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ABSTRACT Identifying the sources of propagation in social networks, such as the misinformation propa-
gation, is one of the key issues recently. Most existing studies assume the underlying propagation model is
known, which is difficult to obtain in practice. Recent efforts have been devoted to detect multiple sources
in real-world situations, and the social influence of neighbors in the propagation is assumed to be identical.
However, this assumption will result in inaccurate results as the infection state of a node is determined
by its critical neighbors. In this paper, we fill this gap by capturing social influence of neighbors with
structural properties in social networks. For instance, opinions aremore likely to spread via closely connected
friends within small groups. Here we propose a Motif-based Graph Convolutional Networks for Source
Identification (MGCNSI) framework based on the GCN-based source identification approach. Specifically,
different network motifs are used to capture different types of structural properties. Then each motif extracts
the critical neighbors of a particular type, and a motif-based graph convolutional layer is constructed to
aggregate critical neighbors for that motif. To adapt to underlying propagation mechanisms, an attention
mechanism for aggregation is designed to automatically assign higher weights to more informative motifs.
The empirical results demonstrate that MGCNSI outperforms several benchmark methods on both synthetic
and real-world networks. The advantage is most obvious for networks with denser node neighborhoods,
where MGCNSI can select critical neighbors from the larger neighbor sets. How the motifs can capture the
social influence and the underlying critical paths of propagation is also illustrated.

INDEX TERMS Information propagation, multiple source identification, motif, graph convolutional net-
works.

I. INTRODUCTION
The emergence and development of communication tech-
nologies and online social networks have dramatically
changed our lifestyle. This not only makes our daily life
more convenient, but also makes us vulnerable to various
network risks. For instance, the connected users on social
networking sites like Facebook and Twitter can share individ-
ual opinions and information, which may contain incorrect
information. As a consequence, rumors can be shared and
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forwarded rapidly on those social networking sites [1], [2],
[3]. To prevent and control a harmful spread on networks,
it is critical to identify the possible origins accurately. If the
origins could be identified in the early stage, intervention
and control strategies can be developed to curtail the spread,
and diminish potential damages. Consequently, the problem
of source identification on networks has attracted lots of
attention in the past few years [4], [5].

In recent years, extensive approaches have been proposed
to solve the source identification problem on networks. Given
a network and the observed configurations, the goal is to find
the most probable propagation sources on the network. Early
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studies mainly focused on spreading dynamics on tree-like
networks [6], [7], [8]. Later on, the problem was generalized
to general complex networks [9], [10], and the methods to
identify multiple sources were also proposed [11], [12], [13].
Recently, to adapt to specific situations, some researchers
developed methods on time-varying networks [14], [15], [16]
and multilayer networks [17].

One of the main challenges of source identification lies in
the stochastic nature of the spreading dynamics. Until now,
most studies assumed the underlying propagation model to
be known in advance, and various models have been used
to simulate the spreading dynamics, such as the Independent
Cascade model [18], the Susceptible-Infectious model [19],
the Susceptible-Infectious-Recovered model [20], and etc.
To reflect different real-world situations, other types of
spreading dynamics such as the Susceptible-Exposed-
Infectious-Recovered (SEIR) model were introduced to the
source identification problem [21], [22], [23]. In practice,
however, identifying the actual propagation model requires
detailed domain knowledge, which is often difficult to obtain.

Until recently, some recent efforts have been devoted to
detect multiple sources without knowing the specific prop-
agation model [24], [25], [26], [27]. The only assumption
is that sources are more likely to be surrounded by a larger
proportion of infected nodes. Among them, the LPSI [24]
method was firstly proposed to classify the nodes into sources
or not based on the label propagation algorithm, and the
GCNSI [25] method exploited the graph convolutional net-
works to enhance the accuracy of LPSI method. Other
approaches utilized the invertible graph diffusionmodels [26]
or variational autoencoders [27] to solve the inverse problem
of forward diffusion estimation. Nonetheless, as the specific
propagation model can not be obtained, the above-mentioned
methods have the same assumption that the influence of each
neighbor node is assumed to be identical in the propagation,
which will result in inaccurate results.

In this paper, we investigate the source identification prob-
lem with unknown propagation mechanism, and focus on
capturing and incorporating the social influence of neighbors
for source identification. To the best of our knowledge, this
is the first work to tackle this problem. In particular, the
mesoscopic structural properties of networks are utilized to
capture the social influence. Existing studies have shown
that rich social network structural properties contain useful
information of social influence [28], [29], [30]. For example,
opinions are more likely to spread via closely connected
friends within small groups. The groups of densely connected
nodes are called communities, which have denser intra-group
connections than the inter-group ones [29], [31], [32]. For
more complex spreading dynamics, social affirmation from
multiple neighbors is required. As another example, we may
get convinced when we are a social group of three indi-
viduals, and our two neighbors are both adopters. In those
cases, a hyperedge (also called hyperlink) with more than
two nodes can be adopted to model such social groups [30],
[33]. The importance of weak ties acting as ‘‘local bridges’’ in

facilitating effective information diffusion in social networks,
has also long been recognized [28], [34], [35]. For instance,
information provided by friends in other groups carries less
redundancy. For the past decades, researchers working on
information diffusion modeling have found that the observed
information cascades can be explained by variousmesoscopic
structures such as communities, hyperedges, and etc [32],
[33], [36], [37], [38].

We here propose a novel Motif-based Graph Convolutional
Networks for Source Identification (MGCNSI) framework.
TheGraph Convolutional Network based approach is adopted
to identify source nodes. The node embeddings are obtained
via propagation of neighbors’ features, but here the difference
in the social influence of neighbors needs to be considered.
To achieve this goal, some challenges need to be solved:
Firstly, how to effectively capture the patterns of com-

mon structural properties? Here MGCNSI utilizes network
motifs, which are often used to represent over-represented
patterns of subgraphs. As one of the most common higher-
order structures, network motifs have been extensively
adopted to capture the structural and functional properties of
network data [39], [40], [41], [42]. In particular, networks in
the same domain are composed of similar motifs, whereas
networks from different domains have significantly different
motif frequencies [39], [40]. In social networks, similar pat-
terns such as friends in small close groups, or different groups
can also be depicted by certain motifs based on their specific
functions in local network structures [43], [44].
Secondly, how to capture different forms of social influ-

ence?Given a set of network motifs, multiple motif networks
can be constructed, where each motif network selects sets of
critical neighbors of a particular type of social influence, such
as the influence of friends in the same social group. Different
motif networks extract different sets of critical neighbors for
each node. Based on that, a motif-based graph convolutional
layer can be designed and applied to each motif network to
aggregate the critical neighbors of a particular type.
Furthermore, different forms of social influence are not

equally important. An attention mechanism for aggregation
is designed to automatically assign higher weights to more
informativemotifs. Hence, the critical neighbors of the under-
lying propagation mechanism can be depicted.

