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ABSTRACT This paper presents a Graphical User Interface (GUI) Builder for embedded systems and
Cyber-Physical Systems (CPSs). The hardware platforms used in CPSsmay employ physical devices without
graphical and user-input capabilities, or devices that may be placed on multiple remote locations, often
with difficult physical access, that brings new challenges to GUI design. The proposed tool, integrated
within the IOPT-Flow framework, enables a new approach to answer these challenges. This framework
supports the development of embedded systems and distributed CPSs, offering a set of web-based tools for
model edition, simulation, and implementation on physical devices. Systems are designed using graphical
models combiningData-flows, Signals, and Petri nets, that permit the specification of remote communication
channels just by drawing arcs. The new GUI Builder tool uses this infrastructure to automate the creation of
graphical user interfaces for embedded systems and distributed CPSs, benefiting from a development with
combined design, validation and automatic code generation methods. Finally, an application example of a
power wheelchair controller integrating a GUI, is presented.

INDEX TERMS Data-flow, embedded systems, GUI builder, model-driven development, Petri net,
wheelchairs.

I. INTRODUCTION
The emergence of low cost electronic devices with com-
munication capabilities permitted the transition from the
traditional embedded systems, that often operated in an iso-
lated fashion without remote communication, into an era
of Internet-of-Things and Cyber-Physical Systems (CPSs)
that focus on communication and system distribution. Cyber-
physical systems are frequently based on networks of
distributed nodes, where individual nodes may provide com-
putational or physical resources. The distributed nature of
CPSs brought new challenges as a GUI may present infor-
mation from multiple nodes located at different physical
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locations, operating asynchronously at different frequencies.
In the same way, user interaction can affect multiple sub-
systems on different remote nodes. On CPS with multiple
users, different GUIs may concurrently manipulate the same
information. GUIs and models within a CPS are supposed to
interact in ways that change with context, but their actions
should not conflict with one another.

These GUIs monitor remote sensed values or control actu-
ators, leaving the intensive data processing tasks to other
nodes that may be deployed on the cloud, or on more spe-
cialized hardware, such as Graphics Processing Units (GPUs)
or Field Programmable Gate Arrays (FPGAs). For exam-
ple, the tool proposed in this paper can be applied to the
development of GUIs to supervise a network of sensors and
pumps, used to monitor and control the water flow of the
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rivers crossing a metropolitan area; to monitor city traffic in
real-time, or even to monitor a fleet of wheelchairs, issuing
alerts on low battery status and long periods of senior person
inactivity.

Furthermore, traditional languages and tools do not offer
combined design, analysis, and deployment methods, use-
ful to support the development of distributed CPSs, leading
to the separated implementation of the distributed compo-
nents. This paper focuses on this research gap, and proposes
an approach that supports an integrated view of complete
CPS systems, presenting distributed components side-by-side
connected with arcs.

The new GUI Builder was integrated into the IOPT-Flow
tool framework that offers a set of web-based tools for the
design of CPSs, allowing the edition and simulation of indi-
vidual components as well as the entire systems [1]. For
example, the IOPT-Flow web-based simulation environment
directly supports the graphical objects designed with the
new GUI Builder, and presents them interacting with the
other model’s components. This way, the developer can ver-
ify and validate the entire CPS systems (with GUIs) before
implementing them on real devices. The final implementa-
tion is assisted by automatic code generators that produce
code to deploy CPS models on each node, and also the
code to establish their communication, using a JSON/HTTP
protocol.

The models are specified using the DS-Pnet formal-
ism [2], which combines the characteristics of two proven
formalisms: Petri nets [3] and data-flows [4]. As data process-
ing plays an important role in CPSs, data-flows and signals
can provide a graphical formalism to specify the dependen-
cies between input and output signals, applying mathematical
transformations and performing data processing operations.
On the other side, Petri nets [5] are used to create state-based
models that define the evolution of system state. Concretely,
Petri net models: (1) enable the modeling and visualization
of system behavior with parallelism, concurrency, synchro-
nization, and resource sharing; (2) have precise syntax and
execution semantics that support the verification and val-
idation of CPSs, as well as their implementation, using
design automation tools; (3) support bottom-up and top-
down modeling strategies, associated with the composition
and decomposition of models. Additionally, to support the
creation of distributed systems, the DS-Pnet formalism offers
the concept of components – which enclosure/encapsulate
models – that may be placed locally or in remote locations.

