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ABSTRACT The parabolic equation method is an accurate and efficient approach for solving nonseparable
problems in ocean acoustics in which there are horizontal variations in the environmental parameters. Many
range-dependent problems may be solved using 2-D parabolic equation models that ignore coupling of
energy between planes of constant azimuth. When azimuthal coupling must be taken into account, the
splitting method may be used to efficiently solve a 3-D parabolic equation that handles the depth operator to
higher order but handles the azimuth operator only to leading order. Despite the fact that this approximation
provides a favorable combination of accuracy and efficiency for 3-D problems, run times have generally
been regarded as prohibitive for the long-range problems that are often of interest in ocean acoustics. It is
demonstrated here that, when propagation paths from source to receiver are confined to a relatively narrow
neighborhood of the vertical plane containing the source and receiver, it is practical to solve 3-D problems
out to long ranges by using nonuniform azimuthal sampling, with fine sampling near the vertical plane and
extremely coarse sampling elsewhere.

INDEX TERMS Ocean acoustics, range dependence, azimuthal coupling, 3-D effects, parabolic equation
method, splitting method, nonuniform grids.

I. INTRODUCTION
An ocean acoustics problem is referred to as ‘range depen-
dent’ if there are horizontal variations in the bathymetry,
sound speed, and/or other properties of the environment.
Range-dependent problems are nonseparable, but they may
often be solved accurately and efficiently with the parabolic
equation method [1], which is based on factoring the oper-
ator in the frequency-domain wave equation into a prod-
uct of operators that correspond to outgoing and incoming
energy, assuming that outgoing energy dominates, and ignor-
ing incoming energy that arises from backscattering. It is
practical to solve range-dependent problems out to ranges of
many thousands of wavelengths with 2-D parabolic equation
models, which neglect the term in the wave equation that
allows energy to couple between planes of constant azimuth.
After the first 3-D parabolic equationmodels were developed,
it was discovered that azimuthal coupling is negligible for
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many (if not most) problems [2]. If it were always necessary
to account for azimuthal coupling, much of the progress
that has been made in ocean acoustics during the past sev-
eral decades would not have been possible. For this reason,
the uncoupled azimuth approximation is arguably the most
important approximation in ocean acoustics. Azimuthal cou-
plingmust be taken into account for some problems, however,
such as when variations in bathymetry guide energy out of
planes of constant azimuth [3].

Parabolic equation models are based on approximations
of the square root of the transverse (depth and azimuth)
component of the operator in the wave equation. For 2-D
problems, the transverse operator is a depth operator, and it is
possible to achieve a high level of accuracy by using higher-
order expansions in the approximation of the square root
[4], [5]. A formidable challenge arises for the 3-D case when
attempting to implement expansions that are of higher-order
accuracy in both of the transverse directions [6]; the splitting
method is not applicable for such higher-order expansions,
and run times are prohibitive for the long-range problems

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 63365

https://orcid.org/0000-0002-1034-2229
https://orcid.org/0000-0003-0516-1033
https://orcid.org/0000-0003-0026-5423


J. Y. Yoritomo et al.: Accounting for Azimuthal Coupling in Long-Range Ocean Acoustics Calculations

FIGURE 1. Results for example A. Transmission loss for a 2-D problem
that was generated without (top) and with (bottom) stability constraints.

that are often of interest in ocean acoustics. An expansion
to higher order in the depth operator but to only leading
order in the azimuth operator [3], [7], [8] may be solved
efficiently with the splitting method and is sufficiently accu-
rate for many problems. Although this approach provides an
unmatched combination of accuracy and efficiency among
existing approaches for solving 3-D problems, it is usually
regarded as practical only for calculations out to moderate
ranges. Some progress has been made in improving accu-
racy [9], [10], but finding a practical approach for solving
3-D problems with higher-order expansions remains an elu-
sive goal.

We demonstrate here that, when propagation paths from
source to receiver are confined to a relatively narrow neigh-
borhood of the vertical plane containing the source and
receiver, it is practical to solve 3-D problems out to long
ranges by using variable azimuthal grid spacing in the imple-
mentation of the splitting method. The key is to use fine
azimuthal sampling near the vertical plane and extremely
coarse azimuthal sampling elsewhere. Additional gains in
efficiency may be achieved by using variable depth grid

spacing in the sediment to prevent nonphysical reflections
from the bottom of the computational grid [11].