The main contributions of this paper are summarized as
follows:

1) Different forms of social influence in the propagation,
captured with structural properties in the social net-
works, are incorporated to identify propagation sources
when the underlying propagation model is unknown.

2) The Motif-based Graph Convolutional Networks for
Source Identification (MGCNSI) framework is pro-
posed based on the GCN-based source identification
approach. The critical neighbors with different forms
of social influence are captured with network motifs
and aggregated throughmultiple motif-based GCN lay-
ers. Also, an attention mechanism for aggregation is
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designed to automatically assign higher weights to the
informative motifs.

3) A series of simulations on both synthetic and real-world
networks are conducted to evaluate the effectiveness
of the proposed method. Also, the results demonstrate
how the motifs can support the analysis for social influ-
ence and the underlying critical paths of propagation.

The remainder of this paper is organized as follows.
Section II presents some related work. Section III introduces
the definition of multi-source identification with the under-
lying propagation model unknown. Section IV shows the
MGCNSI framework in detail and Experimental results are
reported in Section V. Finally, Section VI concludes this
paper and provides pointers for future work.

II. RELATED WORK
A. SOURCE IDENTIFICATION
In the past decades, researchers have proposed a variety of
methods to identify propagation sources. The early studies
mainly focused on spreading dynamics on tree-like networks
and proposed several types of centrality scores [6], [7], [8].
Similar to the centrality scores to identify influential spread-
ers for reaching a maximum spreading ability [45], [46], [47],
[48], [49], here the scores were introduced to identify candi-
date sources by maximizing the likelihood of the obtained
traces. For example, Shah and Zaman proposed a rumor
centrality score for the Susceptible-Infected (SI) model and
proved that the node with the largest rumor centrality score
canmaximize the likelihood of the observed data [6], [7]. Zhu
and Ying further proposed Jordan centrality scores for the
Susceptible-Infectious-Recovered (SIR) model, and obtained
candidate propagation sources by selecting the nodes with the
highest Jordan centrality scores [8].

Later on, the source identification problem was general-
ized from tree-like networks to general networks [9], [10].
For instance, Kazemitabar [10] proposed to compute the
Bayes optimal solution to identify the candidate sources from
a complete snapshot of the infected nodes in general net-
works. Also, the methods to identify multiple sources were
developed [11], [12], [13]. For instance, Prakash et al. [11]
proposed to search the multiple information sources based
on the Minimum Description Length principle under the SI
model. Zang et al. [12] further introduced a reverse propaga-
tion model to detect the recovered and unobserved infected
nodes, so as to identify multiple sources under the SIRmodel.
Considering the dynamics of the networks and multi-layer
nature of human interactions, methods for time-varying net-
works [14], [15], [16] and multilayer networks [17] were
developed recently to adapt to those specific situations.
In terms of observations, while most studies obtained a com-
plete snapshot of infected nodes, some attempted to inject
multiple sensors in networks to obtain the state changes of
the sensor nodes and the infection time [22], [50], [51]. The
inactivated sensor nodes were also considered recently [52].
This paper studies the multiple source identification problem

on general networks given complete steady-state snapshots,
which is the most widely used settings in recent years.

Another challenge of the source identification problem
lies in the underlying spreading dynamics of the observed
configuration. Most existing studies assumed that the under-
lying propagation model is known in advance, and prop-
agation models like the Independent Cascade model [18],
the Susceptible-Infectious model [19], and the Susceptible-
Infectious-Recovered model [20] have been adopted to
simulate the propagation dynamics [53]. Recently, the
Susceptible-Exposed-Infectious-Recovered (SEIR) model
was introduced to include the latent exposed period, i.e.,
the period from the time of infection to the time of becom-
ing infectious [21]. The incubation period of the infectious
diseases, i.e., the time period between when an individual
becomes infected and when the symptoms start, was con-
sidered to identify sources of asymptomatic spread [22].
To detect sources of rumor dissemination, Chen et al. added
‘‘fact checkers’’ to define the Denied state when an individual
refutes the rumor [23]. The assumption of the underlying
propagation mechanism has an important impact on the per-
formance of source identification, however, it is difficult to
obtain the underlying propagation model in practice.

The LPSI [24] method, proposed based on the label propa-
gation algorithm, was the first work to identify sources with-
out any information of the underlying propagation model.
The only assumption is that the sources are more likely to
be surrounded by a larger proportion of infected nodes. Later
on, several deep learning approaches have been proposed.
Among them, GCNSI [25] method exploited the Graph Con-
volutional Network approach to enhance the accuracy of the
LPSI method. As source identification is the inverse of the
diffusion process on graphs, Wang et al. [26] built an invert-
ible graph diffusion model named invertible graph residual
net to solve the inverse problem. Ling et al. [27] proposed a
probabilistic model that leveraged graph generative models
to capture a generative prior and conditional probability of
forward diffusion estimation, so that the probable sources
could be inferred via a variational inference-based method.
Jiang et al. [54] realized rumor source identification, rumor
news detection, and popularity prediction into a joint learning
framework, and identified the candidate rumor source clus-
ters to reduce the search space before applying a multilayer
perceptron module to predict source nodes. However, the
influence of each neighbor node is assumed to be identical
in those approaches, which is often not the case in real
situations. In this paper, we proposed that different forms
of social influence in the propagation can be captured with
structural properties in the social network, and incorporated
it to improve the accuracy of source identification.

B. MESOSCOPIC STRUCTURE PROPERTIES IN SOCIAL
NETWORKS
Properties of social networks have been analyzed in the past
decades for various applications such as diffusion predic-
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tion [33], [36], [55], influential spreaders identification [47],
[48], [49] and etc. In particular, mesoscopic structures of
social networks can indicate the social influence of different
neighbors and researchers working on information diffusion
modeling have found that the observed information cascades
with different propagation mechanisms can be explained by
such mesoscopic structures [32], [33], [36], [37], [38]. For
instance, the observed information cascades can be explained
by community structure [32], [36], [56], [57]. As closely
connected friends within the same community have simi-
lar opinions in real-world situations, Barbieri et al. [32], [56]
grouped the individuals into communities and modeled the
influence among the communities. In addition, Bao et al. [36]
proposed a component-based diffusion model which assumes
that the influence of the neighboring nodes to a given node
is not exerted individually but by connected components.
A community detection algorithm was applied to the neigh-
borhood of each node to identify the underlying components.
The components and information diffusion can also be learnt
jointly in [57]. Recent studies considered more complex
spreading dynamics where social affirmation from all indi-
viduals in a social group is needed, and a hyperedge with
more than two nodes was adopted to model such social
groups [30]. Based on the traditional Susceptible-Infectious
model, Iacopini et al. [33] introduced a higher-ordermodel of
social contagion, in which the contagion can occur through
interactions in groups of different sizes. Jhun et al. [58]
considered the higher-order contagion model based on the
Susceptible-Infectious-Susceptible model. The higher-order
contagion model on temporal networks [37] and multilayer
networks [38] have also been developed.

