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ABSTRACT This study aimed to evaluate the effect of a novel underlining mechanism of visual biofeedback
based on muscle synergy pattern on upper extremity motor functions for subacute stroke patients. The
experimental studies were conducted on 12 participants in the control group and 24 subjects with ischemic
stroke. In the first step, a visual biofeedback trajectory designed for rehabilitation was produced using the
patterns extracted from the muscle synergy of arm movement using the hierarchical alternating least squares
(HALS) method and with the help of nonlinear autoregressive with exogenous inputs (NARX) from the
family of recurrent neural networks and was evaluated on healthy participants. In the second step, all patients
received conventional therapy for the upper extremity, 2 times per week for 5weeks. The interventional group
additionally received training with the proposed visual biofeedback system for 30 minutes per session. The
evaluations were performed regarding modeling performance, trackability, and clinical efficacy. In terms
of modeling performance, the results showed that the NARX method has the best performance compared
to other conventional models. Regarding trackability, the analyses based on computing the correlation
coefficient showed significant improvement in the trackability from baseline to post-treatment in both the
interventional and the control groups. In terms of clinical efficacy and based on analyzing the NIHSS, Fugl-
Meyer, and MRS scores, the findings showed that the proposed visual biofeedback mechanism along with
the conventional therapy may have supplemental benefits for stroke survivors.

INDEX TERMS Biofeedback, muscle synergy pattern, surface EMG signal, stroke survivors, upper
extremity.

ABBREVIATION LIST
ANOVA Analysis of variance.
CC Correlation Coefficient.
CNS Central Nervous System.
EMG Electromyography.
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FES Functional Electrical Stimulation.
FMA-UE Fugl-Meyer Assessment for Upper Extremity.
GUI Graphical User Interface.
HMI Human-Machine Interface.
HALS Hierarchical Alternating Least Squares.
MCA Middle Cerebral Artery.
MMSE Mini-Mental State Exam.
MRS Modified Rankin Scale.
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MSE Mean Squared Error.
NARX Nonlinear Autoregressive with Exogenous

inputs.
NIHSS National Institutes of Health Stroke Scale.
RCT Randomized Clinical Trials.
STD Standard Deviation.
VR Virtual Reality.

I. INTRODUCTION
Stroke is one of the main causes of disability in adults [1].
In addition, stroke survivors mostly require receiving long
term rehabilitative therapies [2], [3]. Intensive motor train-
ing, exercise, and physiotherapy are the staple of the
rehabilitation approaches for stroke patients [4]. But in
most conventional methods, the recovery time is very long
and tedious [5], [6], [7]. Thus, developing new rehabilita-
tion approaches with higher efficacy and shorter recovery
time is an inevitable need [8]. For more than a decade,
approaches like assistant robot systems [9], functional elec-
trical stimulation (FES) [7], [10], and biofeedback [11],
or a combination of these [12], [13], [14], [15], have
been recommended for the neurorehabilitation of stroke sur-
vivors. According to studies, rehabilitation programs that
are designed based on the principles of motor learning,
such as heavy repetition of goal-oriented and task-specific
exercises, and cognitive participation, could give rise to
neuroplasticity and long-term changes in motor function in
stroke survivors [16], [17], [22]. Among the well-known
rehabilitation methods, biofeedback-based approaches are
more prone to be designed based on the principles of motor
learning. In addition, the biofeedback-based approaches has
several advantages, including non-invasiveness, impact on
neuroplasticity, user-friendliness, increasing motivation, and
patient adherence [18], [19], [20]. Therefore, biofeedback-
based neurorehabilitation has become a popular approach
to improve the physical capabilities and independence of
individuals with functional disabilities [11]. Biofeedback can
be unimodal, such as: auditory [21], [22], visual, tactile [23],
and electromyography (EMG) based [24], [25], [26], or a
bimodal or multimodal combination of these approaches
[27], [28], [29]. In visual biofeedback methods, a graphical
interface in the form of diagrams, numbers, or simple video
games provides a feedback loop with the user [30], [31],
[32]. Nowadays, motion-enabled video games have become
more popular as an adjunct to physiotherapy, demonstrating
their potential as a viable and effective post-stroke treatment
option [33]. Using the virtual reality (VR) training could
be also effective [34]. Although they are effective in the
rehabilitation of stroke patients, the complexity and high cost
due to using VR systems [35], [36], or even game consoles,
impedes the use of this device [39].

