessibility.

Deng et al. [25] proposed a model with improved robust-
ness and accuracy of facial recognition from large-scale
databases by using angular margin loss which represents
the differences in angles of embedded vector with margin
penalty from the facial image. Their work inspired us to
take advantage of the latent vector of auto-encoder model
for facial weakness detection from different angles of vectors
embedded from each side of the face in neutral and smiling

images. Furthermore, we employ the auto-encoder model,
pre-trained and augmented using the FGANdataset, to embed
near-mouth region from each side of the face. Then, we use
our proposed comparison vector layer and artificial neural
network (ANN) to classify facial weakness.

Some studies created algorithms for facial weakness detec-
tion using video analysis which differs from this study [4],
[26]. In this paper, we aim to enhance the facial recogni-
tion model with the advantage of video classification which
preserves the dynamic changes from neutral to smiling state
while maintaining the simplicity of using one single image.
We propose the use of two-state images which are the
neutral and smiling faces. Our proposed algorithm cannot
be compared with other video classifications as it requires
only two images making it practical and convenient. It is
crucial we create a simple algorithm as we aim to create
an application that can easily be accessed by tablets and
smartphones.

The rest of the paper includes data collection, genera-
tion and pre-processing. Data collection outlines the types
of participants we recruited and the challenges in work-
ing with participants due to the COVID-19 outbreak. The
resolution to this unforeseen issue is explained in latter sec-
tions. Followed by the proposed method in developing a
facial classification model, then the experimental setup and
results. Lastly, the conclusion and discussion along with
acknowledgements.

III. DATA COLLECTION, GENERATION, AND
PRE-PROCESSING
A. DATA COLLECTION
This study was designed to collect two frontal facial images
from 63 participants including 12 normal control subjects,
27 chronic stroke patients without facial weakness, and
24 stroke patients with facial weakness ranging from slight to
pronounced weakness. The data collection was approved by
the Institutional Review Board of the Faculty of Medicine at
Chulalongkorn University with approval number 242/61, and
all participants provided informed consent prior to data col-
lection at King Chulalongkorn Memorial Hospital, Bangkok,
Thailand. The images were captured using a smartphone
device camera with a resolution of 1,920× 1.080 pixels with
neutral facial expression images and smiling facial expression
images. The term ‘‘real subjects dataset’’ is used throughout
the paper to describe this dataset.

B. GENERATING DATA WITH FACIAL GENERATIVE
ADVERSARIAL NETWORK
Generative Adversarial Networks (GAN) is a variant of unsu-
pervised deep neural networks, most commonly used for
generating artificial data with the same statistical proper-
ties as the training data [27]. GAN consist of two different
networks, referred to as a generator and a discriminator,
which are used to generate images and determine whether
the generated images are realistic or not, respectively. These
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FIGURE 1. Using StyleCLIP GAN [10] and OverLORD GAN [11] to generate two additional smiling phases across eight distinct age ranges from an original
facial image.

two models are trained simultaneously with the generator
attempting to generate data that is indistinguishable from
real data, and the discriminator attempting to differentiate
between real and generated data [27].

FGAN is a subset of GAN that is can generate realis-
tic facial images from a given training dataset [28]. This
generative model can be used to create a variety of facial
images with different ages, genders, and ethnicities [10], [11].
Furthermore, FGAN can be used to remove facial defects
such as blemishes and wrinkles, as well as generate images of
fictional characters that are widely used in many social media
platforms [10], [11].

This paper utilizes 1,600 synthetic neutral facial expression
images from the Generated Photos dataset [29], inspired by
concepts of GAN and StyleGAN. The images consist of
400 faces of different age groups (child, young-adult, adult,
and elderly) with varying skin color, ethnicity, and appear-
ance. These images were augmented using a pre-trained
StyleCLIP GAN [10] to generate an additional two smiling
(smile-to-neutral and neutral-to-smile augmentation) images
and a pre-trained OverLORD GAN [11] to generate eight
additional age ranges, apart from the original image. This
resulted in a total of 14,400 pairs of neutral and smiling
facial expression images, as illustrated in Fig. 1. The term

‘‘FaceGAN’’ is used throughout the paper to represent this
dataset.

