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ABSTRACT The imaging devices sense light reflected from objects and reconstruct images using the
2D-sensor matrix. It is a 2D Cartesian coordinate system where the depth dimension is absent. The absence
of a depth axis on 2D images imposes challenges in locating and tracking objects in a 3D environment.
Real-time object tracking faces another challenge imposed by network latency. This paper presents the
development and analysis of a real-time, real-world object tracker called Trackez, which is capable of
tracking within the top hemisphere. It uses Machine Vision at the IoT Edge (Mez) technology to mitigate
latency sensitivity. A novel algorithm, Follow-Satisfy-Loop (FSL), has been developed and implemented
in this paper that optimally tracks the target. It does not require the depth-axis. The simple and innovative
design and incorporation of Mez technology have made the proposed object tracker a latency-insensitive,
Z-axis-independent, and effective system. The Trackez reduces the average latency by 85.08% and improves
the average accuracy by 81.71%. The object tracker accurately tracks objects moving in regular and irregular
patterns at up to 5.4ft/s speed. This accurate, latency tolerant, and Z-axis independent tracking system
contributes to developing a better robotics system that requires object tracking.

INDEX TERMS Machine vision, the IoT edge, latency sensitivity, object tracking, 2D coordinate,
3D coordinate, Mez.

I. INTRODUCTION
Real-time object trackers are used in various sectors,
including smart surveillance [1], robotics [2], medical
imaging [3], autonomous vehicle [4], sports analysis support
system [5], and augmented reality [6]. The actuator within
an object tracker responds dynamically to feedback from
object recognition algorithms that operate remotely in the
cloud [7]. The camera, strategically positioned on the tracker,
transforms the optical signals reflected off the objects into
electrical signals for further processing [8], which are trans-
mitted to the cloud server through an IoT device [9], [10].
The objects are in a 3-Dimensional (3D) environment,
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whereas the equivalent electrical signal represents a
2-Dimensional (2D) matrix of pixels. The Cartesian location
of an object in the 2D pixel matrix is not the same in a 3D
environment [11]. Trackez solves a critical challenge in object
tracking within 2D images. In this context, tracking involves
identifying the pixel location of an object on a 2D Cartesian
coordinate system, determined by the (x, y) coordinates.
However, the calculation based on these coordinates alone
fails to accurately represent the object’s position when it
moves along the depth axis or the Z-axis, which reflects
the object’s distance from the camera. Trackez effectively
addresses this problem inherent to object moving tracking
from 2D images. Consequently, pinpointing the object
within the pixel matrix and instructing the actuator based
on the pixel values tends to result in inaccurate object
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tracking. This challenge is amplified when dealing with
non-stationary objects. Network latency and processing time
further compound the issue by introducing time delays in
real-time video communication [12]. As a result, the moving
objects are not at the location where the tracker locates them.
This paper presents an innovative approach to accurately
track objects in a 3D environment from the 2D-pixel matrix.
It further mitigates the impact of latency and processing delay
resulting in an efficient and accurate real-time object tracker.

The primary aim of this study is to create a reliable and
practical real-time object tracking system. To achieve this,
we employed GoogleNet, a pre-trained Convolutional Neural
Network (CNN), renowned for its capacity to identify objects.
As a robust 22-layer deep CNN, GoogleNet has been trained
on over a million images, and it demonstrates impressive
accuracy in classifying up to 1000 different objects [13].
This paper addresses two primary challenges. The first is the
inherent limitations of pixel location-based tracking systems.
Our solution to this problem is the innovation of the Follow-
Satisfy-Loop (FSL) algorithm, which improves tracking
accuracy. The second challenge we confront is latency and its
effect on real-time object tracking. We designed our system
architecture and proposedmethodology specifically to reduce
the impact of latency and enhance tracking precision.
To this end, we utilized Machine Vision at the IoT Edge
(Mez), a publish-subscribe messaging system developed
by A. George et al. [14]. The main difference between the
traditional computer vision approach and Mez is that this
system can dynamically adjust the quality of video frames in
real-time. Remarkably, it can tolerate latency variations up to
10x, ensuring that our object tracker maintains accuracy even
under less-than-ideal conditions.

The research methodology developed and demonstrated
in this paper has been founded on practical empirical data
tracked and preserved during the experiment. The core
contributions of this research are:
• Design and development of the physical model of a
real-time object tracker.

• Statistical and empirical analysis on the system response
to discovering the major impediments of tracking
objects in real-time with acceptable accuracy,

• Development of the novel FSL algorithm to overcome
the major impediments,

• Overcoming the real-time object tracking system chal-
lenges by successfully integratingMez technology as the
communication medium between the object tracker and
cloud server,

• Improving the object tracking accuracy of Trackez by
81.71% and

• Reducing the network latency in video communication
by 85.08% while maintaining acceptable frame quality
for object recognition.

The remainder of this paper is structured into six distinct
sections. Section two delves into a comprehensive literature
review, identifying shortcomings in current cutting-edge
research and pinpointing the research gap. The proposed

methodology is elucidated in the third section. In the fourth
section, we present our experimental findings and evaluation.
The fifth section discusses the limitations of the experimental
analysis featured in this paper and outlines future directions
for this research. The paper culminates with a conclusion in
the sixth and final sections.

II. LITERATURE REVIEW
Hyun et al. [15] present Sparse Graph Tracker (SGT),
an online graph tracker leveraging higher-order relational
features for video object tracking. SGT graphs video data
to fix tracklet disconnections produced by low-confidence
detections in older methods. SGT’s capacity to track
low-scoring and missed detections with massive top-K-
scored detections improves real-time inference and MOTA
performance on numerous datasets. However, this method
does not involve latency sensitivity issue which has been
done in the proposed paper. Pang et al. [16] highlight failure
instances and recommend improvements in four compo-
nents of ‘‘tracking-by-detection’’ 3D multi-object tracking
(MOT) systems. SimpleTrack, their baseline technique,
yields state-of-the-art performance on Waymo Open Dataset
and nuScenes with modest tweaks. The authors advocate 3D
MOT research and wonder whether standards represent real-
world problems. This methodology focuses on 3D object
tracking only, which is computationally expensive. The pro-
posed paper discovers the FSL algorithm to accurately track
objects in 3D environment from 2D images. Chu et al. [17]
create TransMOT, a graph transformer-based video MOT
method. End-to-end learning using weakly filtered detection
predictions allows TransMOT to function well in complicated
circumstances. However, this study does not take into account
real-time tracking which is highly dependent on latency
sensitivity. The methodology we suggest not only accurately
detects objects, but also preserves real-time responsiveness
by effectively addressing issues related to latency sensitivity.