The main proposed contribution of this paper is a new
GUI Builder tool that supports an integrated approach for
distributed CPS GUI design, extending the IOPT-Flow tool
framework. It permits the design of graphical user interfaces
just by dragging and dropping widgets (graphical objects)
inside GUI window frames, and automatically creating the
respective DS-Pnet components. The GUI code is generated
automatically, contributing to minimize development time
and errors.

An application example is presented to validate the imple-
mentation of a CPS that provides an alternative way to control
a power wheelchair by integrating a GUI. The system was
implemented on a Raspberry Pi, and it was possible to interact
with the system using the GUI locally and remotely.

This paper is organizedwith the following structure: begins
with the related work and an introduction to the DS-Pnets
and the IOPT-Flow tools; next, the proposed GUI Builder is
presented, with a description of the meta-model of the GUI
that can be createdwith it, and the algorithm employed to gen-
erate the DS-Pnet GUI components; and finally a validation
example and conclusions.

II. RELATED WORK
CPSs are leading researchers to propose new approaches
and tools for GUI development, providing new possibilities
in how GUIs can be used, not necessarily restricted to the
primary application - as typically occurs in environments
like Eclipse WindowBuilder [6]. This feature enables CPSs
to support different behavioral modalities and allows GUIs
within CPSs to be used in different contexts. Currently avail-
able tools include works to adapt existing interfaces [7],
create interfaces for existing services [8], methods to support
rapid prototyping, portability, and usability, among others.
Many of these works have considered the extension of
markup languages, the use of platform-independent vocab-
ularies and toolkits, and even the adoption of model-driven
development (MDD) approaches [9].

There are many ways to specify GUIs. The Interac-
tion Flow Modeling Language (IFML) [10], a platform-
independent modeling language from the Object Manage-
ment Group (OMG), was designed to express the content,
user interaction, and control behavior for software applica-
tion front-ends. eXtensible Markup Languages (XML) [11],
such as User Interface Markup Language (UIML) [12] or
USer Interface eXtensibleMarkup Language (UsiXML) [13],
address abstract models, allowing platform independence,
and the reuse of elements previously described, in new GUIs.
In [14], UsiXML is used to specify abstract GUI models
that are transformed into code for specific platforms, using
eXtensible Stylesheet Language for Transformation (XSLT).
In another approach, Unified Modeling Language (UML)
diagrams can be used to describe interfaces, as described
in [15].

Examples of GUI development environments include
TERESA [16], which supports the design of interfaces
accessible through various device types in a web-based envi-
ronment; GrafiXML [17], a graphical editor for UsiXML;
MobiGUITAR [18], a GUI testing framework; VAQUITA
[19], a tool to convert HyperText Markup Language (HTML)
pages into other representation formats, based on eXtensible
Interface Markup Language (XIML); MD2 [20], a model-
driven framework were an application is described in
Domain-Specific Language (DSL), and transformed into
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code source for a specific platform; MIMIC [21], that relies
on the M4L language that uses state machines to model
interfaces; and [22] presents a GUI development workflow
that begins with the creation of a platform-independent
model that is later transformed to target different specific
platforms.

With a focus on the implementation of embedded sys-
tems and CPSs, Petri nets are a modeling formalism suit-
able for their specification [3]. Today, different classes of
Petri nets are frequently used, ranging from low-level Petri
nets as the Input-Output Place-Transition (IOPT) Petri net
class [5], [23], to high-level Petri nets as Coloured Petri
nets (CPN) [24], which simplify the description of systems
that carry complex information associated with data process-
ing. BRITNeY [25] is a Petri-net-based tool that allows the
animation of formal models. As it is integrated with CPN
tools [26], CPN models can trigger specific actions in the
resulting GUI. Animator and Synoptic [27] are two tools that
support the automatic generation of GUIs for IOPT Petri net
models. A GUI designed using Animator contains a set of
rules that define the relation between the GUI elements and
the embedded system model. The Synoptic tool controls the
execution of this model and updates the GUI.

The purpose of the GUI Builder presented in this paper is to
provide tools for the design and generation of GUIs for CPSs
modeled with the IOPT-Flow framework. With a web-based
user interface, the GUI Builder uses the HTML document
object model for capturing the attributes and properties of the
GUI widgets and produces an XMLfile containing a DS-Pnet
model that describes the GUI elements and a set of attributes
used to interface with the other CPS subsystems. This way,
the resulting model contains a set of DS-Pnet components
that implement the designed GUI elements. The IOPT-Flow
framework is used to connect the inputs and outputs of the
GUI elements to the remaining CPS subsystems, allowing the
construction of complex CPS systems. Next, the automatic
code generation tools are used to implement the controllers
and their GUIs on specific target platforms. Since the new tool
is integrated within a Petri net-based framework, the resulting
systems can be verified and validated using the available Petri
net model-checking tools.

