
Received 23 May 2023, accepted 6 June 2023, date of publication 19 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287322

Research on Fault Location in DC Distribution
Network Based on Adaptive Artificial Bee
Colony Slime Mould Algorithm
TIAN-XIANG MA 1, XIN DUAN1, YAN XU2, RUO-LIN WANG2, AND XIAO-YU LI1
1State Grid Hebei Electric Power Research Institute, Shijiazhuang 050021, China
2State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University (Baoding),
Baoding 071003, China

Corresponding author: Tian-Xiang Ma (843419784@qq.com)

This work was supported by the Science and Technology Project of State Grid Corporation of China (SGCC) under Grant kj2021-003.

ABSTRACT To address the problems of slow convergence speed, easy to fall into local minima and low
convergence accuracy presented by previous algorithms in DC distribution network fault location, this paper
adopts the improved artificial bee colony slimemould algorithm (SMA) to improve and solve. On the basis of
SMA, an adaptive adjustable feedback factor and an improved crossover operator are introduced to improve
the convergence speed; artificial bee colony (ABC) algorithm is introduced to improve the search ability to
jump out of local minima, and the artificial bee colony slime mould algorithm (ISMA) is formed. Firstly,
based on the six-terminal DC distribution network topology, a mathematical model of bipolar short-circuit
fault as well as single-pole grounded short-circuit fault is established based on a fault occurring between
G-VSC and W-VSC as an example. Then the principle of the improved ISMA is introduced in detail, and a
suitable fitness function is established as the measure of fault location in DC distribution network. Finally,
experimental simulations are conducted to obtain fault points from the optimization search and compare
them with the actual values to verify the accuracy of the algorithm. In addition, the efficiency and robustness
of ISMA are further verified by comparing with other algorithms.

INDEX TERMS Distribution network, fault location, parameter identification, DC distribution system,
artificial bee colony slime mould algorithm.

I. INTRODUCTION
Because of their numerous advantages, metaheuristic algo-
rithms (MAs) have become widely used in a variety of fields
in recent decades [1]. The stochastic factor prevents the
algorithm from falling into local optimal solutions, so MAs
require less information than traditional gradient descent
algorithms. However, the MA’s convergence speed is slower
than that of the gradient descent method. The gradient
descent method is commonly used to solve linear problems.
MAs provide a large, random solution space in the space
when solving nonlinear problems, replacing the method of
traversing the solution and detecting the optimal solution
under limited conditions. Genetic Algorithms (GA), Genetic
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Programming (GP), and Evolutionary Algorithms(EA) are
three popular algorithms. Swarm Intelligence(SI) includes
collective or social intelligence, which artificially simulates
the collective behavior of biological clusters in nature’s
decentralized or self-organized systems [2]. Inspiration for
this type of algorithm typically comes from groups of organ-
isms in nature that have collective behavior and intelligence
to achieve specific goals. SI algorithms are simpler to imple-
ment and require fewer operators to control. Furthermore,
SI algorithms are better than EA at recording and using his-
torical data. Particle SwarmOptimization (PSO), Bat Inspired
Algorithm (BA), Grey Wolf Optimization (GWO), Fruit Fly
Optimization Algorithm (FOA), Moth-Flame Optimization
(MFO), Ant Colony Optimization (ACO), Harris Hawks
Optimizer (HHO), and ABC are examples of SI algorithms.
In 2020, Li proposed SMA, a new stochastic optimization
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algorithm based on the oscillation pattern of mucilage in
literature [1]. The SMA mathematical model uses adaptive
weights to simulate the process of generating positive and
negative feedback from mucilage propagation waves based
on biological oscillators, which results in the formation of the
optimal path to connect food. SMA’s exploration capability
and development prospects have been validated through com-
parison. However, there are issues with slow convergence and
easily falling into local optimal solutions.

With the increasing global energy shortage and environ-
mental pollution, distributed power generation with clean
fuel as energy is increasingly widely used in the power
industry. Due to the increasing penetration rate of distributed
power supply in power system, the power supply mode has
a transition trend from large-scale centralized power supply
to centralized and distributed power supply. Therefore, the
research on DC distribution network under the new situation
is one of the key problems to be solved urgently.

