
Received 24 May 2023, accepted 15 June 2023, date of publication 19 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287503

A Survey of QEMU-Based Fault Injection Tools &
Techniques for Emulating Physical Faults
YOHANNES B. BEKELE , (Graduate Student Member, IEEE),
DANIEL B. LIMBRICK, (Senior Member, IEEE), AND JOHN C. KELLY, (Member, IEEE)
Electrical and Computer Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

Corresponding author: Yohannes B. Bekele (ybbekele@aggies.ncat.edu)

ABSTRACT Fault Injection (FI) is a method used to quantify the reliability and resilience of a system by
assessing the system’s ability to detect, locate, and/or mitigate fault occurrences. At the architecture level,
targeted bit flips at specific times and locations can help quantify the response of a running application
to unwanted changes in state and memory values. FI campaigns of this type can be performed on the
target hardware virtual implementations of the target device. In this paper, we present a survey of Quick
EMUlator (QEMU) based FI techniques. After discussing the various techniques proposed by academia and
industry, we classified them into categories and compare their attributes. This review will help researchers
understand the capabilities and limitations of using the QEMU emulator for FI-based system reliability
analysis. Additionally, we identify the gaps in existing techniques and propose opportunities for extensions.

INDEX TERMS Dependability, fault injection, QEMU, reliability, security, virtualization.

I. INTRODUCTION
Computing systems can experience faults from noise in
the electrical system, electromagnetic interference (EMI),
a strike to a chip surface from a particle, or radiations from
the surrounding environment in the form of cosmic rays [1].
Faults that do not result in permanent functional damage
to the system are called transient faults or soft errors. The
occurrence of such faults is heightened by environmental
conditions, such as the altitude and temperature of the sys-
tem [2]. Owing to the increased operational frequency in
recent technology, reduction in supply voltage, and decrease
in technology node sizes, transistors’ susceptibility to soft
errors is increasing [3]. These errors can disrupt the function-
ality of computing systems, making dependability a concern.

Dependability is first introduced as a generalized concept
that encompasses or consists of the attributes availability,
integrity, reliability, maintainability, and safety [22]. In order
to maximize the dependability of a system and to keep the
correct operation of system components as per the required
standard, fault tolerance techniques should be used. In order
to put forward fault tolerance techniques a study of faults

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

should be conducted at the hardware or software levels of a
given system. The hardware level fault study, which is also
the focus of this paper, has two main advantages as compared
to its software counterpart. The first one is, output from the
lower level of abstraction connects to the probability of a bit
flip in software, leading to resilience approaches post-silicon
and the second is that analysis of faults at application and
architecture levels can give way to targeted hardening and
selective node hardening approaches.

There are various methods that are utilized in fault tol-
erance studies. These include data collection and analysis
of real-world fault occurrence scenarios of soft errors, lab-
oratory fault injections to systems, and fault injection-based
approaches. The first two approaches need specialized equip-
ment which helps with fault injection and collection of the
fault scenarios. In addition, laboratory fault injections result
in damaging the system under question which makes them
inappropriate choices for systems that are under operation.
The occurrence of real faults, for instance from environmental
sources, also takes a long time so collecting data that is
needed for detailed analysis is a daunting task and time-
consuming. These and other drawbacks in fault tolerance
study techniques led academia and industry to rely on fault
injection-based approaches. The FI-based tolerance study is

62662
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9899-4194
https://orcid.org/0000-0002-3202-1127


Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

defined as ‘‘a validation technique of the dependability of
systems based on the realization of controlled experiments in
order to evaluate the behavior of the systems in the presence
of faults’’ [28]. Although dependability can be evaluated
through rigorous life-long testing, the required duration to
carry out this testing and obtain a statistically sufficient num-
ber of failures makes it impractical for such implementations.
This gap can be closed using FI campaigns that provide this
information using as many as necessary FI campaigns that
the implementer has full control on [43]. In this approach,
a faulty situation is emulated on the system or component
with each campaign round by injecting a fault into it and
recording its fault-to-error conversion route and effects. This
is then utilized to calculate the fault tolerance parameters.

Quick EMUlator (QEMU) is one of the platforms used
for Simulation-based Fault Injection (SFI). QEMU is an
open-source machine emulator which uses the Dynamic
Binary Translation (DBT) of a given target CPU applica-
tion code, utilizing various optimizations to keep execution
speed as close as possible to native system execution.
QEMU employs a two-step DBT approach, the first of
which involves translating the target machine code into a
machine-independent intermediate representation, which is
then represented with the host machine code for execution.
QEMU strives to be useful in a wide range of situations. The
advantages that made QEMU the priority choice in develop-
ing tools for virtualization-based fault injection include:

• It allows unlimited modification of the codes used for
the device for the inclusion of fault injection capability.

• It supports different processor architectures more than
any virtualization platform currently.

• There is no need for any modification in the application
under test or the need for the microprocessor design
information. This characteristic assists in the emulation
of complex systems.

In this paper, we complete a survey on QEMU-based fault
injection techniques and approaches. We selected the papers
based on the keywords QEMU, virtualization, reliability,
dependability, fault injection and their combination. We cate-
gorize the techniques based on the components in a system
that they are applied to, their fault modeling approaches,
and their evaluation methodology. The paper is organized
as follows. Sections II and III discuss fault occurrence in
digital systems and provides an overview of fault injection
approach. Section IV discusses QEMU-based fault injection
approaches and points out the similarities and differences
between the approaches. Section V categorizes the tools or
frameworks discussed based on various metrics. Section VI
indicates proposed future research directions that can further
exploit QEMU features in FI works. Finally, Section VII
Summarizes the survey and shows some areas that are open
for research.

II. MODELING HARDWARE FAULTS
System reliability is greatly influenced or impacted by the
fault-to-error conversion scenario and its consequence. A

particle hit to the device or chip surface, often known as a
transient fault, is one method of fault generation. A transient
issue has a short-term impact on the system it affects and can
either cause an error or be covered up through various mask-
ing strategies including electrical masking, logical masking,
and latch window masking.

A. BASIC MECHANISMS OF PHYSICAL FAULTS
Single event transients (SETs) are transient voltage pulses
generated at the output gates by a particle striking a chip
surface [37]. The resulting error from a SET propagating
to a memory element and stored in it is called a soft error.
According to [3] soft errors are caused by two main factors:
first, alpha particle emissions from radioactive contaminants
on packing materials, and second, cosmic rays, which are
high-energy rays that emanate from outer space and generate
a complicated chain of secondary particles in the environ-
ment [36]. Bulk CMOS affecting radiations such as SETs
and single event upsets (SEUs) are covered in [4], and
the effect on recent FinFET technology nodes is shown
in [5].

Other kinds of physical fault attacks include voltage
fault injection in the form of voltage glitches, Laser Fault
Injection (LFI), Electromagnetic fault injection (EMFI), and
software-induced hardware faults. Voltage fault injection is
an attack that focuses on creating disturbances in a stable
power supply or distribution system causing misbehavior in
the attacked system. ‘‘This is the result of setup time viola-
tions that can cause incorrect data to be captured allowing an
attacker to tamper with the regular control flow, e.g., by skip-
ping instructions, influencing a branch decision, corrupting
memory locations, or altering the result of an instruction or
its side effects’’ [7]. A type of this attack known as a voltage
glitch is a disturbance that is induced in the power supply line
which is a transient voltage drop within a very short duration.
Glitch timing is mathematically computed as latency from a
specific triggering event such as an I/O activity or power-
up [8]. Voltage glitch-based fault injection techniques are
inexpensive, simple, and typically don’t call for expensive
equipment. They can be accomplished remotely as well as
with the target device in hand. The attacker must, however,
have access to the device’s power supply line in order to use
this approach. Even the security enclaves of the Intel [9] and
AMD [10] were broken via voltage glitching attacks utilizing
the Teensy 4.0 board.