Compared with other biofeedback approaches, the use of
EMG signals has specific advantages. The EMG signal con-
tains critical information about the muscle activation pattern
that determine the quality of movement [37], [38], [39], [40].

Despite all the outstanding work in the development of
sEMG-based biofeedback systems, few researches have been
published regarding the design of optimal visual biofeed-
back trajectories. For example, Zadnia et al. [41] provides
an approach for selecting the most suitable characteristics
from wrist muscles sEMG data to create a predictable visual
biofeedback signal for stroke patients’ wrist movement reha-
bilitation. The results were promising, but no experimental
evaluations on stroke patients were reported in that work.
Thus, design of informative and traceable visual biofeed-
back signal is yet an open research problem. The authors
believe that a visual guide trajectory has to bear information
regarding the correct muscle synergy pattern. Because the
correct muscle coactivation pattern will gradually emerge
when trying to track the displayed trajectory. In other words,
recovering the muscle synergy means recognizing the correct
movement patterns in performing a functional activity [42],
[43], [44], [45]. Therefore, in this study, we present a fun-
damental method for designing visual biofeedback based on
muscle synergy pattern analysis for the neurorehabilitation
of stroke survivors. The trajectory generated according to
the proposed method is such that, tracking it by the patient
can lead to the regeneration of correct synergy patterns in all
muscles.

According to the organization of the paper, in section II,
the data recording protocol, the proposed method of visual
feedback signal design, and the assessment approaches are
elaborated. In section III, the results of the evaluations per-
formed in terms of different aspects have been reported.
In section IV, different aspects of the results are discussed,
and finally, concluding remarks are given in section V.

II. MATERIAL AND METHODS
A. PARTICIPANTS
This study included two general stages. First stage, design
and training of the model with twelve healthy participants
(8 men, 4 women, age range: 24–70 years old, right-hand
dominance) without any history of disease or other skeletal
disorders or cognitive problems. Second stage, the clinical
evaluation of the model with twenty-four volunteers (11 men,
13 women, age range: 32–83 years old, right-hand domi-
nance) with Arterial Ischemic Stroke (AIS) of the Middle
Cerebral Artery (MCA), and right-side hemiplegia. TheMCA
was selected because it is the largest cerebral artery and
the most commonly affected vessel in cerebrovascular acci-
dents [46]. The procedures were approved by the Local
Research Ethics Committees. Therefore, all of the partici-
pants were informed about every step of the protocol and
signed a written informed consent before participating in the
study. If the individual lacked capacity, a relative was asked
as a proxy. The demographics and clinical characteristics
of the second-stage participants are illustrated in TABLE 1.
Inclusion criteria for study participants were as follows:
(1) Right-handed dominance, (2) The patients with AIS of
the MCA stroke within 1 and 5 days of stroke symptom onset
(subacute phase), (3) medically stable enough condition so
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TABLE 1. Participants’ demographic and clinical characteristics.

FIGURE 1. a) The data collection devices [79]. b) Electrodes placement in the PD, PM, MT, and LT muscles.
c) Shoulder movements [80]. d) Initial position of the participants in the recording setup. e) Visual interface.
f) Timing paradigm.

that they can be active in rehabilitation, (4) The first episode
of stroke with right side hemiparesis with no musculoskele-
tal disorders prior to the stroke, (5) There should be no
problems with auditory or visual functions, (6) examination
mini-mental state (MMSE) total score of 23 or greater [47],
as it is illustrated in FIGURE 5 participants enrolment consort
flow diagram. A double-blind randomized controlled trial
was applied to all participants.