In DC distribution networks, MAs are widely used. In the
literature [3], GA parameter identification is used to achieve
accurate location of line faults in DC distribution networks,
and the method is highly resistant to transition resistance
and has high robustness. The algorithm, however, is prone
to falling into local minima. The literature [4] proposed an
improved genetic particle swarm algorithm by combining the
PSO with the GA. The method combines the benefits of both
the GA and the particle swarmmethod in global search, effec-
tively integrating the two algorithms. The method is more
resistant to interference and has higher localization accu-
racy and faster convergence speed. The simulated annealing
algorithm, which has better global convergence and fault
tolerance, was introduced in the literature [5]. However, the
solution process of this algorithm is complicated and the
optimization time is long.

In recent years, many improved optimization algorithms
have outstanding performance [6], [7], [8]. Literature [9]
combined SMA with the Adaptive Differential Evolution
Algorithm (AGDE), and used the AGDE mutation method
to improve the local search ability of population subjects,
increase population diversity, and help avoid premature
convergence; Chen et al [10] proposed an SVR-based pre-
diction method using the K-mean clustering method and the
Chaotic Slime Mould Algorithm (CSMA). The results show
that the proposed method performs very well in terms of
computational accuracy and complexity, but not in terms
of stability; Ewees et al. proposed a new feature selec-
tion method in the literature [11] using a modified SMA
based on the Firefly Algorithm (FA). FA improves conver-
gence by improving the quality of the output results and
is extremely capable of discovering the feasible domain of
the optimal solution. The literature [12] proposed a binary
version of the Binary Slime Mould Algorithm (BSMA) for
feature selection to perform better feature selection and thus
improve convergence speed. Experiments show that com-
bining BSMA with Two-phase Mutation (TM) and a novel
attack feeding strategy produces better results for feature

selection. To address the potential shortcomings of SMA in
handling nonlinear tasks, Rizk-Allah et al. [13] proposed a
chaotic localization-enhanced slime mould algorithm (CO-
SMA) based on Chaotic Search Strategy (CSS) and Cross
Positioning Strategy (COS). CSS is introduced to improve
the exploitation capability and thus avoid the problem of
premature convergence; COS is introduced to improve the
diversity of solutions and thus improve the exploratory ten-
dency; Naik et al [14] proposed an elite-leadership-based
SMA, which uses the global optimal solution to lead other
individuals to update their positions, essentially solving the
problem of inefficient exploitation and slow SMA conver-
gence. Literature [15] proposed EOSMA, an equilibrium
optimizer (EO)-guided SMA, to improve efficiency by opti-
mizing the search of SMAs. In the literature [16], an improved
SMA based on dominant swarm with adaptive t-distribution
mutation (DTSMA) was proposed. In DTSMA, the dominant
swarm is used to improve the SMA’s convergence speed,
and the adaptive t-distribution mutation balances is used to
enhance the exploration and exploitation ability. In addition,
a new exploitation mechanism is hybridized to increase the
diversity of populations.

In conclusion, while the above improvement schemes
employ various improvement algorithms to address the issues
of slow convergence and poor search exploitation of SMA,
there are still issues such as low convergence accuracy,
easy premature convergence, and falling into local minima.
Further improvements to the SMA are made in the liter-
ature [17], which combines the ABC with an improved
crossover operator to form an adaptive ISMA. SMA’s prob-
lems of slow convergence and easy falling into local minima
were improved, but the abovemethods were not used to locate
distribution network faults.

Aiming at the above research problems, this paper estab-
lishes a six-terminal ring distribution network model in
Part II. In Part III, the short-circuit model is established and its
mathematical expression is simplified. In Part IV and Part V
of this paper, an adaptive ISMA with improved crossover
operator is introduced for the fault location of DC distribution
network. Based on the original SMA, ABC is introduced to
solve the early convergence problem of the algorithm. ABC
uses few control parameters and has strong robustness. Every
iteration will search for global and local optimal solutions,
so the probability of finding the optimal solution is greatly
increased. Adaptive adjustable feedback factor and crossover
operator are used to improve the convergence speed and
accuracy of the algorithm. In addition, the advantages of
ISMA are illustrated by the comparison of CEC2014 test
functions. Part VI introduces the principle of fault location by
ISMA. In Part VII of the paper, the experimental simulation is
carried out, and the simulation results show that the improved
algorithm has high positioning accuracy and robustness.

II. DC DISTRIBUTION NETWORK MODEL
Common DC distribution networks are classified into three
types based on their basic topology: radial, two-end supply,
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FIGURE 1. Topology of a six-terminal DC distribution network.

and ring. The relay protection and operation of a ring-shaped
distribution network is more complicated, but the ring struc-
ture improves power supply reliability and does not affect the
power supply to the load when a fault occurs in any section
of the line within the ring to remove the faulty section. As a
result, a six-terminal ring distribution network is used for the
study in this paper, and its topological results are shown in
Figure 1.