When compared to Animator and Synoptic tools, the pro-
posed GUI Builder allows the design of GUIs independently
of any control model for which they are created, enabling the
creation of GUI libraries to be reused, and is not constrained
to a limited rules editor, supporting the creation of more
complex graphical interfaces. Contrary to most traditional
tools that just provide user interfaces for single embedded
devices, the new generation GUI Builders target distributed
CPSs where the GUI objects can interact directly with physi-
cal devices (sensors, actuators, controllers) located on remote
nodes, and must support multiple GUIs for different users
interacting with the same CPS. In this category, we can find
tools like Node-Red for IoT devices [28], n8n [29], Outsys-
tems [30], and the new GUI Builder here proposed. However,
only GUI Builder supports model-checking.

The case study in this paper demonstrates that a GUI can
be used to monitor and control the speed and seat position of
a power wheelchair. As it was designed to validate the new
tool, it does not implement all the functionalities available
on existing commercial products. For example, the MyLiNX
app [31], a power wheelchair diagnostics app for Invacare
wheelchairs using a LiNX control system [32], provides
access to the basic system and diagnostic information from
users’ wheelchairs and enables them to share this information
with a technician. Another app named My Permobil [33]
offers enhanced wheelchair performance and usage data.
It offers easy access to information about the battery charge,
travel distance, and power seat functions.

III. DS-PNETS AND IOPT-FLOW TOOL FRAMEWORK
The GUI Builder was added, in this work, to the IOPT-
Flow development framework [1], used to enable the rapid
development of embedded systems and distributed CPSs.
This framework contains a set of web-based tools that support
all phases of system development, including:

1) Web based model design and edition;
2) Online simulation and model-checking tools to permit

the early detection of design mistakes, before deploy-
ment on the embedded devices;

3) Automatic code generation tools to implement model
semantics on different hardware targets (C, Java-script,
VHDL) including a communication layer to manage
the communication between distributed components;

4) Graphical remote debug and monitor, to enable prob-
lem detection and resolution after system deployment;

5) A library of previously created components to acceler-
ate system development, including timers, communica-
tion protocols, memory components and file I/O.

Models developed using the IOPT-Flow framework are
based on the DS-Pnet (data-flows, signals, and Petri nets)
formalism [2]. DS-Pnet models may be divided into com-
ponents that encapsulate different subsystems, enabling the
usage of top-down or bottom-up development approaches and
the creation of component libraries. The external interface of
a DS-Pnet component is composed of input and output signals
and events. Multiple DS-Pnet components can be deployed
on different hardware nodes to implement an entire CPS
system. As the interfaces produced by the new GUI Builder
are composed of DS-Pnet models, the resulting GUI appears
as a component that may be seamlessly inserted into the
models of the entire CPSs. So, independently if a component
implements a GUI or another subsystem, input and output
signals and events allow communication between the parts.

CPS systems developed using DS-Pnet models use IOPT
Petri nets to specify system behavior, which evolves in
response to external input signals. The relationship between
input and output signals and Petri net nodes is specified using
data-flow operations and arcs, that may apply mathematical
transformations to perform signal processing and condition-
ing. For instance, data-flow operations can be applied to filter

VOLUME 11, 2023 63797



C. LAGARTINHO-OLIVEIRA et al.: Integrated Development of Embedded Systems With Remote GUIs

FIGURE 1. Example of a DS-Pnet model: An UART receiver, with input, internal and
output signals/events as green, gray or red circles/diamonds, Petri net places as
yellow circles, transitions as cyan rectangles, data operations as gray quadrilaterals,
and arcs as arrows or reference textual; the name of each element is in bold and the
conditions or guards are presented with text below operations and beside the
transitions.

low-level sensor data and define guard conditions and input
events used to regulate the system evolution. Other data-flow
operations may also be used to calculate output signals based
on the internal system state and input signals.

The Petri net part of a DS-Pnet model inherits the char-
acteristics from the parent IOPT-net class [5]. Execution is
performed in discrete steps, employing amaximal step execu-
tion semantics, meaning that all enabled transitions are forced
to immediately fire on the next execution step. Conflicts
between transitions, that compete for tokens from the same
places, are solved by assigning priorities to transitions. The
evolution of the system’s state is controlled using transition
input events and guard conditions.