C. FACIAL LANDMARK DETECTION AND AFFINE
TRANSFORM
Facial landmark detection is a computer vision technique
which can identify and locate points corresponding to spe-
cific facial features. This technique has been implemented
in a vast array of applications including facial recognition,
facial classification, 3D face modeling, and facial transfor-
mation [30], [31]. A state-of-the-art 2D/3D facial landmark
technique is RetinaFace [32], which is an open-source facial
recognition system. RetinaFace [32] employs a multi-task
learning deep convolutional neural network to detect and
locate five important facial landmarks, including the eyes,
nose, and mouth. This system has the capability to detect
faces even in challenging conditions, such as varied lighting,
poses, and facial expressions [32].

Affine transformation is a combination of linear transfor-
mations such as rotation, reflection, scaling, shearing, and
translation, which are widely used to subtly modify an orig-
inal image while preserving its overall structure [33]. Facial
landmark detection combined with affine transformation can
be used to reproduce realistic facial images by making minor
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FIGURE 2. The data pre-processing process includes (a) the original image, with facial landmarks from RetinaFace, and with eight triangular matrices
from Delaunay triangulation, (b) side-by-side left and right-hand sides of facial images, (c) data augmentation using facial landmark and affine
transformation on a pair of neutral and smiling images to generate FaceGAN dataset and (d) six FaceGAN images created with affine transformation
matrices from a pair of neutral and smiling facial images.

adjustments such as facial types and alignment [34]. Further-
more, facial landmark detection and affine transformation are
also used for facial recognition and matching of one’s face to
another image [35].

This work used a RetinaFace model [32] to extract
106 facial landmarks. Six out of the 106 points were selected
corresponding to the outer corners of the face, center of
the lower lip, and center of the nose, as shown in Fig. 2
a). The six facial landmarks were divided into two halves
using a vertical line between the two center points. A cen-
troid was created for each of the four points on each side.
Five points from each side were used to create a mesh of
triangles from a set of points using Delaunay triangulation
techniques [36], as in Fig. 2 a), to generate eight affine
transformation matrices. Each half side of the image was
then applied with the affine transformation matrix to recre-
ate side-by-side left and right-hand sides of facial images,
as in Fig. 2 b).
The proposed technique was implemented on FaceGAN

dataset to create an input for this work. Since FaceGAN
consists of a pair of neutral and smiling facial expression
images, the model’s input is a 4-dimensional vector XT =

{XNL,XNR,XSL,XSR} composed of the four different images,
i.e., the left-hand sides of the neutral facial expression images
XNL, the right-hand sides of the neutral facial expression

images XNR, the left-hand sides of the smiling facial expres-
sion imagesXSL, and the right-hand sides of the smiling facial
expression images XSR, as illustrated in Fig. 2 c)−Fig. 2 d).

IV. PROPOSED METHOD
A. PRE-TRAINING OF AUTOENCODER-BASED
UNSUPERVISED MULTI-TASK LEARNING FOR NEUTRAL
AND SMILING FACIAL EXPRESSION IMAGES
In this study, ConvNeXt [37] layers were used as the primary
layers of the encoder (E(·)) of an autoencoder. The standard
CNN layers (ConvNet) were employed as the decoder (D(·))
to map the latent vector of the encoded representation back to
the original input space. ConvNeXt architecture enables the
latent vector space to take advantage of its strong spatial infor-
mation processing capabilities, while ConvNet is effective at
reconstructing the input data. The results of our experiment
demonstrate that this particular combination is most suitable
for our work when compared with other architectures, such
as the ResNet architecture, or the use of both ConvNeXt as
both encoder and decoder for the autoencoder.

For the encoder, we employed a four-stage ConvNeXt
design. Each of the four stages consists of 3, 3, 6, and 3 Con-
vNeXt blocks with 16, 32, 64, and 128 filters, respectively.
To reduce overfitting, we incorporated stochastic depth [38]
with probabilities of 0.75, 0.5, 0.5, and 0.5 for each
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ConvNext block in the four stages, respectively. After the
final ConvNeXt block, we included an adaptive average pool-
ing layer that flattens the output to generate a feature vector.
This feature vector was then processed through a fully con-
nected layer creating a 48-dimensional latent vector. For the
encoder model’s initialization, we utilized the Glorot normal
initializer [39].

The decoder was created using the latent vector obtained
from the encoder with a fully connected layer to project
the input. The input was modified to match the output
architecture of the adaptive average pooling layer. Then,
we implemented a sequence of six deconvolutional (trans-
posed convolutional) layers with filter counts of 64, 64, 32,
32, 24, and 24, to achieve an upsampling of the original
input dimensions of the encoder. Additionally, we added con-
volutional layers with an equivalent number of filters before
exponential linear unit (ELU) [40] activation functions after
each deconvolutional layer.