The wind turbine side, the synchronizer side, the battery
side, the PV array side, and the DC and AC load sides are
connected to a common DC bus through converters. Among
them, the new energy generation unit is in the state of max-
imum power tracking to improve economic benefits; The
DC load is connected to the DC bus through the buck-boost
chopper converter; AC load is connected to DC bus through
voltage source converter; The PV array unit is connected
to the DC bus through a buck-boost chopper converter with
bidirectional energy flow.

III. THE MATHEMATICAL MODEL FOR GRID LINE FAULTS
A. MATHEMATICAL MODEL OF INTER-POLE SHORT
CIRCUIT FAULT
When an inter-pole short circuit fault occurs, the DC mea-
suring capacitor discharges and the Insulate-Gate Bipolar
Transistor (IGBT) is blocked due to its own protection device
to prevent it from being burned and destroyed. However, the
continuity diode still forms a circuit, and the DC andAC sides
still supply current to the short circuit point [11].

Assuming an inter-pole short circuit fault in the DC line
between G-VSC and W-VSC, the equivalent circuit of the
capacitor discharge phase is shown in Figure 2.
In the figure, L indicates the total length of the DC line

between the WTG end and the synchronous machine end;
d indicates the distance between the WTG end and the fault
point;R1 and L1 are the resistance and inductance between the
WTG end and the fault point, respectively; R2 and L2 are the
resistance and inductance between the synchronous machine

FIGURE 2. Equivalent circuit diagram of an inter-pole short circuit fault.

FIGURE 3. Equivalent circuit diagram of a unipolar short circuit fault.

end and the fault point, respectively; C1 and C2 are the
capacitance to ground at the WTG end and the synchronous
machine end, respectively; Rf is the transition resistance.

According to Kirchhoff’s voltage theorem, the wind tur-
bine terminal satisfies:

Udc1 = 2I1R1 + 2L1
dI1
dt

+ (I1 + I2)Rf

I1 = C1
dUdc1

dt

(1)

The synchronous machine side meets:
Udc2 = 2I2R2 + 2L2

dI2
dt

+ (I1 + I2)Rf

I2 = C2
dUdc2

dt

(2)

Combining Eq. (1) and Eq. (2) to eliminate the transition
resistance Rf yields

2L2C2
d2Udc2

dt2
− 2L1C1

d2Udc1

dt2
+ 2C2R2

dUdc2

dt

− 2C1R1
dUdc1

dt
+ Udc1 − Udc2 = 0 (3)

B. MATHEMATICAL MODEL OF SINGLE-POLE GROUNDED
SHORT CIRCUIT FAULT
Assuming a single-pole ground short circuit fault in the DC
line between G-VSC and W-VSC, the equivalent circuit for
the capacitor discharge phase is shown in Figure 3.
According to Kirchhoff’s voltage theorem, the wind tur-

bine terminal satisfies:
Udc1 = I1R1 + L1

dI1
dt

+ (I1 + I2)Rf

I1 = C1
dUdc1

dt

(4)
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The synchronous machine side meets:
Udc2 = I2R2 + L2

dI2
dt

+ (I1 + I2)Rf

I2 = C2
dUdc2

dt

(5)

Combining Eq. (4) and Eq. (5) to eliminate the transition
resistance Rf yields

L2C2
d2Udc2

dt2
− L1C1

d2Udc1

dt2
+ C2R2

dUdc2

dt

− C1R1
dUdc1

dt
+ Udc1 − Udc2 = 0 (6)

C. DIFFERENTIAL VARIABLE TRANSFORMATION
In this paper, the differential quotient approximation of the
finite difference method-derivative is used to express the
differential components in terms of sampling points and
sampling intervals. The sampling interval in this paper is
10 microseconds. Therefore, the 1st-order differential and
2nd-order differential in Eq. (7) can be transformed into,
respectively.

dUdc1

dt
=
Udc(k) − Udc(k − 2)

21t
d2Udc1

dt2
=
Udc(k) − 2Udc(k − 1) + Udc(k − 2)

1t2

(7)

where k denotes the sampling point; Udc(k), Udc(k-1) and
Udc(k-2) denote voltage sampling points at consecutive
moments; and 1t denotes the sampling time interval.

