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ABSTRACT Pedestrian detection is a significant research topic in the computer vision (CV) domain
for a longer period. Recently, deep learning (DL) and specifically convolutional neural network (CNN)
exhibit significant improvement in the computer vision tasks such as object detection, segmentation, image
classification, etc.With this motivation, this study develops a novel Colliding Bodies Optimizationwith Deep
Learning based Robust Pedestrian Detection (CBODL-RPD) model. The goal of the CBODL-RPD approach
is to identify the occurrence of pedestrians and non-pedestrians via object detection process. For object
detection process, YOLO v4 with Adagrad optimizer is applied. In addition, the CBODL-RPD technique
employs SqueezeNet model to generate feature vectors, and the hyperparameter tuning process is performed
via the CBO algorithm.At last, deep belief network (DBN)model is applied for accurate pedestrian detection.
A comprehensive experimental analysis is made to demonstrate the significant pedestrian detection results
of the CBODL-RPD technique. The comparative outcome study reported the improved outcomes of the
CBODL-RPD method over other recent methods.

INDEX TERMS Pedestrian detection, video analysis, computational intelligence, deep learning, parameter
optimization.

I. INTRODUCTION
Recently, many videos and images are acquired through
image acquisition gadgets or sensor measurements [1]. Such
videos and images are utilized for tracking, detecting, and
finding targets of interest, and the discoveries are employed
for ecological conservation, plant monitoring, face detection,
etc. Various effectual computing methods are emerged with
the advances in computational intelligence which includes
deep learning (DL) [2], expert systems, machine learning
(ML) and other intellectual methods. Such methods are
employed for video and image analysis, including decision
making, feature extraction, or data mining [3]. But proper
analyses and interpretations of the acquired information are
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difficult. Appropriate implementation or model of compu-
tational intelligence techniques will help enhance the speed
and efficiency of video and image processing [4]. Artificial
intelligence (AI), along with computer vision (CV) methods,
intends to automatic interpretation of the visual context of
scenes in the form of sequence of frames or a single frame
and react consequently [5]. The difficulty that CV researchers
have been facing until now is the recognition of pedestrians
or human shapes. It becomes a significant element in sev-
eral higher-level applications, from car security to advanced
surveillancemechanisms [6]. Fostered by the arrival of highly
robust yet compact hardware, the past few years have seen
substantial advancements in pedestrian recognition systems
in respect of effectiveness and accurateness [7].

Many pedestrian detection approaches share same compu-
tational pipelines [8]. Initially, commencing from raw pixel
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level image content, they would derive high level features
or spatial representations resorting to randomly complicated
conversion that can be implemented window-by-window
or pixel-by-pixel. Secondly, features for any of the pre-
sented spatial windows were given to classifiers that evaluate
whether that area would depict humans. Additionally, a scale
space can be commonly employed for identifying pedestrians
at distinct scales, i.e., distance relating to the sensing devices.
Deep neural networks (DNNs) are rapidly transforming the
world of AI and ML [9]. They set novel benchmarks for
several heterogeneous applications in several fields, compris-
ing natural language processing (NLP), image understanding,
and speech and audio analysis, bridging the gap in human
performance for various errands. To be specific, CNN) signi-
fied a revolution in image analysis [10]. It considers existing
tasks such as object detection, image classification, and face
recognition. For pedestrian detection, there was increasing
interest in CNN for the past years, inspired by the same image
analysis task achievements.

This study develops a novel Colliding Bodies Optimiza-
tion with Deep Learning based Robust Pedestrian Detection
(CBODL-RPD) model. The main aim of the CBODL-RPD
algorithm is to perform pedestrian detection via object detec-
tion and hyperparameter tuning process. To do so, the
proposed model uses YOLO v4 for object detection pro-
cess with SqueezeNet model as hyperparameter optimizer.
Besides, the hyperparameter tuning process is performed
via the CBO algorithm. Finally, deep belief network (DBN)
model is applied for accurate pedestrian detection. A brief set
of simulations were carried out to investigate the enhanced
pedestrian detection results of the CBODL-RPD technique.
In summary, the key contributions of the paper is given as
follows.

• Anovel CBODL-RPD technique is developed for pedes-
trian detection by comprising YOLOv4 based object
detector, SqueezeNet feature extraction, CBO based
parameter tuning, and DBN classification.

• The parameter optimization of the SqueezeNet model
using the CBO algorithm using cross- validation helps
to boost the predictive outcome of the proposed model
for unseen data.