Fig. 1 exhibits a model created in the IOPT-Flow editor.
This model implements a functional UART receiver that has
been synthesized (and tested) on FPGAs using the VHDL
automatic code generator. The external interface of thismodel
is composed by two input signals, RxD and ClkDiv (dis-
played as green circles); and two outputs, a DataOut output
signal (red circle) and a Recv output event (red diamond).
The evolution of the system state is controlled by a Petri net,
where Petri net places are presented as yellow circles and
transitions as cyan rectangles. All mathematical operations
are performed using data-flow operations, presented as gray
quadrilaterals. In this example, the data-flow operations are
used to shift the bits received from the RxD input and calcu-
late DataOut (output bytes) or to create a counter to divide
the system clock and compute the desired baud rate. Fig. 2
presents the DS-Pnet component of the described model,

FIGURE 2. Example of a DS-Pnet component: An UART Receiver.

in which the model is encapsulated in a gray rectangle, pre-
senting an interface with the accessible inputs and outputs.

Due to the distributed nature of CPSs, the GUI inter-
face must deal with several challenges. To cope with these
challenges, the DS-Pnet components produced by the GUI
Builder take advantage of the IOPT-Flow infrastructure,
including the automatic generation of the execution semantics
and communication code. This means that a GUI compo-
nent can be transparently connected to multiple distributes
nodes, to present information and control remote devices. For
instance, it is possible to display the value of remote sensors
in real-time just by connecting an arc between the sensor
output to GUI inputs used to display graphical wave-forms;
in the same way, it is possible to connect an arc from a GUI
Button output to an input on a remote node used to start/stop
an electrical motor.

On multi-user systems with more than one GUI, the sys-
tem must prevent conflicts between different concurrent user
actions. The underlying communication subsystem that con-
nects different DS-Pnet components does not allow more
than one client to simultaneously control the same input.
This way, when such a situation is required, the designer
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FIGURE 3. GUI builder interface.

must manually model the DS-Pnet glue logic, for instance,
by defining priorities, or simply by using the and/or logic
operators. When conflicts occur, the user interface logic
may also be programmed to hide or inhibit particular GUI
elements.

The manual resolution of conflicts constitutes a limitation
of the proposed approach. However, the designer may employ
several design patterns to solve conflicts. For example, a com-
ponent offering a boolean input to control a physical resource
cannot be simultaneously operated by multiple users. How-
ever, a design pattern that offers two separate input events (set
and reset), does not suffer from this problem, as the system
just memorizes the state of the last action. If both event occur
in the same execution step, the system will prioritize one of
them.

In addition, the aspect and behavior of the user interface
may dynamically change according to the context and the
state of the remote physical devices. To deal with this, the user
interface components also contain inputs used to control the
GUI widgets parameters. For example, certain GUI buttons
may only be visible when the respective hardware devices
are ready; the graphical position of certain GUI widgets may
change in real-time in order to reflect the position of their
physical counterparts; the sensitive status of aGUIwidget can
also be dynamically controlled, according to the evolution of
system state; the user interface may also switch frommultiple
views whenever the context changes.

IV. THE GUI BUILDER
The proposed GUI Builder enables the design of graphical
user interfaces, providing widgets that can be positioned in
the design canvas by dragging and dropping them to the
desired location. A form with properties is used to customize
these widgets’ attributes, according to the system require-
ments. The interface of GUI Builder is presented in Fig. 3.
The GUI can be tested at any time by automatically con-
verting the canvas content into a DS-Pnet model containing

components corresponding to each GUI widget, which may
be executed by the IOPT-Flow debugger.

A. GUI BUILDER AND THE IOPT-FLOW FRAMEWORK
Fig. 4 gives an overview of the proposed workflow approach.
The developer can edit a GUI in the GUI Builder and use
it in the IOPT-Flow framework. As a result, the new tool
automatically creates a component representing the designed
GUI model, which is subsequently added to the DS-Pnet
model of the entire CPS system, where the GUI widgets
may be connected to the rest of the subsystem components;
then, the existing IOPT-Flow tools can be applied to the
resulting model. For example, the simulator can be used to
perform the system’s execution on a web interface and detect
semantic errors; after successful simulation, the automatic
code generation tool produces implementation code to deploy
the system into specific software and hardware devices; the
remote debugger supports the debug of models running on
local or remote hardware. The resulting GUI can be used
locally or remotely via Web.