In LFI, the attacker injects a fault during a system operation
by using a laser module which also gives the flexibility of
precisely controlling the fault injection timing and position
in the system. ‘‘Compared to other injection approaches laser
fault injection has the highest time and space resolution for
the most efficient attack capability’’ [11]. A typical LFI
setup includes a laser source, an objective lens, a motorized
positioning table, and a controlling device. A digital oscillo-
scope can be utilized to accurately coordinate laser activation
with the device’s execution of the target procedure [12].

VOLUME 11, 2023 62663



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

LFI is a semi-invasive attack approach, which requires the
chip packaging to be removed using mechanical or chemical
de-capsulation techniques in order to expose the chip to the
laser source. This is the biggest disadvantage since it is not
always feasible to de-package the chip without destroying
the circuitry or bonding wires. The injection is normally done
on the backside of the chip, as the components are protected
from the front side. This creates another challenge as the
absorption depth of silicon varies for different wavelengths,
and therefore, the silicon substrate might need to be thinned
down to allow an attack [13].

EMFI is performed by generating a localized short-
duration high-intensity electromagnetic pulse that induces
currents within internal chip circuitry. The attacker generates
a stable sinusoidal signal at a given frequency that injects a
harmonic wave creating a parasitic signal [14]. Such a signal
can bias the clock behavior or inject additional power directly
and locally into the chip. Equipment for this type of EM
injection usually consists of a motorized positioning table,
a signal generation module, and an oscilloscope. Generally,
the equipment consists of a high-voltage pulse generator and
a coil with a ferrite core, serving as an injection probe. This
method provides a good trade-off between cost and precision.
Pulse injectors can be bought for a relatively inexpensive
price [15] and there are also more powerful and precise
equipment that are expensive to purchase. EMFI does not
need a device decapsulation for the chips enclosed and as
contrasted to voltage glitching, there is no need to attach any
wires to the power supply.

Considering software-induced hardware faults, the most
notable are rowhammer and CLKSCREW. A bit flip in the
dynamic random-access memory (DRAM) is introduced by
the system-level attack known as rowhammer, which may be
used to escalate user privileges [16] or perform other attacks.
Bit flips that are repeated and controlled pose a serious risk
to system security. In a DRAM memory, hammering a row
causes it to electrically interact with other rows, generating
variations in voltage levels. This influences the next row
and makes it discharge more quickly than normal; if the
memory refresh interval is reached, a bit flip will happen [17].
A shrink in device technology used in DRAM construction
has led to memory cells holding smaller charges, while also
being closely placed. This proximity results in the cells
being vulnerable to electromagnetic interactions among each
other, leading to memory errors. About 85% of the DDR3
memory modules from different manufacturers tested in [17]
were found to be vulnerable to the rowhammer attack. The
attack is also effective in recent DDR4 modules as pointed
out in [18]. CLKSCREW [19] is another software-induced
hardware fault that exploits the bugs in a dynamic voltage
and frequency scaling (DVFS) system. DVFS is a technique,
in which the voltage and frequency of a system processor
are scaled dynamically for power consumption minimization.
CLKSCREW fault occurs if the system is overclocked by
applying a higher frequency than that of the maximum desig-
nated system frequency or Undervoltage which is the result

of applying a voltage value lower than the rated minimum
voltage.

The occurrence of these faults is not deterministic in its
very nature. In addition, their natural occurrence takes a long
time to consider real-world scenarios for research purposes.
Hence, FI techniques become the go-to approaches to emulate
these faults.

B. FAULT INJECTION CHARACTERISTICS
• Fault Models: Fault models, models which are used to
simulate real-world fault occurrence scenarios, are clas-
sified into intermittent, permanent, and transient fault
models based on their persistence. In addition, a given
fault model can map fault effects to temporal and spa-
tial configurations depending on the abstraction level
under consideration. Hence, the provision of adjustable
temporal fault features, such as fault injection time,
fault release time, and spatial fault properties, may be
used to identify transient fault models. This allows the
modeling of single and multiple transient faults in sin-
gle and multiple bit-upsets in memory elements. This
significantly helps in the modeling of faults impacting
consecutive time intervals as well as the generalization
of descriptions for faults affecting both consecutive and
non-consecutive time intervals.
Bit-flip fault models are utilized to simulate real-world
physical fault attacks from a security perspective. Bit-
flip is a method of mimicking faulty behavior by
inverting the bit value of a component or system location
such as a stored value in a memory element. In contrast,
set and reset fault models simulate faulty scenarios by
setting a bit to either a logical ’0’ or logical’ 1’ regard-
less of the initial fault-free value which is pessimistic
because it results in the fault site changing its value
during a fault injection. After the application of a bit-
flip fault, the faulty value persists until it is overwritten.
Other fault types include stuck-at and set/reset faults
which emulate different scenarios in real-world fault
attacks.

• Fault Locations: Faults occur in components that com-
prise a system, including datapath logic, registers, and
memory. Temporary faults such as voltage changes,
magnetic fields, and radiation cause CPU errors in var-
ious components of the CPU such as data registers,
address registers, data-fetching units, control registers,
and arithmetic logic units (ALUs). A fault occurring in
the CPU causes a bit flip in data that is controlled and
processed by the CPU. The effect of a bit-flip can range
from having no effect on the execution of the program to
a system downstate in extreme cases. Furthermore, it is
challenging to pinpoint the root of the problem since the
circumstances in which a bit flip takes place are the same
as those in which a software fault modifies a value.
Memory components are also system components that
can get affected by faults. The effect can be on stored bits
in memory or the memory controller which manages the

62664 VOLUME 11, 2023



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

operation of the memory component. A particle strike
on a memory element can result in both SEU and MEU
by affecting single or multiple bits in the stored data in
that specific location. Thus, FI frameworks or platforms
consider both scenarios in simulating real-world fault
occurrences. TheMEU effect intensifies with the scaling
down of process technologies as newer smaller tech-
nology cells have an increased impact due to proximity
effects. Other system components that can be affected by
faults or result in bit-flip include I/O components, inter-
connections between various system components, and
data transfer mechanisms such as buses and controllers
for these components.

C. FAULT OUTCOMES
Previous researchers have attempted to classify transient
faults by their impact on the system [20], [21]. There are
4 major categories of outcomes that are the result of a fault in
a system. These are:

• Silent data corruption (SDC): The execution result dif-
fered from the correct output without detection by the
system and resulted in incorrect output.

• Detected an unrecoverable error (DUE): The fault effect
cause the workload to have an error which triggers a
fail-stop mechanism such as an exception that let the
system detect the error.

• Hang: After fault injection, the execution did not finish
within a given predefined time limit which is usually the
time duration the execution takes in a non-faulty opera-
tion scenario, for example, because it faultily entered an
infinite loop.

• Masked / no effect: The execution and output behaved
the same way as in a run without fault injection.

III. FAULT INJECTION SIMULATION & EMULATION
FI techniques can be categorized into hardware fault injec-
tion (HFI), emulation-based fault injection (EFI), software
fault injection (SWIFI), and simulation-based fault injection
(SFI). In hardware-based fault injection techniques, an actual
hardware or a hardware framework is needed to simulate the
faulty condition. There are two main categories of hardware-
based FI; fault injection with contact and fault injection
without contact. FI with contact is based on the idea of
perturbing the integrated circuits with faults introduced at the
pins that emulate both external and internal faults [6]. Tools
based on this approach include RIFLE [23], FOCUS [24]
and MESSALINE [25]. Fault injection without contact is
based on the idea that the injector has no direct physical
contact with the design under test and an external source
produces a physical phenomenon such as heavy ion radiation
that interacts with the circuit and produces the faults. Tools
based on this approach include FIST [26] and MARS [27].
These approaches are better in speed but are more difficult
to implement and have higher costs with respect to both the
equipment needed to induce a fault and the resulting damage
to the hardware being tested [6].