The rest of the paper is organized as follows. Section II
provides the related works and section III offers the pro-
posed model. Then, section IV gives the result analysis and
section V concludes the paper.

II. LITERATURE REVIEW
Song et al. [11] introduced a strong multispectral feature
fusion network (MSFFN) for detecting pedestrians that com-
pletely incorporates the extracted features from infrared and
visible light channels. The especially multiscale semantic
feature was extracted through two key components, such as
multiscale feature extraction of infrared images (MFEI) and
multiscale feature extraction of visible images (MFEV), and
combined with the amended YOLOv3 networks for recog-

nizing pedestrians. In [12], selected a low power entrenched
Graphics Processing Unit (Jetson Nano) that enables vari-
ous neural networks (NN) to be parallelly carried out and
a CV system to be employed for recognizing the image.
Additionally, the performance of DL-NNs, namely pednet,
ssd-inception v2, multiped, and ssd-mobilenet v1 and v2, was
tested. Furthermore, it has shown that the processing time and
accuracy are enhanced while every model recommended in
the study was employed.

Hung et al. [13] developed a DL-based mechanism for
pedestrian detection problems from a drone-oriented image.
Especially the study used a Fast RCNN to fine the extant
pedestrian inside drone-oriented image. To evaluate the per-
formance, an overall of 1500 images were gathered using
S30W drones, and such images were captured at distinct
locations. Jiang et al. [14] introduced an ML classification
that is utilized for pedestrian recognition based on XGBoost.
Genetic algorithm (GA) is presented for enhancing the
parameter tuning method in training the XGBoost archi-
tecture. To enhance the classifier performance, HOG and
LBP features are utilized for describing pedestrians, later
inputted into GA-XGBoost classification presented to con-
struct a novel static image pedestrian recognition method.
Kim et al. [15] designed a pedestrian recognition algorithm
related to deep CNN for pedestrian classification from the
input image. The study presents an enhanced version of the
VGG-16 structure was assessed for identifying pedestrians
on the INRIA benchmark dataset comprising 227×227-pixel
images.

Liu et al. [16] proposed the deeply separable fusion
hierarchical feature module into backbone network of the
Single Shot MultiBox Detector (SSD) method that decreases
complexity of themethod through depth-wise Separable Con-
volution and employs hierarchical structure fusion to improve
features. Simultaneously, the encoder was utilized to transmit
the semantic feature and output shallow feature for pedestrian
recognition, enhancing classification and recognition capa-
bility. Yang et al. [17] introduced a Part-Aware Multi-Scale
Fully Convolutional Networks (PAMS-FCNs) for managing
such problems. To be Specific, for mining body parts with
distinct responses, the author presented a part-aware RoI
pooling module and chose the part with powerful response by
voting. Essentially, a partially visible pedestrian case could
get maximum recognition confidence scores, making it less
possible to be a missing recognition. This element will oper-
ate parallel with a RoI pooling component for integrating
global context information and local parts.

In [18], the authors developed an intelligent multi-
modal pedestrian detection approach which involves YOLO
based object detection and kernel extreme learning machine
(KELM) algorithm for pedestrian classification. Finally,
hybrid salp swarm optimization (HSSO) model is used for
optimal parameter adjustment. The authors in [19] presented
a new integration approach to estimate real time poses and
track multiple humans in the pedestrian environment, specif-
ically for social distances using surveillance videos. The
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proposed model offers a steady rise in processing speed and
enhanced detection in low-resolution scenario. The authors
in [20] focused on the development of pedestrian detection
model by the use of multiple cameras. DL based YOLO
model is used for object detection and multi-object tracking
algorithm (DeepSORT) can be utilized for pedestrian track-
ing process. In [21], a new lightweight model with improved
performance is derived depending upon the YOLO-ECA and
SiamCSP. In the method, the Efficient Channel Attention
block (ECA)was introduced into the feature pyramid network
(FPN) of YOLO to allocate resources more adaptively. The
authors in [22] introduced an effective crowded pedestrian
detection model named YOLO-CPD that operates effective
over other one-stage methods in the crowded environment.
The presented model boosts the capability of the one-stage
detector for the detection of many overlapping objects in a
single area.

Though numerous object detectors are available in the
literature, there is a still a need to develop automated and
accurate pedestrian detection models. The DL models gets
deepened with more number of layers and can leads to model
overfitting. To resolve this issue, hyperparameter tuning pro-
cess is recommended. Particularly, the hyperparameters such
as epoch count, batch size, and learning rate selection are
essential to attain effectual outcome. Since the trial and error
method for hyperparameter tuning is a tedious and erroneous
process, metaheuristic algorithms can be applied. Therefore,
in this work, we employ CBO algorithm for the parameter
selection of the SqueezeNet model.