The interaction between the GUI Builder and the
IOPT-Flow framework is presented in Fig. 5. The GUI
Builder is launched through the IOPT-Flow Editor, which is
the main interface of the IOPT-Flow Framework. During the
GUI edition, the new tool represents the designed interface
on the screen using a DOM model containing an HTML
representation of all GUI elements, which are updated in
real-time in response to the user interaction. This represen-
tation was chosen, as DOM objects can be directly visualized
on the web browser without needing to be transformed. They
can also be extended dynamically with new attributes and
methods, in order to support the requirements and specific
functionalities of the project.

Although the HTML documents are stored in the
IOPT-Flow framework, these HTML documents are just
internal representations that are not used by the remaining
IOPT-Flow tools. Instead, the GUI elements are converted
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FIGURE 4. A use case diagram showing how GUIs are developed and used using the proposed approach.

into DS-Pnet models and components and stored as XML
files. As Fig. 5 also presents, instead of HTML, the other
tools of the IOPT-Flow framework employ a graphical rep-
resentation of the models, based on SVG graphics that are
produced by applying XSLT transformations to the XML
GUI files. When the remaining tools operate over models
containing GUI elements, they must implement the behavior
of the GUI widgets. For instance, the web simulator and
debugger present a browser HTML window with the GUI
interface that may be connected to local simulator com-
ponents or to remote physical devices. In the same way,
the automatic code generator tools also produce GUI code
respecting the properties of the GUI model. For example, the
C code generator implements the GUI interfaces using the
GTK+ library [34].

B. ENVIRONMENT
The proposed tool allows rapid prototyping of GUIs that
can be integrated with DS-Pnet-based controllers without the
need for manual programming. The GUI Builder presents an
interface identical to the IOPT-Flow, with a toolbox; a form
with the widget properties; and a drawing area.

As the internal representation of the GUI elements is stored
as an HTMLDOMdocument. The DOM is structured as a set
of nodes and objects with properties, methods, and events.
All user actions performed in the GUI Builder are interpreted
by JavaScript functions running on the browser, produc-
ing changes to the DOM elements. JavaScript functions are
invoked by events that allow, for example, to create, mod-
ify, remove and recover the content of the DOM document.

Operations used to manage data storage are implemented
using PHP code running on the server.

A designer’s first action when starting a new GUI is to
add new widgets to the drawing area by choosing them from
the toolbox. The toolbox offers several tools dedicated to the
edition and automatic generation of GUIs, highlighting the
following set of widgets.

• Button - presents a button with an image or/and a label;
• Image - presents a static image;
• Label - presents a static text message;
• Checkbox - tick box that can have a label;
• Number - numeric inputs;
• Range - presents a scroll-bar/scale;
• Scope - graphical scopes to display wave-forms in real-
time;

• Audio - plays a sound sample.

The toolbox also offers options to support file management
operations: to create, update and open project HTML files;
and to save or update the resources used in those projects.
Another button is used to create or update the resulting GUI
DS-Pnet model and the respective component symbol to be
inserted in CPS models.

The GUI Builder presents an area dedicated to the edition
of the widget’s properties. When a widget is dragged or
selected, a form appears displaying the properties of the wid-
get. A second form presents the input and output parameters
of the widgets: as the GUI widgets are going to be connected
to other CPS elements, for instance, sensors and actuators,
the widgets’ properties must be defined to ensure data type
compatibility with these elements.
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FIGURE 5. Architecture that relates GUI builder with IOPT-Flow framework.

C. GUI META-MODEL
Figures 6 and 7 present a part of GUI meta-model. Com-
mon widgets attributes are the identifier, name, target device
selection, parameter string, and comment. Some widgets
require a source file, such as≪wav≫ audio files or≪png≫
images.

Each GUI element/widget has several inputs to define
the values to be displayed and control the graphical posi-
tion and size, visibility, and sensitivity (e.g. a frozen visible
widget that is not responsive). Some widgets have events

to update the values displayed or to trigger actions, for
instance, to play sound samples. In the opposite direc-
tion, the widgets offer outputs to report user actions, for
instance, when a button is pressed or a value has been
changed, or when a sound sample is playing. For exam-
ple, Figure 7 presents the button’s structure. Each input and
output may be associated with a source and target element.
In this case, a source element may either be a constant or
a signal; and a target element can be either a signal or
an event.
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FIGURE 6. The core structure of the GUI meta-model.

FIGURE 7. The button structure of the GUI meta-model.