Hu et al. [18] construct SiamMask, a real-time framework
for visual object tracking and video object segmentation,
reaching state-of-the-art performance at 55 frames per sec-
ond. It enhances offline binary segmentation training and can
cascade multiple object tracking and segmentation. However,
making decision at the IoT edge from 55 frames per second
significantly degrades the performance of the system. This
issue has been explored and solved in the proposedmethodol-
ogy. Dunnhofer et al. [19] investigate 42 First Person Vision
(FPV) single-item tracking methods using the TREK-150
dataset and new performance measures. Despite limitations,
trackers improve FPV downstream tasks involving short-term
object tracking, according to the study. This paper exhibits
strong performance. However, it is not suitable for remote
operation due to its sensitivity to latency. The system
discussed in this paper manages to track objects with a
comparable degree of accuracy, while tolerating a tenfold
increase in latency sensitivity. Meimetis [20] proposes a real-
time multiple-object tracking system employing a modified
Deep SORT algorithm to initialize objects. YOLO detection

61454 VOLUME 11, 2023



N. Faruqui et al.: Trackez: An IoT-Based 3D-Object Tracking From 2D Pixel Matrix

and the framework track cars and people. Custom training
YOLO on the UA-DETRAC dataset improves detection
and execution performance and introduces a vehicle dataset
with 7 scenes, 11,025 frames, and 25,193 bounding boxes.
This approach primarily targets individuals and vehicles,
thereby restricting the research’s application domain. The
proposed tracker can accurately track up to 1,000 distinct
objects, significantly expanding its potential applications
across various sectors.

Wang et al. [21] present a joint detection and association
network (JDAN) for end-to-endmulti-object tracking (MOT).
Optimizing both submodules simultaneously streamlines
MOT by eliminating complicated method design and manual
tweaking. The approach develops pseudo-labels to reconcile
item detection and association data. Detection findings
and pseudo-association labels optimize submodules. The
recommended technique outperforms previous and current
approaches on two MOT challenge datasets. Ussa et al. [22]
offer a real-time, hybrid neuromorphic architecture for object
tracking and categorizing low-power, embedded devices.
Hybrid frames and event strategies save energy and increase
performance. The energy-efficient deep network (EEDN)
pipeline rises from the frame-based region proposal and
hardware-friendly object tracking categorization. The study
reveals that the system can handle real-world monitoring
circumstances without affecting performance. RGB cameras
function with neuromorphic technology. Although these
approaches receive commendation for accurately tracking
objects, they encounter performance issues when employed
in IoT devices. Object detection at the IoT edge, commu-
nicated via the internet, presents a far greater challenge
compared to on-premise object detection and tracking. The
proposed methodology effectively addresses and overcomes
these challenges.

The potential limitations in the applications of the state-
of-the-art methodologies published in recent literature are
summarized in table 1. The explored methodologies have
been thoroughly studied and analyzed in this research. It has
been discovered that the objectives of the researchers listed
in table 1 have been obtained. However, there are some
common and exclusive limitations of these approaches. These
limitations have been studied to discover the research gap and
develop the proposed method presented in this paper.

A. RESEARCH GAP ANALYSIS AND PROPOSED SOLUTION
Real-time object tracking in the real world is a tightly
coupled research field that comes immediately next to
object detection and tracking in software environments.
The existing literature review presented in section II and
summarized in table 1 demonstrate a common pattern of
innovation and improvement of object detection and tracking
in software environments. The challenges of utilizing the
computational intelligence of object-tracking algorithms
and frameworks to control hardware and track objects in
real-time with acceptable accuracy have not been thoroughly

studied [23]. Although Pang et al. [16] analyzed some sig-
nificant limitations, the challenges of 2D-3D coordination
equivalency from 2D pixel matrix to real-world is still a
research gap. Moreover, the impact of network latency is a
critical performance assessment element for object trackers
when applied physically. This impact isn’t discernible in a
computing environment due to the negligible delays within
the motherboard’s communication bus in the experimental
setting. However, once the physical object tracker is installed
and linked to the object-tracking algorithms and frameworks,
the importance of latency sensitivity becomes markedly
visible. This factor has been overlooked in most of the
object trackers [7]. This omission constitutes a substan-
tial research gap in real-time, real-world object-tracking
studies.

The methodology presented in this paper was developed
through a comprehensive analysis of the shortcomings
inherent to current 3D real-time object trackers, with a
particular focus on their response within physical systems.
The primary objective of this research is to address and
overcome the deficiencies identified during our extensive
literature review, with a strong ambition to make a substantial
contribution to the field of experimentation by enhancing
the quality, performance, and reliability of real-time object
trackers. The physical model proposed herein—detailed in
Section III-A—offers a cost-effective, robust, and efficient
design. A notable deficiency in most state-of-the-art studies,
which we identified during our literature review, is the
lack of integration of physical models—a gap our study
aims to bridge. Latency, particularly within real-time video
communication-based tracking, is a recurring performance
bottleneck that remains largely unexplored in the existing
literature. In our research, we leverage the application of
Mez [14], which permits latency tolerance of up to 10x
variations. Finally, we address the complex challenge of
object tracking in a 3D environment from a 2D image.
This hurdle is overcome through the development of our
innovative Follow-Satisfy-Loop (FSL) algorithm, thereby
demonstrating the potential to significantly advance the
field.

III. PROPOSED METHOD
The methodology proposed in this research conducts an
exhaustive experimental analysis of an object tracker, with
a primary goal of identifying the system’s limitations
through its responses. Subsequently, the root causes of
these limitations are investigated meticulously. This research
methodology’s focal point is the innovation of solutions
to overcome these identified limitations, with the aim of
developing an object tracker that is not only efficient and
accurate but also capable of operating in real-time. Such
an object tracker holds vast potential, with the ability to
be incorporated into a multitude of applications that span
various sectors, including, but not limited to, robotics,
manufacturing, and healthcare. The degradation of accuracy
due to latency, alongside the miscalculation of the location of
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TABLE 1. Summary of the comparative literature review to discover the objectives, methods, and limitations.

FIGURE 1. The 3D model and physical model of the proposed object tracker.

objects in a 3D environment based on a 2D pixel matrix, are
highlighted as two principal challenges in the present system.
The methodology proposed as a solution to these issues
incorporates the use of Mez technology and the innovative
development of the FSL algorithm.With these advancements,
the system will not only be able to handle these challenges
effectively but also enhance its overall tracking accuracy and
efficiency.

A. OBJECT TRACKER ARCHITECTURE
Figure 1 illustrates the object tracker developed for this
experiment. Figure 1(a) is the 3D model prepared before the
physical implementation of the device. Because of resource
constraints, the original plan was modified and implemented
as shown in Figure 1(b). The rear view of the object tracker is
illustrated in Figure 1(c). The USB camera has been installed,
with a laser pointer affixed to the finalized model of the
object tracker, as depicted in Figure 1(d). The object tracker
is powered by an external power source, which is not attached
to the physical model.

1) THE INFRASTRUCTURAL FRAME
The object tracker has 360-degree horizontal and 180-degree
vertical freedom. That is why the proposed object tracker can
track within the upper hemisphere. An aluminum pan and tilt
brackets have been used to develop the infrastructural frame
to gain a degree of freedom within the upper hemisphere.
Figure 2 illustrates the elements of the frame and the frame
itself after construction. The pan & tilt elements shown in
Figure 2(a) are bolted together. After building, the complete
frame illustrated in 2(b) is mounted on a plastic frame.
A servo at the bottom of the plastic frame holds the entire
frame and allows 360-degree horizontal movement. The tilt
bracket provides support for the camera and the laser pointer.
It can rotate 180 degrees vertically.