III. THE PROPOSED MODEL
In this study, we have developed a new CBODL-RPD
algorithm for an accurate and efficient pedestrian detection
process. The main goal of the CBODL-RPD method is to
identify the occurrence of pedestrians and non-pedestrians
via object detection process. It involves a series of processes
(as shown in Fig. 1), namely YOLO-v4 object detection,
Adagrad optimizer, SqueezeNet feature extraction, CBO
hyperparameter tuning, and DBN classification.

A. OBJECT DETECTION MODULE: YOLO-v4
For object detection process, YOLO v4 with Adagrad opti-
mizer is applied. YOLOv4 is the newest model of YOLO
that is foundation of YOLOv3, scales up and down and
was suitable for large and small networks whereas pre-
serving optimum accuracy and speed [23]. In comparison
to YOLOv3, YOLOv4-tiny was an expanded edition of
YOLOv3. The original Darknet53 will be added to a CSP
network. Backbone was CSPO- SANet developed by Cross
Stage Partial Network (CSPNet+One-Shot Aggregation Net-
work (OSANet), including Partial in Computation Block
(PCB) technique. CSPNet is employed for distinct CNN
structures to decrease the amount of calculations and param-
eters whereas enhancing the precision. OSANet was drawn
from OSA mechanism in VoVNet.

FIGURE 1. Working principle of CBODL-RPD model.

The key concept is enhanced using DenseNet architec-
ture. Latterly, each layer is interconnected to enable input
consistent with amount of output channels; PCB technique
makes the method flexible since it is attuned based on the
architecture to accomplish better accuracy-speed balance.
The loss function rests the same as the YOLOv4, comprising
confidence loss, regression loss, and classification loss [23].
Confidence loss and Classification loss remain same as the
YOLOv3, however complete intersection over union (CIoU)
was applied for replacingMSE to improve the regression loss:

LOSS = 1 − IoU +
ρ2
(
b, bgt

)
c2

+ αv

−

∑S2

i=0

∑B

j=0
Iobjij

× [Ĉ log(Ci) + (1 − Ĉ)log(1 − ci)]

− λnoobj
∑S2

i=0

∑B

j=0
Inoobjij

× [Ĉilog(Ci) + (1 − Ĉi)log(1 − ci)]

−

∑S2

i=0
Iobjij

∑
c∈classes

× [p̂i(c)log(pi(c)) + (1 − p̂i(c))log(1 − pi(c))],

(1)

From the expression, S2 denotes S×S grids; every grid pro-
duces B candidate box, and every candidate box catches
corresponding bounding box via the network; lastly, S×S×B
bounding box was created. The confidence loss of the box is
evaluated if there was no object (noobj) in the box. The con-
fidence loss function employed cross entropy error and was
splitted into two parts: there exists the object (obj) and noobj.
The loss of noobj rises weight coefficient λ that decreases
contribution weight of the noobj. Also, classification loss
function makes use of cross entropy error. Once the j − th
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FIGURE 2. Structure of SqueezeNet.

anchor box of the i−th grid is accountable for specific ground
truth.

To adjust the YOLO v-4 hyperparameters, the Adagrad
optimizer is applied. The Adagrad optimizer is utilized for
hyperparameter tuning of theMask RCNNmechanism. Eval-
uate gradient and accumulate squared gradient of every
parameter for Adagrad as follows [24]:

Gt =

∑t

τ=1
gτ⊙gτ (2)

In Eq. (2),⊙ demonstrating a component-wise multiplication
and gτ ∈ R|θ | represents the gradient of present variable at τ
iteration. The upgraded value of variable in Adagrad is given
by:

1θt = −
α

√
Gt + ε

⊙ gτ (3)

From the expression, α characterizes the rate of learning and
ε signifies a smoothing term that avoids division by zero.
Meanwhile, the learning rate has been determined beforehand
training

θt = −α(
1

√
Gt + ε

⊙ gτ ) (4)

Now, Gt signify the prior gradient, accordingly, the expres-
sion enclosed in parentheses is regarded as one type of
gradient revision

g′
t =

1
√
Gt + ε

⊙ gτ (5)

Hence, the upgraded value of Adagrad is formulated as
follows:

1θt = −αg′
t (6)

Traditional gradient descent is like an upgrading method.
Therefore, Adagrad is regarded as an optimization method
based on gradient.