D. GENERATION OF GUI DS-PNET MODELS AND
COMPONENTS
The output produced by the GUI Builder is composed of a
DS-Pnet model containing the GUI elements, and a compo-
nent symbol, representing this model. The Algorithm 1, used
to create these models, generates the following items:
• Widgets components;
• Input, internal and output signals;
• Constants;
• Input and output events;
• Arcs.

Observing this list, in addition to the widgets’ generation, the
algorithm also produces a list of inputs and outputs that define
the internal interface of the GUI itself.

The resulting models are stored on the server as XML files.
It is important to note that although XML files are created

from the information contained in the HTML file of the

designed GUI, the project can be continuously edited in the
GUI Builder without interfering with the already generated
DS-Pnet model and component, which are only generated
when the user requests. The opposite is also true since the
resulting DS-Pnet model can be edited in the IOPT-Flow
Editor without changing the GUI design in the GUI Builder.
As the internal representation of the GUI is independent of
the IOPT-Flow framework, it may be possible to convert the
interfaces designed for other formalisms and development
languages.

V. APPLICATION EXAMPLE
This section presents a graphical user interface developed
in the GUI Builder that can be applied to control and dis-
play the parameters of a power wheelchair, similar to the
interfaces often found on commercial power wheelchairs
controlled with a joystick. The interface and all the mod-
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Algorithm 1 GUI Model & Component Generation
1: data← HTML DOM model
2: repeat
3: for each widget node in data do
4: create widget XML
5: for each defined io in widget node do
6: create io XML
7: create read arc XML{Connect the io and widget

XML}
8: end for
9: end for

10: until IOPT-Flow model of the GUI is created
11: if GUI project exist then
12: update model in the IOPT-Flow files folder
13: update component in the IOPT-Flow library folder
14: else
15: create new project
16: save model in the IOPT-Flow files folder
17: create IOPT-Flow component{Based on the model}
18: save component in the IOPT-Flow library folder
19: end if

els and components that illustrate the example are cur-
rently available in GUI Builder (http://gres.uninova.pt/iopt-
flow/inter_clo/inter_clo.html) and IOPT-Flow environments
(http://gres.uninova.pt/iopt-flow/), accessible through the
user builder (with read-only permissions), with the same
password.

This particular example implements a simple GUI to be
used as an alternative way to control the speed and seat of
a power wheelchair, as well as to visualize and monitor the
parameters of its motors and battery.

To allow the validation of GUI, it was used in a DS-Pnet
model connected to other two components: one modeling
the power wheelchair (‘‘Wheelchair Model’’); and the other
controlling the GUI logic and the wheelchair’s values (‘‘Pre-
senter’’). The interaction between the three components is
shown in Fig. 11.
The IOPT-Flow design automation tools were used to test

and deploy the project, including the simulator tool, remote
debugger, and automatic code generator. The example was
simulated, and its C code was executed on a Raspberry Pi
3 device that interacted remotely with the IOPT-Flow remote
debugger.

A. GUI
The example application allows users to change the operating
mode and profile of a wheelchair, monitor the velocity, read
the state of the battery charge, and display waveforms of
measured values. Fig. 8 presents some of the interface pages
created. The interface works as follows:

• The homepage displays the wheelchair’s speed and three
buttons: ‘‘Mode’’, ‘‘Profile’’ and ‘‘Graphs’’;

• The ‘‘Mode’’ button allows the user to switch between
the mode to drive, and raise or tilt the wheelchair;

• The ‘‘Profile’’ button allows switching between two
speed ranges, to increase or decrease the velocity;

• The ‘‘Graphs’’ button allows viewing the waveforms of
specific measurements;

• The page used to display waveforms has checkboxes
to select the graphs to be presented, namely motor and
battery temperature measurements;

• All pages display the battery charge status in the upper
left corner.

After creating the interface and customizing all elements,
the GUI was converted into a DS-Pnet model. Observing
Fig. 8 it is possible to check if the aspect of the GUI ele-
ments respects the intended behavior, and confirm if they
correspond to the DS-Pnet generated components.

FIGURE 8. Interface designed for a power wheelchair.

Inspecting the resulting DS-Pnet model (available online),
it contains 14 widget components, and the widget parameters
have been customized with constant values or assigned to
external inputs and outputs. These inputs and outputs are
internally connected to the widget components through the
automatic drawing of arcs. The component on the right side of
Fig. 11 represents the entire GUI and the external inputs and
outputs used to connect the GUI to the remaining components
(‘‘Presenter’’ and ‘‘Wheelchair Model’’).