2) SERVO, CAMERA, & IoT AT THE EDGE (Mez)
The servo motor, USB camera, and IoT device connection
overview are illustrated in Figure 3. The object tracker
receives the optical signal using a USB web camera. The
camera video stream is processed through theMachineVision
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FIGURE 2. The pan & tilt brackets to build the frame.

FIGURE 3. The IoT device that connections the camera and Servo motors.

at the IoT Edge (Mez) technology which has been replicated
using a Raspberry Pi 4 model. The processed video is sent
to the cloud over the internet. The GoogleNet, running on
the cloud server, detects the object. After that, the location
is tracked. The IoT device receives instructions to rotate the
servo motors based on location. Finally, the servo motors are
controlled by generating appropriate signals through General
Purpose Input Output (GPIO) pins.

a: SERVO MOTOR
The object tracker has two TowerPro SG90 Mini Servo
motors. One of these Servo motors has 180-degree freedom,
and another can rotate 360 degrees. The average weight of
these Servo motors is 9.02 gm. It has an operating voltage
of 3.0V to 7.2V. The operating speed of these Servo motors
varies depending on the input voltage. At 4.8V, it operates
at 110 Rotation Per Minute (RPM). The (RPM) becomes
130 at 6V RPM. The stall torque also varies based on the
operating voltage. It is 1.2kg.cm at 4.8V and 1.6kg.cm at
6.6V. An external power source of 6V is created by a parallel
connection of 4 double-A batteries. It has been observed that
the stall torque 1.6kg.cm at 6V.

b: THE CAMERA
The object tracker uses a C270 HD USB Webcam. The
dimensions of this device, including the fixed mounting
clip, are as follows: height 2.87 inches (72.91 mm), width
1.26 inches (31.91 mm), and depth 2.62 inches (66.64 mm).
It also comes with a 5-foot (1.5 m) cable and weighs
2.65 ounces (75 g). In terms of technical specifications, it has
a maximum resolution of 720p/30fps, a camera megapixel

of 0.9, and a fixed focus lens type made of plastic. The device
also has a built-in mono microphone with a range of up to
3 feet (1 m) and a diagonal field of view (dFoV) of 55◦. The
universal mounting clip allows for easy attachment to laptops,
LCDs, or monitors, making it a versatile and practical device
for video conferencing and other multimedia applications.

c: THE IoT DEVICE
The IoT device for this experiment has been constructed
using a Raspberry Pi 4. It has a Broadcom BCM2711
quad-core Cortex-A72 (ARM v8) 64-bit SoC processor that
runs at a clock speed of 1.5 GHz. In this experiment, the
processing power of Raspberry Pi 4 has been enhanced by
using an 8GB LPDDR4-3200 SDRAM. Raspberry Pi 4 has
various connectivity options, including dual-band 2.4 GHz
and 5.0 GHz IEEE 802.11ac wireless and Bluetooth 5.0.
It also features Gigabit Ethernet for high-speed wired
connections. The device has two USB 3.0 ports and two
USB 2.0 ports, making it easy to connect external devices.
We used USB 3.0 port to connect the camera and a 2.4 GHz
802.11ac wireless protocol to connect with the WiFi router.
The Servo motors of the experimenting object tracker are
controlled using the General Purpose Input/Output (GPIO)
pins. We used a TP-Link N450 WiFi Router that uses
802.11n technology with 450Mbps bandwidth connected to
the internet.

B. SYSTEM RESPONSE ANALYSIS
The methodology employed in this paper was formulated
based on a detailed system response analysis. The primary
objective of this paper is to construct a precise and efficient
real-time object tracker. To achieve this aim, the study
has adopted an unconventional yet innovative approach.
Initially, a physical model of the proposed object tracker
was developed and subjected to experimental testing. The
methodology was subsequently shaped by comparing the
system’s actual responsewith the anticipated one, andmaking
adjustments based on the discrepancies observed.

1) TARGET DEFINITION & CLASSIFICATION
The GoogleNet classifies 1000 categories. The proposed
object tracker can track one object at a time. That is why we
must specify a single class first. Even the class we specify is
the target of the object tracker. The proposed object tracker
can accurately track 1000 different objects. However, it is
beyond the scope of any single research to experiment on all
of these objects. That is why we studied the system response
by taking a person as a target. This research classifies the
target into three classes. They are:
• The stationary object (S): When the target does not
move.

• Slowly moving object (Ms): When the target moves at
less than 4.7 ft/s speed.

• Fast-moving object (Mf ): When the target moves at
more than 4.7 ft/s.
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TABLE 2. The speed-accuracy relation governed by latency.

According to K. Fitzpatrick et al., a human’s average
maximum walking speed is 4.7 ft/s. Based on the discussion
presented in their paper, we considered the 4.7 ft/s as the
threshold of target classification [24].

2) THE ANALYSIS
The camera and the target, illustrated in Figure 4, are
calibrated properly before starting the analysis. The laser
pointer center of the target is in the middle of the camera
frame, and the laser is at the center as well. At this setup,
the system’s accuracy measured by equation 1 is 100%.
We experimented from different angles. However, as long
as the object is stationary, the accuracy is 100%. However,
the accuracy deviates by 80% when the object is moved
slowly. That means for Ms target, the accuracy is 20%. The
condition worsens when the object moves faster than 4.7 ft/s.
Surprisingly, the accuracy is less than for 1% forMf class.

Accuracy,A(score) = (
score
10

)× 100% (1)

The anomalous nature of the object tracker is worth
attention. We’ve investigated the reasons for this drastic fall
in tracking accuracy. The investigation findings have been
discussed in subsection III-C.

C. FACTS FINDING & TECHNOLOGY SELECTION
The initial observation, illustrated in Figure 5 without using
the Mez technology, shows that the accuracy drastically falls
for moving targets. It has been tested at different speeds to
determine how and why the accuracy falls. The observed data
have been listed in table 2.
The empirical observation shows that the tracker tracks

at the right time. However, the observations from the cloud
server and physical location differ. The network latency
causes this time difference in real-time [25]. There is
also a sharp fall in accuracy for moving targets. Figure 5
demonstrates the relation between speed, accuracy, and
latency.

The hypothesis from this observation is that the video
frame size increases with the object’s motion. As a result,

network latency increases [26]. The GoogleNet detects and
locates the object based on the video frames received by the
server. However, there is a 475ms to 2307ms gap between the
same event happening on the target location and displaying on
the monitor. The frame size at different speeds is illustrated
in Figure 6 supports the hypothesis.
It is evident that reducing the network latency to less

than 475 ms improves the accuracy. The literature review
shows that a dynamic latency-sensitive messaging system
usingMachine Vision at the IoT Edge (Mez) developed by A.
George et al. can handle latency variations up to 10x. TheMez
operates at a worst-case reduction of 4.2% of the application
accuracy. The system response analysis shows that the
experimenting system’s performance reduces to 0% accuracy
at 2.88x latency variations. Replacing the communication
method with Mez can make the system tolerant of up to 10x
latency variations. Considering the response analysis, facts
findings, our hypothesis, and literature review, the Mez has
been used as the backbone communication technology of the
proposed system.