C. DEEP LEARNING ON GRAPH DATA
Graph Neural Networks (GNN) have been widely used
on graph data recently [59]. The idea of Graph Neural
Networks (GNN) is inspired by the recent success of neu-
ral networks for Euclidean data, and it extends traditional
deep learning methods for non-Euclidean data represented
by graphs with complex relationships and interdependency
between objects. Inspired by traditional convolutional neural
networks, Bruna et al. [60] developed a graph convolution
propagation rule based on the spectral graph theory, which
is the earliest work of spectral-based convolutional graph
neural networks. Since then, there have been increasing
extensions [61], [62], [63], [64]. For example, Kipf et al. [64]
presented a scalable approach based on an efficient variant
of convolutional neural networks via a localized first-order
approximation of spectral graph convolutions. Later on,
many spatial-based convolutional graph neural networks
emerged [65], [66], [67]. Recently, while some researchers
developed advanced algorithms such as GNN acceleration
algorithms [68], some focused on real-world applications.

Recently, an increasing number of successful applications
of Graph Neural Networks have emerged, as graph-structured
data are ubiquitous and GNNs can effectively the hidden

TABLE 1. Summarization of notations.

patterns of non-Euclidean data. For social networks, common
tasks like node classification [64], [69] and graph classi-
fication [70], and a variety of real-world problems such
as community detection [29], [71], social influence predic-
tion [72], information diffusion prediction [55], [73], and
source identification [25] can be solved by GNNs.

III. PRELIMINARIES
In this section, we will first introduce the objectives of
multi-source identification problem and then describe the
related techniques required for this paper. Frequently used
notations for this paper are shown in Table 1.

A. PROBLEM STATEMENT
Let G = {V, E,Y} be an undirected social network, where V
is a set of N nodes, E = {(i, j)|i, j ∈ V} is the set of edges.
Y = [Y1, · · · ,YN ]⊤ is the infection state of the network,
where Yi = 1 indicates node i is infected in the propagation,
and Yi = −1 indicates that node i is not infected in the
propagation.

The goal of our multiple sources identification problem
is to minimize the difference between the predicted set of
source nodes Sp and the ground-truth set of source nodes Sg.
Specifically, our goal is to find a function f : V → {1, 0} that
maximizes (1):

|Sg ∩ Sp|
|Sg ∪ Sp|

with Sp = {x ∈ V | f (x) = 1}. (1)
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B. PROPAGATION MODELS
In the field of information propagation, two kinds of prop-
agation models are usually used for simulation, namely the
infectionmodels and the influencemodels [74]. There are two
typical iterative influence models, namely the Independent
Cascade (IC) model [18] and the Linear Threshold (LT)
model [75]. In each iteration of the IC model, each newly
activated node has one chance to activate its neighboring
nodes, if a neighbor is not activated by the node, the neighbor
will not be activated by this node again. For the LT model,
each node will accumulate the influence of its activated
neighbors. In each iteration, a node will be activated if the
total influence exceeds the threshold. The simple propagation
models (such as the IC model) usually consider one-to-one
infection, whereas the complex propagation models (such as
the LT model) consider the collective influence of multiple
neighbors.

On the other hand, for the infection models, a node may
typically have three states: S (Susceptible), I (Infected),
and R (Recovered). Common infection models include the
Susceptible-Infectious (SI) model, Susceptible-Infectious-
Recovered (SIR) model and Susceptible-Infectious-
Susceptible (SIS) model [19], [20]. The SI model has only
two states, and a node has a probability to change from
Susceptible state to Infected state in each iteration. The SIR
model introduces the Recovered state based on the SI model.
In each iteration, an infected node has a probability to change
from the Infected state to the Recovered state, and the node
will never be infected again. In the SIS model, a node can be
infected multiple times.

In addition to the above basic propagation mechanisms, the
social attributes in social networks will also affect the infor-
mation propagation [32], [33], [36], [58]. The studies showed
that the spread of information in social networks is related
to group behavior, and the following situations usually exist:
(i) Opinions are more likely to spread via closely connected
friends within small groups. That is, the probability of prop-
agation between two nodes within the same community is
high, whereas the probability between two nodes of different
communities is low [32], [36]; (ii) We may get convinced
when we are in a social group, and other members of the
group are adopters. That is, a node can be affected not only
by its direct neighbors but also by its group, with different
probabilities [33], [58].

C. SOURCE IDENTIFICATION BASED ON LABEL
PROPAGATION
Wang et al. [24] proposed Label Propagation based
Source Identification (LPSI) based on the label propagation
algorithm. This is the first work to identify sources without
any information of the underlying propagation model. It can
be used to generate input features for more advanced models.
In LPSI, each node is assigned a label. The initial label of each
node i is the infection state Yi. The node labels are propagated
iteratively and it will finally converge. The final label of each

node indicates the probability of the node being a propagation
source. In particular, The iteration formulation of LPSI is as
follows:

gt+1
i = µ

∑
j:j∈N (i)

Sijgtj + (1 − µ)Yi, (2)

where gt represents the vector of node labels in the t th itera-
tion, and gti represents the value for node i. N (i) is the set of
neighbors of node i in the network. S = D−

1
2AD−

1
2 , A is the

adjacency matrix of G, D is the Laplacian matrix of G, Yi is
the infection state of node i, and µ controls the influence of
neighbors. It was proved that the convergent node labels are
given as:

g∗
= (1 − µ)(I − µS)−1Y, (3)

where Y is the infection state of the network, g∗ is the vector
of final node labels when convergence is achieved. LPSI
has two versions, namely the iterative version (2) and the
convergent version (3).

As shown in (2), the influence of each neighbor is equal in
LPSI. This is due to the fact that social influence of neighbors
can not be easily obtained as the underlying propagation
model is not known. However, in real situations of informa-
tion propagation in social networks, it is the critical neighbors
that determine the infection state of a node. In terms of source
identification, the assumption of equal influence in LPSI and
other source identification approaches will result in inaccu-
rate results. In this paper, different forms of social influence in
the propagation are captured with structural properties in the
social network. The detailed method and experimental results
will be shown in the next two sections.

