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ABSTRACT Accurately determining the magnetohydrodynamic (MHD) equilibrium is fundamentally
important in controlling and stabilizing fusion plasmas. Development of reliable methods for equilibrium
reconstruction is therefore crucial to advancing the fusion plasma research. However, since the dynamics
of plasma phenomena are highly nonlinear and highly complicated dynamics, it is difficult to develop
their rigorous mathematical model. We already proposed a method of equilibrium reconstruction for fusion
plasmas based on data assimilation. In the method the problem is formulated as a parameter optimization and
a solution by the sensitivity equation method is proposed. In this paper, we propose a solution of equilibrium
reconstruction for fusion plasmas by the adjoint method for the purpose of reducing computation time.
In order to ensure the applicability of the adjoint method to a wide class of fusion plasmas, the problem
formulation and derivation of the reconstruction algorithm based on the adjoint method are performed in
generic form. Furthermore, we implement the proposed method as equilibrium reconstruction algorithms
applicable to axisymmetric toroidal plasmas, typical examples of which are tokamaks and reversed field
pinches (RFPs). Finally, the proposed method is applied to a real RFP experiment, and it is shown that the
proposed method has the capability of reconstructing the equilibrium with sufficient accuracy and dramatic
reduction of computation time compared with the existing methods.

INDEX TERMS Fusion plasma, equilibrium reconstruction, data assimilation, adjoint method.

I. INTRODUCTION
In view of the recent rapid progress of global warming, it has
become an urgent need to develop suitable energy sources
with zero carbon dioxide emission. Nuclear fusion energy is
one of the candidates for such energy sources [1], [2], and
development of nuclear fusion reactor has been in progress
to realize electric energy production. ITER (‘‘The Way’’
in Latin) tokamak is under construction as an international
collaboration program, whose initial fusion experiment is
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scheduled to start in 2035 [3]. Under these circumstances,
developments of reliable methods of plasma modeling, anal-
ysis, design, and simulation are becoming urgent issues to
predict the performance of the produced fusion plasmas,
to establish control methods, and to develop operation sce-
narios. However, plasma phenomena include a wide variety
of physical phenomena over a very wide range of time
and space scales, and they have complicated nonlinearities.
Therefore, rigorous theoretical treatment of plasma phenom-
ena is extremely difficult. Because of these difficulties, many
problems remain to be solved and one of them is the problem
of reconstructing the equilibrium state of the plasma. This
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problem is an inverse problem of determining the equilibrium
state of plasma under given conditions, and is fundamental
to the development of control methods to maintain plasma
stability. In this paper we deal with the equilibrium recon-
struction problem of magnetic fusion plasmas.

In magnetic fusion plasmas, when there exist magnetic
surfaces, the equilibrium state is modeled by some par-
tial differential equations with respect to some magnetic
quantities such as flux functions, and the equilibrium state
can be obtained by solving them given boundary condi-
tions [4], [5], [6]. However, the actual magnetic fusion plasma
contains so many unknown elements and the boundary con-
ditions are so complex that it is almost impossible to develop
its rigid mathematical model, which makes it extremely
difficult to obtain the equilibrium state with necessary accu-
racy. In such cases, measurement data obtained from sensors
equipped with the plasma device are used to solve the partial
differential equation representing the equilibrium state in
order to reconstruct the equilibrium state of the plasma.

Meanwhile, for simulation and estimation problems of
large and complex systems, it is often not possible to obtain
a rigid mathematical model of target systems, and in such
cases, research on data assimilation, which supplements
the simulation with data obtained from equipped devices
such as sensors, is being studied. In the last decades, data
assimilation has attracted much attention especially in sim-
ulating and estimating large-scale complex systems. There
have been several methods and algorithms developed, and
a lot of efforts have been made for applying them to solv-
ing inverse problems in various fields from environmental
sciences, atmospheric sciences, geosciences, and biology to
human and social sciences [7], [8], [9], [10], [11]. The pur-
pose of this paper is to develop a method for reconstructing
the equilibrium state of magnetic fusion plasmas based on
data assimilation.