B. THE MODEL BASED DESIGNED INTERVENTION
1) DATA ACQUISITION
For healthy participants in the first stage of the experiment
it was required that the participants sat on a chair during
the experiment. The visual interface monitor was within one
meter of the chair. As shown in FIGURE 1, the partici-
pant moved his or her right hand horizontally with internal

rotation. To record sEMG data, total of four pairs of sur-
face bipolar Ag–AgCl electrodes (Skintact - Fannin Ltd,
F-55 ECG electrodes) were placed on the Posterior Deltoid
(PD), Pectoralis Major (PM), Middle Trapezius (MT), and
Lower Trapezius (LT) muscles of each individual, separated
by 20 millimeters [32]. Electrode placement was carried
out according to the guidelines provided by SENIAM [51],
Electromyography and Neuromuscular Disorders [33]. For
better recording the surface EMG signal, electrodes were
placed on the belly of the muscles, and before installation
of electrodes, the skin of the desired area was exfoliated
with an abrasive gel and cleaned with an alcohol pad. The
reference electrodes are placed on the thoracic spine bone.
After that, shoulder movement EMG signals were recorded
by a commercial Flex-Comp Infiniti amplifier (10 high-
speed channels, T7555M, Canada) fromThought Technology
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FIGURE 2. Modified BlazePose key points topology for the upper
limb [81].

at a sampling frequency rate of 2048 Hz. The target task
consisted of shoulder movement with internal and external
rotation. According to [35] and [36], the standard range
of internal shoulder rotation is 0◦ ∼ 90◦. Before starting
the recording, the participants practiced the procedures once
and any possible questions and ambiguities were answered.
We recorded five fast movements (duration time: 10 seconds)
and three slow movements (duration time: 20 seconds) with a
10-second break between them to prevent muscle fatigue, but
only slow movements that resembled normal motion pattern
were used. FIGURE 1 illustrates the detail of the experimen-
tal setup. The raw EMG signals were band-pass filtered in the
range of 40 and 400 Hz to reduce the Direct Current (DC)
offset and motion artifacts as much as possible (3rd-order
Butterworth digital, cutoff frequency of 20 Hz, roll-off rate
of 12 dB/decade) [37]. However, our main solution was to
avoid noise sources by using portable devices with battery
power supply. Subsequently, the signals were rectified and
outliers were removed. Finally, a low-pass filter was applied
with a cutoff frequency of 4 Hz (4rd-order Butterworth dig-
ital, 12 dB/decade roll-off rate), which resulted in EMG
envelopes [38], [39], [40]. For muscle synergy-related anal-
yses, the extracted envelops have to be used. Simultaneously
to record upper limb joints position data, we used an HD
webcam built into the laptop that was capable of recording
video at 30 frames per second (FPS). Also, as shown in
FIGURE 2, we used the modified MediaPipe algorithm [41]
to estimate the joint position. The proposed algorithm uses
BlazePose topology. Which includes 33 key points with three
DOFs (x, y position and view) with an input RGB image
size of 256 × 256×3 on the human skeletal system and
includes a set of topologies COCO [42], BlazeFace [43] and
BlazePalm [44].

By developing the basic algorithm, we have added another
point called the manubrium of the sternum joint (MOS) to
it as the 34th key point. The MOS point was used as a
reference point and the positions of all points were computed
relative to the position at this point. In this manner, the
computed positions of the joints would not be affected due
to inevitable unintentional motions. Finally, the key points
RW, RE, RS and MOS were selected for the movement of the
participants’ right arm. Due to the difference in the frequency
rate of the input data, a reliable synchronization function was
designed based on the reduction of the sampling rate and the

time paradigm. For better performance, the data were normal-
ized using the min-max method. To increase the processing
speed and create suitable inputs for the neural network, both
signals were vectorized by the Numpy library to match the
dimensions.