IV. SLIME MOULD OPTIMIZATION ALGORITHM
SMA is based on the predatory behavior of slime mould,
slime mould from the food source in response to the
concentration of chemical signals encountered oscillating
contraction, the higher the concentration of food encountered
the faster its growth rate and the thicker the formation of the
venous network, and conversely slime bacteria encountering
a lower concentration of food will turn to explore other
areas, so as to approach other food sources by the shortest
route [17]. There are three main behaviors in the process
of mucilage feeding: approaching food, wrapping food and
acquiring food.

1) PROXIMITY TO FOOD

X (t + 1) =

{
Xb(t) + vb × (W × XA(t) − XB(t)), r < p
vc × X (t), r ≥ p

(8)

where t is the current number of iterations, XB(t) is the
position of the individual with the best current fitness, vb
and vc are the control parameters, vb ∈ [−a, a], vc oscillate
between [−1, 1] and eventually converge to 0, XA(t) and
XB(t) are the positions of two random individuals, W is the
slime adaptation weight, r is the random number between
[0, 1], the expressions of the control parameters p, parameter
a and the weight coefficientW are shown in Eq. (9), Eq. (10)

and Eq. (11), and the variation curve of parameter a is shown
in Figure 4 [15].

p = tanh |S(i) − DF | (9)

a = arctanh(- (
t

tmax
)+1) (10)

W (SI (i)) =


1 + r · log(

bF − S(i)
bF − wf

+ 1)half

1 − r · log(
bF − S(i)
bF − wf

+ 1)others
(11)

SI (i) = sort(S) (12)

where r is a random number between [0, 1], bF is the best
fitness value of the current iteration, S(i) is the fitness value
of the current individual, wf is the worst fitness value of
the current iteration, half is the individual in the top half of
the population in terms of fitness, others is the remaining
individuals in the population, and SI(i) is the sequence of
fitness values.

FIGURE 4. Schematic diagram of change curve of parameter a.

2) WRAPPING FOOD
After finding a high-concentration food source, the slime
mould will separate some individuals to continue searching
for a higher-concentration food source, so the slime bacteria
population location update as shown in Eq. (13).

X (t + 1) =


rand · (UB− LB) + LB, rand < z
Xb(t) + vb · (W · XA(t) − XB(t)), r < p
vc · X (t), r ≥ p

(13)

where rand is a random number between [0, 1], UB and LB
are the upper and lower bounds of the search area, and z is a
custom parameter (typically 0.03).

3) ACCESS TO FOOD
The control parameter vb oscillates randomly between [−a, a]
and eventually converges to 0 as the number of itera-
tions increases. the control parameter vc oscillates randomly
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between [−1, 1] and eventually converges to 0 as the number
of iterations increases.

The process of SMA is shown in Figure 5

FIGURE 5. Schematic diagram of slime mould predation process.

V. MULTI-STRATEGY IMPROVEMENT OF SLIME MOULD
OPTIMIZATION ALGORITHM
A. ADAPTIVE FEEDBACK FACTOR
vc as the feedback factor should reflect the relationship
between slime mass and food concentration, oscillating
between [−1, 1] and eventually converging to 0. The size
of vc at this time is only related to the number of iterations
and does not accurately represent the relationship between
slime mass and food concentration, so the adaptive adjustable
feedback factor is introduced [18]. In the early iteration of the
algorithm, the food concentration is low, and the decreasing
speed of the feedback factor should be accelerated to weaken
the feedback relationship and improve the search efficiency.
In the late iteration of the algorithm, the food concentration
is high, and the feedback factor should be kept smooth at
this time, which is beneficial to the local search. In addi-
tion, the descent rate adjustment factor k is introduced to
automatically adjust the descent rate of the feedback factor.
The mathematical model of the adaptive adjustable feedback
factor is described as shown in Eq. (14).

vc =

e
tmax−t
tmax − 1
e− 1

k

(14)

The word where t is the current number of iterations, tmax
is the maximum number of iterations, and k is the adjustment
factor.

A graph of the variation of the feedback factor vc with
the number of iterations for different values of k is shown
in Figure 6.

As can be seen from Fig. 6, the rate of decrease of the
feedback factor vc increases with the increase of the regu-
lation factor k . However, if the regulation factor is too large,
the convergence rate of the first period is too fast. However,
if the adjustment factor k is too large, the convergence speed
is too fast in the early stage and it is easy to fall into the local
minimum. On the contrary, if the adjustment factor k is too
small, it will cause the problem that the convergence speed

FIGURE 6. Feedback factor curve.

is too slow and the advantage of the algorithm disappears.
Considering all aspects, 0.4 is chosen as the value of the
adjustment factor k .