In axisymmetric toroidal plasmas, typical examples of
which are the tokamak and reversed field pinch (RFP) plas-
mas, the equilibrium is modeled by a partial differential
equation with respect to the poloidal flux function [4], [5].
In equilibrium reconstruction methods for tokamak plas-
mas, the unknown parts can be parametrized by some
linear functions with respect to unknown parameters, which
makes it easier to seek for values of those parameters that
best reproduce the experimental observations. This type
of parametrization has been widely used in equilibrium
reconstruction for tokamak plasmas with so many publi-
cations [12], [13], [14], [15], [16], [17], [18], [19], [20].
Further improvements of the existing reconstruction methods
are in progress, for example, by investigating appropriate-
ness of the parametrization [21], and/or by elaboration on
modeling the complicated boundary conditions [22]. On the
other hand, in the present equilibrium reconstruction methods
for RFP plasmas, parametrization of the unknown parts is
somewhat different from that for tokamaks [23], [24] mainly
because of the different nature of the equilibrium; the RFP

equilibrium is sustained by small-scale fluctuations around
a time-averaged equilibrium state [25], [26]. It is therefore
important for RFP equilibrium reconstruction to develop
appropriate parametrization of the unknown parts.

As mentioned earlier, the studies on data assimilation are
being conducted in a variety of fields and it is necessary to
develop new methods on data assimilation for the specific
problems of each field. For the problem of equilibrium recon-
struction of fusion plasma, we have presented its problem
formulation as data assimilation and proposed a new method
to solve the problem [23]. In the proposed method the recon-
struction problem is formulated as an optimization problem
and the sensitivity equation is derived to solve it. In this
paper, we propose a method for equilibrium reconstruction
based on data assimilation by deriving the adjoint equation
and developing an algorithm, in order to reduce computation
time much more than that of our previous work [23]. The
adjoint method has attracted much attention in data assimi-
lation since the inverse problem is usually formulated as an
optimization problem. Features of the proposed method are
as follows. (i) In order to emphasize the applicability of the
proposed method to a wide class of magnetic fusion plasmas
including tokamak and RFP, the mathematical formulation is
performed in generic form, not specifying the model partial
differential operator in the model equation. In particular, the
effect of the magnetic axis is taken into account in mathe-
matical formulation both in the original model equation and
the adjoint equation. (ii) An adjoint operator is derived for
axisymmetric configuration, and an algorithm for equilib-
rium reconstruction is developed for axisymmetric toroidal
plasmas. Since the model partial differential equation for
axisymmetric plasmas is common to the tokamak and RFP,
the developed algorithm is also applicable to both of these
plasmas.

The proposed method for reconstruction is applied to a
real RFP plasma in order to evaluate the proposed method
by quantitatively comparing the reconstruction results with
those in our previous publication [23], and conducted two
experiments. In the first experiment, in order to evaluate
the accuracy of the proposed method, the numerical exper-
iment is performed in which the algorithm is applied to
simulated numerical data. It is confirmed that the proposed
method provides the reconstructed results with the same
accuracy as that in our previous method, with much small
amount of computation time. In the second experiment the
algorithm is applied to the real experimental data obtained
in an RFP experimental device (REversed field Pinch of
Low-Aspect-ratio eXperiment (RELAX)) [27] developed at
Kyoto Institute of Technology. It is shown that the proposed
method makes it possible to reconstruct the equilibrium state
of plasma appropriately and quite efficiently.

The rest of the paper is organized as follows. In section II,
the problem of equilibrium reconstruction is formulated in
generic form. In section III, a reconstruction algorithm by
adjoint method is proposed. In section IV, the proposed
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reconstruction method is applied to axisymmetric toroidal
plasmas by deriving the adjoint equation. In section V, the
proposed algorithm is applied to a real RFP experiment.
Conclusion of the present work is given in section VI.

II. PROBLEM FORMULATION of EQUILIBRIUM
RECONSTRUCTION AS DATA ASSIMILATION
In this section, we formulate the equilibrium reconstruction
problem as data assimilation for magnetic fusion plasma.
In the previous paper, we considered a system described
by the following partial differential equation and associated
boundary condition in the three-dimensional space R3 [23].

Lkψk (x) = f ok (x, ψ1(x), ψ2(x), · · · , ψK (x)),

x ∈ D ⊂ R3, k = 1, 2, · · · ,K (1)

where ψk ∈ R is the scalar quantity characterizing the equi-
librium state of the fusion plasma, Lk is a partial differential
operator with respect to the spatial variable x including high
order partial derivatives.D

(
⊂ R3) is an open region in which

the scalar functionψk (x) is defined. f ok is a nonlinear function
(f ok : R3

× R× · · · × R︸ ︷︷ ︸
K

→ R). For an axisymmetric toroidal

plasma such as standard tokamak or RFP, the equilibrium
is described by a single partial differential equation (K =

1). For a non-axisymmetric plasma, if the magnetic surfaces
exist, the plasma equilibrium can be described by a set of
nonlinear partial differential equations with respect to three
scalar functions (K = 3) [6].
In this paper we set K = 1 for simplicity. We start with the

following equation to describe the equilibrium

Lψ(x) = f o(x, ψ(x)), x ∈ D ⊂ R3. (2)

The proposed method, which will be explained in the follow-
ing sections, can be extended to the system described by (1)
where K > 1 straightforwardly.