2) THE MODEL DESIGN AND TRAINING STRATEGY
A visual biofeedback signal has to be not only informative
but also trackable by the participant. If a motion-related
visual biofeedback signal could not be trackable by different
participants, it could not be applied to a biofeedback-based
rehabilitation system. The basic hypothesis was to use muscle
synergy patterns to design the visual biofeedback trajectory.
These patterns contain essential information on movement
quality, and they seem to be able to indirectly alter patients’
synergy patterns and thus help restore movement quality [48].
The visual biofeedback training tool used in this study,
as shown in FIGURE 4, was designed and evaluated using
sEMG data and kinematic information from healthy indi-
viduals. Unlike other EMG-based biofeedback approaches,
participants do not need online or offline EMG recording
data [24], [49]. As shown in FIGURE 4, the EMG signal was
collected from four muscles involved in the armmovement of
healthy participants, and the muscle synergy patterns related
to that movement were extracted using Hierarchical Alternat-
ing Least Squares (HALS) algorithm [50], [51].

M = [W ] [C]T (1)

where M is the preprocessed EMG signals in an m by n
matrix, where m is the number of time series, n is the number
of EMG channel inputs, C = [c1,. . . , cj] is the synergy set,

where j is the number of synergies and cj = [c1, . . . ,cn]T rep-
resents a single set of synergies, where cn is the coactivation
coefficient of EMG n, andW is the coactivation coefficient of
the synergy in m by j matrix [52]. Once the synergy model is
developed, learning algorithm techniques are used to iterate
equation (2) and II-B3 several times, with k (1, 2,. . . , j)
denoting the label of synergies [52]. C and W matrices were
generated using a single set of shoulder movement EMGdata.

[Ck ]← [Ck ]+
([M ] [W ]T − [C][W ]W T )K

[Wk ][Wk ]T
(2)

[Wk ]← [Wk ]T +
([M ]T [C]− [W ]T [C]T [C])K

[Ck ]T [Ck ]
(3)

Finally, a nonlinearmodel designed based on an artificial neu-
ral network as a machine learning algorithm called nonlinear
autoregressive with exogenous inputs (NARX) was identified
in a manner that could predict the desired arm movement
trajectory. The NARX neural network is a recurrent neural
network (RNN). The RNNs have internal memory. Thus,
these neural networks could be used to model the dynamic
process such as biological processes.

There are two approaches to train the NARX network. The
first approach is the parallel (P) mode, where the output of
the feedforward neural network is fed back to its input as part
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FIGURE 3. The proposed NARX structure with two hidden layers. Where x and y are the input and the
output and ŷ is the target, b is a bias term and W is a weight term.

FIGURE 4. A block diagram representing the proposed visual biofeedback based training protocol.

of the typical NARX architecture. The second approach is
the series-parallel (SP) mode, where the actual output is used
instead of the estimated output feedback [53], [79].

In this research, the SP mode NARX network is designed
for training, then turned to P mode to do the prediction.
We can express NARX mathematically as [54]:

y (n+ 1) = f
[
y (n) , · · · ,y

(
n− dy + 1

)
;u (n− k) ,

u (n− k + 1) , · · · ,u(n− du − k+1)] (4)

where u(n) ∈ R and y(n) ∈ R is the model’s input and
output at discrete time step n, respectively, and du≥ 1 and
dy ≥ 1, du ≤ dy, respectively, are the input and output
memory order. Process dead-time parameter k(k ≥ 0) is a
delay term. Without lack of generality, we always assumed
k = 1 in this study, thus obtaining the following NARX

model:

y (n+ 1) = f [y (n) , ; u(n− k)] (5)

The predicted trajectory was being displayed to the patient
as a visual biofeedback signal. The actual motion trajectory
was being displayed concurrently. The patient was asked
to try to perform the arm movement in a manner that the
displayed actual trajectory tracks the displayed desired trajec-
tory. Figure 3 shows a summary related to the implemented
training protocol designed based on presenting the visual
biofeedback.