D. SOURCE IDENTIFICATION BASED ON GRAPH
CONVOLUTIONAL NETWORKS
Traditional convolutional neural networks (CNNs) are widely
used in the field of computer vision and have achieved
great success. Graph convolution neural network (GCN) [60]
extends CNN to graph data to capture node features of
a graph effectively. Early versions of GCN were very
time-consuming. Hammond [61] introduced the Chebyshev
polynomial to speed up the calculation. Kipf’s work further
simplified GCN [64] and we adopt this version. Specifically,
given the initial node features as input, graph convolutional
operations are performed for several layers, and the final node
features can be obtained from the output of the last layer. The
layer-wise graph convolutional operation is defined as:

Hl+1
= σ (D̃−

1
2 ÃD̃−

1
2HlWl), (4)

where Ã = A + I, A is the adjacency matrix, I is the identity
matrix, D̃ is the Laplacian matrix of Ã,Hl is the node features
of l th layer,Wl is the trainable weight matrix of l th layer, and
σ (·) is the nonlinear activation function.H0 is the input of the
first layer, and the output node features of l th layer are used as
input of layer l+1. In this equation, each layer only considers
the first-order neighbors of each node. To capture the features
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of multi-order neighbors, multiple layers are needed. The
final node features (also called node embeddings) can be
obtained from the output of the last layer.

In the context of source identification, the GCNSI [25]
method exploited the Graph Convolutional Network
approach to enhance the accuracy of the LPSI method. It gen-
erated multi-dimensional node embeddings instead of integer
status labels, and neighbors’ features were propagated via
graph convolutional operations. A multi-label classification
problem was formulated to predict whether each node is a
source node based on the learnt node embeddings. GCNSI
also assumes the equal influence of neighbors, which will
cause inaccurate results.

IV. METHOD
In this section, we propose the Motif-based Graph Con-
volutional Networks for Source Identification (MGCNSI)
framework with consideration of various social influence
of neighboring nodes. The Graph Convolutional Network
based approach is adopted to identify source nodes. The
node embeddings are obtained via propagation of neighbors’
features, but here the difference in the social influence of
neighbors needs to be considered. Although the specific prop-
agation model is unknown, different forms of social influence
are captured with structural properties in the social network.
In particular, the most common higher-order structure, net-
work motifs, are adopted to capture structural properties
which are further used to extract critical neighbors of different
types.

The overall architecture of MGCNSI is shown in Fig. 1,
which has four parts: (a) Input layer uses the infection state
of the network to generate initial node features. (b) Motif
matching layer constructs a set of motif networks to cap-
ture different forms of social influence. For each node,
different motif networks extract different sets of critical
neighbors. (c) Motif-based graph attention networks mod-
ule has two components. The motif-based GCN layers use
graph convolutional networks to generate node embeddings
for each motif network, and only critical neighbors of
original neighbors are considered for aggregation. And the
attention layer aggregates the node embeddings of different
motif networks. It assigns higher weights to the informative
motifs corresponding to the underlying propagation model
through attention mechanisms. (d) Output layer adopts the
fully-connected layer to obtain the predicted value. The
details of the above four parts are introduced as follows.

A. MOTIF MATCHING LAYER
To effectively capture the patterns of common structural prop-
erties, we introduce the concepts of network motifs. Network
motifs are over-represented patterns of subgraphs occurring
in complex networks [39]. The studies have shown that sim-
ilar motifs can be found in networks that perform similar
functions [39], [40]. In social networks, similar patterns such
as friends in small close groups, or different groups can also
be depicted by certain motifs based on their specific functions

in local network structures [43], [44]. Usually, two-node,
three-node and four-node motifs are used, as shown in Fig. 2.

The neighbors could exhibit different forms of influence
depending on their connectivity in the social network. Thus,
the motifs can be used in this paper to select critical neigh-
bors of different types, such as friends in the same social
group. In particular, inspired by Lee et al. [76], a motif-
based matrix formulation is introduced to construct a set of
motif networks. Specifically, given C different motifsM =

{M1,M2, . . . ,MC}, different motif-based adjacency matrices
A = {A1,A2, . . . ,AC} representing the set ofmotif networks
can be constructed. For a certain motif Mc, the motif-based
adjacency matrix Ac is defined as follows:

Ac = A′
c + Pc

(A′
c)i,j =

{
0 i = j,
kcij i ̸= j.

(5)

where kcij is the number of times node i and j are in the
same subgraph instance of motifMc, Pc is a diagonal matrix,
and (Pc)i,i = max1≤j≤N (A′

c)i,j. Instead of using the identity
matrix in (4), using Pc can make a node and its most critical
neighbor equally important.

The motif can help find the interesting subgraph of the
original network, i.e., the motif network. Fig. 3 illustrates
the process of constructing a motif network for the triangle
motif. During the process, the blue nodes and solid lines in the
initial network (left) that are matched with the motif (middle)
are retained in the motif network (right), and other nodes
and edges are discarded. As shown in the figure, this process
can find out closely connected small groups. The grey nodes
are disconnected in the motif network, which means that the
nodes will lose some less important neighbors. In the context
of source identification, it means that on the motif network
of the triangle motif, interactions in closely connected small
groups are retained so that those critical neighbors in small
groups are selected to identify sources. Also, different types
of motif networks can select critical neighbors of different
forms.

B. MOTIF-BASED GRAPH ATTENTION NETWORKS
Through the motif matching layer in the previous section,
a set of C different motif-based adjacency matrices A =

{A1,A2, . . . ,AC} has been generated. The set of motif net-
works represents different forms of social influence. And for
each node, different motif networks extract different sets of
critical neighbors. For each motif network, the Graph Convo-
lutional Network based approach is adopted to identify source
node. The node embeddings are obtained via propagation of
neighbors’ features, and here only critical neighbors of origi-
nal neighbors are considered. The layer-wise propagation rule
is as follows:

Xl+1
c = σ (D−1/2

c AcD−1/2
c Xl

cW
l
c), (6)

where σ is the activation function, and ReLU is used in
this paper, Ac ∈ RN×N is the motif-based adjacency

VOLUME 11, 2023 61635



K. Yang et al.: Identifying Multiple Propagation Sources With Motif-Based Graph Convolutional Networks

FIGURE 1. Four parts of MGCNSI: (a) Input Layer, the infection state of the network is used to generate initial node features. (b) Motif Matching Layer,
a set of motif networks are constructed to capture different forms of social influence. For each node, different motif networks extract different sets of
critical neighbors. (c) Motif-based Graph Attention Networks Module has two components. The Motif-based GCN layer uses graph convolutional
networks to generate node embeddings for each motif network in which only critical neighbors of original neighbors are considered, and the
Attention Layer aggregates them through attention mechanisms. The attention layer assigns higher weights to the informative motifs corresponding
to the underlying propagation model. (d) Output Layer, fully-connected layer is adopted to obtain the predicted value.