In this application example, the GUI component has
23 inputs and 6 outputs. Seven inputs events (‘‘SetBattery’’,
‘‘SetVelocity’’, ‘‘SetMotorT’’, ‘‘SetBatteryT’’, ‘‘NewSam-
ple’’, ‘‘ResetMotorT’’ and ‘‘ResetBatteryT’’) are used to
trigger the update of the values presented in the inter-
face, namely the value of the battery charge, the speed of
the wheelchair, and the values used to present graphs in
the scope. Input signals whose name starts with ‘‘Visible’’
are used to manage the appearance of a widget in the
interface; and the ‘‘NewValBattery’’, ‘‘NewValVelocity’’,
‘‘MotorTemperature’’ and ‘‘BatteryTemperature’’ input sig-
nals refer to the values presented in the interface when the
events mentioned above occur. In the opposite direction,
the GUI component has 4 output events associated with
button clicks, that trigger actions in the other components;
and 2 output signals to select the graphs to be presented in
the scope.
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FIGURE 9. Model of ‘‘Presenter’’.

FIGURE 10. Model of ‘‘wheelchair model’’.

B. PRESENTER
Fig. 9 presents the model encapsulated by the component
‘‘Presenter’’; 7 areas were highlighted in the model:
• In 1, the gray components correspond to ‘‘or’’ operations
between the respective input events, which correspond to
the detection of a click on a GUI button;

• In 2 there is a Petri net with 5 places corresponding to
the pages of theGUI; the other elements allow to identify
the user commands;

• The Petri net output signals are used to define which
elements of the interface are visible at a given
moment; two of them are affected by the conditions
presented in 3;

• In 4, the values presented in the waveforms are selected
according to two checkboxes, and events are generated
to trigger the update of GUI numeric widgets;

• In 5, the ‘‘NewSampleGraph’’ event is created, forcing
the scroll of the scope waveforms with the addition of
new samples;

• The status of the checkboxes is saved in 6, so that
consecutive clicks toggle the status of a checkbox;

• In 7, two components are used to output the maximum
allowable velocity value for the wheelchair, depending
on ‘‘Profile’’ chosen, and a flag to inform when the
user is using some seat function, to raise or tilt the
wheelchair.

C. WHEELCHAIR MODEL
Next, the ‘‘Wheelchair Model’’ is shown in Fig. 10. The
‘‘Wheelchair Model’’ maps the position of the x and y axes
of the joystick to obtain the velocity value of each motor
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FIGURE 11. DS-Pnet model of an alternative control device for a power wheelchair with integrated GUI.

which composes the power wheelchair (‘‘MotorLeft’’ and
‘‘MotorRight’’) and sends the longitudinal velocity value to
the ‘‘Presenter’’.

The longitudinal velocity is conditioned by the input value
of the battery level, the temperature of the battery and each of
the motors, and the value of the maximum allowable velocity
and the state of the seat received from ‘‘Presenter’’. The
seat state value is also used to actuate the ‘‘MotorBack’’ and
‘‘MotorSeat’’ motors, used to tilt or raise the wheelchair.

The ‘‘Wheelchair Model’’ also defines the data to be dis-
played in the GUI, by sending information to the ‘‘Presenter’’
to update values of the temperature and battery charge, the
highest temperature among the motors, and whether the user
wants to change the wheelchair profile, mode, see graphics,
etc. In alternative to the GUI, the user can also use the
physical buttons available on the wheelchair (shown at the
bottom right side of Fig. 10).

On the left side of Fig. 11, the ‘‘Wheelchair Model’’ com-
ponent reads the status of the joystick status, physical buttons,
and motor and battery sensors. The ‘‘Presenter’’ component
in the center, acts upon the ‘‘Wheelchair Model’’ limiting and
retrieving values from it and controlling the values displayed
on the GUI. On the right, the ‘‘GUI’’ component, automati-
cally generated by the GUI Builder, displays data and routes
additional user commands to the ‘‘Presenter’’.

D. RESULTS VALIDATION
To validate the correct operation of the interface, two types
of analysis were carried out. First, the simulator of the
IOPT-Flow tool frameworkwas used to check the evolution of
themodel over time (token-player), forcing values to the input
signals and events connected to the ‘‘Wheelchair Model’’
component. During simulations, the simulator tool presents a
Web version of the generated GUI, allowing direct interaction
with it.