Figure 3 a) illustrates the use of facial images from the data
loader during the pre-training phase to learn the encoder and
decoder representations of the input. This phase requires an
input of the entire image of a neutral (XN) or smiling face
(XS). Two loss functions are calculated: the reconstruction
loss (LRE) and the angular distance loss (LANG). LRE is the
mean average error between the vector of the original input
image from FaceGAN and the reconstructed input obtained
from the decoder component of an autoencoder, as expressed
in Eq. 1. The angular distance loss measures the modified arc-
cos similarity between the latent vector randomizer derived
from themetadata of the input and the latent vectors generated
by the encoder of an autoencoder from the whole facial image
input, as stated in Eq. 3.

LRE = ∥X −D(E(X ))∥2 (1)

sim(V1,V2) =
V1

∥V1∥2
·

V2
∥V2∥2

(2)

LANG =
1
π

· arccos(sim(Vt , E(X ))) (3)

LT = αRE · LRE + αANG · LANG, (4)

where αRE is 1 and αANG is 10.
We employ a randomized non-negative matrix factoriza-

tion approach to obtain a set of orthogonal basis vectors and
select the nearest orthogonal vector for each latent vector
attribute. Cosine similarity is then used to compare the degree
of smiling and limit the cosine similarity to positive values.
To avoid overfitting, a small amount of Gaussian noise is
added to the latent vector. Finally, an Adam optimizer with
0.001 learning rate is used to optimize a total loss (LT)
consisting of the reconstruction loss (LRE) and angular dis-
tance loss (LANG) [41], as shown in Eq. 4. The loss function
is used to minimize the distance between the latent vector
representation of a FaceGAN image and its metadata. This
enables differentiation of trajectory between a normal facial
expression and any degree of smiling facial expressions,

as well as the difference in age in images that were augmented
by FaceGAN.

B. MULTI-TASK LEARNING OF NEUTRAL AND SMILING
FACIAL EXPRESSIONS FOR DETECTION OF FACIAL
WEAKNESS
In this subsection, a 4-dimensional vector XT = {XNL ,
XNR,XSL ,XSR} representing the input facial image is for-
warded to the encoder layer of the autoencoder model derived
from the pre-training phase to compute a latent vector rep-
resentation for each facial image, i.e., a set of vectors,
VT = {VNL ,VNR,VSL ,VSR}. These latent vectors VT are
then forwarded to the vector comparison state layer to com-
pute the state vector which is composed of five similarity
vectors.

The cosine similarity layer employs a modified cosine
similarity function with trainable parameters θ (C), which is
defined by a Gaussian function (G) with α scaling and θ shift,
as shown in Eq. 5–6. Vector comparison state layer utilizes
this function to compare latent vectors called state vectors.
For pairs of vectors that should be similar, the θ in the cosine
similarity layer should be close to zero, such as VNL and VNR,
VSL and VSR, and VSL − VNL and VSR − VNR. For pairs of
vectors that should be different, the θ in the layer should be
close to π/2, as illustrated in Fig. 4.

G(x; α, θ) = exp(−0.5 · (
x − θ

α
)2) (5)

C(V1,V2; θ ) = G(arccos(sim(V1,V2)); α = π/4, θ) (6)

In order to minimize the difference between the baseline
output of the ConvNeXt encoder and the output of the state
vector layer, a state vector loss (LSV) is computed by cal-
culating Hinge loss between the state vector from the vector
comparison state layer and a ground truth state vector, which
is based on the similarity of each state vector (similar degree
= 0; different degree = 1). Additionally, a state vector is
passed onto an ANN to construct a facial weakness classifica-
tionmodel and compute a facial weakness loss (LFL) between
the ground truth label and the classification result.