Emulation-based FI techniques combine hardware and
software-based approaches to gain better speed and accuracy.
They do not need any special facility making them more
cost-effective and there is no limitation in choosing the fault
locations. It is possible to validate the circuit in the initial
steps of the design. One of the most popular techniques in
the emulation-based fault injection approach is emulating
the behavior of the circuit using FPGAs in the presence
of faults [28]. They can be implemented using hardware
reconfiguration-based approaches or instrumentation-based
approaches. In the first scenario, faults are introduced into the
process by partially reconfiguring the prototype as it is being
executed. In the second scenario, the circuit is altered before
it is implemented on the re-configurable hardware so that the
errors in the chosenmodel can be introduced into the program
while it is being executed. Some example tools from this cate-
gory of fault injection include NETFI [29], a tool that injects
faults at the register-transfer level of a processor by adding
extra hardware to the sensitive registers of a target proces-
sor, and [30], a tool having three different techniques called
time-multiplexed, state-scan and mask-scan, which offer dif-
ferent trade-offs between area overhead and performance.
These two tools use the instrumentation-based approach of
EFI. Whereas, Fault Tolerant-University of Seville Hardware
DEbugging System (FT-UNSHADES) [31], which imple-
ments a read-modify-write approach, and its modified version
FT-UNSHADES2 [32] which speeds up the communications
by using PCIExpress, rather than USB transactions are exam-
ples of tools that implement hardware reconfiguration-based
approaches.

If an analysis is proposed to be done without the need
for special-purpose HW, SWIFI, and SFI tools can be used.
SWIFI is accomplished by modifying the software executing
on the system that the analysis is carried on. These modifica-
tions are errors inserted during compile time or run time. The
ones based on errors during compile time introduce the faults
into the source code or the assembly code of the program
under test. In the case of faults inserted during run time,
a trigger mechanism is necessary to insert the faults. The
usage of SWIFI tools overcomes the cost, controllability,
and repeatability issues of HFI. SWIFI modifies the con-
tents of registers and memory elements to emulate the effect
of real-world hardware faults. Notable SWIFI tools include
FERRARI [33], FTAPE [34] and XCEPTION [35]. The
drawbacks of SWIFI techniques include, accurately repro-
ducing the faulty behaviors of the actual hardware and their
definition for either specific operating systems or application
programming interfaces (API).

These drawbacks of SWIFIs are addressed by SFI tools.
SFI involves simulating the Design Under Test(DUT) using
a Hardware Description Language (HDL) and then injecting
faults into the simulated version of the design using soft-
ware. This can be accomplished by modifying the high-level
description of the target designwith a saboteurmodule, which
is in charge of the fault injection process, and by using the
built-in commands of a simulator to inject errors into the

VOLUME 11, 2023 62665



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

TABLE 1. Categories of FI techniques.

simulation of the design and not in the hardware descrip-
tion of the design itself [40]. Notable tools in SFI include
MEFISTO [41] and VERIFY [42]. These SFI approaches
should do a cost-benefit analysis of the trade-off between
analysis accuracy and simulation performance. Table 1
summarizes FI technique categories.

IV. QEMU-BASED FAULT INJECTION
The development of fault injection simulators based on the
QEMU platform allows designers to emulate soft errors and
verify the efficiency of fault tolerance solutions with low
overhead and higher repeatability. Due to the advantages
mentioned in the previous sections, the use of QEMU for
studying the effect of soft errors is increasing among the
research community. In this section, the works that leverage
QEMU features to inject faults in system components and
emulate soft errors are discussed.

FAIL* [39] is an architecture-level FI framework for con-
tinuously assessing and quantifying fault tolerance in iterative
software development processes. It is a FI tool for testing
and quantifying software-based fault tolerance mechanisms
deployed in software systems. It supports three simulators;
Bochs, QEMU, and Gem5 emulating x86 and ARM archi-
tectures. Looking at its architecture, FAIL* is organized in
a client/server architecture. It extends the back-end code
of instances. This gives the tool interception and control
power on the back-end execution in addition to its access
to the simulated system state. The Campaign Controller
component distributes parameter sets to the available FAIL*
instances that it has received from a user-defined cam-
paign. Each FI experiment uses a parameter set and uses
the execution-environment abstraction (EEA) layer to control
the target back end. By adding an interface module to this
abstraction, actual target backends may be switched. The
author’s tested the tool on dOSEK OS [79] to show how it
helps in helping the developer to converge to an optimally
protected software stack.

Another QEMU-based FI platform that permits soft error
introduction in emulated machine instructions is called F-
SEFI [44]. F-SEFI acts during the tiny code generation
(TCG) step and provides the structure to emulate soft errors
by corrupting data at run-time intercepting instructions and
replacing them with fault-injected versions. The F-SEFI bro-
ker is loaded dynamically after the QEMU hypervisor starts
a virtual machine image. Without altering the source code
of the application or the OS running on the kernel, F-SEFI
intercepts instructions sent by applications operating within
a guest OS, possibly corrupt them and then sends them to the

host kernel. The F-SEFI tool is comprised of five major com-
ponents: profiler, configurator, probe, injector, and tracker.
Faults can be injected into the combinational logic of the
CPU, register, and memory modules. The tool is demon-
strated for successful fault injection into three benchmark
applications: fast Fourier transform (FFT), Bit Matrix Mul-
tiplication, and K-Means Clustering. This tool is extended
in [45], dubbed parallel-FSEFI (P-FSEFI), to handle parallel
application execution.

In addition to the features of F-SEFI, P-FSEFI has the
following features:

• Tools to configure, launch, and manage multiple
sequential instances of F-SEFI.

• An extended, pluggable, and flexible interface for insert-
ing fault models so that a user can develop their own fault
injection techniques.

• The addition of permanent, high locality persistence, and
low locality persistence faults.

• The ability to inject faults into parallel programs running
on multiple virtual machines on the same, or different
physical hosts [45].

Considering performance, the QEMU emulation slows
down the application by about 10x, P-SEFI instrumentation
slows an additional 30x, and the virtual machine (VM) dis-
tributing across multiple nodes adds some 1.06x slowdown
on top. Overall, P-SEFI runs about 300x slower than under
no emulation on the host hardware.

In [61] the authors leveraged dynamic binary instrumenta-
tion in a virtual machine-based fault injection environment to
emulate soft errors and study the impact on the behavior of
applications by proposing Chaser, a framework that supports
two well-known virtual machines; QEMU and DECAF [62].
Chaser offers just-in-time (JIT) fault injection, the ability
to trace the fault propagation path and programmable inter-
faces that can be modified easily. The design of Chaser
is based on the P-FSEFI tool, [45] as an add-on function.
Chaser has two main components; a JIT fault injector and
a fault propagation tracer. The JIT fault injector component
injects faults into the target process using instructions that
are marked as target instructions by the tool user. The tool
then exports its fault injection capabilities as interfaces that
can be utilized by the user to define customized fault models.
The fault propagation tracer traces the propagation of faults
through a dynamic tainting technique. It leverages DECAF’s
bit-wise tainting [62] which is extended to support floating
point instruction tainting. Tainted memory access activity is
recorded by Chaser. Because instruction level tainting is not
taken into account in this approach, an appropriate amount
of fault propagation tracing completeness is sacrificed for the
sake of a little performance penalty. The authors implemented
three fault injectors described in F-SEFI [44] - a probabilis-
tic injector, a deterministic injector, and a group injector.
The tool is tested on various benchmarks from the Rodinia
benchmark suite including bfs, kmeans, and lud, Matvec, and
CLAMR.

62666 VOLUME 11, 2023



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

MH-QEMU, a memory fault injector that is memory
state-aware and implemented by extending a VM to inter-
cept memory accesses, is introduced in [47]. MH-QEMU
follows the same method as F-SEFI, [44], the only difference
between MH-QEMU and F-SEFI is that MH-QEMU focuses
on memory module faults that define memory state and mem-
ory access patterns. It has features that can be leveraged
to analyze memory access behaviors or patterns such as a
physical-to-virtual memory address mapping functionality
in memory controllers in real-time scenarios. MH-QEMU
consists of the following three modules, which are illustrated
in Fig. 1: (1) a memory-access handler (MH), a user-defined
handler function that can be registered and used as the hook
to load and store accesses to the target VM’s memory space,
(2) fault injection scheduler (FS), which manages the MM
and the MH by adhering to a scenario file that describes
the time of fault injection and configurations of MH, and
(3) memory mapper (MM), which is used to access the
VM’s memory from the host environment. The address-data
mapper (ADM) obtains data about the guest OS, including
information about processes and the memory page table.
Via an API, a user can utilize the ADM from the MH. The
target VM’s configuration script may additionally contact the
ADM to initialize additional MH-QEMU modules. With all
the functionalities of FI in place, MH-QEMU performance
evaluation shows that it is up to 3.4 times slower than a typical
native QEMU implementation. Narrowing down the moni-
tored memory region can reduce the overhead obtained [47].