B. FEATURE EXTRACTION MODULE
The CBODL-RPD technique employs SqueezeNet model
to generate feature vectors. The SqueezeNet method is
given in Fig. 2. The SqueezeNet technique [25] has 8 Fire
modules, convolution layer, and final convolution layer.
The SqueezeNet will use minimal variables which fit with
the memory and makes process to operate effortlessly.
It decreases the number of poses and attributes the capability
to manage big data. Additionally, it will optimize the network
and was computationally cost effective. In this study, feature
vector Z was used as an input. The fire module has squeeze
convolution layer that includes 1× 1 filters that are imperilled
to an expanded layer and has 3 × 3 and 1 × 1 convolution
filters. The ν1×1, χ1×1 and χ3×3 are the 3 tunable sizes in
firemodule subsist. The filters presented in the squeeze layers
were designated as ν1×1, χ3×3 signifies the number of 3×
3 filter in expand layer, and χ1 × 1 denotes number of 1 ×

1 filter in expanding layer.
Here, the hyperparameter tuning process is performed via

the CBO algorithm. CBO is ametaheuristic approach inspired
by the theory of 1D collision [26]. Each searching agent can
be formed as a body having velocity and mass. The first
position of i− th body can be provided arbitrarily in the j-th
parameter as follows:

xij = xj,min + rand ·
(
xj,max − xj,min

)
, (7)

In Eq. (7), rand signifies an arbitrary number ranging from
zero to one. A collision increases amongst the location, and
2 bodies, afterwards impact, are upgraded along with 1D
collision theory. Assume the body Xk (particle or object), its
mass can be described as in Eq. (8):

mk =
1/Jk

1/
∑n

i=1(1/Ji)
, k= 1, . . . ,n (8)

From the expression, Jk indicates cost function of k − th
particles and n− th,that must be even numbers, was the total
volume of bodies exploited in optimizer technique. The n
colliding body (CB) was sorted in ascending order, according
to the values of objective function, and split up into Stationary
Object (the lower half) and Moving Object (the upper half).
The MO objects collide in contrast to member of SO groups
to optimize the place and push stationary objects to the best
place. Principally, the colliding pairs are defined according to
ascending order. Hence, the optimum moving particle collide
with optimum stationary one as follows:

Stationary body:vi = 0, i= 1,
n
2
, (9)

Moving body:vj = xi−(n/2) − xi, i =
n
2
+1, . . . ,n. (10)

Similarly, like other metaheuristic techniques, velocity can-
not be described by the derivative of position regarding time
but is stated as displacement in searching space. According to
the CB, the velocity afterward the collision can be evaluated
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as follows:

Stationary body:v′i =
(mi+(n/2) + εmi+(n/2))vi+(n/2)

mi + mi+(n/2)
,

i = 1, . . .
n
2
, (11)

Moving body:v′i =
(mi − εmi−(n/2))vi
mi + mi−(n/2)

, i =
n
2
+1, . . .n,

(12)

From the expression, ε characterize Coefficient of Restitu-
tion, described by the ratio of comparative velocities amongst
2 bodies beforehand and afterward the collisions:

ε =
|v′i+1 − v′i|

|vi+1 − vi|
. (13)

These coefficients vary linearly amongst [0,1] in the opti-
mization algorithm to ensure the balance amongst exploration
and exploitation. Afterward the assessment of displacement,
it is possible to fix a new position of the stationary andmoving
bodies:

Stationary body:xnewi = xj + rand .v′i, i= 1,
n
2
, (14)

Moving body:xnewi = xi−(n/2) + rand .v′i, i =
n
2
+1, . . .n,

(15)

whereas rand denotes a uniform distribution value [−1, 1].
This iteration can be executed on all the particles at every
iteration and is continued until an ending condition is ful-
filled. The entire procedure of the CBO technique has been
demonstrated in Algorithm 1.