FIGURE 2. Summary of network motifs with 2-4 nodes.

FIGURE 3. The process of constructing a motif network for the triangle
motif, where the blue nodes and solid lines matched with the motif are
retained, the gray nodes and dotted lines are discarded.

matrix calculated from (5), (Dc)ii =
∑

j(Ac)ij represents the
Laplacian matrix for Ac, Xl

c ∈ RN×H represents the node
embeddings of the l th layer, Wl

c ∈ RH×H represents the
trainable weight matrix of l th layer, and H is the dimension
of the hidden layer. X0

c is the node features of the input layer,
and the calculation method will be introduced in Section IV-
C. The node embeddings obtained by GCN are the node
embeddings of the last layer L, i.e., XL

c .
The node embeddings learnt from different motif networks

are then aggregated, but the importance of them is appar-
ently different. As the underlying propagation mechanism is
unknown, to adapt to various propagation mechanisms, the
attention mechanisms are adopted to automatically assign
higher weights to the informative motifs corresponding to
the underlying propagation model. Specifically, each motif
network Ai has a corresponding vector αi ∈ RN where

the attention coefficient αij represents the importance of the
motif Mi for a specific node j. The attention coefficients are
calculated as follows:

αi = softmax(ei) =
exp(ei)
C∑
c=1

exp(ec)
,

ei = σ (XL
i We + Wb)Wt (7)

where σ represents a nonlinear function, and tanh is used
in this paper, We ∈ RH×H and Wb ∈ RN×H are trainable
weight matrices of the linear layer, Wt ∈ RH is the trainable
vector which converts the matrix into a vector, and ei is
normalized by row-wise softmax activation to obtain αi.

Eventually, the final node embeddings Xf can be obtained
by calculating the weighted average of the node embeddings
for each motif network:

Xf =

C∑
i=1

W i
α ⊙ XL

i , (8)

where XL
i represents the node embeddings corresponding to

Ai, calculated by (6), and ⊙ represents Hadamard product.
As the dimension of the node embeddings is H , we denote
W i

α ∈ RN×H as the weight matrix through concatenating the
same weight vector αi H times for easier representation of
(8), and αi represents the attention coefficients for Ai.

C. INPUT, OUTPUT, LOSS FUNCTIONS
1) INPUTS
The original input is infection state of the networkY . Inspired
by Dong et al. [25], the features of nodes are expanded. The
expanded node features are denoted as Y′

= [d1,d2,d3,d4].
The four dimensions in the ith row can be treated as the
four-dimensional features of node i. In particular, d1 = Y
represents the infection state of the network, the values of
infected nodes are set as 1 and those of uninfected nodes
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are set as −1. d2 is calculated by the LPSI algorithm, that
is, the output of (3), which provides initialization of features
to be used by more advanced models. In order to prevent
positive and negative labels from canceling each other out,
d3 and d4 only consider infected nodes and uninfected nodes
respectively. That is, the values for the uninfected nodes in
the infection state Y are set to zero to calculate d3, and the
values for the infected nodes in the infection state Y are set
to zero to calculate d4. Note that the value of µ in (3) is set
as 0.5, which is consistent with the original paper.

2) OUTPUTS
In the output layer, a fully-connected layer is adopted to
obtain the predicted value:

y′
= σ (XfWf + bf ), (9)

where y′ is the final output of MGCNSI, σ is the sigmoid
function, Xf is the node embeddings of G calculated by (8),
and Wf ∈ RH and bf ∈ RN are trainable parameters of the
fully-connected layer.

3) LOSS FUNCTION
The multi-source identification problem here is variance of
the multi-label classification problem and it is needed to
predict whether each node is a source or not simultaneously.
For each given training sample, the infection state of the
network in the propagation process is the input of the model,
and a vector y denotes the ground-truth set of sources, where
a value of 1 indicates that the node is the source node and
0 otherwise. And y′ is the predicted set of sources, i.e., the
output of (9). A cross-entropy loss is adopted as loss function,
and L2 regularization is used to avoid overfitting. The loss
function is given as:

L(y, y′) =

∑B
b=1

∑N
i=1 cel(y

b
i , y

′b
i )

B
+ λ||2||2,

cel(x, y) = −x log y− (1 − x) log(1 − y), (10)

where B is the batch size, 2 is the set of all the parameters of
MGCNSI, ||2||2 is the L2 regularization term, and λ is the
weight coefficient for the L2 regularization, with a value of
0.0001.

D. COMPLEXITY ANALYSIS
Implementing the MGCNSI framework involves two main
steps: (a) constructing a set of motif networks for each net-
work in advance; (b) main part of the framework, including
generating node features, motif-based graph convolution net-
work operations and the output module. The details are given
as follows:

First of all, a set of motif networks was constructed for
each network in advance using the Parallel Parameterized
Graphlet Decomposition method [77]. According to [77], the
computational complexity for this step isO(C12), whereC is
the number of motifs, 1 is the maximum degree of the graph.

The main part of the framework includes four components,
given as:

• Firstly, node features are generated given the original
infection states of each node using the LPSI method.
According to [24], the complexity for each data sample
is O(N 3).

• For graph convolution operations in (6), according
to [64], the complexity of the filtering operation is
O(|E|H2), and the complexity of the activation function
is O(NH ). As there are C motif networks, the over-
all complexity for the graph convolution operations is
O(nC(|E|H2

+ NH )), where n is the number of GCN
layers.

• The attention calculation in (7) is a matrix operation
with a complexity of O(CNH2), and the aggregation
operation in (8) isO(CNH ). Thus the overall complexity
of attention module is O(CNH2).

• The output module is a fully-connected layer with a
complexity of O(NH ).

Thus, the overall complexity for each data sample in the
main part is O(N 3

+ nC(|E|H2
+ NH ) + CNH2). The run-

time for datasets of different sizes is calculated. On average,
MGCNSI spent 0.01 seconds, 0.011 seconds, 0.013 seconds,
and 0.011 seconds for each data sample for the Dolphin, Jazz,
Ego-facebook, and three synthetic networks respectively.
In comparison, GCNSI spent 0.008 seconds, 0.009 seconds,
0.012 seconds, and 0.01 seconds, respectively. Thus, our
method MGCNSI can improve the accuracy of the model at
the expense of a reasonable increase in run-time.

V. EXPERIMENTS
In this section, we first conducted a series of experiments
on both synthetic and real-world networks to evaluate the
performance of our method. The results showed that the
motif-based graph convolutional network framework is more
accurate in identifying propagation sources. Then, we studied
the influence of hyper-parameters on the experimental results
and analyzed the role of different motifs in source identifica-
tion.