3) THE EXERCISE PROTOCOL
Both the interventional and the control group underwent
60 minutes of conventional physical therapy 2 days per
week for a total of 5 weeks. Participants allocated to the
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FIGURE 5. The CONSORT flowchart shows the process from enrolment to data analysis.

interventional group received 60 minutes of conventionally
physiotherapy in addition to 25 minutes of training with
our proposed biofeedback method. Also, a 5-minute warm-
up exercise with the patient’s recommended system was
performed before the main training session to allow the
patient to adapt to how the system works. Whereas partici-
pants allocated to the control group received 60 minutes of
conventional physiotherapy of the same type as the interven-
tional group. Conventional physiotherapy aimed to normalize
movement patterns and minimize spasticity [55], [56]. Phys-
iotherapy included static and dynamic control of position,
motor-skill exercises, mobility training, balance skills, weight
shift, and activities of daily living [57]. In addition, phys-
iotherapists choose the intensity of rehabilitation exercises
based on the needs of each patient. During each training
session using the designed biofeedback based protocol, the
patients sat on a wheelchair or stable chair at 1 meter from the
laptop. Patients were informed about the task before the train-
ing session started and they were shown how to do it. The task
is to ask the patient to perform the movements in a way that is
following the reference trajectory taken from the healthy par-
ticipant’s patterns. In this approach, the patient indirectly tries
to adjust and modify the muscle synergy patterns. Patients
during the trajectory tracking task actively performed lateral
internal and external rotation shoulder movements. Inter-
nal shoulder rotation inward causes the upper arm to rotate
toward the front of the torso, and external rotation causes the
upper arm to spin away from the front of the torso [58].

4) THE ASSESSMENT APPROACHES
a: CLINICAL ASSESSMENT
In this study, the motor function of the upper extremity
was evaluated using the upper extremity subscale of the

FIGURE 6. The mean calculated R2 value according to the number of
synergy matrices extracted from the EMG signal.

Fugl-Meyer Assessment (FMA-UE) at the first and last reha-
bilitation session for all participants [59], [60]. The National
Institutes of Health Stroke Scale (NIHSS) is a common
criterion to assess the side effects of stroke. In this study,
this measure was evaluated on all participants in the first
and last rehabilitation session [61], [62]. In addition, the
Modified Rankin Scale (MRS) was evaluated as a measure
of global disability reported by physicians and as a widely
used criterion for evaluating post-stroke recovery at the first
and last rehabilitation session for all participants in this
study [63], [64].

b: THE TRAJECTORY TRACKING ASSESSING
In this study mathematical and statistical measures were used
to evaluate patients’ ability to track the displayed visual
trajectory [65], [66]. The correlation coefficient (CC) is a
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FIGURE 7. R2 index variation for healthy participants and mean of all vs. concerning the
number of synergy matrixes.

FIGURE 8. The muscle activation patterns and the reconstructed signals that have been obtained
with two different numbers of muscle synergy patterns related to a healthy participant (AZ).

statistical indicator of how close two variables are to each
other. The range of values is -1 to 1. A correlation of 1 indi-
cates a perfect positive correlation, whereas -1 indicates a
perfect negative correlation. No linear link exists between the
movements of the two variables, as shown by a correlation
of 0 [67]. Thus, the quantity of CC between the actual and
desired trajectory could illustrate the patients’ capability for
tracking the shown visual signal. The quantity of CC could
be computed using the Eq. (1) and (2).

H = h1, h2, · · · , hi, · · · , hn

P = p1, p2, · · · , pi, · · · , pn (6)

CC(H ,P) =

∑ (
hi − h̄

)
(pi − p̄)√∑ (

hi − h̄
)2 ∑

(pi − p̄)2
(7)

where, H is the actual motion trajectory and P stands for the
desired motion trajectory. The n shows the time step of the
trajectories.