B. IMPROVED ARITHMETIC CROSS OPERATOR
To speed up the convergence of the algorithm, an improved
arithmetic crossover operator is introduced to let the current
individual cross over with a certain probability with the most
available individuals in the population, and its mathematical
model is shown in Eq. (15).{

XA1(t + 1) = L · XA(t) + (1 − L) · Xbest (t)
XA2(t + 1) = L · Xbest (t) + (1 − L) · XA(t)

(15)

where t is the current number of iterations, XA is the current
individual position, XA1 and XA2 are the positions of the
individuals of the two children generated by the crossover,
Xbest is the position of the optimal individual of the current
population, and L is a random parameter taking the value
(0,1).

From Eq. (15), it can be learned that the offspring are
mainly determined by the parent and parameter L. In order
to enhance the population diversity, the Laplace coeffi-
cient is introduced to improve the control parameter L. The
mathematical model is shown in Eq. (16).

L =


µ − λ · ln(r), r ≤

1
2

µ + λ · ln(r), r >
1
2

(16)

where µ and λ are Laplace coefficients and µ is taken as
a natural number to control the position. λ > 0 is used to
control the scale and r is taken as a random number between
[0, 1]. From Eq.16, it is clear that the smaller λ is, the closer
the offspring is to the parent. With the joint mediation of
Laplace coefficients µ and λ , the offspring can selectively
acquire more information of the superior parent.

C. IMPROVED MANUAL SWARM SEARCH STRATEGY
ABC algorithm is a popular local optimization-seeking intel-
ligence algorithm that solves the optimization problem by
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mimicking the behavior of honey bee populations that can
efficiently harvest honey and adapt to environmental changes
in any environment [19]. The algorithm classifies artificial
bee colonies into three categories: honey collecting bees,
observation bees and detection bees. Honey collecting bees
correspond to nectar sources one by one and use nectar
information to share with observation bees; observation bees
wait in the hive and search for new nectar sources based
on nectar information from collecting bees; and scout bees
randomly search for new nectar sources near the hive. The
algorithm does not require special information about the
problem and has generality as well as faster convergence,
which can effectively solve the problem of early conver-
gence of the SMA [20], [21]. The basic artificial bee colony
search strategy mathematical model is described as shown in
Eq. (17).

zid = xid + φid (x id − xkd ) (17)

where i is the current number of nectar sources, zid is the
new optimal individual, xid is the current individual, xkd is
a random individual, k ∈ {0, 1, . . . ,M}, d ∈ {1, 2, . . . ,N },
M is a fixed value, and N is the dimension.

In order to better improve the development capability of
the algorithm, the optimal position guidance is introduced in
this paper, and the improved mathematical model is shown in
Eq. (18).

zid = xid + φid (x id − xkd ) + rid (pgd − xid ) (18)

where r is a random number between [0, 1.5] and pg is the
global optimal position.

D. ISMA WORKFLOW
(1) Initialize the location of the mucilage population and set
parameters such as upper and lower boundaries.

(2) Calculate the fitness of individuals in the population
and record the best fitness and the worst fitness.

(3) Calculate the values of each parameter and the weights
of individuals within the population.

(4) Determine whether the probability requirement is satis-
fied, and if so, perform the crossover operation, if not, update
the best fit and best position.

(5) Introducing an improved artificial bee colony search
strategy to retain the best individuals according to a greedy
strategy.

(6) Determine whether the maximum number of iterations
is reached, and if it is satisfied, output the best adaptation and
the best position; if not, repeat steps (3) to (5)

The ISMA flow chart is shown in Figure 7.

E. THE COMPLEXITY OF ISMA
The complexity of the algorithm is obtained by analyzing the
code line by line. The complexity behind each line of code is
marked. Finally, the complexity of ISMA is O(n3). Similarly,
the complexity of SMA is O(n3). Under the same complexity,
ISMA convergence requires fewer iterations and takes less
time.

FIGURE 7. ISMA flow chart.

TABLE 1. Part of the CEC2014 function.