A. DATASETS AND BASELINES
The following real-world network datasets are used in this
paper:

• Dolphin [78] is an undirected social network of frequent
associations between dolphins in a community living off
Doubtful Sound, New Zealand.

• Jazz [79] is an undirected network of Jazz musicians.
• ego-Facebook [80] was collected from survey partici-
pants who used the Facebook app.

The details of the datasets are shown in Table 2.
The following methods are our model and baselines of this

paper for multi-source identification:

• MGCNSI: Motif-based Graph Convolutional Networks
based source identificationmodel, which is the proposed
model in this paper.

• GCNSI [25]: Graph Convolutional Networks based
source identification model. This is the state-of-the-
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TABLE 2. Basic information about the networks. |V | is the number of
nodes, |E | is the number edges, ⟨k⟩ is the average degree, and ⟨c⟩ is the
average clustering coefficient.

art GCN-based approach to identify multiple sources
when the underlying propagation model is unknown.
The social influence of neighbors is assumed to be iden-
tical.

• LPSI [24]: Multi-source identification model based on
label propagation algorithm, which is the first work to
identify multiple sources without any information of the
specific propagation model.

• NetSleuth [11]: Multi-source identification model
based on minimum description length approach under
the SI model.

• Zang [12]: Multi-source identification method based on
a divide-and-conquer approach under the SIR model.

B. EXPERIMENT SETTINGS
1) GENERATION OF PROPAGATION TRACES
In previous studies, propagation traces were typically gener-
ated by IC model, SI model, and SIR model. In particular, the
infection probabilities p of ICmodel, SImodel and SIRmodel
were sampled from the uniform distribution U (0, 1), and the
recovery probabilities of the SIR model were sampled from
the uniform distribution U (0, p). In this paper, to simulate
the information propagation in social networks. In addition to
the above basic propagation mechanisms, common situations
in social networks mentioned in Section III-B were also
considered. In particular, the infection probability between
two nodes within the same community is high, whereas that
for two nodes between different communities is low. And the
infection probability for the two nodes within denser parts
of a community is higher. Hence, instead of sampling the
infection probabilities from the uniform distribution U (0, 1),
here the probabilities are proportional to the number of com-
mon neighbors connecting the two nodes. Besides, a node can
infect its neighbor not only through their direct connection,
but also through group interactions. Here the probabilities of
group interactions were sampled from the uniform distribu-
tionU (0, 1).We simulated a propagation process until at least
30% of the network nodes were infected.

The data was generated from different underlying propaga-
tion models with different numbers of sources. Specifically,
for the basic propagation mechanisms used, the ratio of the
IC model, SI model and SIR model in the datasets is 1:1:1.
The ratio of common situations of information diffusion in
social networks in the datasets is 1:1. Also, for datasets of

TABLE 3. Optimal settings of hyper-parameters.

different sizes, the number of source nodes is different. For
datasets with a number of nodes less than or equal to 500, the
number of source nodes K was set as 2, 3, and 5, while for
datasets with a number of nodes greater than 500, the K was
set as 3, 5, and 10. For each propagationmodel, the proportion
of training data generated for different source numbers is also
1:1:1.

All the data were mixed and shuffled before training, thus
the source identification methods could not know the specific
propagation models. For the test data, propagation traces of
different propagation models and different source numbers
were distinguished through labels to acquire different evalu-
ation results. The ratio of training set, validation set, and test
set is 8:1:1.

2) IMPLEMENTATION DETAILS
All the experiments were conducted on a Linux server
with two 2.4GHz 10-core CPUs, 128GB RAM, and four
NVIDIA GeForce RTX 3090 graphics cards. Pytorch1 was
used to implement our method and the Parallel Parame-
terized Graphlet Decomposition (PGD) library2 was uti-
lized to generate the motif networks in Section IV-A. The
back-propagation algorithm was used to optimize the model,
and the optimizer for gradient ascent is Adam [81].

The optimal values of the hyper-parameters of our model
are different for different datasets, and the values of
hyper-parameters were set using cross-validation. Some key
validation processes of the important hyper-parameters are
shown in Section V-E. Optimal settings of hyper-parameters
are shown in Table 3. The parameters of the baselines
are consistent with those in the original papers. The ini-
tial inputs were generated with the LPSI method, and the
value of µ in (3) was set as 0.5, which is consistent with
the original paper. The weight coefficient λ in the L2
regularization of loss function to prevent overfitting was
set as 0.0001.

C. EVALUATION METRICS
• F-score is the most common evaluation criterion for
multi-labeled classification tasks, as it combines preci-
sion and recall. In this paper, the β value of F-score
is set to 1, that is, recall and precision have the same

1https://pytorch.org/
2http://nesreenahmed.com/graphlets/
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FIGURE 4. The results of F-score for all the methods with different
numbers of source nodes K on synthetic networks. Three typical types of
synthetic networks with different kinds of propagation models were
considered. Compared with GCNSI, MGCNSI achieves overall
improvement of about 15% on the core-periphery network and about
10% on the random and hierarchical networks. The advantage of MGCNSI
is more obvious in the core-periphery network, which indicated that
MGCNSI is more effective for networks with denser node neighborhoods.

weight (F1-score). It was proved that maximizing F1-
score is equivalent to maximizing the objective function
in (1) [25].

• Error Distance is also adopted by some existing work
for source prediction [53]. As is stated in [24], the results
with small value of error distance are not necessarily
true sources, but the nodes nearby the true sources. Nev-
ertheless, an apparent large value of error distance can
indicate that the performance is not good. To adequately
evaluate the effectiveness of our model, we still show
the results of error distance under the SI model. The
definition of error distance is as follows:

d =
1

|Sg|
(
∑
i∈Sg

min
j∈Sp

dist(i, j) + η
∣∣|Sg| − |Sp|

∣∣), (11)

where |Sg| is the number of source nodes, |Sp| is the
number of predicted nodes, dist(i, j) is the shortest dis-
tance from node i to node j, and for each predicted node i,
the nearest source node j is taken to calculate the shortest
distance. The weight η is set to 0.5.

D. RESULTS
We evaluated the performance for source identification
with both synthetic and real network data sets, and com-
pared our method with other benchmark methods. The
overall performance of different methods is shown in
Figs. 4 and 5.

FIGURE 5. The results of F-score for all the methods with different
numbers of source nodes K on real-world networks. Different kinds of
propagation models were considered. Compared with GCNSI, MGCNSI
achieves overall improvement of about 10%, 15%, and 13% on the
Dolphin, Jazz, and Ego-facebook networks respectively. The advantage of
MGCNSI is more obvious in the Jazz and Ego-facebook networks with
denser node neighborhoods.