The boundary condition of the partial differential equation
(2) is given as follows.

f Bo(ψ(x)) = 0, x ∈ ∂D, (3)

where ∂D is the boundary of the region D and f Bo is a non-
linear function

(
f Bo : R → R

)
. Since the operator L includes

high order derivatives with respect to spatial variable x, the
boundary condition could include the derivatives of ψ . For
simplicity, we consider that f Bo is a function of only ψ(x).
It should be noted that it is easy to extend our discussions
in the case that the system (2) has such general boundary
conditions.

The equilibrium reconstruction problem is to obtain the
solution of the partial differential equation (2) with the
boundary condition (3) for given functions f o and f Bo. How-
ever it is almost impossible to give these functions exactly
in actual magnetic fusion plasma. We introduce the con-
cept of data assimilation to the equilibrium reconstruction
problem. By using the information obtained from several

sensors attached to the plasma device, the problem is formu-
lated as follows. Introducing an adjustable vector parameter,
we parameterize uncertainties and unknowns in f o and f Bo.
Let p = [p1, · · · , pNp ]

t be the adjustable parameter vector
whose number of elements is Np. We call pi(i = 1, · · · ,Np)
the free parameters. By the parametrization, (2) and (3)
become:

Lψ(x, p) = f (x, ψ(x, p), ψ(xex), p) x ∈ D ⊂ R3. (4)

where xex ∈ D is a point where the gradient of ψ takes a
known value c as follows,

∂ψ

∂x
(xex) = c, (5)

and

f B(ψ(x), p) = 0, x ∈ ∂D. (6)

The condition (5) appears by parametrization of the target
equation. For example, xex is a point where ψ(x) takes an
extremum in the region D if c = 0. In parameterizations,
in general, the scalar quantity ψ(x) is often normalized by
its maximum or minimum value, which brings the condition
(5). The equilibrium reconstruction problem based on data
assimilation in this paper is to solve the partial differential
equations (4) and (5) under the boundary condition (6) and to
obtain the free parameter p simultaneously.

The free parameter p will be determined by using the data
obtained from sensors as follows. Let Nm be the number of
sensors attached to the plasma device and di, the data from
the i-th sensor (i = 1, 2, · · · ,Nm). Suppose that the sensing
process of the i-th sensor is modeled mathematically by the
following equation

mi = Fmi (ψ(x), p) i = 1, 2, · · · ,Nm (7)

where Fmi is an operator mapping from L(D) × Np to R,
and L(D) is an appropriate function space defined in the
region D, and mi is the output of the i-th sensing process.
For example, Fmi is a weighted integral operator over the
sensing area. If the weighting function is the delta function,
Fmi corresponds to one point measurement process. We will
determine the free parameter p such that the outputs mi of the
sensing process (7) best reproduce the real data di. Define the
following cost function

E(p) =
1
2

Nm∑
i=1

wie2i =
1
2

Nm∑
i=1

wi(mi − di)2 (8)

where wi ≥ 0 is a weighting coefficient. The problem of
data assimilation is reduced to finding the parameter p which
minimizes the cost function (8) under the constraints (4), (5),
(6) and (7). It is formulated as the following optimization
problem with equality constraints.

minimize
p

E(p)

subject to (4), (5), (6) and (7). (9)
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The solution of (4), (5) and (6) for the optimal parameter of
the above optimization problem is the equilibrium state of the
target plasma which best reproduces experimental data.

III. PROPOSED RECONSTRUCTION METHOD BY ADJOINT
METHOD
The constrained optimization problem (9) can be solved by
using a gradient-based method such as the steepest descent
method, conjugate gradient method, quasi-Newton method,
and so on. In these algorithms, the gradient of the cost
function (8) with respect to p, denoted by ∂E/∂p, has to
be calculated. For this purpose we have already proposed a
method of derivation of the gradients based on the sensitivity
equations [23]. In this paper we propose a computationally
more efficient method based on the adjoint equation. We start
with revisiting derivation of the sensitivity equations in [23],
and then, derive the adjoint equation on the basis of the
sensitivity equations.