5) STATISTICAL ANALYSIS
The normality and homogeneity of the variances were eval-
uated using the Shapiro Wilk and Levene Tests. Since
the conditions for non-parametric test were met, the
Mann-Whitney U test and Wilcoxon test were used for
intra-group data analysis, while one-wayAnalysis of variance
(ANOVA) test was used for intra-group data analysis. The
t-test was also used to analyze the computed differences
between two groups. Chi-square and Fisher’s exact tests
were used to assess categorical data. When the expected
frequencies were less than 20%, we used the ‘‘Monte Carlo
Simulation Method’’ to incorporate any minor frequencies in
the study. The tests were considered statistically significant if
the P value < 0.05.

III. RESULTS
A. EXTRACTING THE SYNERGY PATTERNS
To get a better understanding of the output performance of the
HALS algorithm, we used the R2 index. Using R2 the optimal
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TABLE 2. Evaluation of performance with MSE for different RNN models.

TABLE 3. Evaluation of performance with the Pearson correlation
coefficients of different RNNs.

number of synergy matrixes can be determined. In Eq. 8, SSE
is the residual sum of squares, and SST is the sum of the
remaining squares of the mean activation vector (m̄) [68].

R2 = 1−
SSE
SST

= 1−

∑
s
∑ks

k=1

∥∥ms (tk)−∑
i c
s
iwi

(
tk − tsi

)∥∥2∑
s
∑ks

k=1 ∥m
s (tk)− m̄∥2

(8)

In the data collection section, we recorded the EMG sig-
nal of four muscles, then three muscle synergy matrices

were extracted using the HALS method. Best R2 value was
considered with 3 synergy matrices. The result of R2 varia-
tions concerning the number of synergy matrixes have been
shown in FIGURE 6 and FIGURE 7. Also, FIGURE 8
shows the mean values of Mean Squared Error (MSE) values
after reconstructing the muscle activation pattern using the
extracted C and W synergy matrices. The muscle synergy
extracted method could be acceptable because the mean value
of MSE was 0.0037. According to the range of the extracted
muscle activation pattern (0-1), the computed MSE is so low
compared to the data range that the reconstruction perfor-
mance could be acceptable.

B. THE PERFORMANCE OF THE NARX MODEL
For different RNN models, MSE values and correlation coef-
ficient performance are reported in TABLE 2 and TABLE 3.
Though the low values of the computed MSEs could be
attributed to the MES-related averaging, the MES-related
results are in conformity with CC-related results. Because the
computed CCs are near one (TABLE 3).

C. THE TRACKABILITY
Before carrying out the interventions on the patients, the
trackability of the designed visual biofeedback signal was
first evaluated. The healthy participants took part because the
aim was to assess the maximum trackability of the designed
visual biofeedback trajectory. According to Eq. (1) and (2),

TABLE 4. The mean value of the computed CC for healthy participant.

the results of following the visual trajectory for healthy par-
ticipants and in the training stage of the model are according
to TABLE 4. The results show that the average correlation
coefficient (CC) is between 0.76 and 0.87. These values
can convince us that the designed path can be followed by
healthy participants. Despite the fluctuation of the displayed
trajectory geometry, healthy participants could produce a
movement-related trajectory that was reasonably correlated
with the reference trajectory.

D. ASSESSING THE DESIGNED EXERCISE PROTOCOL
A total of 308 stroke patients were screened for the study.
40 participants met the inclusion criteria, of which 24 were
randomly selected and divided into 2 groups. The experi-
mental studies conducted on 12 participants in the control
group and 24 subjects with ischemic stroke. The 24 patients
who completed the study included 11 women and 13 men.
The demographic and clinical characteristics of the patients
are shown in TABLE 1. Age, gender, dominant hand, paretic
hand, lesion type, and time after the stroke were not statis-
tically different across the groups (P > 0.05). Both groups
were similar in terms of MMSE score (P > 0.05). At post-
treatment, a statistically significant increase was found in
both groups in terms of the FMA-UE, NIHSS, andMRS score
(P < 0.001). No statistically significant difference was found
between the two groups regarding the NIHSS and FMA-UE
scores as shown in TABLE 5. However, the inter-group
analyses showed significant changes in the quantities of the
NIHSS, FMA-UE,MRS, and especially CC computed before
and after intervention as shown in TABLE 5 and FIGURE 10.
Finally, as shown in TABLE 5, the follow-ups continued until
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TABLE 5. The computed quantitative measures before, after the intervention and after the follow-up, as well as the average difference of values in both
intervention and control groups.