D. LATENCY CONTROLLING THROUGH MEZ
The network latency variation depends on network traf-
fic [27]. The proposed real-time object tracker network
carries only video frames. That means the size variations of
the video frames are responsible for latency variations [28].
The camera used in this research has a fixed-focus camera
with 0.9-megapixel sensors. It has a maximum resolution of
720p with 30 Frame Per Second (FPS). That means at the
natural resolution, the video frame size is 1280× 720.
First, we need to identify the video processing criteria

to reduce the frame size without altering the overall
performance. An experiment has been conducted to analyze
the size of the video frames at different resolutions, and the
findings have been listed in table 3. It is evident that lowering
video resolution reduces the size of the video frame [29].
The imaging device used in this experiment captures the
video frame in RGB (Red, Green, and Blue) colorspace. That
means a single frame consists of three frames from three
different channels [30]. Not every frame contains information
useful in the control room. Removing useless frames before
sending them to the network improves the latency [31].
Blurring video frames is another tactic to reduce the amount
of information from each frame [32]. Usually, indoor videos
have static backgrounds. That means information related
to the background is useless in the experimental setup.
Removing the background and focusing on the foreground
only before sending the frames to the network improves the
latency issues [33].

All possible video processing methods mentioned in
the previous paragraph have been implemented in this
experiment. The frame size has been resized using the
equation 2.

(Wnew, hnew) =
Controller

max(wold, hold )
× (wold , hold ) (2)
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FIGURE 4. The target and effect without the Mez.

TABLE 3. Frame size at different resolution and FPS.

FIGURE 5. The relation among speed, accuracy, and latency without the
Mez.

In equation 2, the wnew and hnew are the new width
and height of the video, respectively. The wold and hold
are the width and height before processing the frames.
And the controller is a numeric value that controls the
scaling up or scaling down the rate of the video frames.

FIGURE 6. The target and effect without the Mez.

The three-channel RGB video stream is converted into a
single-channel grayscale video stream using equation 3.

Fgray = 0.2126× Fc[0]+ 0.7152× Fc[1]+ 0.0722× Fc[2]
(3)

Here on equation 3, the Fgray is the grayscale frame
converted from 3-channel RGB frame, Fc. The individual
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FIGURE 7. The video frame size at different speeds of the target.

channels have been fetched by array indexes 0, 1, and 2.
Subsequent frame difference-based motion tracking is a
simple subtraction operation in video processing. This paper
has used it to remove frames carrying no information,
presented in algorithm 1.

Algorithm 1Motion-Based Frame Rejection
Input: Current Frame, Fi; Next Frame, Fi+1; Frame
Difference, Fd
Output: Useful Frame, Fu;
Start
Fd ← len(Fi+1 − Fi);
if Fd ≥ MezAPI (Fd ) then

Fu← Fi+1
else

reject(Fi+1)
end if
return(Fi+1)
end

Algorithm 1 uses the Mez API to calculate the threshold
to keep or reject a frame based on the tolerance level of
the network. Filtering images with low-pass filters reduce
the amount of information by adding sharp contours. As a
result, the image size reduces. The same principle is applied
to video frames as well because they are nothing but
images. The Gaussian blur filter is defined by equation 4,
which reduces the information on each video frame in this
experiment.

G(x, y) =
1

2× π × σ 2 exp
−( x

2
+y2

2×σ2
)

(4)

Here in equation 4, x and y are the horizontal and vertical
distances from the origin, respectively. The σ is the standard
deviation defined by equation 5 where xi is the current pixel
value, x̄ is the mean of all pixel values, and N is the number

of pixels.

σ =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2 (5)

We have already discussed that removing static back-
grounds can significantly reduce the size of the video
frames. In this experiment, the Canny edge detector-based
background removal approach has been used. First, all the
Gaussian blur is added to the frames using equation 4. Then
the intensity gradient is measured using equation 6.

G =
√
G2
x + G2

y (6)

After getting the intensity gradient G, we need to calculate
the direction angles. It has been done using equation 7.

2 = atan2(Gx ,Gy) (7)

Once the gradient and direction are calculated, the gradient
magnitude threshold is applied to avoid false responses to
edge detection. We used a double threshold to determine the
potential edges. After that, we applied the rate-dependent
hysteresis defined by equation 8 to track the edges.

Y (t) = χi × X (t)+
∫ b

a
8dX (t − τ ) dτ (8)

Here on equation 8, χi is the response to ith element, 8dτ

is the impulse response, and τ is the time unit in the past.
The X (t) = X0sin(ωt) and Y (t) = Y0sin(ωt − ϕ). Finally,
the fully connected edges are used as the mask to remove the
background and keep the foreground on the frames.

1) MEZ’s APPLICATION IN THE TRACKER
The video frames in Mez are the key-value(t, f ) pair, the
keys are the timestamps, and the values are the video frames.
The original sequences of the video frame are preserved in
it. This technology aims to reduce the bandwidth required to
transmit video frames. The Mez architecture consists of three
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components. They are the message broker, memory log, and
latency controller. In the proposed real-time object tracker,
the message broker has been used to establish communication
between the tracker and the cloud server. The memory log
stores the video frames. The latency controller adjusts the
video frames’ quality to control the optimal video frame
transmission latency. The video frames generated from the
IoT cameras are temporarily stored in the memory log. The
latency controller, located on the IoT camera nodes, modifies
the video frames stored on the memory log according to the
available bandwidth of the transmission medium [14].

E. FOLLOW-SATISFY-LOOP (FSL) ALGORITHM
The FLS algorithm operates differently from the norm;
rather than directing servo motors towards specific (xc, yc)
coordinates, it seeks the Region of Interest (ROI) center
and tracks this point. This approach means that the Z-axis
becomes superfluous, as the system relies on determining
the distance from the ROI’s center. By rotating the servo
motors based on this measurement, the algorithm ensures the
ROI’s center aligns with the 2D sensor array’s center. This
methodology enhances the FLS algorithm’s precision.

1) BACKGROUND OF THE FSL ALGORITHM
The Follow-Satisfy-Loop (FSL) algorithm is one of the novel
contributions of this algorithm that receives predictions from
GoogleNet. The GoogleNet detects the target object from a
2D frame. A bounding box is drawn around the object, the
Region of Interest (ROI). The center of the ROI is the target
point. The ROI’s top left and bottom right coordinate is x1, y1
and x2, y2, respectively. The center of the ROI is calculated
using equation 9.

(xc, yc) = (
(x1 + x2)

2
,
(y1, y2)

2
) (9)

The (xc, yc) in equation 9 is the Cartesian coordinate of
the target. However, these values represent the pixel location.
Depending on the distance of the object from the camera, the
target coordinate change even if ds

dx and ds
dy are zero where s

is the distance. As a result, the random variations in (xc, yc)
make the tracker unstable. The failure of the primary attempt
at 2D-Cartesian coordinate-based tracking motivated the
researchers of this paper to convert the Cartesian coordinate
to Polar form using the equation 10.