F. COMPARISON OF CEC2014 TEST FUNCTION
OPTIMIZATION
In order to verify the performance of ISMA in solving opti-
mization problems, we selected CEC03, CEC06, CEC19
and CEC26 in the CEC2014 test set as the test functions.
It includes Unimodal Functions(UF), Simple Multimodal
Functions(MF), and Hybrid Functions(HF) and Composition
Functions(CF). Relevant information of CEC2014 test func-
tion is shown in the following table 1. The experimental
parameters are as follows: population size N= 50, dimension
d = 30, maximum number of iterations tmax = 2000, and
each function runs independently for 30 times to get the
average and standard deviation. In this paper, PSO algorithm,
GWO algorithm, SMA and ISMA are selected to compare the
optimization results, among which the experimental data of
PSO algorithm andGWOalgorithm are from the literature [1]
and literature [17] respectively. The comparative analysis of
the optimization results of CEC2014 test function by each
algorithm is shown in the following table 2.
According to the results in the table, 1 SMA shows some

advantages in solving function optimization. For CEC19
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function, ISMA can find the optimal value, and for other
mixed and composite CEC2014 functions, ISMA can also
converge to the optimal value, which shows that ISMA is also
very robust in dealing with complex problems.

VI. FAULT LOCATION IN DC DISTRIBUTION NETWORK
BASED ON ADAPTIVE ARTIFICIA BEE COLONY SLIME
MOULD ALGORITHM
First, the inductance and resistance per unit length are used
to express the line parameters, as shown in Eq. (19).

R1 = r · d
L1 = l · d
R2 = r · (L − d)
L2 = l · (L − d)

(19)

where r denotes the resistance per unit length of line; l
denotes the inductance per unit length of line.

Substituting Eq. (7) and Eq. (19) into Eq. (3) and Eq. (6),
we get:

2LC(lb2 + ra2) − 2dC(lb+ ra) + 1U = 0 (20)

LC(lb2 + ra2) − dC(lb+ ra) + 1U = 0

a1 =
dUdc1

dt
=
Udc1(k) − Udc1(k − 2)

21t
a2 =

dUdc2

dt
=
Udc2(k) − Udc2(k − 2)

21t

b1 =
d2Udc1

dt2
=
Udc1(k) − 2Udc1(k − 1) + Udc1(k − 2)

1t2

b2 =
d2Udc2

dt2
=
Udc2(k) − 2Udc2(k − 1) + Udc2(k − 2)

1t2
1U = Udc1 − Udc2

(21)

The fitness function S(d) is set as:

S(d) =

N−1∑
k=1

f 2k (d) (22)

Depending on the different fault cases that occur, fk (d) is
the left-hand part of (20) or (21). fk (d) has a theoretical value
of 0. The larger the fitness function, the stronger the fitness.
The specific process is shown in Figure 8.

VII. SIMULATION VERIFICATION
In this paper, a six-terminal ring distribution network is
built in MATLAB/SIMULINK platform for simulation and
validation, using double closed-loop PI control. The rated
voltage of the system is 500kV, and both positive and negative
shunt capacitors are 0.02F. The distribution network lines are
simulated using a centralized R-L parameter model.

A. PARAMETER SETTING
The specific parameters of the model are shown in Table 3.

FIGURE 8. Flow chart of fault location based on adaptive artificial bee
colony slime mould algorithm.

B. FAULT LOCATION RESULTS AND ANALYSIS
On the basis of the six-end ring distribution network, the
DC line between the wind turbine end and the synchronous
machine end was selected as the research object. The results
are shown in Table 4 and Table 5, where the ranging error is
calculated as shown in Eq. (23).

r =
|xc − xr |

L
× 100% (23)

where r represents the ranging error, xc represents the cal-
culated ranging result, xr represents the actual fault distance,
and L represents the total line length.

From the experimental results, it can be seen that the
fault location by applying the ISMA can control the error
below 2% when there is no transition resistance, and below
3% when the transition resistance is 10�.

Taking the failure point at 5 km as an example, 1000 points
in Fig. 9 are used to simulate 1000 individual slime mould in
the population. As the algorithm advances and keeps search-
ing for the best, most of the 1000 mould are distributed on
this line, i.e., the location is accurate. The results are shown
in Figure 10.

C. ALGORITHM COMPARISON ANALYSIS
In this paper, the PSO algorithm, GWO algorithm, SMA
and ISMA are selected for experimental comparison, and
the parameters are uniformly set to the maximum number of
iterations 500 and the number of individuals in the population
1000. the simulation experiments are conducted at the fault
point of 5 km, and the results are shown in Figure 11.

From the simulation results of Figure 11, it can be seen
that the convergence speed of ISMA is obviously faster than
other algorithms, and it converges within 10 iterations. The
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TABLE 2. CEC2014 function optimization comparison.

TABLE 3. Partial parameters of DC distribution network system.