three and six months later than the last sessions. In TABLE 5,
the ‘‘Delta’’ notation shows the difference between the com-
puted measures related to two groups.

IV. DISCUSSION
Developing motor programs, motor learning, and new cogni-
tive experiences cause restructuring of the Central Nervous
System (CNS). Goal-oriented, repetitive, and reinforce safe
movement patterns are performed with biofeedback systems.
Increased muscle strength, especially in the damaged upper
extremity, with patient functional activity [69]. However,
the design of biofeedback signals has often been based on
simple motion analysis of a single joint or single muscle [9],
[66]. But we believe that overcoming the mentioned obstacle
requires proposing new approaches to design biofeedback
signals. Our hypothesis is that biofeedback signals contain
enough information about muscle activation patterns and
can be considered as a Graphical User Interface (GUI).
In the traditional method of electromyographic biofeedback,
the muscle activation patterns of muscles are usually used as
the biofeedback signals to only increase the voluntary mus-
cle activation level [26], [28]. While increasing the muscle

activation level merely could not be a guarantee for a normal
movement recovery. Because without recovering the mus-
cles’ synergy patterns the quality of the restored movement
may not be proper. Therefore, mapping muscle synergy to
movement-related trajectory becomes a secondary challenge.
In this study, we propose and evaluate an underlying mecha-
nism for creating a visual biofeedback intervention for arm
movement based on kinematics. Using muscle synergistic
patterns, the trajectory related to kinematics was extracted.
Tracing such a trajectory by humans is crucial in addition to
being informative. A patient must be able to track a visual
biofeedback trajectory. In order to compare the generated
trajectory by our model with the displayed trajectory, CC was
calculated. This method allowed us to measure the level of
covariance between the two trajectories. The results show
that the average CC is between 0.76 and 0.87. These values
can convince us that the designed path can be followed by
healthy participants. Despite the fluctuation of the displayed
trajectory geometry, healthy participants could produce a
movement-related trajectory that was reasonably correlated
with the reference trajectory. Also, based on Adams’ closed-
loop theory, the process of motor learning works with the
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FIGURE 9. Tracking quality related to a healthy participant (AZ).

FIGURE 10. The quantities of the computed CC’s for each biofeedback
session in the interventional group.

help of sensory feedback to detect and correct errors, and its
basis is the gradual increase of correct perceptual tracking and
the reduction of incorrect perceptual tracking [70]. Therefore,
based on the clinical evidence of the studies and this theory,
biofeedback-based techniques can revive motor recovery in
patients with motor impairments by repeating and strength-
ening correct perceptual tracking [71], [72]. According to this
theory, internal and external feedbacks play a critical role in
motor learning.

This study included twomain stages. Thus different assess-
ment indexes related to each stage were used. The first stage
was modeling based on muscle synergy analysis. In this
stage, only evaluating the model performance was essen-
tial. In the second stage, the experimental evaluations were
performed. For the healthy participants, only trackability of
the designed biofeedback trajectory was essential. In addi-
tion, the clinical effectiveness was evaluated for the stroke
patients using some clinical indexes in a pre-intervention
and post-intervention assessment manner. The results showed
a statistically significant improvement in upper extremity
NIHSS and FMA-UE scores in the intervention group com-
pared to the control group. Also, the results showed that

there was a significant change in the CC score of the
intervention group during the experiment. Additionally, the
intervention group’s MRS scores were higher than the cor-
responding scores in the control group. According to prior
studies, the visual biofeedback group showed more motor
improvement in the upper extremity groups than the control
group [26], [31], [33], [35], [73], [74], [75].These results
may be explained by the fact that the participants in the
intervention group received higher scores in terms of clin-
ical evaluation than those in the control group. Similarly,
an increase in post-treatment FMA-UE scores of the upper
extremity in this study also supports the improvement in the
CC scores. These results may be related to the use of the prox-
imal portion of the arm in EMG-based visual biofeedback
training. The expected lack of improvement in the NIHSS
and MRS index can also be justified. Because there is a
mismatch between the intended target and the evaluation
parameters.