The latent vectors VT are forwarded to the ConvNet
decoder layer of the pre-trained autoencoder model in order
to reconstruct the original image and calculate the reconstruc-
tion loss (LRE) between the input image from the data loader
and the reconstructed image. During the multi-task learning
training phase, all three losses are computed simultaneously
to reduce model sum of weight loss, with αRE = 0.1,
αFL = 1, and αSV = 5 while incorporating Adam optimizer
to minimize total loss with a 0.0005 learning rate. This study
builds two variants of the model: one containing only the
real subjects dataset, and one containing both the real sub-
jects and the FaceGAN datasets. We employ the TensorFlow
2.10 framework for model development, utilizing a batch
size of 24 during the training process. Our computational
resources consist of a 16-core CPU, 64 GB of RAM, and an
NVIDIA RTX 3060 GPU with 12 GB of RAM.
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FIGURE 3. The proposed model consists of two parts: a) a pre-training phase for learning the encoder and decoder representation of the FaceGAN
dataset using an autoencoder scheme, and b) an architecture of multi-task learning for facial weakness classification.

V. EXPERIMENTAL SETUP AND RESULTS
A. EXPERIMENTAL SETUP
1) DATA LOADER FOR PRE-TRAINING PHASE
A stratified random sampling approach was employed to
pre-train the encoder and decoder of the autoencoder model
for learning neutral and smiling facial expressions. A total
of 14,400 pairs of FaceGAN images were divided into 80%
training set and 20% validation set (Fig. 5). The validation set
was used to determine a set of hyperparameters that would
optimize the performance of the encoder and decoder of the
autoencoder model.

2) DATA LOADER FOR MODEL EVALUATION
After training and validating the encoder and decoder of
the autoencoder model, we use both encoder and decoder
for multi-task learning to create a classification model.
To reduce bias and enhance model performance, a strati-
fied k-fold cross-validation (with k = 4) is employed due
to the limited amount of real subjects’ data. The FaceGAN
dataset and k − 1 fold from the real subjects’ dataset are
utilized for training and validation of the proposed model
in proportions of 80% and 20%, respectively. It should be
noted that StyleCLIP and OverLORD GAN augmentation

FIGURE 4. Our proposed vector comparison state layer to detect the
degree of difference between each part of a facial image.

are applied only during the training stage, while the vali-
dating and testing stages were done using original images
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FIGURE 5. The data division used for training the model consists of (a) a data loader for pre-training phase and (b) a data loader for model evaluation.

FIGURE 6. Model performance comparison: without FaceGAN dataset vs. with FaceGAN dataset. (a) & (c) present the mean and standard deviation of
AUC values for validation and independent testing datasets across four-fold cross-validation, while (b) & (d) display the corresponding confusion
matrices from independent testing datasets.

from the real subjects’ dataset. The last remaining fold of
the real subjects’ dataset, without any augmentation tech-
niques, is used to evaluate the performance of the model,
as shown in Fig. 5 b). This procedure is repeated four
times until all data from the real subjects’ dataset have been
evaluated.

B. EXPERIMENTAL RESULTS
This study aims to investigate the efficacy of using a Face-
GAN dataset to increase the generalizability of a model for
distinguishing between normal stages (normal control partic-
ipants and stroke patients without facial weakness) and facial
weakness stage (stroke patients with slight and profound
facial weakness). The results are divided into two sections,
one examining the classification results of a model trained on
data without the FaceGAN dataset, and the other examining
the classification results of a model trained on data with the
FaceGAN dataset.

C. CLASSIFICATION PREDICTION OF MODEL WITHOUT
FaceGAN DATASET
This subsection presents a model trained with data from
real subjects dataset and evaluates its performance through
four-fold cross validation. Figure 6 (a) depicts the mean AUC
and standard deviation of AUC for this model as 0.91 and
0.07, respectively, indicating high performance on training
and validating data. However, when tested with an indepen-
dent dataset, the model’s performance dropped to a mean
and standard deviation of AUC of 0.67 and 0.04, respec-
tively. The confusion matrix of four rounds revealed that the
model has a sensitivity, specificity, F1-score, and Cohen’s
kappa of 66.67%, 69.23%, 61.54%, and 34.78%, respectively,
as shown in Fig. 6 (b). The results demonstrate the model’s
potential for achieving high performance on training and
validating data. However, its performance on independent
testing datasets is relatively low, possibly due to the lim-
ited available data causing overfitting resulting in minimal
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agreement between the predicted and actual labels [42].
Further research is needed to improve the reliability of the
model’s results on independent datasets.