A. REVISITNG DERIVATION of SENSITIVITY EQUATION
The gradient of the cost function E(p) for the free parameter
p is obtained by differentiating (8) for pj, the j-th element of
p, as follows,

∂E
∂pj

=

Nm∑
i=1

wiei
∂ei
∂pj

=

Nm∑
i=1

wiei
∂mi
∂pj

. (10)

The terms ∂mi/∂pj in (10) are obtained by differentiating (7)
for pj,

∂mi
∂pj

=
∂Fmi

∂ψ

∂ψ

∂pj
+
∂Fmi

∂pj
, i = 1, 2, · · · ,Nm. (11)

The terms ∂ψ/∂pj appearing in (11) are called the sensitivity,
which are the solutions to the following sensitivity equations,
and essentially the equations are obtained by differentiating
(4) for pj,

L
∂ψ

∂pj
=
∂f
∂ψ

∂ψ

∂pj
+

∂f
∂ψ(xex)

(
∂ψ(xex)
∂pj

−
∂ψ(xex)
∂x

∂2ψ(xex)
∂x2

−1
∂

∂x
∂ψ(xex)
∂pj

)
+
∂f
∂pj

,

x ∈ D ⊂ R3. (12)

For the details of derivation of the sensitivity equations, refer
to [23].

As is clear from (10), in obtaining the gradient of the cost
function, ∂E/∂pj, we solve the sensitivity equations (12) in
order to obtain ∂ψ/∂pj, the total number of which is Np,
being equal to the number of the free parameters pj. Then we
put the solutions ∂ψ/∂pj into (10). In contrast, in the adjoint
method proposed in this paper, as will be explained below,
the gradient of the cost function ∂E/∂p is calculated from a
single variable, called adjoint variable, which is obtained by
solving a single partial differential equation, named as adjoint
equation.

B. DERIVATION OF ADJOINT EQUATION AND PROCEDURE
OF THE PROPOSED METHOD
Consider the appropriate function space defined on D ⊂

R3 whose member functions are applicable of the partial
differential operatorL and satisfy the boundary condition (3).
We define the inner product of its member functionsψ(x) and
χ (x) as follows:

< ψ(x), χ(x) >=

∫
D
ψ(x)χ (x)dx (13)

We suppose here that the sensing processes (7) are expressed
by the following equation.

mi = Fmi (ψ(x), p) =

∫
D
fmi (ψ(x), p)dx, i = 1, 2, · · · ,Nm.

(14)

Then, using the inner product, ∂mi/∂pj and ∂E/∂pj can be
expressed as follows.

∂mi
∂pj

=

∫
D
(
∂fmi
∂ψ

∂ψ

∂pj
+
∂fmi
∂pj

)dx

=<
∂fmi
∂ψ

,
∂ψ

∂pj
> +

∫
D

∂fmi
∂pj

dx (15)

i = 1, 2, · · · ,Nm

∂E
∂pj

=

Nm∑
i=1

wiei

(
<
∂fmi
∂ψ

,
∂ψ

∂pj
> +

∫
D

∂fmi
∂pj

dx
)
. (16)

In order to derive the adjoint equation and adjoint variable,
taking the inner product of a certain member function ψ̂(x)
and both sides of (12), we obtain the following equation,

< L
∂ψ

∂pj
, ψ̂(x) > =<

∂f
∂ψ

∂ψ

∂pj
+

∂f
∂ψ(xex)

∂fexδ(x− xex)

×
∂ψ

∂pj
, ψ̂(x) > + <

∂f
∂pj

, ψ̂(x) >

(17)

where the operator ∂fex , defined by the following relation,
is introduced for the sake of simplicity,

∂fex = 1 −
∂ψ(xex)
∂x

∂2ψ(xex)
∂x2

−1
∂

∂x
. (18)

Using the adjoint operator L̂, which satisfies the following
relation for the two member functions ψ(x) and ψ̂(x),

< Lψ(x), ψ̂(x) >=< ψ(x), L̂ψ̂(x) > (19)

the left-hand side of (17) can be replaced by the right-hand
side of the following relation,

< L
∂ψ

∂pj
, ψ̂(x) >=<

∂ψ

∂pj
, L̂ψ̂(x) > . (20)
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Using this relation (17) can be rewritten as follows,

<
∂ψ

∂pj
, L̂ψ̂(x) −

∂f
∂ψ

ψ̂(x)

−
∂f

∂ψ(xex)
ˆ∂fexδ(x− xex)ψ̂(x) >

=<
∂f
∂pj

, ψ̂(x) > (21)

where ˆ∂fex is the adjoint operator to ∂fex satisfying the fol-
lowing relation,

< ∂fexδ(x− xex)ψ(x), ψ̂(x) >

=< ψ(x), ˆ∂fexδ(x− xex)ψ̂(x) > . (22)

Adding the left- and right-hand sides of (16) to the left- and
right-hand sides of (21) respectively, and rearranging some
terms, we obtain