TABLE 4. Partial parameters of DC distribution network system.

TABLE 5. Location results of single-pole short-circuit fault.

FIGURE 9. The initial state distribution of slime mould population.

PSO algorithm and GWO algorithm are expected to con-
verge after hundreds of iterations. This further proves that the

FIGURE 10. The final state distribution of slime mould population.

FIGURE 11. Comparison of convergence of different algorithms.

effectiveness of ISMA has great advantages over basic PSO
algorithm, GWO algorithm, SMA and ISMA in solving this
problem.

VIII. CONCLUSION
In this paper, we first establish a mathematical model for
bipolar short-circuit faults as well as single-pole grounded
short-circuit faults in DC distribution networks, eliminate
the influence of transition resistance theoretically through
the fault characteristic formula, and discretize the differential
components in the formula. The test matrix is defined as the
parameters of ISMA. Then the six-terminal ring distribution
network is built inMATLAB/SIMULINK platform for exper-
imental simulation, and the voltage and current values of the
obtained sampling points are composed of the test matrix by
operation to further obtain the adaptation function and finally
calculate the fault location. The experimental results are
compared with the actual data, and the experimental results
show that ISMA can control the error of fault location within
2% without transition resistance and below 3% when the
transition resistance is 10�. PSO algorithm, GWO algorithm,
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SMA and ISMA are selected for experimental comparison
with the fault point at 5 km. The results show that ISMA
can obtain the optimal solution in a shorter time compared
with other algorithms, which further indicates that ISMA has
strong practicality and robustness in solving DC distribution
network faults.

Prospect I: Many excellent algorithms have been proposed
but have not been used in fault location of distribution net-
work. How to use these algorithms to locate the distribution
network more accurately needs further study.

Prospect II: This paper is based on the ring distribution net-
work. However, the distribution network structure is diverse,
such as petal distribution network adopted in recent years.
The work of fault location for distribution networks with
different structures needs further study.

REFERENCES
[1] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, ‘‘Slime mould

algorithm: A new method for stochastic optimization,’’ Future Gener.
Comput. Syst., vol. 111, pp. 300–323, Oct. 2020.

[2] G. Beni and J. Wang, ‘‘Swarm intelligence in cellular robotic systems,’’ in
Proc. Meeting Robot. Soc. Jpn., 1993.

[3] S. Jamali, A. Bahmanyar, and H. Borhani-Bahabadi, ‘‘A fast and accurate
fault location method for distribution networks with dg using genetic
algorithms,’’ in Proc. Smart Grid Conf. (SGC), Dec. 2015, pp. 110–114.

[4] A. Mahmoudian and M. Niasati, ‘‘A novel approach for optimal allocation
of fault current limiter in distribution system via combination of parti-
cle swarm optimization algorithm and genetic algorithm (PSOGA),’’ in
Proc. 21st Conf. Electr. Power Distrib. Netw. Conf. (EPDC), Apr. 2016,
pp. 75–81.

[5] X. Mi, S Ying, and K. Li, ‘‘Fault location of distribution networks based
on fuzzy adaptive simulated annealing genetic algorithm,’’ Elect. Meas.
Instrum., vol. 53, pp. 44–48, Sep. 2016.

[6] L. Ma, S. Cheng, and Y. Shi, ‘‘Enhancing learning efficiency of brain
storm optimization via orthogonal learning design,’’ IEEE Trans. Syst.
Man, Cybern. Syst., vol. 51, no. 11, pp. 6723–6742, Nov. 2021.

[7] H. Yu, T. Xu, X. Wang, X. Yi, and J. Chen, ‘‘Large-scale weapon target
assignment based on improved MOEA/D algorithm,’’ in Proc. 4th Int.
Conf. Syst. Rel. Saf. Eng. (SRSE), Dec. 2022, pp. 86–91.

[8] Z. H. Tong, Z. C. Sheng, Z. Bin, D. P. Bo, and Y. Yang, ‘‘Decomposition-
based sub-problem optimal solution updating direction-guided evolu-
tionary many-objective algorithm,’’ Inf. Sci., vols. 448–449, pp. 91–111,
Jun. 2018.

[9] E. H. Houssein, M. A. Mahdy, M. J. Blondin, D. Shebl, and
W. M. Mohamed, ‘‘Hybrid slime mould algorithm with adaptive guided
differential evolution algorithm for combinatorial and global optimization
problems,’’ Expert Syst. Appl., vol. 174, Jul. 2021, Art. no. 114689.