1) EXPERIMENTS ON SYNTHETIC NETWORKS
Firstly, the performance of our method MGCNSI under dif-
ferent types of synthetic networks was analyzed. In particular,
three typical types of synthetic networks were generated
using the Kronecker graph approach [82] under the SNAP
platform [83]: core-periphery networks (parameter matrix:
[0.9 0.5; 0.5 0.3]) [84] which simulate the real-world net-
works, random networks (parameter matrix: [0.5 0.5; 0.5
0.5]) [85] used in the studies of physics, and hierarchical
networks (parametermatrix: [0.9 0.1; 0.1 0.9]) [86]. The basic
information of the networks can be found in Table 2.

As shown in Fig. 4, MGCNSI achieves the best perfor-
mance under each kind of propagation model no matter how
the number of source nodes K is set. Compared with GCNSI,
the overall improvement is about 15% on the core-periphery
network and about 10% on the random network and hierar-
chical network. The results verified the effectiveness of our
method, and indicated that capturing different forms of social
influence with structural properties of social networks can
help better identify probable source nodes, even though the
specific propagation model is unknown.

In particular, the following observations were obtained:

• The advantage of MGCNSI over other methods is more
obvious in the core-periphery network, which simu-
lates real-world networks. This is due to the structure
of core-periphery networks. The edges in the random
network are uniformly generated, whereas the core area
of the core-periphery network is relatively denser than
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the periphery area. Hence the core nodes have more
neighbors and more available propagation paths, which
brings difficulties to the identification of source nodes
in this area. Nevertheless, our method can select impor-
tant neighbors in terms of social influence by assigning
higher weights to some relevant motifs automatically,
and thus only critical propagation paths are considered
in the motif-based graph convolutional network frame-
work. As a result, substantial advances were observed.
This indicated that MGCNSI is more effective for those
networks with denser node neighborhoods.

• In addition, it can be observed that the overall source
identification accuracy on the hierarchical network is
higher than that on other networks, but the advantage
over other methods is not obvious. This is also due to
the structure of hierarchical networks. We found that the
infected node sets caused by different source nodes do
not overlap much, as the propagation cannot spread far
from current branches. This makes the source identifi-
cation problem easier for all the methods, and thus the
advantage of our method is not significant.

• Besides, all the methods have poor performance in terms
of the SIR propagation mechanism. We investigated
the temporal traces of propagation and found a certain
number of infected nodes are in the recovered state and
can not be observed. As a consequence, all the methods
consider these nodes as uninfected nodes, which causes
inaccurate results.

2) EXPERIMENTS ON REAL-WORLD NETWORKS
Further experiments were conducted on three real-world net-
works of different sizes to evaluate the effectiveness of our
method. The results are shown in Fig. 5. Overall, compared
with GCNSI, the performance is improved by approximately
10%, 15%, and 13% in the Dolphin, Jazz, and Ego-facebook
networks respectively. The results are consistent with those
based on the synthetic networks, and verify that our method
is more advantageous. Also, the following observations were
obtained:

• More evident enhancement can be found in the Jazz
and Ego-facebook networks. As shown in Table 2,
the Jazz and Ego-facebook networks have higher aver-
age clustering coefficient, hence the nodes in Jazz and
Ego-facebook networks have denser node neighbor-
hoods than those in the Dolphin network. As anticipated,
the MGCNSI can automatically select critical neigh-
bors from the larger neighbor sets, and achieve evident
enhancement.

• In addition, the results showed that the overall perfor-
mance for all the methods is better for networks with
smaller sizes. The best performance is achieved on the
Dolphin network and the worst performance on the Ego-
facebook network. As larger and denser networks have
more available propagation paths, greater uncertainty is
introduced which further makes it difficult for all the

FIGURE 6. The results of error distance for all the methods with different
numbers of source nodes K under the SI model. Even though the method
with smaller error distance can not necessarily predict most real sources,
the large error distance can indicate that the method’s prediction ability
is not good. In most cases, MGCNSI performs best, followed by GCNSI.
The performance improvement is the most significant in the
Ego-facebook network, which indicates that the advantage of our method
in terms of error distance is more significant in larger networks.

methods to identify the sources hidden in the observed
infection state graph.

• Also, it is worth noting that although all the meth-
ods have relatively poor performance in terms of the
SIR propagation mechanism, the improvement ratio is
positively correlated with network size. Since the recov-
ery rate remains the same, there exist more observed
infected nodes in larger networks. As more observed
critical neighbors can help better identify probable
source nodes, the situation is somewhat alleviated for
larger networks.

3) PERFORMANCE MEASURED WITH ERROR DISTANCE
In addition, Fig. 6 shows the performance measured in terms
of error distance. The error distance measures the average
shortest path between predicted source nodes and real source
nodes. Even though the method with a small error distance
can not necessarily predict most real sources, the large error
distance can indicate that the method’s prediction ability is
not good. Due to the fact that the value of error distance can
only reflect the predictive ability to a certain extent, this paper
only shows the error distance under the SI model. As shown
in Fig. 6, MGCNSI achieves the best performance in all
networks.

Specifically, for the synthetic networks, there is a per-
formance improvement of about 5% on the core-periphery
and hierarchical network and about 10% on the random net-
work. In contrast with the results of F-score, the network
with the most obvious advantage of MGCNSI over other
methods is the random network instead of the core-periphery
network. Notably, in terms of the overall error distance of
all the methods, the smallest value is achieved in the core-
periphery network.Wewould therefore recall that the F-score
for the core-periphery network is not the highest. The results
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FIGURE 7. Impact of hyper-parameters (a) Learning rate, (b) GCN Layers, (c) Hidden size and (d) Dropout rate on the model. The optimal values of the
hyper-parameters are 0.011, 2, 512 and 0.1 respectively.

FIGURE 8. The ratios of nodes that put the (a) highest, (b) lowest weight
on each motif network. And (c) the results of using each individual motif
network separately for source identification. Among them, m5, m6 are
very prominent, followed by m3. The results indicated the importance of
the connected groups of neighbors for source identification. Note that
init represents the original network, and m7 is removed since the
network does not contain m7 structure.

showed that the predicted source nodes for this network are
not very precise, but they are near the real sources. As the
core area of the network is dense, more paths among the
core nodes exist. Hence, it is hard to precisely identify the
sources in the core area, and the predicted source nodes
are always nearby the real sources. The error distance met-
ric prefers the methods whose predicted source nodes are
close to the real sources. As a consequence, measuring the
error distance is more advantageous for the core-periphery
network, which simulates the real-world networks. As the
error distances of baseline methods are already small, fur-
ther improvement is not as significant as that in the random
network.