FIGURE 1. MH-QEMU Architecture. ‘‘It gathers memory access patterns,
analyses them to create an appropriate fault injection plan, and applies it
to target VM memory which is done from the host to avoid side effects to
the target system’’ [47].

D-Cloud/FaultVM [46] is another fault injector that uses
QEMU for checking the reliability of the memory, hard disk,
and network controller system components. It is a software
testing environment for parallel and distributed systems lever-
aging cloud computing technology. By interpreting system
setup and test scenarios defined in XML in the D-Cloud
front-end, it enables test procedure automation employing
several cloud computing resources in a cloud computing
environment. Moreover, D-Cloud makes it possible to test
the hardware flaws by flexibly simulating hardware flaws

with FaultVM. By modifying QEMU, the fault injector of
FaultVM and the hardware are implemented at the same
layer. The fault is injected in accordance with the injection
command when it arrives at FaultVM through the network
from the D-Cloud front end.

In [48] another QEMU-based FI methodology that emu-
lates soft errors is proposed which accelerates the analysis
and debugging of complex systems and facilitates validation
of fault tolerance techniques. There are two levels of simula-
tion, the bootloader level, which damages the initialization
sequence and causes failures in the basic elements of the
system, and a system level fault injection which defines
faults injected in the operating system and is used to observe
problems in the execution of applications and hardware
management. A case study on an x-86 processor real-time
operating system (RTEMS) and benchmarks such as matrix
multiplication, sha1, and quicksort showed the vulnerability
level of general purpose registers (GPR) to faults and which
in turn can be leveraged by designers in evaluating fault
tolerance technique implementations at the software level.

Another method for abstracting various types of hardware
failure models within QEMU is proposed in [49]. It defines
a simulation environment that simulates hardware faults in
early dependability analysis of embedded software (ESW)
applications. The approach adopts a single fault analysis
using stuck-at, transient, and delay scenarios with multi-bit
faults being considered by a different fault in the system.
The approach disables the caching mechanism in QEMU and
this degrades the performance of the underlying system. Nev-
ertheless, the tool’s accuracy in injecting faults in registers
is shown to be good. This technique exhibits comparable
characteristics in simulation runs from the perspective of
dependability analysis accuracy compared to register-transfer
level (RTL) failure simulation, but it is quicker, as demon-
strated by experimental findings on bsearch, tcas, mandelbot,
and dhrystone benchmark applications [49].

A fault injection framework, called BitVaSim, which
requires a low overhead in comparison to a fault-free QEMU
execution, is described in [50]. The framework is designed
for embedded development boards powered by PowerPC
or ARM processors and has a built-in test (BIT) software
operating environment. BitVaSim operates as a simulator
which results in a smooth operation that does not affect the
underlying hardware or software systems. The reachability
of its simulated parts makes the integration of additional
fault models an easily reachable task. The framework uses
key-value pair abstractions to describe fault modes that the
simulator is utilizing to carry out its functions. Utilizing these
fault modes, it simulates the given hardware board in order
to monitor the activation and impact of these faults on the
hardware system in question focusing on the BIT system
behavior in detail. A modified version of QEMU that has
five additional modules built into it is utilized in BitVaSim.
The modeling and configuration module, the fault injector
module, themonitor module, and the feedbackmodule are the
additional modules. Due to the fault injection functionality,

VOLUME 11, 2023 62667



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

BitVaSim with the DBT exhibits a performance drop of 5%
to 7% when compared to a native QEMU environment exe-
cution performance. A similar work is also presented in [65].

The work, [51], presented FIG-QEMU (fault injection by
GDB for QEMU), an automated fault injection system that
simulates a variety of single event effects. The paper pro-
poses a hardware-implemented fault injection system based
on QEMU and evaluates the robustness of the target OS and
application software against soft errors from the CPU. When
we look at its implementation approach, this work uses the
approach of [52] to inject faults into the user-visible regis-
ters and memory units of the PowerPC750 virtual machine,
and the side effects of the faults at the application level are
evaluated. The difference between [52] and FIG-QEMU is
that FIG-QEMU can accept the source-free executable as the
input of the system, so as to inject faults without the source
code. FIG-QEMU has six main components; main controller,
fault-lib, trigger, monitor, injector, and collector. It is based
on Python extended GDB interface, so it has good perfor-
mance and portability and can run on the target platform
only with a small modification. The authors conducted a total
of 6.3 million single-bit flip fault simulation experiments,
among which 6.21% of the register faults and 3.53% of the
memory faults caused system crashes respectively. The main
drawback is that FIG-QEMU cannot be used on platforms
that do not support GDB debugging tools because it relies on
GDB.

FIGURE 2. FIG-QEMU Architecture. FIG-QEMU does FI via GDB debugger
without secondary exploration of QEMU [51].

Höller et. al presented a Fault Injection framework, FIES,
for the evaluation of software-based self-tests (SBSTs) [54]
according to the safety standard IEC 61508 [67]. This
framework is compatible with commonly used embedded
commercial off-the-shelf (COTS) processors and offers ana-
lytical feedback about the diagnostic coverage of self-tests
at the early design phases. It simulates faults in an ARM
processor’s control and execution paths and includes an
expanded fault model to mimic memory coupling problems.
The suggested approach evaluates SBSTs by hardly altering
them in order to raise the number of discovered defects.
Findings are presented as a concise list of the found flaws
and the associated diagnostic coverage, which demonstrates
the caliber of the SBST under examination. The framework
may also be utilized in the early phases of design since a
hardware prototype is not necessary for its utilization. The

framework allows for the interactive specification of auto-
matically inserted defects in XML. The authors used the
evaluation of a memory test to show the framework’s perfor-
mance and applicability.

In [63] a virtual FI framework that simulates safety-
standard aligned fault models and supports COTS software
implementations, as well as popular edge device embedded
processors is presented. The work also shows the proce-
dure for integrating the framework into various software
development stages. The framework extends the FI tool pre-
sented in [54] which is also based on QEMU. It supports
advanced memory and processor fault models that emulate
real-world fault occurrence scenarios. The tool proposes a
reliability assessment based on four steps: hardware usage
characteristics profiling, fault library creation, fault injection
and saving resulting application outputs, and interpretation
and reporting of outputs. A similar work is also presented by
Höller et.al. [64].

In [55] and [56] the authors presented a QEMU fault
injector (QEFI), which enhances service availability by
assessment of a computer system behavior in the presence of
memory faults and a method of handling exceptions caused
by disturbances in executable code. QEFI is designed as a tool
for system-wide and kernel-based FI. The chosen approach
allows the creation of a fault injection framework focused on
simulating hardware faults and testing software reactions to
them. Faults can be triggered and injected in CPU, RAM, and
peripherals system components in a user-defined probability.
Its three major parts are the fault injection control framework,
the QEMU emulator, and a fault injection control library used
as a proxy between the two other layers, responsible mainly
for communication and QEMU execution management. The
authors made modifications to TCG in QEMU which may
affect the speed of QEMU. In addition, QEFI supports FI
through GDB, and to integrate QEMU FI execution frame-
work and GDB, the support for GDB server protocol that is
already present in QEMU has been used. The protocol has
been enhanced to support not only breakpoints and watch
points but also injection points. The quality of this approach
is legitimized by the works presented in [57] where the same
real device fault injection framework was run on a real device
and an emulated one with similar results.