II. THE PARABOLIC EQUATION AND ITS SOLUTION
We begin with the following outgoing wave equation (which
corresponds to Eq. 2.64 in [1]) in the farfield:

∂p
∂r

= ik0(1 + X + Y )1/2p, (1)
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∂
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1
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where the cylindrical spreading factor r−1/2 has been
removed from the complex pressure p, k is the wave number,
the constant k0 is a reference wave number, and ρ is the den-
sity. A parabolic equation that is accurate to higher order in
the depth operator and leading order in the azimuth operator
is based on the approximation,

(1 + X + Y )1/2 = (1 + X)1/2 +
1
2Y + O

(
XY ,Y 2

)
, (4)

which is correct to all orders in X and leading order in Y but
neglects all cross terms. Substituting the approximation into
Eq. (1), we obtain

∂p
∂r

= ik0(1 + X)1/2p+
i

2k0r2
∂2p
∂θ2

. (5)

The splitting method [12] may be used to solve a partial
differential equation in the form of Eq. (5), which has a first
derivative on the left side and a sum of differential operators
on the right side. This approach may provide enormous gains
in efficiency when the operators on the right side involve
partial derivatives with respect to different variables, as they
do in this case. As discussed in [12], the splitting method
involves two steps, which require numerical methods for
solving the equations,

∂p
∂r

= ik0(1 + X)1/2p, (6)

∂p
∂r

=
i

2k0r2
∂2p
∂θ2

, (7)

each of which is much easier to solve than Eq. (5). In the first
step, Eq. (6) is integrated over (i.e., solved over) the range
step1r to obtain an intermediate solution, which is the initial
condition for the second step, in which Eq. (7) is integrated
over 1r .
We solve Eq. (6) by approximating the square root of

the operator using a rational function (e.g., see [4], [13]),
applying Galerkin’s method with nonuniform spacing to dis-
cretize the depth operator [11], and using an approach for
approximately conserving energy to accurately handle slop-
ing bathymetry [14]. The basis for selecting the number of
terms in the rational approximation includes the desired accu-
racy in X and stability issues, which can arise when employ-
ing the energy-conservation approximation; many problems

63366 VOLUME 11, 2023



J. Y. Yoritomo et al.: Accounting for Azimuthal Coupling in Long-Range Ocean Acoustics Calculations

FIGURE 2. Results for example B. Transmission loss at z = 30 m that was
generated with the 3-D parabolic equation. Fine azimuthal sampling was
used in the 36◦ sector between the solid lines. Quantitative comparisons
along the dashed line appear in Fig. 4.

can be handled accurately using only one or two terms, but
additional terms may be included to improve stability without
any additional gain in accuracy.We solve Eq. (7) usingCrank-
Nicolson integration in range and the following difference
formula on a nonuniform azimuth grid [11]:

γi
∂2p
∂θ2

∼=
1
hi
pi−1 −

(
1
hi

+
1

hi+1

)
pi +

1
hi+1

pi+1, (8)

where the ith grid point is at θ = θi, the ith grid spacing is hi =

θi−θi−1, and 2γi = hi+hi+1. For the case of uniform spacing,
this difference formula reduces to the standard (1,−2, 1)
difference formula for the second derivative.

Ocean acoustics problems are often solved by including an
absorbing layer deep within the sediment to prevent reflec-
tions from the bottom boundary. Waves that penetrate into
the sediment without being refracted or reflected back into
the water column may be handled efficiently by using a
nonuniform depth grid with extremely coarse sampling deep
in the sediment and absorbing layer [11]. It is not necessary to
handle such waves accurately when the objective is to obtain
an accurate solution in the water column. A similar approach
is applied here in the solution of Eq. (7). A fine grid is used
to accurately handle the field in a narrow region that includes
the vertical plane containing the source and receiver. Outside
of that region, an extremely coarse grid is used to allow the

FIGURE 3. Results for example B. Transmission loss at z = 30 m that was
generated with the 2-D parabolic equation. In generating a 3-D solution,
fine azimuthal sampling was used in the 36◦ sector between the solid
lines. Quantitative comparisons along the dashed line appear in Fig. 4.

field to spread in azimuth without producing nonphysical
reflections.