In the real-world networks, compared with GCNSI, the
performance improvement in terms of error distance in the
Ego-facebook network is the most significant, which reaches
20%. It can be observed that Ego-facebook network is

apparently larger than the other two datasets, and greater
uncertainty is introduced for the larger networks with more
available propagation paths. Also, the larger values of net-
work diameters also result in the higher maximum value of
the error distances. As a result, the overall performance of all
the methods in the Ego-facebook network is obviously worse
than that in the other two datasets. Meanwhile, our method
can select critical neighbors so that only critical propagation
paths are considered. As anticipated, the advantage of our
method is most obvious in the Ego-facebook network.

E. HYPER-PARAMETER ANALYSIS
The values of hyper-parameters were set using cross-
validation. Here the validation results of the important
hyper-parameters including the learning rate, number of GCN
layers, hidden size, and dropout rate are shown in Fig. 7. The
validation on the Dolphin dataset is demonstrated as a case
study, and the results on other datasets are similar. The results
are given as:

• The learning rate controls the speed of convergence for
the training procedure. As the value of learning rate
increases, the performance of MGCNSI first increases
then drops, it achieves the best performance with learn-
ing rate set as 0.011 on average. It shows that a suitable
learning rate is important for the Adam optimizer.

• The number of GCN layers determines the order of
neighborhoods a node can reach. The best performance
is obtained with two layers, and as the number of layers
continues to increase, the F-score has a tendency to
decrease. Usually, too many GCN layers can lead to
overfitting.

• Hidden size refers to the dimension size of the mid-
dle layer of GCN in the framework, and the results
demonstrate that 512 is the best choice. If the value of
hidden size is too small, the samples can not be learned
well. Meanwhile, a large value of hidden size may cause
overfitting.

• In order to prevent overfitting, the dropout rate is used,
and the results show that the performance is best when
the dropout rate is set to 0.1. The possible reason is that
the Dolphin network is small and does not need a high
dropout rate.
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FIGURE 9. The distribution of infected nodes on different motif networks, where red nodes represent infected nodes and green nodes
represent uninfected nodes. As shown in the figure, obvious clusters of infected nodes can be found for m5 and m6 that represent connected
groups, while the motif networks corresponding to m8 and m9 are relatively ‘‘chaotic.’’

F. MOTIF ANALYSIS
1) STATISTICS
The network motifs were analyzed to better understand the
role of motifs for source identification. Fig. 8a/8b shows
for each motif network the proportions of nodes that put
the highest/lowest weight on that motif network in the Ego-
Facebook dataset. It can be observed that different motifs
occupy different proportions.

As is shown in Fig. 8a,m5,m6 are very prominent, followed
by m3. The results demonstrate that the ‘‘fully-connected’’
motifs (m3, m5) representing connected groups can play an
important role on the model. Motif m6 is more prominent
than m3, possible because a m6 motif is composed of two
m3 motifs, and two nodes on the diagonal of m6 need to
participate in two m3 motifs at the same time, which further
indicates the importance of the connected groups of neigh-
bors.

In Fig. 8b, init (representing the original network) and
m2 have the highest ratios, which means they are the least
important. The reason for the high ratio of nodes for m2 is
that almost all neighbors can be contained in a m2 motif for
each node, which leads to the failure of that motif to select
critical neighbors.

The results of using each individual motif network sepa-
rately to identify source nodes for the same dataset are shown
in Fig. 8c. It can be observed that the pattern is consistent with
that in Fig. 8a, that is, the results corresponding to the motifs
m5, m6 are very prominent, followed by m3. This further
confirms our previous discussion.

2) VISUALIZATION
To further understand the role of these prominent motifs,
on the Ego-Facebook dataset, motif networks corresponding
to m5, m6, m8, and m9 were extracted, where m5 and m6 rep-
resent connected groups. Gephi3 was used for visualization.
As shown in Fig. 9, different colors are assigned to nodes to
represent different node states, where infected nodes are red
and uninfected nodes are green. It can be observed that in the

3https://gephi.org/

corresponding figures of m5 and m6, the infected nodes are
distributed in obvious clusters, which indicates that the cor-
responding motif network can help find ‘‘critical’’ neighbors
along infection paths. Meanwhile, the motif networks corre-
sponding to m8 and m9 are relatively ‘‘chaotic’’, and infected
nodes and uninfected nodes are mixed together. Thus those
motif networks bring difficulties to source identification.

VI. CONCLUSION
In this paper, we studied the multi-source identification prob-
lem in social networks without prior knowledge of underlying
propagation model. As the specific propagation model can
not be obtained, existing studies assumed the influence of
each neighbor to be identical in the propagation. In reality,
mesoscopic structures in social networks such as commu-
nities contain useful information of social influence, which
can be utilized to better identify source nodes. Accord-
ingly, a motif-based graph convolutional network framework
was proposed. In particular, multiple network motifs were
introduced to capture the patterns of common structural
properties, so that different types of social influence can be
depicted. Also, to adapt to various propagation mechanisms,
an attention mechanism was introduced to automatically
assign higher weights to the informative motifs of the under-
lying propagation mechanism. The major findings can be
drawn as follows:

• Experiments on several synthetic and real-world
networks showed that our method outperforms the
state-of-the-art baselines in different situations. For the
synthetic networks, it was observed that the performance
improvement of our method is most significant in the
core-periphery network that simulates real-world net-
works. As the core area of the core-periphery network
is relatively denser than the periphery area, the core
nodes have more neighbors. Our method is able to select
critical neighbors among a large number of neighbors in
terms of social influence, which helps better identify the
sources. For the same reason, in real-world networks,
more evident enhancement was found in networks with
denser node neighborhoods.
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• The role of network motifs for source identification was
also analyzed. It showed that the motifs representing
connected groups such as ‘‘fully-connected’’ motifs are
more prominent, which indicated the importance of the
connected groups of neighbors in the underlying prop-
agation mechanism. It also showed that motif networks
are able to help find critical neighbors along infection
paths.

This paper has some limitations. There are still some
interesting phenomena that need to be explored. First, all
the methods have suboptimal performance under the SIR
propagation mechanism. We investigated the temporal traces
of propagation and found a certain number of infected nodes
are in the recovered state and could not be observed, and
all the methods consider these nodes as uninfected nodes.
This simple assumption caused inaccurate results. Second,
the propagation mechanism is assumed to be identical for
different types of information. In reality, the mechanism can
be different for some specific ones, such as rumors. More-
over, the network remains static in this study. Our proposed
method provides a simple insight with consideration of social
influence. For future work, the above assumptions could be
further relaxed. Finally, some other issues such as scalability
may also be further studied.
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