The work by Ferraretto and Pravadell presented an
approach for simulating hardware faults on CPU system com-
ponents [58]. Fault abstractions are used for permanent and
transient fault models that preserve the quality of software
dependability analysis. The DBT feature of QEMU is lever-
aged by this approach in order to minimize the impact on
the performance of the fault injection procedure on the emu-
lator. Faults can be injected into GPRs, instruction registers
(IR), and program status registers (PSR). The experiment has
been conducted on three benchmarks; btrees, mandelbrot, and
dhrystone. The fault injection mechanism that is developed in
this work is shown in Fig. 3.

Amarnath et al. proposed a FI framework that can be used
to emulate OS fault propagation that injects random hardware

62668 VOLUME 11, 2023



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

FIGURE 3. Simulation-based Fault Injection with QEMU Architecture. ‘‘The
approach minimizes the impact of the fault injection procedure on the
emulator performance by preserving the original DBT mechanism in
QEMU’’ [58].

FIGURE 4. Schematic overview of the FI framework proposed in [53].
‘‘The implementation dynamically reduces the translation block size to
one instruction only when injecting the fault and otherwise keeps this
speedup feature of QEMU enabled’’ [53].

faults into the CPU and measures the span these faults prop-
agate and surface as application-level side effects [53]. This
QEMU-based framework simulates bit flips in x86 general
and special purpose registers during the execution of sys-
tem calls of Linux 4.10 and classifies the injection effects
at the application level. The approach extends QEMU ver-
sion 2.9.1 [59]. It modifies a given register’s value with FI
before the intermediate DBT stage to inject a specific user or
framework-selected fault from the fault library. Using Linux
kernel test programs, the authors assessed and categorized the
consequences of soft errors inserted during the execution of
the clone, futex, mmap, mprotect, and pipe syscalls. Results
reveal that, on average, 76.3% of the injected faults are benign
and do not appear at the application level as shown by carry-
ing out 4.48 million FI simulations for various syscalls on the
x86 architecture.

In [60], the authors presented the soft error fault injection
(SEFI) framework, a software system profiling framework for
soft error vulnerability assessment. In particular, the paper
focuses on logic soft error injection. The authors used QEMU
to demonstrate themodification of emulatedmachine instruc-
tions in order to introduce hardware faults as soft errors. With
this technique, the paper shows the possibility and feasibility
of injecting soft error simulations in the logic operations of a

FIGURE 5. Distribution of surveyed works’ focus areas.

target application without impact on other applications or the
underlying operating system. SEFI operates in three steps.

1) Booting guest environment and starting FI application.
2) The intended target application’s code region is probed

by the guest OS, which then alerts the virtual machine
which code regions to monitor.

3) Application is released, allowing it to run.

The VM then monitors the system instructions running on
the given machine and supplements the ones it identifies as
crucial.

In [66], Wanner et al. designed VarEMU, a framework
for QEMU extension for assessing variability-aware software
methods. VarEMU gives system users a platform to simulate
variations in system power consumption and fault character-
istics so they can detect and adjust to these changes in the
software. Fault injections have the possibility to be carried
out before or after, or completely replace the execution of any
instruction with precise control over faults. Fault injection is
done through a guest OS system call. Faults are injected using
an imported library that can interface with system calls. The
framework is used to inject faults in register components of a
system CPU.

V. CATEGORIZATION OF QEMU-BASED FAULT INJECTION
APPROACHES
The previous section provided a general summary of the
works that leverage various features of QEMU for fault injec-
tion emulation experiments. In this section, the works are
categorized based on:

• The components that are affected by FI or tested for
reliability

• The fault modeling approach taken
• The evaluation methodology used to evaluate the perfor-
mance or functionality of the tool

A. COMPONENTS TESTED FOR RELIABILITY
When it comes to the types of components tested for reliabil-
ity or fault being injected, generally, the components can fall
into the following categories:

• CPU - Here the CPU components which include
functional units [44], logic units [45], instruction
decoders [54], and related components are tested [45],
[55].

• Memory - The memory cells such as RAM and related
parts are tested [44], [45], [46], [47], [50], [51], [54],
[55], [63].

VOLUME 11, 2023 62669



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

TABLE 2. Summary of QEMU-based FI tools and techniques.

• Registers - General purpose and special purpose regis-
ters are tested in [44], [45], [48], [49], [50], [51], [53],
[54], [58], and [66].

In addition to these components; instructions, network inter-
faces, controllers for the hard disk, USB, and network and
block devices are tested.

B. FAULT MODELING APPROACH
Although the main aim of all the tools discussed here is to
induce faults via FI, they differ in the faults or fault models
they have taken. These can be broadly classified as

• Transient [39], [48], [49], [53], [58], [63]
• Intermittent [48], [58], [63]
• Permanent [45], [48], [49], [50], [54], [58], [63], [66]
faults.

There are faults such as packet drop and packet modi-
fication [55], memory-state-aware faults [47], and faulty
instructions [44] used by different tools.

C. EVALUATION METHODOLOGY
The evaluation methodologies used in the FI tools or frame-
works basically serve two purposes; evaluate the functionality

of the tool and evaluate the performance characteristics of
the same. These methodologies generally fall into two main
categories. These are:

• Standard benchmark applications used by academia and
industry and available free of cost or commercially
such as NAS Parallel benchmark suite [68], MiBench
benchmark suite [69].

• In-house or industry-specific benchmarks developed by
the tool authors themselves or acquired from a third
party.

Table 2 shows the type of components tested and the
fault modeling approaches taken by the tools discussed in
Section IV. The tools or approaches surveyed span a range
in the type of components that they evaluate and the method-
ology they employ. Hence, a user can select from those
tools based on the specific application requirements. In using
the tools, if there is no need for a specific need for func-
tionality, using the original tools is recommended as there
are additional overheads incurred by the modified tools. For
instance, [63] is an extension of [54] with additional over-
head and support for advanced memory and processor fault
models. Similarly, [61] is an add-on functionality on [44]

62670 VOLUME 11, 2023



Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

with an additional overhead of about 10X of normal QEMU
environment and JIT fault injection added functionality. If an
application is a parallel or multi-thread application, [45] is a
choice for physical fault emulation.

Fig. 5 shows the distributions of fault locations and fault
models in the surveyedworks. As can be seen, the recent trend
in QEMU-based FI tools and techniques is on register system
component fault injections and using bit flips as prominent
fault models.

VI. FUTURE RESEARCH DIRECTIONS
Although the tools or frameworks developed so far went
a long way in attaining this goal, there are still potential
areas to enhance these tools or develop new tools with the
same purpose but using more robust approaches. These areas
include:

• Parallel applications’ reliability analysis: There are a
few tools that are used to assess the reliability of parallel
applications and high-performance computing (HPC).
Of the tools developed so far, only P-FSEFI [45] uses
QEMU-based FI on parallel applications. As parallel
execution of applications is becoming dominant, devis-
ing ways to assess their reliability leveraging QEMU
features can be one huge research direction.

• Reliability analysis of hardware accelerators: Cur-
rently, hardware accelerators such as FPGAs are in
widespread use for performance enhancement and are
part of major projects and data warehouses. Hence,
reliability analysis of these accelerators and their com-
ponents using QEMU-based FI is also one area to
consider for further research.

• Performance overhead improvement: Although the
discussed tools meet the main criteria of FI for reliability
analysis, most of them cause severe performance degra-
dation on the systems they are deployed on. For instance,
P-FSEFI runs at about 30X slower than QEMU run [45]
and SASSIFI [80] showed a 1.02× to 166× slowdown
at the application level and a 5.2× to 488× at the kernel
level. Thus one major area to focus on is developing
tools with the same purpose and with less performance
overhead or modifying existing tools by enhancing their
operational performance and reducing overheads.

• Comparison with approaches at other layers: There
are FI techniques at other layers of a system and a
comparison study to performance metrics for comparing
fault handling at the software or hardware level can be
one area of focus.

VII. SUMMARY
This work is a survey of virtualization-based fault injection
tools and techniques focusing on those based on the QEMU
platform. As can be seen from the discussion on the tools or
frameworks, there are various approaches to attain the goal
of reliability analysis using QEMU-based FI. The works also
show the progress in performance and other metrics in using
QEMU for FI-based reliability analysis.We also tried to point

out future potential areas of research in expanding the use and
improving the performance of these techniques.