T (r, θ) =
√
x2 + y2 ̸ (tahn−1

y
x
) = r ̸ θ (10)

Theoretically, the tracker should be stable on the target
when the servo motors are shifted according to the correct
value of θ . However, r of equation 10 is calculated from the
2D-Cartesian coordinate system, whereas it is the z-axis of
the 3D plane. As a result, the tracker again fails to track the
object correctly. The failed attempts to accurately track the
objects in real-time using equations 9 and 10 motivated the
development of the Follow-Satisfy-Loop (FSL) algorithm.

2) PSEUDOCODE OF FSL ALGORITHM
The FSL algorithm, presented in algorithm 2, keeps the target
in the center of the frame. The center of a frame with 640 ×
360 is the pixel located at (320×180)th location. If the object
is on the right side of the center, the horizontal servo keeps
moving counterclockwise until the object is at the center. The
horizontal servo keeps rotating clockwise until the object falls
at the center of the frame. The vertical servo motor rotates
clockwise if the object is higher than the center and rotates
counterclockwise if the object is lower than the center. The
algorithm is satisfied when the object is at the center and
the loop stops. Otherwise, the loop continues, and the tracker
keeps following the object.

Algorithm 2 The FSL Algorithm
Input: Tracker Video Stream, vs; HLS Request,Hl ; Target
Object, Tobj; Frame Center (xf , yf )
Initiate: Allocate Cloud Resource; Initiate GoogleNet,
Gnet
Output: Horizontal Servo Rotation, Hs; Vertical Servo
Rotation, Vs
Start
k ← 0
F[k]← read(vs)
while vs = True do

i← i+ 1
Accept HLS Request
F[i]← read(vs)
d ← Gnet (F[i])
if d == Tobj then

[xc, yc]← Center(ROI (Gnet (F[i]))
if xc > xf then

Hs(+1)
end if
if xc < xf then

Hs(−1)
end if
if yc > yf then

Vs(−1)
end if
if yc < yf then

Vs(+1)
end if

end if
end while
end

IV. EXPERIMENTAL RESULTS AND EVALUATION
This section provides a detailed analysis of the experimental
results and performance assessment of the proposed tracking
system, Trackez. The system demonstrates accurate object
tracking capabilities up to a speed of 5.5 ft/s. However, it is
observed that the tracking accuracy drops sharply when the
speed surpasses this limit. A similar trend is noted with regard
to latency, which also tends to increase beyond this speed.
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TABLE 4. The stable and unstable range.

On the other hand, the Mez tracking system maintains stable
latency even when handling speeds exceeding 5.5 ft/s.

A. EXPERIMENTAL SETUP
It has been observed that the laser used in this experiment has
a stable range of up to 25 feet, illustrated in Figure 8. The
experiment was conducted five times to identify the stable
range. That is why Figure 8 shows five straight lines within
the range. After this range, the laser pointer vibrates rapidly.
At the same time, the size of the object on the camera becomes
smaller. As a result, the vibrating later pointer deviates from
the target. That is why the experiment was performed in a
40 feet long room. The table 4 lists the stable and unstable
regions for the experimenting object tracker.

The tracking range of object trackers has always been
a challenge in this research domain. The proposed system
is no different. When the object is in the unstable region,
the software system can track the location of the object.
However, the physical device has its limitation imposed by
the minimum rotation angle of the servo motor. As a result,
the laser pointer keeps vibrating around the object. It is
considered as a constraint of the physical device instead of
the limitation of the proposed system.

The experimental setup is 40 feet long and 15 feet wide
in a room with white walls. Three people wearing red (R),
green (G), and blue (B) T-shirts are moving in non-regular
patterns and at random speeds. The experimental setup is
illustrated in Figure 9. The trackers were randomly stationed
in four different locations marked on the Figure 9 by
(G1,G2,G3,G4) where G represents the ground. The targets
move randomly within the range of 15 to 24 feet. The speed
range is 0 to 5.5 ft/s.

The Trackez aims to track moving and stationary objects
using a camera connected to the IoT edge. The experiment
illustrated in Figure 9 demonstrate that the Trackez is
excellent at tracking moving object which is the primary
objective of the paper. The increased network latency, caused
by the enhancement of frame size due tomotion, is effectively
mitigated in the proposed system. This signifies that Trackez
has successfully accomplished its research objectives.

B. EXPERIMENTAL OBSERVATION VARIABLES (EOV)
We have analyzed the before and after effects of using
the Mez technology regarding system response. It has
been discovered from the system response analysis that
the accuracy of the object tracker is affected by network
latency. The purpose of incorporating the Mez technology
is to reduce the latency to increase the system’s accuracy.

TABLE 5. Description of the EOVs.

It is also evident that the target’s speed is associated with
the experimenting system’s overall performance. According
to these observations, we have considered the target’s
accuracy improvement, latency reduction, and speed as the
experimental observation variables. The descriptions of these
variables are listed in table 5.

C. OVERALL PERFORMANCE ANALYSIS
The performance of the Trackez is listed in table 6.
The experimental results demonstrate an average accuracy
improvement of 81.71% with an average of 85.5% latency
reduction. The experimenting system has no performance
issue at Speed = 0 ft/s. That is why there is no difference
between the accuracy before and after applying the Machine
Vision at the IoT Edge (Mez). However, in other cases, when
Speed > 0 ft/s, the accuracy drastically falls, which is
illustrated in Figure 10. The accuracy drops to 0% from 40%
when the speed crosses 3.5ft/s.

1) ACCURACY IMPROVEMENT ANALYSIS
After using the Mez, the system’s accuracy increases rapidly,
which is illustrated in 11. It is observed that the Mez is also
affected by the speed variation. When the speed of the target
increases, the accuracy falls. However, the fall is gradual, with
an insignificant slope. The difference between the accuracy
before and after applying Mez is significant on 11. The
drastic fall in accuracy, illustrated in Figure 10, makes any
object tracker impractical. It is optional to maintain a 100%
accuracy. However, maintaining consistency is essential.
Figure 11 shows that the accuracy does not fall instantly
after using the Mez. Instead, it maintains a gradual change
with a small slope. The linear nature is also observable in
Figure 11. The comparison between the fall of accuracy
before and after using the Mez demonstrates the stability in
performance improvement of the proposed real-time object
tracker evaluated from the network latency perspective.

Performance degradation and stability are two of the issues
this research deals with. The system response illustrated in
Figure 11 proves the stable nature of the system at varying
speeds of the target. The overall performance improvement
in accuracy is illustrated in Figure 12. It has been observed
that the accuracy increases significantly in the Ms region.
This implies this region is more sensitive to speed than the
other two regions. The s region demonstrates insignificant
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FIGURE 8. The stable range of the laser on the video frame.

FIGURE 9. The target movement in experimental setup.

TABLE 6. The overall result of the experiment.

behavior. And the rate of change of improvement in Mf
is nominal. The improvement curve demonstrates near-
linear characteristics. And the overall accuracy improvement
is 81.71%. The initial analysis presented in this paper
hypothesized that the accuracy degradation when the speed
of the target increases is caused by network latency. The
application ofMez reduces the latency sensitivity. As a result,
the system’s accuracy improves rapidly, especially in the
Ms region. The accuracy becomes stable in the Mf region.
From the accuracy and stability perspective, the proposed
real-time object tracker using Mez exhibits acceptable
performance.