III. IMPROVED STABILITY
Range-independent problems may be solved with the method
of separation of variables. In the far field (kr ≫ 1), the
normal-mode solution is of the form [1],

p (r, z) = r−1/2
∑
j

ajφj (z) exp
(
ikjr

)
, (9)

ρ
d
dz

(
1
ρ

dφj

dz

)
+ k2φj = k2j φj, (10)

where the φj are the modes, the k2j are the eigenvalues, and
the coefficients aj depend on the source condition. When k is
real (no attenuation), k2j > 0 for the propagating modes and
k2j < 0 for the non-propagating modes.
In parabolic equation solutions, the propagating modes

may be handled to any level of accuracy with rational
approximations that are based only on accuracy constraints
(e.g., matching derivatives of the square root function at
X = 0), but such approximations do not properly handle the
non-propagating modes. This issue may not be a concern if
non-propagating modes are not excited, but such modes may
be excited and give rise to numerical noise when there is range
dependence.
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FIGURE 4. Results for example B. Top: Transmission loss at z = 30 m that
was generated with the 3-D parabolic equation (solid) and the 2-D
parabolic equation (dashed). Bottom: Comparison of 3-D solutions
generated with the azimuthal grid described in the text (solid) and with
double the number of azimuth grid points in the 36◦ sector (dashed).

This problem may be avoided by using rational approxi-
mations that are designed to (1) accurately handle the propa-
gating modes and (2) annihilate the non-propagating modes.
For practical purposes, it is usually not necessary to annihilate
the non-propagating modes at the appropriate rate but rather
to simply ensure that their contributions decay with range.
We illustrate this issue with example A, which involves a
25Hz point source at z = 25m in a water column in which
the sound speed is 1500m/s; in the sediment, the sound speed
is 1700m/s, the density is 1.5 times the density of water, and
the attenuation is 0.5 decibels per wavelength; the bathymetry
(ocean depth) is 300m for r < 4 km, 100m for r > 12 km,
and linearly sloping between these values for 4 km < r <

12 km. The solutions appearing in Fig. 1 were generated
using three-term rotated rational approximations [13] for
the square root in Eq. (6). When the rotation angle is zero
(stability is neglected), numerical noise is generated along
the sloping ocean bottom. When the rotation angle is 20◦, the
numerical noise is annihilated.

Given that numerical noise can be an issue in the solution
of Eq. (6), one would expect that it can also be an issue in
the solution of Eq. (7). Both of these equations are parabolic
equations, with one in Cartesian coordinates and the other
in cylindrical coordinates. In testing the approach described

in the previous section, we found that numerical noise can
indeed arise in the solution of Eq. (7). In order to annihilate
this type of numerical noise, we consider an approach based
on the following alternatives to Eqs. (4) and (7):

(1 + X + Y )1/2 = (1 + X)1/2 + (1 + Y )1/2 − 1 + O (XY ) ,

(11)
∂p
∂r

= ik0(1 + Y )1/2p. (12)

For 3-D problems in ocean acoustics, it is unlikely that
there is any advantage to replacing the error term in Eq. (4)
with the error term in Eq. (11), but non-propagating modes
may be annihilated by using a rotated rational approximation
for the square root in Eq. (12) as an alternative to the linear
approximation in Eq. (7). In the splitting solution, the con-
stant term in Eq. (11) may be taken into account exactly by
including the factor exp (−ik0r).

IV. TEST CASES
Testing parabolic equation solutions has often been
challenging due to the fact that this approach offers a unique
combination of accuracy and efficiency. For many large-scale
range-dependent problems, the parabolic equation method
may be the only approach that is regarded as practical for
obtaining solutions (e.g., run times for calculations with
the finite-element method may be regarded as prohibitive
for such problems). This is especially true for 3-D prob-
lems, but some parabolic equation solutions that handle
azimuthal coupling have been tested qualitatively using ray
models [15], [16]. The objectives here are to test the accuracy
of the solution of Eq. (5) for different azimuthal grids and to
illustrate the efficiency of the approach. For both of the test
cases, the source frequency, source depth, and environmental
parameters are the same as for example A.
For example B, energy is diffracted by an island that is

defined by the bathymetry,

d (r, θ) =


0 for R < R1
0.05 × (R− R1) for R1 < R < R2
300m for R > R2

, (13)

R2 = x2 + (y− 50 km)2, (14)

where R1 = 2.5 km, R2 = 8.5 km, x = r cos θ , and
y = r sin θ (the parabolic equation method was previously
applied to other problems involving diffraction by islands
in [10] and [17]). The same bottom slope and sediment
parameters were used in a 2-D benchmark problem for which
the parabolic equation method is known to be accurate [18].
A 3-D solution was generated using fine azimuthal sampling
in a 36◦ sector centered at θ = 90◦, in which 1θ is 0.1◦

for r < 10 km, 0.05◦ for 10 km < r < 20 km, 0.025◦ for
20 km < r < 40 km, 0.0125◦ for 40 km < r < 80 km, and
0.00625◦ for r > 80 km; 1θ is 5◦ outside of the 36◦ sector.
The depth grid spacing 1z is 1m for z < 500m and 20m for
500m < z < 1200m.
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FIGURE 5. Results for example C. Transmission loss at z = 30 m that was
generated with the 3-D parabolic equation. Fine azimuthal sampling was
used in the region between the solid lines.