REFERENCES
[1] N. Seifert, X. Zhu, and L. W. Massengill, ‘‘Impact of scaling on soft-error

rates in commercial microprocessors,’’ IEEE Trans. Nucl. Sci., vol. 49,
no. 6, pp. 3100–3106, Dec. 2002.

[2] N. Seifert, B. Gill, K. Foley, and P. Relangi, ‘‘Multi-cell upset probabilities
of 45 nm high-k + metal gate SRAM devices in terrestrial and space envi-
ronments,’’ in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2008, pp. 181–186.

[3] R. C. Baumann, ‘‘Radiation-induced soft errors in advanced semiconductor
technologies,’’ IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 305–316,
Sep. 2005, doi: 10.1109/TDMR.2005.853449.

[4] G. Hubert and L. Artola, ‘‘Single-event transient modeling in a 65-nm bulk
CMOS technology based on multi-physical approach and electrical simu-
lations,’’ IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4421–4429, Dec. 2013,
doi: 10.1109/TNS.2013.2287299.

[5] G. Hubert, L. Artola, and D. Regis, ‘‘Impact of scaling on the soft
error sensitivity of bulk, FDSOI and FinFET technologies due to atmo-
spheric radiation,’’ Integration, vol. 50, pp. 39–47, Jun. 2015, doi:
10.1016/j.vlsi.2015.01.003.

[6] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, ‘‘Fault
simulation and emulation tools to augment radiation-hardness assurance
testing,’’ IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2119–2142, Jun. 2013.

[7] L. Zussa, J. Dutertre, J. Clediere, and B. Robisson, ‘‘Analysis of the fault
injection mechanism related to negative and positive power supply glitches
using an on-chip voltmeter,’’ in Proc. IEEE Int. Symp. Hardware-Oriented
Secur. Trust (HOST), Arlington, VA, USA, May 2014, pp. 130–135.

[8] C. Bozzato, R. Focardi, and F. Palmarini, ‘‘Shaping the glitch: Optimizing
voltage fault injection attacks,’’ IACR Trans. Cryptograph. Hardw. Embed-
ded Syst., vol. 2019, no. 2, pp. 199–224, Feb. 2019.

[9] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D. Garcia,
‘‘VoltPillager: Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface,’’ in Proc. 30th USENIX
Secur. Symp. (USENIX Security), 2021, pp. 699–716.

[10] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, ‘‘One glitch
to rule them all: Fault injection attacks against AMD’s secure encrypted
virtualization,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 2875–2889.

[11] K. Matsuda, S. Tada, M. Nagata, Y. Komano, Y. Li, T. Sugawara, and
M. Iwamoto, ‘‘An IC-level countermeasure against laser fault injection
attack by information leakage sensing based on laser-induced opto-
electric bulk current density,’’ Jpn. J. Appl. Phys., vol. 59, Feb. 2019,
Art. no. SGGL02, doi: 10.7567/1347-4065/ab65d3.

[12] J. Breier and X. Hou, ‘‘How practical are fault injection attacks,
really?’’ IEEE Access, vol. 10, pp. 113122–113130, 2022, doi:
10.1109/ACCESS.2022.3217212.

[13] J. Breier and C. Chen, ‘‘On determining optimal parameters for testing
devices against laser fault attacks,’’ in Proc. Int. Symp. Integr. Circuits
(ISIC), Dec. 2016, pp. 1–4.

[14] Y. Hayashi, N. Homma, T. Sugawara, T. Mizuki, T. Aoki, and H. Sone,
‘‘Non-invasive EMI-based fault injection attack against cryptographic
modules,’’ in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 2011,
pp. 763–767.

[15] C. O’Flynn, ‘‘MINimum failure: EMFI attacks against USB stacks,’’ in
Proc. 13thUSENIXWorkshopOffensive Technol. (WOOT), 2019, pp. 1–10.

[16] M. Seaborn and T. Dullien, ‘‘Exploiting the DRAM rowhammer bug to
gain kernel privileges: How to cause and exploit single bit errors,’’ in Proc.
BlackHat, 2015, pp. 1–71.

[17] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, ‘‘Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,’’ in Proc. ACM/IEEE
41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 361–372.

[18] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
‘‘Reverse engineering Intel DRAM addressing and exploitation,’’ 2015,
arXiv:1511.08756.

[19] A. Tang, S. Sethumadhavan, and S. Stolfo, ‘‘CLKSCREW: Exposing the
perils of security-oblivious energy management,’’ in Proc. 26th USENIX
Secur. Symp. (USENIX Security). Vancouver, BC, Canada: USENIX Asso-
ciation, 2017, pp. 1057–1074.

VOLUME 11, 2023 62671

http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/TNS.2013.2287299
http://dx.doi.org/10.1016/j.vlsi.2015.01.003
http://dx.doi.org/10.7567/1347-4065/ab65d3
http://dx.doi.org/10.1109/ACCESS.2022.3217212


Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

[20] H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, ‘‘Chip-level soft
error estimation method,’’ IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
pp. 365–381, Sep. 2005, doi: 10.1109/TDMR.2005.858334.

[21] S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA,
USA: Morgan Kaufmann, 2008.

[22] K. Rozier, Dependability Management—Part 1: Dependability Manage-
ment Systems, International Electrotechnical Commission, IEC Stan-
dard EN 60300-1:2003, 2003.

[23] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, ‘‘RIFLE: A general
purpose pin-level fault injector,’’ in Proc. 1st Eur. Dependable Comput.
Conf. (EDCC-1). Berlin, Germany: Springer-Verlag, 1994, pp. 199–216.

[24] G. S. Choi and R. K. Iyer, ‘‘FOCUS:An experimental environment for fault
sensitivity analysis,’’ IEEE Trans. Comput., vol. 41, no. 12, pp. 1515–1526,
1992, doi: 10.1109/12.214660.

[25] J. Arlat, ‘‘Validation de la Sûreté de fonctionnement par injection de fautes.
Méthode mise en OEuvre et application,’’ Ph.D. thesis, LAAS-CNRS,
Toulouse, France, Dec. 1990.

[26] U. Gunneflo, J. Karlsson, and J. Torin, ‘‘Evaluation of error detection
schemes using fault injection by heavy-ion radiation,’’ in Proc. 19th Int.
Symp. Fault-Tolerant Computing. Dig. Papers, Los Alamitos, CA, USA,
1989, pp. 340–347.

[27] J. Karlsson, J. Arlat, and G. Leber, ‘‘Application of three physical fault
injection techniques to the experimental assessment of the MARS archi-
tecture,’’ in Proc. 5th Annu. IEEE Int. Working Conf. Dependable Comput.
Crit. Appl. Los Alamitos, CA, USA: IEEE CS Press, 1995, pp. 150–161.

[28] M. Kooli and G. Di Natale, ‘‘A survey on simulation-based fault injec-
tion tools for complex systems,’’ in Proc. 9th IEEE Int. Conf. Design
Technol. Integr. Syst. Nanosc. Era (DTIS), May 2014, pp. 1–6, doi:
10.1109/DTIS.2014.6850649.

[29] W. Mansour and R. Velazco, ‘‘An automated SEU fault-injection method
and tool for HDL-based designs,’’ IEEE Trans. Nucl. Sci., vol. 60, no. 4,
pp. 2728–2733, Aug. 2013.

[30] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. Entrena,
‘‘Autonomous fault emulation: A new FPGA-based acceleration system for
hardness evaluation,’’ IEEE Trans. Nucl. Sci., vol. 54, no. 1, pp. 252–261,
Feb. 2007.

[31] M. A. Aguirre, D. Merodio, J. N. Tombs, F. Munoz, V. Baena, H. Guzman,
J. Napoles, A. Torralba, A. Fernandez-Leon, and F. Tortosa-Lopez, ‘‘Selec-
tive protection analysis using a SEU emulator: Testing protocol and case
study over the Leon2 processor,’’ IEEE Trans. Nucl. Sci., vol. 54, no. 4,
pp. 951–956, Aug. 2007.