2) LATENCY REDUCTION ANALYSIS
Prior to implementing Mez technology, the average latency
stood at 1102.76 ms. This latency was the principal cause of
the decrease in accuracy observed within the tracking system.
However, upon the application of Mez technology, there was
a significant drop in average latency to 178.00 ms, which
translates into an average reduction of 85.08%. The latency
for s class is 475 ms without the Mez. It is the lowest latency
of the system. At the highest value of speed inMf , the latency
is 2307ms. After using theMez, the latency range is 66.50ms
to 472.52 ms. The latency reduction analysis is illustrated in
Figure 13, demonstrating the significant latency reduction.
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FIGURE 10. Fall of accuracy.

FIGURE 11. Increase of system’s accuracy.

FIGURE 12. The accuracy improvement analysis.

The latency reduction has been further analyzed in
the percentage range in Figure 14. One of the primary
performance limiting factors of the system is high latency
in the Mf region. It has been observed that the Mez rapidly
reduces the latency of theMf region.

The experimental result demonstrates that the Trackez
accurately tracks the object up to a speed range of 5.4 ft/s.
Within this speed limit, the system is scalable. Moreover,
GoogleNet minimizes the images by repeated convolution.
As a result, even large-scale objects are accurately tracked by
the proposed tracker.

FIGURE 13. Latency comparison and analysis.

FIGURE 14. The latency reduction analysis in percentage.

V. LIMITATION AND FUTURE WORK
Although the proposed object tracker overcomes the chal-
lenge of tracking objects in a 3D environment from the
2D-pixel matrix, it is not immune to several limitations.

A. ACTUAL vs. EXPERIMENTAL SETUP
The proposed system has been experimented with in an
experimental environment. There are differences between the
actual and experimental environments. The object trackers
have been designed for robotics applications with possi-
bilities for vibration, momentum, and external adversarial
impacts. These affect the system’s accuracy, which was
not studied during the experiment. An ongoing experiment,
an extension of this study, analyzes these impacts, which will
be published in subsequent papers.

B. IMPRACTICAL EFFECTIVE RANGE
This experiment uses a short-range laser to track the object.
The stability at the beginning and end of the laser is different.
The longer the range, the more sensitive it becomes to
movement. The experimental setup is 24 feet long. The data
presented in this paper are collected from within this range.
That means the effect of the tracker in the long-range is
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unexplored. It is a major limitation of the proposed system.
However, this paper’s researcher considers it an opportunity
to extend the study and analyze the performance of the tracker
in a longer range.

C. CAMERA MOUNTED ON THE SYSTEM
The proposed object tracker has a camera mounted on the
actuator. It tracks the object by keeping it at the center of
the camera frame. When the tracker tracks the object that
is at the maximum range of the tracker, there is a maximum
blind spot on the other side. The solution to this problem is to
keep the camera stable and move the tracker only. However,
the proposed FSL algorithm works only for camera-mounted
object trackers. It is a major limitation of the proposed
system. However, it creates opportunities to conduct more
experiments and discover an efficient and effective way to
keep the camera stationary while tracking objects accurately.

D. CLOUD RESOURCE OPTIMIZATION
The proposed object tracker uses GoogleNet to recognize
objects which run from a cloud server. Undoubtedly,
GoogleNet is one of the best-performing CNN for object
recognition. However, it is a computationally expensive net-
work. There are scopes of developing and using lightweight
CNNs to minimize cloud resources. However, it has not been
addressed in this paper. The subsequent research conducted in
this domain will address cloud resource optimization, which
is the future scope of this existing research.

E. PARTIAL VIEW PROBLEM
The proposed Trackez uses the pre-trained GoogleNet that
recognizes 1,000 different objects. However, it has some
limitations. It sometimes misclassifies objects when there
is a partial view of the object is available. As a result,
Trackez inherits this limitation. It fails to track objects which
GoogleNet fails to recognize.

VI. CONCLUSION
The primary challenge of developing a real-time object
tracker is the time delay in real-time video feed transmission.
Timing and accuracy are the two most essential factors
in automatic object tracking. However, latency caused by
traffic-intensive video feed from HD cameras mounted
on the tracker becomes the primary impediment to the
practical implementation of the system. This impediment has
been effectively overcome by changing the communication
technology between the object tracker and the cloud server.
The adaptive distributed messaging system developed by
George et al., capable of adjusting the video quality without
altering the application level accuracy threshold, has been
used. It is aMachine Vision at the IoT Edge (Mez) technology
that reduces the latency by 85.08%. The Mez increases the
overall accuracy of the proposed real-time object tracker
by 81.71%.

Trackez presents a promising solution for latency-sensitive
applications that rely on object tracking. Conventionally,

the measurement of the distance between an object and the
camera, and the utilization of this depth value for precise
object tracking necessitates extra equipment, which invari-
ably leads to additional costs. However, Trackez eliminates
the need to determine the distance between an object and
the camera for detection purposes. Consequently, it not
only diminishes the cost of equipment but also reduces the
computational burden on the processor. Trackez has propelled
object-tracking research to an advanced stage where it is
no longer restricted to purely software-based solutions. This
full-fledged object tracker operates using a physical device
in real time, adeptly managing latency issues encountered
during real-time object tracking.

The world is becoming interconnected faster than ever.
More than 63.1% of the global population uses the inter-
net [34]. As a matter of fact, the Internet of Things
(IoT) market has grown from $326.9 billion in 2021 to
$396.34 billion in 2022. That means there is a 21.2%
compound annual growth rate (CAGR) in this sector [35].
Along with humans, devices are interconnected. It increases
the demand for ultra-real-time communication with minimal
latency. The remarkable improvement in the real-time object
tracker through Mez shows it has significant potential in
latency-sensitive communication in image processing and
Machine Learning-based technologies such as real-time
surveillance, drone control, virtual reality, video conferenc-
ing, video calls, Robot Operating Systems (ROSs), space
exploration, autonomous vehicle, ocean exploration, and so
on.

However, the Trackez is not beyond limitations. It has been
experimented with in an experimental setting with uniform
background. The practical application of it may not always
have uniform background and the effects of this possibility
have not been addressed in this study. Moreover, the range
of the Trackez is limited to 24 feet. Additional computation,
for example, digital or optical zoom, is necessary for long-
distance tracking. It has not been explored in this paper. The
Trackez uses a camera mounter device architecture where the
camera moves with the laser pointer. The momentum and
additional jerking are potential threats to the stability of the
tracker. No measurement has been taken to fix this issue.
In addition, the partial view problem has not been addressed
in the proposed system.

These limitations are the future scope of conducting more
research to further improve the performance of Trackez and
make it a more reliable system. The practical experimental
analysis as a part of the robotics system is a potential
application of Trackez which will be explored in the
future. The digital zooming-based range enhancement of the
Trackez is another potential future research scope. There are
opportunities to further improve the system architecture by
separating the camera from the actuator. It ensures more
stability and overcomes momentum and shaking problems.
Estimating objects from a partial view is another challenging
future research scope on Trackez. The current version of the
Trackez is an accurate, efficient, and effective object tracker.
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The subsequent versions which will incorporate the potential
improvements will be better, faster, and more application
friendly.