Algorithm 1 Pseudocode of CBO Algorithm
1. Initializing the CBO population in the searching space
2. Estimating the objective function and determining

mass
3. Sort the population for recognizing stationary and

moving groups and asses the velocity
4. Estimating the velocity afterwards the collisio
5. The new location can be determined
6. After the Ending criteria are fulfilled, go to step;

otherwise, return to step
7. Report the optimum solution
8. Stop

C. PEDESTRIAN DETECTION MODULE
Finally, the DBN model is applied for accurate pedestrian
detection. DBN model stacks several restricted Boltzmann
machines (RBMs) for the construction of the deep structure.
A DBN has a single visible layer and various hidden layers,
as demonstrated in Fig.3A. The lower layer forms a directed
generative model. But the top two layers form the RBM
distribution that can be undirected generative. Thus, L hidden
layers h(1), h(2), . . . ,h(L) and visible units v are provided, and

FIGURE 3. Sample visualization results, a) Sequence 1 b) Output of
Sequence 1 c) Sequence 2 d) Output of Sequence 2.

FIGURE 4. Accuy analysis of CBODL-RPD model on Test-004 sequence.

the joint distribution of DBN can be determined below:

P
(
v, h(1), . . . ,h(L)

)
= P

(
v | h(1)

)(L−2∏
l=1

P
(
h(l)

| h(l+1)
))

P
(
h(L−1), h(L)

)
(16)

whereas P(h(l)|h(l+1)) characterizes conditional distribution
for a unit of l − th hidden layers provided unit of l+1 hidden
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TABLE 1. Overall accuy of the CBODL-RPD model on test – 004 sequence.

TABLE 2. Overall accuy of the CBODL-RPD model on test – 007 sequence.

TABLE 3. Overall AVGA of the CBODL-RPD model.

layers, and P(h(L−1), h(L)) correspond the joint distribution of
the topmostL − 1 and L hidden layers.

There are two stages for the training of RBMs: fine-
tuning and pre- training. In the pre-training phase, the sDBN

was trained via stacking RBM layer-wise to discover the
variable space. All the layers are trained as an RBM. Espe-
cially, l − th hidden layers are trained as RBMs with the
observed data from the output representation of (l−1) hidden
layers. This repeat, training all the layers until the top-
most layer is reached. Afterward, the pre-training is done,
and the finetuning can be implemented for optimizing the
network to find optimal parameters. The typical BP and
wake-sleep algorithms are proficient at finetuning for dis-
criminative and generative modules, correspondingly. For
real-time problems, the attained parameters from the pre-
training phase are utilized for initiating DNN; later, deep
modules are finetuned via supervised learning algorithms
such as BP.

VOLUME 11, 2023 65089



M. F. Sabir et al.: Colliding Bodies Optimization With DBN Based Robust Pedestrian Detection

FIGURE 5. Accuy analysis of CBODL-RPD model on Test-007 sequence.

FIGURE 6. TPR of CBODL-RPD model on Test-004 sequence.

IV. RESULTS AND DISCUSSION
The proposed model is simulated using Python 3.6.5 tool on
PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB
SSD, and 1TB HDD. The parameter settings are given as
follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch
count: 50, and activation: ReLU.

The experimental validation of the CBODL-RPD model is
tested using the UCSDAnomaly detection dataset [27]. Fig. 3
demonstrates the sample input sequence and the correspond-
ing tracked sequence by the CBODL-RPD model.

Table 1 and Fig. 4 represent an overall accuy assessment
of the CBODL-RPD method on the test 004 sequence. The

TABLE 4. Comparative TPR study of CBODL-RPD model on test-004
sequence.

figure indicate that the CBODL-RPD algorithm has achieved
effectual performance under all frames. For instance, with
F-40, the CBODL-RPD model has reached enhanced accuy
of 96.10%. Simultaneously, with F-51, the CBODL-RPD
method has attained an enhanced accuy of 98.91%. Further-
more, with F-106, the CBODL-RPD approach has acquired
an enhanced accuy of 99.35%. Meanwhile, with F-180, the
CBODL-RPD technique has reached an enhanced accuy of
99.40%.

Table 2 and Fig. 5 represent an overall accuy assessment of
the CBODL-RPDmodel on the test 004 sequence. The figure
showed that the CBODL-RPD method had achieved effec-
tual performance under all frames. For instance, with F-78,
the CBODL-RPD model has reached an enhanced accuy of
95.94%. In parallel with F-113, the CBODL-RPDmethod has
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FIGURE 7. TPR of CBODL-RPD model on Test-007 sequence.

achieved an enhanced accuy of 94.80%. Furthermore, with F-
146, the CBODL-RPD approach has reached enhanced accuy
of 84.43%. Simultaneously, with F-180, the CBODL-RPD
technique has reached enhanced accuy of 88.13%.