[32] J. M. Mogollon, H. Guzmán-Miranda, J. Nápoles, J. Barrientos, and
M.A.Aguirre, ‘‘FTUNSHADES2:A novel platform for early evaluation of
robustness against SEE,’’ in Proc. 12th Eur. Conf. Radiat. Effects Compon.
Syst., Sep. 2011, pp. 169–174.

[33] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, ‘‘FERRARI: A
tool for the validation of system dependability properties,’’ in Proc. 22nd
Annu. Int. Symp. Fault-Tolerant Comput. Los Alamitos, CA, USA: IEEE
CS Press, 1992, pp. 336–344.

[34] D. T. Stott, Z. Kalbarczyk, and R. K. Iyer ‘‘Using NFTAPE for rapid
development of automated fault injection experiments,’’ Center Reliable
High-Perform. Comput., Univ. Illinois Urbana Champaign, Champaign,
IL, USA, Res. Rep., 1999.

[35] J. Carreira, H. Madeira, and J. G. Silva, ‘‘Xception: A technique for
the experimental evaluation of dependability in modern computers,’’
IEEE Trans. Softw. Eng., vol. 24, no. 2, pp. 125–136, Feb. 1998, doi:
10.1109/32.666826.

[36] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, ‘‘A survey on fault
injection methods of digital integrated circuits,’’ Integration, vol. 71,
pp. 154–163, Mar. 2020, doi: 10.1016/j.vlsi.2019.11.006.

[37] U. Kretzschmar, A. Astarloa, J. Jiménez, M. Garay, and J. D. Ser, ‘‘Fast
and accurate single bit error injection into SRAM based FPGAs,’’ in Proc.
22nd Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 675–678.

[38] QEMU. Accessed: Nov. 5, 2022. [Online]. Available: http://wiki.
QEMU.org

[39] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and
O. Spinczyk, ‘‘FAIL: An open and versatile fault-injection framework
for the assessment of software-implemented hardware fault tolerance,’’
in Proc. 11th Eur. Dependable Comput. Conf. (EDCC), Sep. 2015,
pp. 245–255.

[40] Ó. Ruano, F. García-Herrero, L. A. Aranda, A. Sánchez-Macián, L.
Rodriguez, and J. A. Maestro, ‘‘Fault injection emulation for systems in
FPGAs: Tools, techniques and methodology, a tutorial,’’ Sensors, vol. 21,
no. 4, p. 1392, Feb. 2021, doi: 10.3390/s21041392.

[41] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson, ‘‘Fault injection
into VHDL models: The MEFISTO tool,’’ in Predictably Depend-
able Computing Systems (ESPRIT Basic Research Series), B. Randell,
J. C. Laprie, H. Kopetz, and B. Littlewood, Eds. Berlin, Germany: Springer,
1995.

[42] V. Sieh, O. Tschache, and F. Balbach, ‘‘VERIFY: Evaluation of reliability
using VHDL-models with embedded fault descriptions,’’ in Proc. IEEE
27th Int. Symp. Fault Tolerant Comput., Seattle, WA, USA, Jun. 1997,
pp. 32–36.

[43] L. Berrojo, I. Gonzalez, F. Corno, M. S. Reorda, G. Squillero, L.
Entrena, and C. Lopez, ‘‘New techniques for speeding-up fault-injection
campaigns,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib., 2002,
pp. 847–852.

[44] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, ‘‘F-SEFI: A
fine-grained soft error fault injection tool for profiling application vulnera-
bility,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014,
pp. 1245–1254.

[45] Q. Guan, N. Bebardeleben, P. Wu, S. Eidenbenz, S. Blanchard, L. Monroe,
E. Baseman, and L. Tan, ‘‘Design, use, and evaluation of P-FSEFI: A
parallel soft error fault injection framework for emulating soft errors
in parallel applications,’’ in Proc. SPIE9th EAI Int. Conf. Simul. Tools
Techn. (SIMUTOOLS). Brussels, Belgium: Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering, 2016,
pp. 9–17.

[46] T. Hanawa, H. Koizumi, T. Banzai, M. Sato, S. Miura, T. Ishii, and
H. Takamizawa, ‘‘Customizing virtual machine with fault injector by
integrating with SpecC device model for a software testing environment
D-cloud,’’ in Proc. IEEE 16th Pacific Rim Int. Symp. Dependable Comput.,
Dec. 2010, pp. 47–54, doi: 10.1109/PRDC.2010.37.

[47] H. Jitsumoto, Y. Kobayashi, A. Nomura, and S. Matsuoka, ‘‘MH-QEMU:
Memory-state-aware fault injection platform,’’ in Supercomputing Fron-
tiers, D. Abramson and B. de Supinski, Eds. Cham, Switzerland: Springer,
2019.

[48] F. de Aguiar Geissler, F. Lima Kastensmidt, and J. Pereira Souza, ‘‘Soft
error injection methodology based on QEMU software platform,’’ in Proc.
IEEE LATW, Mar. 2014, pp. 1–5.

[49] G. Di Guglielmo, D. Ferraretto, F. Fummi, and G. Pravadelli, ‘‘Efficient
fault simulation through dynamic binary translation for dependability anal-
ysis of embedded software,’’ in Proc. 18th IEEE Eur. Test Symp. (ETS),
May 2013, pp. 1–6.

[50] Y. Li, P. Xu, and H. Wan, ‘‘A fault injection system based on QEMU
simulator and designed for BIT software testing,’’ in Proc. 2nd Int. Symp.
Comput., Commun., Control Autom., 2013, pp. 580–587.

[51] J. An, H. You, F. Xie, Y. Yang, and J. Sun, ‘‘FIG-QEMU: A fault
inject platform supporting full system simulation,’’ in Proc. 7th Int.
Conf. Dependable Syst. Their Appl. (DSA), Nov. 2020, pp. 275–278, doi:
10.1109/DSA51864.2020.00049.

[52] N. Tian, D. Saab, and J. A. Abraham, ‘‘ESIFT: Efficient system for error
injection,’’ inProc. IEEE 24th Int. Symp. On-Line Test. Robust Syst. Design
(IOLTS), Jul. 2018, pp. 201–206, doi: 10.1109/IOLTS.2018.8474160.

[53] R. Amarnath, S. N. Bhat, P. Munk, and E. Thaden, ‘‘A fault injec-
tion approach to evaluate soft-error dependability of system calls,’’ in
Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Oct. 2018,
pp. 71–76, doi: 10.1109/ISSREW.2018.00-28.

[54] A. Höller, G. Schönfelder, N. Kajtazovic, T. Rauter, and C. Kreiner, ‘‘FIES:
A fault injection framework for the evaluation of self-tests for COTS-
based safety-critical systems,’’ in Proc. 15th Int. Microprocessor Test
Verification Workshop, Dec. 2014, pp. 105–110, doi: 10.1109/MTV.2014.
27.

[55] S. Chylek, ‘‘Emulation-based software reliability evaluation and optimiza-
tion,’’ Przeglad Elektrotechniczny, vol. 90, pp. 121–124, Feb. 2014, doi:
10.12915/pe.2014.02.32.

[56] S. Chylek andM. Goliszewski, ‘‘QEMU-based fault injection framework,’’
Studia Inform., vol. 33, pp. 25–42, Jan. 2012.

[57] M. Murciano and M. Violante, ‘‘Validating the dependability of embedded
systems through fault injection by means of loadable kernel modules,’’
in Proc. IEEE Int. High Level Design Validation Test Workshop, 2007,
pp. 179–186.

[58] D. Ferraretto and G. Pravadelli, ‘‘Simulation-based fault injection with
QEMU for speeding-up dependability analysis of embedded software,’’
J. Electron. Test., vol. 32, no. 1, pp. 43–57, Feb. 2016.

[59] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ inProc. Annu.
Conf. USENIX Annu. Tech. Conf., 2005, p. 41.