REFERENCES
[1] L. P. O. Paula, N. Faruqui, I. Mahmud, M. Whaiduzzaman,

E. C. Hawkinson, and S. Trivedi, ‘‘A novel front door security (FDS)
algorithm using GoogleNet-BiLSTM hybridization,’’ IEEE Access,
vol. 11, pp. 19122–19134, 2023.

[2] P. Chakraborty, M. A. Yousuf, M. Z. Rahman, and N. Faruqui, ‘‘How can a
robot calculate the level of visual focus of human’s attention,’’ in Proc. Int.
Joint Conf. Comput. Intell., (IJCCI) Cham, Switzerland: Springer, 2020,
pp. 329–342.

[3] N. Faruqui, M. A. Yousuf, M. Whaiduzzaman, A. K. M. Azad, A. Barros,
and M. A. Moni, ‘‘LungNet: A hybrid deep-CNN model for lung cancer
diagnosis using CT andwearable sensor-basedmedical IoT data,’’Comput.
Biol. Med., vol. 139, Dec. 2021, Art. no. 104961.

[4] Y. Lee and B. You, ‘‘Free space detection algorithm using object tracking
for autonomous vehicles,’’ Sensors, vol. 22, no. 1, p. 315, Dec. 2021.

[5] A. Cioppa, S. Giancola, A. Deliège, L. Kang, X. Zhou, Z. Cheng,
B. Ghanem, and M. Van Droogenbroeck, ‘‘SoccerNet-tracking: Multiple
object tracking dataset and benchmark in soccer videos,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2022, pp. 3490–3501.

[6] J. S. Devagiri, S. Paheding, Q. Niyaz, X. Yang, and S. Smith, ‘‘Augmented
reality and artificial intelligence in industry: Trends, tools, and future
challenges,’’ Expert Syst. Appl., vol. 207, Nov. 2022, Art. no. 118002.

[7] A. George and A. Ravindran, ‘‘Scalable approximate computing tech-
niques for latency and bandwidth constrained IoT edge,’’ in International
Summit Smart City 360◦. Cham, Switzerland: Springer, 2021, pp. 274–292.

[8] Y. Liu andW. He, ‘‘Signal detection and identification in an optical camera
communication system in moving state,’’ J. Phys., Conf. Ser., vol. 1873,
no. 1, Apr. 2021, Art. no. 012015.

[9] S. N. Jyothi and K. V. Vardhan, ‘‘Design and implementation of real
time security surveillance system using IoT,’’ in Proc. Int. Conf. Commun.
Electron. Syst. (ICCES), Oct. 2016, pp. 1–5.

[10] A. George and A. Ravindran, ‘‘Distributed middleware for edge vision
systems,’’ in Proc. IEEE 16th Int. Conf. Smart Cities, Improving Quality
Life Using ICT IoT AI (HONET-ICT), Oct. 2019, pp. 193–194.

[11] M. S. John, M. B. Cowen, H. S. Smallman, and H. M. Oonk, ‘‘The use
of 2D and 3D displays for shape-understanding versus relative-position
tasks,’’ Human Factors, J. Hum. Factors Ergonom. Soc., vol. 43, no. 1,
pp. 79–98, Mar. 2001.

[12] A. George, ‘‘Distributed messaging system for the IoT edge,’’ Ph.D. thesis,
Dept. Elect. Comput. Eng., Univ. North Carolina Charlotte, Charlotte, NC,
USA, 2020.

[13] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee,
‘‘A survey of modern deep learning based object detection models,’’ Digit.
Signal Process., vol. 126, Jun. 2022, Art. no. 103514.

[14] A. George, A. Ravindran, M.Mendieta, and H. Tabkhi, ‘‘Mez: An adaptive
messaging system for latency-sensitive multi-camera machine vision at the
IoT edge,’’ IEEE Access, vol. 9, pp. 21457–21473, 2021.

[15] J. Hyun, M. Kang, D. Wee, and D. Yeung, ‘‘Detection recovery
in online multi-object tracking with sparse graph tracker,’’ in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2023,
pp. 4839–4848.

[16] Z. Pang, Z. Li, and N.Wang, ‘‘SimpleTrack: Understanding and rethinking
3D multi-object tracking,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, Oct. 2022, pp. 680–696.

[17] P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, ‘‘TransMOT: Spatial–
temporal graph transformer for multiple object tracking,’’ in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2023,
pp. 4859–4869.

[18] W. Hu, Q. Wang, L. Zhang, L. Bertinetto, and P. H. S. Torr, ‘‘SiamMask: A
framework for fast online object tracking and segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3072–3089, Mar. 2023.

[19] M. Dunnhofer, A. Furnari, G. M. Farinella, and C. Micheloni, ‘‘Visual
object tracking in first person vision,’’ Int. J. Comput. Vis., vol. 131, no. 1,
pp. 259–283, Jan. 2023.

[20] D. Meimetis, I. Daramouskas, I. Perikos, and I. Hatzilygeroudis, ‘‘Real-
time multiple object tracking using deep learning methods,’’ Neural
Comput. Appl., vol. 35, no. 1, pp. 89–118, Jan. 2023.

[21] H. Wang, X. He, Z. Li, J. Yuan, and S. Li, ‘‘JDAN: Joint detection
and association network for real-time online multi-object tracking,’’ ACM
Trans. Multimedia Comput., Commun., Appl., vol. 19, no. 1s, pp. 1–17,
Feb. 2023.

[22] A. Ussa, C. S. Rajen, T. Pulluri, D. Singla, J. Acharya, G. F. Chuanrong,
A. Basu, and B. Ramesh, ‘‘A hybrid neuromorphic object tracking
and classification framework for real-time systems,’’ IEEE Trans.
Neural Netw. Learn. Syst., early access, Feb. 17, 2023, doi: 10.1109/
TNNLS.2023.3243679.

[23] M. Mendieta, C. Neff, D. Lingerfelt, C. Beam, A. George, S. Rogers,
A. Ravindran, and H. Tabkhi, ‘‘A novel application/infrastructure co-
design approach for real-time edge video analytics,’’ in Proc. Southeast-
Con, Apr. 2019, pp. 1–7.

[24] K. Fitzpatrick, M. A. Brewer, and S. Turner, ‘‘Another look at pedestrian
walking speed,’’ Transp. Res. Rec., J. Transp. Res. Board, vol. 1982, no. 1,
pp. 21–29, Jan. 2006.

[25] S. Wu, L. Hou, G. Zhang, and H. Chen, ‘‘Real-time mixed reality-based
visual warning for construction workforce safety,’’ Autom. Construct.,
vol. 139, Jul. 2022, Art. no. 104252.

[26] W. G. de Morais, C. E. M. Santos, and C. M. Pedroso, ‘‘Application
of active queue management for real-time adaptive video streaming,’’
Telecommun. Syst., vol. 79, no. 2, pp. 261–270, Feb. 2022.