In our study, the NIHSS, MRS, and FMA-UE scores of the
patients in both groups improved compared to pretreatment.
However, although the intervention group showed significant
changes in NIHSS and CC scores, the changes in FMA-UE
scores for the intervention groupwere not significantly higher
than the control group. Unfortunately, this is a point in our
study about which we have no definitive explanation but,
there was a significant relationship between age, level of
education, MMSE score, MRS score, and NIHSS score. Both
groups were similar at baseline in terms of NIHSS, MRS, and
FMA-UE scores, however, the NIHSS scores after follow-up
evaluation were significantly better in the intervention group.
This may be the reason why the FMA-UE scale may be insuf-
ficiently sensitive to record the change in high-functioning
individuals. On the other hand, changes of 4–7 points for
chronic stroke and 9–10 points for subacute stroke are consid-
ered to be clinically important [76], [77]. Other reasons may
be inadequate sample size, short treatment duration, and short
follow-up. Our results also showed a significant increase in
the FMA-UE scores after treatment in both groups, but there
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was no statistically significant difference between the groups.
No significant changes were observed in some patients who
were older with more severe stroke and lower education
level.

According to the observations remarked on and reported
by the neurologists who collaborated on the study, it seems
that the proposed method is more effective for patients with
mild to moderate degrees of injury. It seems that extending
this task into more interesting video games and combining
it with auditory biofeedback can be helpful [30]. This study
has faced some limitations. The first limitation was that the
duration of treatment in the study groupwas longer than in the
control group because the proposed biofeedback technique
was added to conventional rehabilitation. The longer time
of rehabilitation training can affect functional results. The
second limitation was that this study was performed on all
right-handed individuals.

In future work, by recording EMG from the normal side of
the patient’s body, a biofeedback mechanism can be designed
for the paretic side according to the specific physiological
and anatomical characteristics of the individual. In addi-
tion, the low patient diversity included in the study also
prevents the generalization of results. In addition, despite
the wide age range of participants, the impact of age was
not considered. This issue has to be addressed in future
studies.

V. CONCLUSION
In this study, a proposed mechanism for the design of a visual
biofeedback signal related to upper extremity rehabilitation
was evaluated in terms of different aspects. First of all, the
trackability of such signals by the participants had to be
assessed. The low values of MSE alongside the near-one val-
ues of CC proved an acceptable trackability of the designed
trajectory. In the next step, the efficacy of the exercise therapy
using the implemented biofeedback system on stroke patients
was assessed. According to the achieved results, the NIHSS
and FMA-UE scores in the intervention group have signifi-
cantly improved compared to the control group. Furthermore,
the results proved that there was a significant change in the
CC value of the intervention group. Thus, the results show
that the designed underlying mechanism in this study based
on analyzing the muscle synergy patterns extracted from
EMG signal information helps along with the conventional
rehabilitation and could improve the movement and function
of the upper extremity in patients with subacute stroke hemi-
plegia. This treatment was not significantly superior to the
control group in improving Activities of Daily Living (ADL),
but these results may change with longer follow-up. How-
ever, according to the authors’ knowledge, no study has used
muscle synergy patterns to design visual biofeedback for the
upper extremity of a stroke survivor. Nevertheless, evaluating
more patients, incorporating attractive components such as
video games, and working on visual feedback scenarios could
guarantee brain reorganization are the future steps of this
research.
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