Color plots of transmission loss for the 2-D and 3-D
solutions appear in Figs. 2 and 3. Since the sloping bottom
deflects energy away from the island, there is a broader
shadow zone in the 3-D solution. Another difference in the
3-D solution is diffracted energy between the boundary of
the shadow zone and the solid lines (which appears as an
interference pattern). Transmission loss at θ = 80◦ and
z = 30m is compared quantitatively in Fig. 4. There are large
differences between the 2-D and 3-D solutions in the top part
of Fig. 4. Both of the solutions in the bottom part of Fig. 4
account for azimuthal coupling, but one of themwas obtained
by doubling the sampling in the 36◦ sector.
When numerically solving the frequency-domain wave

equation (which accounts for outgoing and incoming energy),
it is necessary to dedicate memory for the solution at every
grid point in the domain; this is a serious limiting factor
for 3-D problems. Since a parabolic equation is solved by
marching in range, memory is required only for the solution at
grid points near the current range. The number of grid points
is proportional toNz×Nθ , whereNz andNθ are the numbers of
grid points in depth and azimuth. The run time is proportional
to the integral of Nz × Nθ over range. All of the calculations
in this study were done on a MacBook Pro with a 2.3 GHz
8-core Intel processor. With variable sampling in azimuth and
depth, the run time was 38.5 minutes. On a uniform grid with
1z = 1m for all z and 1θ = 0.00625◦ for all (r, θ), the

FIGURE 6. Results for example C. Transmission loss at z = 30 m that was
generated with the 2-D parabolic equation. In generating a 3-D solution,
fine azimuthal sampling was used in the region between the solid lines.

run time was more than 32 hours. About a factor of ten of
the gain in efficiency was due to using fine sampling only
in a 36◦ sector rather than in all directions; the rest of the
gain in efficiency was due to refining the sampling with range
(as opposed to using the finest sampling at all ranges) and
using variable sampling in depth. For the uniform sampling
calculation, the dependent variable was stored in a complex
array with about 69 million entries. For the non-uniform
sampling case, the dimension of the array was reduced by
about a factor of twenty in the region with the most dense
sampling.

For example C, energy is guided horizontally by a valley
in the bathymetry,

d (r, θ) =

[
3 − sin

(
2πx
6 km

)]
× 50m. (15)

This was the first ocean acoustics problem for which
azimuthal coupling was found to be important [3]. For this
case, we used fine sampling in a region that was updated at
the same ranges as for example B, with the same values of1θ

but with the width of the sector starting at 120◦ and reducing
to 100◦ at r = 10 km, 50◦ at r = 20 km, 20◦ at r = 40 km,
and 10◦ at r = 80 km. Color plots of transmission loss for
the 2-D and 3-D solutions appear in Figs. 5 and 6. There is
strong horizontal ducting of energy along the valley. We also
generated a 3-D solution for this case using fine sampling in
a wider region and obtained similar results.
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V. DISCUSSION
For many ocean acoustics problems, accurate solutions may
be obtained by ignoring coupling of energy between planes
of constant azimuth. At the next level of complexity, propaga-
tion paths from source to receiver are confined to a relatively
narrow neighborhood of the vertical plane containing the
source and receiver. For such problems, it should be possible
to obtain accurate solutions by accounting for the depth oper-
ator to second order and accounting for the azimuth operator
only to leading order. Although parabolic equations based on
this approximation may be solved with the splitting method,
it has been conventional wisdom that long-range calculations
are often prohibitive. It is demonstrated here that problems
involving azimuthal coupling may be solved efficiently out
to long ranges by using a non-uniform grid to discretize the
azimuth operator, with fine sampling in a narrow window
that includes the plane containing the source and receiver
and extremely coarse sampling elsewhere. This approach
allows energy to propagate out of the narrow window without
causing spurious reflections, which would occur if the com-
putational domain were truncated in azimuth. Reductions in
run time by more than a factor of ten were achieved for the
examples. Even greater gains in efficiency are possible when
narrower windows are appropriate.
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