[27] A. George and A. Ravindran, ‘‘Latency control for distributed machine
vision at the edge through approximate computing,’’ in Proc. Int. Conf.
Edge Comput. Cham, Switzerland: Springer, 2019, pp. 16–30.

[28] J. Wu, C. Yuen, and J. Chen, ‘‘Leveraging the delay-friendliness of
TCP with FEC coding in real-time video communication,’’ IEEE Trans.
Commun., vol. 63, no. 10, pp. 3584–3599, Oct. 2015.

[29] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, ‘‘Video super-
resolution with convolutional neural networks,’’ IEEE Trans. Comput.
Imag., vol. 2, no. 2, pp. 109–122, Jun. 2016.

[30] S. Süsstrunk, R. Buckley, and S. Swen, ‘‘Standard RGB color spaces,’’
in Proc. Color Imag. Conf. Springfield, VA, USA: Society for Imaging
Science and Technology, 1999, pp. 127–134.

[31] G. Cena, S. Scanzio, and A. Valenzano, ‘‘Seamless link-level redundancy
to improve reliability of industrial Wi-Fi networks,’’ IEEE Trans. Ind.
Informat., vol. 12, no. 2, pp. 608–620, Apr. 2016.

[32] X. Wang, K. C. K. Chan, K. Yu, C. Dong, and C. C. Loy, ‘‘EDVR: Video
restoration with enhanced deformable convolutional networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2019, pp. 1954–1963.

[33] Z. Fu, Y. Chen, H. Yong, R. Jiang, L. Zhang, and X. Hua, ‘‘Foreground
gating and background refining network for surveillance object detection,’’
IEEE Trans. Image Process., vol. 28, no. 12, pp. 6077–6090, Dec. 2019.

[34] B. Adeyeye, S. E. Ojih, D. Bello, E. Adesina, D. Yartey, C. Ben-
Enukora, and Q. Adeyeye, ‘‘Online learning platforms and covenant
university students’ academic performance in practical related courses
during COVID-19 pandemic,’’ Sustainability, vol. 14, no. 2, p. 878,
Jan. 2022.

[35] D. Rai, S. S. Rajput, and R. Kumar, ‘‘Attacks, security concerns, solutions,
and market trends for IoT,’’ in 5G Beyond. Boca Raton, FL, USA: CRC
Press, 2022, pp. 13–28.

NURUZZAMAN FARUQUI received the B.Sc.
degree in electrical and electronics engineering
(EEE) from North South University, Bangladesh,
in 2016, and the master’s degree in information
technology from the Institute of Information
Technology (IIT), Jahangirnagar University (JU),
Bangladesh, in 2018, with a 4/4 CGPA.

He is currently a Senior Lecturer with the
Department of Software Engineering (SWE), Daf-
fodil International University, Bangladesh. He is

also a research coordinator of the department. He is globally recognized for
his educational video content on neural networks using MATLAB. He is a
YouTuber and the author. He has authored three books. His current research
interests include artificial intelligence, machine learning, deep learning,
cloud computing, and image processing.

Mr. Nuruzzaman is a member of the Institution of Engineers,
Bangladesh (IEB), and the Bangladesh Society for Private University
Academics (BSPUA).

61466 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNNLS.2023.3243679
http://dx.doi.org/10.1109/TNNLS.2023.3243679


N. Faruqui et al.: Trackez: An IoT-Based 3D-Object Tracking From 2D Pixel Matrix

MD ALAMGIR KABIR (Member, IEEE) received
the master’s degree in software engineering from
Wuhan University, China, in 2017, and the Ph.D.
degree in computer science from the City Uni-
versity of Hong Kong, Hong Kong, in 2021.
He is currently a Postdoctoral Researcher with
the Artificial Intelligence and Intelligent Systems
Research Group, Mälardalen University, Sweden.
He is an inquisitive individual, driven to develop
novel techniques that facilitate efficient, explain-

able, and robust AI. During his graduate studies, he conducted research
on various topics in software engineering, including software testing,
verification and validation, and software metrics. He has published several
research papers in top-tier conferences and journals in his field. His
current research interests include developing new techniques for artificial
intelligence and intelligent systems.

MOHAMMAD ABU YOUSUF received the
B.Sc.(Eng.) degree in computer science and engi-
neering from the Shahjalal University of Science
and Technology, Sylhet, Bangladesh, in 1999, the
M.Eng. degree in biomedical engineering from
Kyung Hee University, South Korea, in 2009,
and the Ph.D. degree in science and engineering
from Saitama University, Japan, in 2013. In 2003,
he joined as a Lecturer with the Department
of Computer Science and Engineering, Mawlana

Bhashani Science and Technology University, Tangail, Bangladesh. In 2014,
he was with the Institute of Information Technology, Jahangirnagar
University, Savar, Dhaka, Bangladesh, where he is currently a Professor. His
current research interests include medical image processing, human–robot
interaction, computer vision, and natural language processing.

MD. WHAIDUZZAMAN (Senior Member, IEEE)
received the bachelor’s degree in electronics and
computer science and theM.Sc. degree in telecom-
munication and computer network engineering
from London, U.K., and the Ph.D. degree from the
University of Malaya, Malaysia.

He serves as a Professor with the Institute of
Information Technology (IIT), Jahangirnagar Uni-
versity. Currently, he is working on ARC-funded
projects with the Queensland University of Tech-

nology, Australia. His current research interests include mobile cloud
computing, vehicular cloud computing, fog computing, the IoT, and
microservices.

Dr. Whaiduzzaman received the Journal of Network and Computer
Applications (Elsevier ) Best Paper Award in Paris, France.

ALISTAIR BARROS is currently a Professor of
information systems and the Head of the Ser-
vices Computing Program, School of Information
Systems, Queensland University of Technology.
He has 32 years of ICT experience across industry,
industrial research and development, and aca-
demic roles, including the Global Research Leader
and the Chief Development Architect with SAP
AG. His current research interests include cloud,
enterprise systems and microservices engineering,

evolution, and provisioning using model-based techniques.

IMRAN MAHMUD received the master’s degree
in software engineering from the University of
Hertfordshire, U.K., in 2008, and the Ph.D. degree
in technology management from Universiti Sains
Malaysia, in 2017.

He is currently the Head and an Associate Pro-
fessor with the Department of Software Engineer-
ing, Daffodil International University, Bangladesh.
He is also a Visiting Professor with the Graduate
School of Business, Universiti Sains Malaysia.

He is also with Technostress, where he is focusing on game addiction and
online learning continuance intention. Previously, he was a Senior Lecturer
with the Graduate School of Business, Universiti Sains Malaysia. He was a
Visiting Lecturer with the Institute of Technology, Bandung, Indonesia, and
the Hong Kong Management Association, Hong Kong.

Dr. Mahmud achieved several awards, including the Hall of Fame and
Prestigious Publication Award from Universiti Sains Malaysia, the Young
Researcher from Kasetsart University, Thailand, and the Young Scientist in
Technology Management from the Venus International Foundation, India.

VOLUME 11, 2023 61467