Table 4 offers an overall average accuracy (AVGA) exam-
ination of the CBODL-RPD model. These results indicated
that the CBODL-RPD method has improved over other
approaches. For instance, on the test-004 sequence, the
CBODL-RPD model has gained an accuy of 98.89%. Con-
trastingly, the DLADT-PW, RS-CNN, FR-CNN, MDT, and
MPPCA algorithms have resulted in decreased accuy of
98.14%, 97.64%, 85.32%, 81.22%, and 74.63%, respectively.
Conversely, on the test-007 sequence, the CBODL-RPD
technique has increased accuy by 90.83%. In Contrast, the
DLADT-PW, RS-CNN, FR-CNN, MDT, and MPPCA tech-
niques have resulted in decreased accuy of 89.66%, 86.87%,
82.16%, 77.85% and 71.95%, correspondingly.

A comparison study of the CBODL-RPD model in terms
of TPR on the test-004 sequence is displayed in Table 5
and Fig. 6. The figure demonstrated that the CBODL-RPD
method has reached enhanced TPR values under each FPR
value. For example, with an FPR of 0.05, the CBODL-RPD
approach has a higher TPR of 0.1918 while the DTADT-
PW, RS-CNN, FR-CNN, MDT, and MPPCA approaches
have demonstrated minimal TPR of 0.1868, 0.1666, 1.1640,
0.1262 and 0.0959 respectively.

Meanwhile, on FPR of 0.50, the CBODL-RPD approach
has a higher TPR of 0.9997 while the DTADT-PW, RS-CNN,
FR-CNN, MDT, and MPPCA approaches have demon-
strated minimal TPR of 0.9492, 0.9517, 0.9997, 0.9113 and
0.9668 correspondingly. Finally, for an FPR of 1.0, the
CBODL-RPD approach has a higher TPR of 0.9997 while the
DTADT-PW, RS-CNN, FR-CNN, MDT, and MPPCA tech-
niques have demonstrated minimal TPR of 0.9946, 0.9921,
0.9997, 0.9971 and 0.9921 correspondingly.

A brief analysis of the CBODL-RPD approach in terms
of TPR on the test-007 sequence is displayed in Table 6 and
Fig. 7. The outcomes demonstrated that the CBODL-RPD

TABLE 5. Comparative TPR study of CBODL-RPD model on test-007
sequence.

TABLE 6. Comparative study of the CBODL-RPD method with recent
techniques.

method has reached enhanced TPR values under each FPR
value. For example, with an FPR of 0.05, the CBODL-RPD
approach has a maximum TPR of 0.3648 while the DTADT-
PW, RS-CNN, FR-CNN, MDT, and MPPCA techniques
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have demonstrated minimal TPR of 0.2778, 0.1877, 0.0550,
0.2019 and 0.1464 correspondingly. In the meantime, on FPR
of 0.50, the CBODL-RPD method has a higher TPR of
0.9711 while the DTADT-PW, RS-CNN, FR-CNN, MDT,
and MPPCA methods have established minimal TPR of
0.8457, 0.8631, 0.8587, 0.9171 and 0.8425 correspondingly.
Eventually, for an FPR of 1.0, the CBODL-RPD technique
gained a higher TPR of 0.9961 while the DTADT-PW,
RS-CNN, FR-CNN, MDT, and MPPCA approaches estab-
lished minimal TPR of 0.9937, 0.9971, 0.9957, 0.9757 and
0.9601 correspondingly.

Table 6 provides a comprehensive comparative study of the
CBODL-RPD approach with recent approaches [28], [29],
[30]. The figure revealed that the CBODL-RPD model had
shown maximum performance with an increased AUCscore
of 95.54% and a reduced computation time of 2.10s. These
results ensured the betterment of the CBODL-RPD tech-
nique.

V. CONCLUSION
In this study, we developed a newCBODL-RPD technique for
accurate and efficient pedestrian detection. The core objective
of the CBODL-RPD approach is to identify the occurrence
of pedestrians and non-pedestrians via the object detection
process. For the object detection process, YOLO v4 with
Adagrad optimizer is applied. In addition, the CBODL-RPD
technique employs the SqueezeNet model to generate feature
vectors, and the hyperparameter tuning process is performed
via the CBO algorithm. At last, the DBNmodel is applied for
accurate pedestrian detection. A comprehensive experimental
analysis is made to demonstrate the significant pedestrian
detection results of the CBODL-RPD technique. The com-
parative outcome reported the improved outcomes of the
CBODL-RPD model over other recent models. In future, the
presented CBODL-RPD method will be extended for real
time pedestrian detection in public places.
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