After that, a second type of validation through physical
experimentation was performed using the automatic C code
generation tool and the remote debugger/monitor application,
enabling the execution and visualization of the system state
in quasi-real-time. The automatic C code generator was used
to deploy the model of Fig. 11 and its executable applica-
tion, built and compiled using a Raspberry Pi 3 board; the
Raspberry Pi also established communicationwith the remote
debugger to support the remote debug and monitoring. The
entire build process did not involve manually writing code;
the code ran directly on the Raspberry Pi, displaying the
interface of Fig. 8 locally, using the Linux operating system,
and remotely in the remote debugger.

In addition, a simple circuit was implemented on a bread-
board, presenting a set of physical buttons and variable
resistors connected to the platform, so that the user sends
commands directly to the ‘‘Wheelchair Model’’. The buttons
placed on the breadboard were used to allow the occurrence
of events related to the GUI, namely those that represent the
click on ‘‘Mode’’, ‘‘Profile’’, ‘‘Back’’, ‘‘Graphs’’, and the
checkboxes related to the temperature graphs; the variable
resistors were used to simulate the x and y axes of a joystick,
as well as values for battery levels and temperatures. Thus,
the user was able to interact with the system using 3 differ-
ent ways: through the generated GUI, changing values on
the remote debugger tool, or using the sensors and buttons
connected to the GPIO ports of Raspberry Pi. During the
execution of the controller, it was possible to confirm the
correctness of the GUI.

VI. CONCLUSION
This paper presents the GUI Builder, a Web-based tool
that allows the edition, and automatic generation of
graphical user interfaces. The GUI Builder is integrated
into the IOPT-Flow tool framework, available online at
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http://gres.uninova.pt/iopt-flow/ and free to use, support-
ing the rapid development of embedded and distributed
cyber-physical systems with GUIs.

GUIs for distributed systems can be rapidly developed, just
by dragging and dropping widgets on a canvas, and adjusting
their properties according to application requirements. As all
the code is generated automatically, the occurrence of coding
errors is minimized, contributing also to rapid prototyping
and deployment of GUIs. The resulting GUI components
can be used to locally or remotely monitor, control, or ani-
mate a behavioral model of a CPS system developed in the
IOPT-Flow Editor. The communication between the GUI and
the other CPS subsystems is defined just by drawing arcs
linking the inputs and outputs of the GUI components and
the system’s components, and does not require any manual
coding.

The GUI Builder supports an approach where the GUI
is developed separately from the main CPS model. As a
result, a developer designing a GUI for a CPS does not
need to understand the internal details of the remaining CPS
subsystems, it just requires basic knowledge of them and
the parameters required for user interaction. This feature
makes GUI Builder projects independent of any behavioral
model, which means that it can be easily integrated with
other development tools and modeling formalisms. This
approach also simplifies the support for multi-user CPS that
require different GUIs for each user, developed as separate
projects.

To validate the GUI Builder, a scenario was presented
to control, view, and monitor the parameters of a power
wheelchair. The validation, of the GUI design and genera-
tion, started with an analysis of the automatically generated
XML files. Then, the GUI component was integrated with the
components, ‘‘Wheelchair Model’’ and ‘‘Presenter’’ which
model the entire system operation, and together they were
implemented and tested using the IOPT-Flow tool framework.
To perform the remote simulation, the remote debugger tool,
the automatic C code generator, and a Raspberry Pi 3 were
used. The results were consistent with those of the local simu-
lation, making it possible to observe the correct functioning of
the GUI. With the validations carried out, it was also possible
to verify the correct implementation of the GUI Builder.

Although the presented application example is not very
complex, the same approach can be used to implement GUI
for other types of applications and industries. For example,
to build GUIs and dashboards for industrial production lines,
home automation systems, railways and transportation sys-
tems, smart grids, and many other applications.

The design applications can take advantage of the design
automation tools offered by the IOPT-Flow tool framework.
This framework supports all phases of system development,
including edition, simulation and model-checking, imple-
mentation through automatic code generation, and remote
debugger. Safety-critical applications may benefit from the
model-checking tools to verify compliance with safety reg-
ulations. It is important to notice that the code generated

automatically supports the communications between remote
components, which enables the deployment of GUIs for dis-
tributed systems in a transparent way.

As future work, we consider the improvement of the GUI
Builder, to improve user experience with additional types of
widgets, support different hardware devices, and allow the
generation of GUIs in other modeling formalisms. In order
to enhance the capabilities of the GUI builder, more complex
use cases must be employed, interfacing with components
located on multiple distributed hardware devices.
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