62672 VOLUME 11, 2023

http://dx.doi.org/10.1109/TDMR.2005.858334
http://dx.doi.org/10.1109/12.214660
http://dx.doi.org/10.1109/DTIS.2014.6850649
http://dx.doi.org/10.1109/32.666826
http://dx.doi.org/10.1016/j.vlsi.2019.11.006
http://dx.doi.org/10.3390/s21041392
http://dx.doi.org/10.1109/PRDC.2010.37
http://dx.doi.org/10.1109/DSA51864.2020.00049
http://dx.doi.org/10.1109/IOLTS.2018.8474160
http://dx.doi.org/10.1109/ISSREW.2018.00-28
http://dx.doi.org/10.1109/MTV.2014.27
http://dx.doi.org/10.1109/MTV.2014.27
http://dx.doi.org/10.12915/pe.2014.02.32


Y. B. Bekele et al.: Survey of QEMU-Based Fault Injection Tools & Techniques for Emulating Physical Faults

[60] N. DeBardeleben, S. Blanchard, Q. Guan, Z. Zhang, and S. Fu, ‘‘Experi-
mental framework for injecting logic errors in a virtual machine to profile
applications for soft error resilience,’’ in Proc. Euro-Par Workshops, 2011,
pp. 282–291.

[61] Q. Guan, X. Hu, T. Grove, B. Fang, H. Jiang, H. Yin, and N. DeBadeleben,
‘‘Chaser: An enhanced fault injection tool for tracing soft errors
in MPI applications,’’ in Proc. 50th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2020, pp. 355–363, doi:
10.1109/DSN48063.2020.00051.

[62] A. Davanian, Z. Qi, Y. Qu, and H. Yin, ‘‘DECAF++: Elastic whole-system
dynamic taint analysis,’’ in Proc. 22nd Int. Symp. Res. Attacks, Intrusions
Defenses (RAID), 2019, pp. 1–15.

[63] A. Höller, G. Macher, T. Rauter, J. Iber, and C. Kreiner, ‘‘A virtual fault
injection framework for reliability-aware software development,’’ in Proc.
IEEE Int. Conf. Dependable Syst. Netw. Workshops, Jun. 2015, pp. 69–74,
doi: 10.1109/DSN-W.2015.16.

[64] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, ‘‘QEMU-based fault
injection for a system-level analysis of software countermeasures against
fault attacks,’’ in Proc. Euromicro Conf. Digit. Syst. Design, Aug. 2015,
pp. 530–533, doi: 10.1109/DSD.2015.79.

[65] J. Xu and P. Xu, ‘‘The research of memory fault simulation and
fault injection method for BIT software test,’’ in Proc. 2nd Int. Conf.
Instrum., Meas., Comput., Commun. Control, Dec. 2012, pp. 718–722, doi:
10.1109/IMCCC.2012.174.

[66] L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava, ‘‘VarEMU:
An emulation testbed for variability-aware software,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2013, pp. 1–10,
doi: 10.1109/CODES-ISSS.2013.6659014.

[67] Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems, document IEC/EN 61508, 2002.

[68] NASA. NAS Parallel Benchmarks. Accessed: Nov. 7, 2022. [Online].
Available: http://www.nas.nasa.gov/Software/NPB

[69] M. R. Guthaus and J. S. Ringenberg, ‘‘MiBench: A free, commercially
representative embedded benchmark suite,’’ in Proc. 4th Annu. IEEE Int.
Workshop Workload Characterization (WWC), Dec. 2001, pp. 3–4.

[70] (2001).DBench—Dependability Benchmarking (Project IST-2000-25425).
[Online]. Available: http://www.laas.fr/DBench/

[71] S. Miura, T. Hanawa, T. Yonemoto, T. Boku, and M. Sato, ‘‘RI2N/DRV:
Multi-link ethernet for high-bandwidth and fault-tolerant network on PC
clusters,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process., May 2009,
pp. 1–8.

[72] RTEMS Application. Accessed: Nov. 5, 2022. [Online]. Available:
http://www.rtems.com

[73] S Artifact Infrastructure Repository. (2012). Traffic-Collision-Avoidance
System (TCAS). [Online]. Available: http://sir.unl.edu

[74] B. Branner, ‘‘The Mandelbrot set,’’ in Proc. Symp. Appl. Math., vol. 39,
1989, pp. 75–105.

[75] R. P. Weicker, ‘‘Dhrystone: A synthetic systems programming bench-
mark,’’ Commun. ACM, vol. 27, no. 10, pp. 1013–1030, Oct. 1984.

[76] MPI Version of Matrix-Vector Product Computation. Accessed:
Dec. 2, 2022. [Online]. Available: https://people.sc.fsu.edu/~jburkardt/c_
src/mpi/matvec_mpi.c

[77] Cell-Based Adaptive Mesh Refinement. [Online]. Available: https://github.
com/losalamos/CLAMR

[78] The Rodinia Benchmark Suite. Accessed: Nov. 10, 2022. [Online]. Avail-
able: https://github.com/pathscale/rodinia/

[79] M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann, ‘‘dOSEK: The
design and implementation of a dependability-oriented static embedded
kernel,’’ in Proc. 21st IEEE Real-Time Embedded Technol. Appl. (RTAS),
Los Alamitos, CA, USA: IEEE Computer Society Press, Apr. 2015,
pp. 259–270.

[80] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
‘‘SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), Apr. 2017, pp. 249–258, doi: 10.1109/ISPASS.2017.7975296.

YOHANNES B. BEKELE (Graduate Student
Member, IEEE) received the B.S. degree in
electrical engineering from Arba Minch Univer-
sity, Ethiopia, in 2007, and the M.S. degree
in telecommunication networks engineering from
Addis Ababa University, Ethiopia, in 2018. He is
currently pursuing the Ph.D. degree with North
Carolina Agricultural and Technical State Univer-
sity (NCA&T).

Since 2019, he has been a Graduate Research
Assistant with the Automated Design for Emerging Processing Technologies
(ADEPT) Laboratory, NCA&T, working on his research toward his Ph.D.
dissertation. His research interests include microarchitectural and architec-
tural reliability evaluation, hardware security and its relations with reliability,
and microkernel evaluation methodologies.

DANIEL B. LIMBRICK (Senior Member, IEEE)
received the B.S. degree in electrical engineering
from Texas A&M and the M.S. and Ph.D. degrees
from Vanderbilt University.

He is currently an Associate Professor with
the Electrical and Computer Engineering Depart-
ment, North Carolina Agricultural and Technical
State University (NCA&T). He is a Postdoctoral
Fellow with the Georgia Institute of Technology,
he researched methods to improve routing con-

gestion in monolithic 3D integrated circuits with Dr. Sung Kyu Lim. As a
doctoral student, he was a member of the Radiation Effects and Reliability
(RER) Group and the Security And Fault Tolerance (SAF-T) Research
Group, where his research was conducted under the advisement of Dr.
William H. Robinson. He leads the Automated Design for Emerging Pro-
cessing Technologies (ADEPT) Laboratory, NC A&T, where he researches
ways to improve the reliability and scalability of integrated circuits through
logic and physical synthesis. His research interests include electronic design
automation, post-CMOS technologies, computer architecture, lab-on-a-chip,
and the reliability of microelectronics.

JOHN C. KELLY (Member, IEEE) received the
Ph.D. degree in electrical engineering from the
University of Delaware.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, North Carolina Agricultural and Technical
State University (NCA&T). His research inter-
ests include hardware security in cyber-physical
systems and embedded systems security. He con-
tributes to research on engineering education,

enhanced retention of underrepresented minorities in engineering, and
hands-on learning techniques.

VOLUME 11, 2023 62673

http://dx.doi.org/10.1109/DSN48063.2020.00051
http://dx.doi.org/10.1109/DSN-W.2015.16
http://dx.doi.org/10.1109/DSD.2015.79
http://dx.doi.org/10.1109/IMCCC.2012.174
http://dx.doi.org/10.1109/CODES-ISSS.2013.6659014
http://dx.doi.org/10.1109/ISPASS.2017.7975296