[10] Z. Chen and W. Liu, ‘‘An efficient parameter adaptive support vector
regression using K-means clustering and chaotic slime mould algorithm,’’
IEEE Access, vol. 8, pp. 156851–156862, 2020.

[11] A. A. Ewees, L. Abualigah, D. Yousri, Z. Y. Algamal, M. A. A. Al-Qaness,
R. A. Ibrahim, and M. A. Elaziz, ‘‘Improved slime mould algorithm based
on firefly algorithm for feature selection: A case study on QSAR model,’’
Eng. With Comput., vol. 38, no. S3, pp. 2407–2421, Aug. 2022.

[12] M. Abdel-Basset, R. Mohamed, R. K. Chakrabortty, M. J. Ryan, and
S. Mirjalili, ‘‘An efficient binary slime mould algorithm integrated with a
novel attacking-feeding strategy for feature selection,’’ Comput. Ind. Eng.,
vol. 153, Mar. 2021, Art. no. 107078.

[13] R. M. Rizk-Allah, A. E. Hassanien, and D. Song, ‘‘Chaos-opposition-
enhanced slime mould algorithm for minimizing the cost of energy for the
wind turbines on high-altitude sites,’’ ISA Trans., vol. 121, pp. 191–205,
Feb. 2022.

[14] M. K. Naik, R. Panda, and A. Abraham, ‘‘Normalized square difference
based multilevel thresholding technique for multispectral images using
leader slime mould algorithm,’’ J. King Saud Univ. Comput. Inf. Sci.,
vol. 34, no. 7, pp. 4524–4536, Jul. 2022.

[15] S. Yin, Q. Luo, and Y. Zhou, ‘‘EOSMA: An equilibrium optimizer slime
mould algorithm for engineering design problems,’’ Arabian J. Sci. Eng.,
vol. 47, no. 8, pp. 10115–10146, Aug. 2022.

[16] S. H. Yin, Q. F. Luo, and Y. Q. Zhou, ‘‘Dominant swarm with adaptive
T-distributionmutation-based slimemould algorithm,’’Math. Biosci. Eng.,
vol. 19, no. 3, pp. 2240–2285, 2022.

[17] C. H. Liu and Q. He, ‘‘Improved crossover operator for adaptive artificial
bee colony sticky fungus algorithm,’’ Small Microcomput. Syst., vol. 44,
pp. 263–268, Feb. 2023.

[18] K. Deep and M. Thakur, ‘‘A new crossover operator for real coded genetic
algorithms,’’Appl.Math. Comput., vol. 188, no. 1, pp. 895–911,May 2007.

[19] X. Bing, Z. Youwei, Z. Xueyan, and S. Xuekai, ‘‘An improved artificial bee
colony algorithm based on faster convergence,’’ in Proc. IEEE Int. Conf.
Artif. Intell. Comput. Appl. (ICAICA), Jun. 2021, pp. 776–779.

[20] X. Sun, Z. Shen, J. Jing, and S. Zhao, ‘‘Fault location method of active
distribution network based on improved artificial bee colony algorithm,’’ in
Proc. IEEE 10th Joint Int. Inf. Technol. Artif. Intell. Conf. (ITAIC), vol. 10,
Jun. 2022, pp. 163–167.

[21] Z. H. Mei, P. M. Fang, and Z. Liang, ‘‘Fault location based on artificial
bee colony algorithm for distribution network with distributed generators,’’
Adv. Mater. Res., vol. 787, pp. 840–845, Jan. 2013.

TIAN-XIANG MA was born in 1986. He is cur-
rently pursuing the master’s degree. He is also
a senior engineer. He is mainly engaged in the
research of operation and control of distribution
system and the key technology of distribution net-
work equipment.

XIN DUAN was born in 1989. He is currently pur-
suing the master’s degree. He is mainly engaged in
analysis and management of distribution network
operation, and research on distribution automation
technology.

YAN XU was born in 1976. He received the Ph.D.
degree from the North China University of Electric
Power, in 2005. He is currently an associate pro-
fessor. His research interests include power system
relay protection and new energy grid connection
technology.

RUO-LIN WANG was born in 1999. She is
currently pursuing the master’s degree with the
Department of Electric Power Engineering, North
China Electric Power University. Her research
interest includes DC distribution network fault
location.

XIAO-YU LI was born in 1994. She is cur-
rently pursuing the master’s degree. She is mainly
engaged in the analysis and management of dis-
tribution network operation, and the research of
distribution automation technology.

62638 VOLUME 11, 2023