D. CLASSIFICATION PREDICTION OF MODEL WITH
FaceGAN DATASET
The results in this subsection consist of both data from the
real subjects dataset and its augmented data used for training,
as well as the FaceGAN dataset. Performance from four-fold
cross validation using the AUC curve revealed that the model
with FaceGAN data had a lower average AUC than the
model with only the real subjects dataset for training, with
an average and standard deviation of AUC of 0.76 and 0.04,
respectively, as shown in Fig. 6 (c). This is likely due to the
fact that the training and validation from the previous section
was overfitted when both the real subjects and FaceGAN
data were used. However, the model with FaceGAN dataset
was slightly better than not using the FaceGAN dataset as
the average AUC of the testing set is closer to that of the
validation dataset with a higher Cohen’s kappa level of agree-
ment. The sum of the confusion matrix of four rounds found
that the model has a sensitivity, specificity, F1-score, and
Cohen’s kappa of 87.50%, 64.10%, 71.19%, and 47.42%,
as shown in Fig. 6 (d). These results suggest that the model
is a promising clinical tool with further development and
optimization.

VI. DISCUSSION AND CONCLUSION
Facial paralysis or asymmetry, and difficulty forming facial
expressions are indicators of stroke. AI-based stroke detec-
tion is optimized when the patient is asked to display both
neutral and smiling facial expressions. This process enables
a more thorough assessment of facial muscles, as the pres-
ence of paralysis and asymmetry becomes more obvious.
Furthermore, with faster stroke recognition, prompt treatment
can be administered without haste to reduce risks of serious
complications or death.

In our work, we utilized a pair of neutral and smiling facial
images to classify between normal (including both normal
control participants and stroke patients without facial weak-
ness) and facial weakness (including stroke patients with
slight and profound facial weakness). Our work takes advan-
tage of the dynamic facial features using only two frames,
while other studies incorporate an entire video. Hence, our
work cannot be compared with other video classifications.
The model generated a very good performance when trained
using only real-subject dataset. However, when applied to
an anonymous dataset, the results gradually dropped and
did not align with the training results. When our proposed
techniques were applied together for data augmentation, the
performance of validating and testing dataset with anony-
mous data aligned with each other and produced better
outcomes.

This work not only relies heavily on data augmentation
techniques, but also utilizes transformation matrices, facial
landmarks detection algorithms, and Delaunay triangulation

to correct geometric distortions of images. The results support
the proposed vector comparison state layer for comparing
similarities between neutral and smiling facial images. More-
over, a multi-task learning of multiple losses functions is
designed to achieve multiple objectives, resulting in better
generalization, faster convergence, improved accuracy even
with limited resources. Although this idea is supported by
many existing literature, its conclusion has yet to be examined
in this study.

The main drawback of this work is the limited availabil-
ity of real subject datasets. To ensure a balanced dataset
and provide enough data to accurately evaluate the model’s
performance, we decided to include both normal control par-
ticipants and stroke participants with no facial weakness in
the normal group without any preprocessing. Unfortunately,
this decision is responsible for the decreased performance
seen in both the validation and testing sessions. To ensure
thorough evaluation of the model’s performance, it was nec-
essary to maintain a sufficient amount of datasets.

Apart from assessment of facial weakness, AI-based tech-
niques can also be used to detect limb weakness and speech
impairment, thus providing a more comprehensive approach
for detecting stroke. In a previous study [3], arm weakness
detection helped in diagnosis of stroke and achieved sen-
sitivity and specificity of 94.8% and 84.1%, respectively.
While the sensitivity was high, the specificity was relatively
low. This indicates that one modality alone may not ade-
quately detect stroke. Hence, combining several modalities
can enhance accuracy of stroke detection leading to better
outcomes.

We acknowledge that using progressive growing FGANs
for data augmentation could potentially improve our model’s
performance. However, due to limited resources and number
of real subjects, we decided to use the synthesized FaceGAN
dataset to create a diverse distribution of age groups, skin
color, ethnicity, and appearance. In the future, we plan to
collect more data to increase the accuracy of facial weakness
screening. Furthermore, we plan to incorporate progressive
FGANs like in PanoHead [12], to enhance our model so that
it can be used on different face angles and 3D face models.
Model evaluation can be improved by adding more perfor-
mancemetrics such as FrB)chet Inception Distance (FID) and
Inception Score (IS) [43].

Additionally, we will create an application that combines
the model of our previous research on arm weakness detec-
tion [3] and this facial weakness detection program to create a
more comprehensive stroke screening tool. This application
aims for faster stroke detection and enhanced patient triage
to improve stroke treatment outcomes. Ultimately, we hope
to create an accessible tool that can be used by the general
population monitoring and early detection of stroke.
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