∂E
∂pj

+ <
∂ψ

∂pj
, L̂ψ̂(x) −

∂f
∂ψ

ψ̂(x)

−
∂f

∂ψ(xex)
ˆ∂fexδ(x− xex)ψ̂(x) −

Nm∑
i=1

wiei
∂fmi
∂ψ

>

=<
∂f
∂pj

, ψ̂(x) > +

Nm∑
i=1

wiei

∫
D

∂fmi
∂pj

dx. (23)

When the certain member function ψ̂(x) in (23) is a solu-
tion to the following partial differential equation and satisfies
the boundary condition (3),

L̂ψ̂(x) =
∂f
∂ψ

ψ̂(x)

+
∂f

∂ψ(xex)
ˆ∂fexδ(x−xex)ψ̂(xex) +

Nm∑
i=1

wiei
∂fmi
∂ψ

(24)

f Bo(ψ̂(x)) = 0 x ∈ ∂D (25)

then, the bracket term (the second term) in the left-hand
side of (23) diminishes, and the gradient of the cost function
∂E/∂pj can be represented by the single variable ψ̂(x) as
follows,

∂E
∂pj

=<
∂f
∂pj

, ψ̂(x) > +

Nm∑
i=1

wiei

∫
D

∂fmi
∂pj

dx. (26)

The partial differential equation (24) is called the adjoint
equation and the solution ψ̂(x) to the adjoint equation sat-
isfying the boundary condition (25) is called the adjoint
variable.

The optimization problem (9) can be solved by using the
∂E/∂pj thus obtained. The procedure of equilibrium recon-
struction in the proposed method is summarized in Fig. 1.

Note that c = 0 in (5) in the mathematical model of the
target RFP plasma as shown in the next section. In this case,

FIGURE 1. Flowchart of the procedure of the proposed method.

∂fex defined by (18) becomes 1, and the adjoint equation (24)
becomes

L̂ψ̂(x) =
∂f
∂ψ

ψ̂(x)

+
∂f

∂ψ(xex)
δ(x− xex)ψ̂(xex) +

Nm∑
i=1

wiei
∂fmi
∂ψ

.

(27)

Remark 1: The calculation method of the gradient ∂E/∂pj
used in [23] requires solving partial differential equations,
the sensitivity equations, the total number of which is Np.
On the other hand, the method proposed in this paper requires
solving only single partial differential equation, the adjoint
equation, to obtain the gradient. Therefore, the proposed
method based on the adjoint equation is expected to reduce
the computational time drastically compared to the method
based on the sensitivity equation in [23]. The advantage of
the proposed method will become more pronounced as the
number of free parameters increases.

IV. PROPOSED RECONSTRUCTION METHOD FOR
AXISYMMETRIC TOROIDAL PLASMA
There are two magnetic confinement configurations in
axisymmetric toroidal plasmas; one is the tokamak, and the
other is the RFP. The equilibrium is described by the Grad-
Shafranov (GS) equation [4], [5]. In this section, we deal
with the equilibrium state of axisymmetric magnetic fusion
plasma as a target. We propose a method for implementation
of the equilibrium reconstruction algorithm with the adjoint
equation described in the previous section.

The rest of this section is organized as follows. In Sec. IV-
A, the mathematical model of axisymmetric toroidal plasma
will be described. In Sec. IV-B, we will derive the adjoint
equation for the plasma. In Sec. IV-C, a method for imple-
mentation of the equilibrium reconstruction algorithm will be
proposed.
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FIGURE 2. Toroidal plasma and the cylindrical coordinate system.

A. MATHEMATICAL MODEL OF EQUILIBRIUM of
AXISYMMETRIC TOROIDAL PLASMA
The axisymmetric system has rotational symmetry around
an axis, which is denoted by Z , and the cylindrical coor-
dinate system with Z axis is usually used to describe the
axisymmetric plasma. Figure 2 shows the schematic drawing
of a toroidal plasma and its cylindrical coordinate system
(R, φ,Z ). Let R0 (major radius) be the distance from the Z
axis to the geometric center of the torus small circle, and
the radius of the small circle be a (minor radius). �V and
∂�V are the 3D plasma domain and its surface, respectively.
� and ∂� are their projection on a poloidal plane, that is,
the 2D plasma domain and its boundary, respectively. The
plasma is confined by a toroidal magnetic field Bφ in the
toroidal direction and a poloidal magnetic field Bp in the
(R,Z ) plane which will be referred to as the poloidal plane.
Bφ is partly applied externally and partly produced by the
internal poloidal plasma current, while Bp is formed by the
toroidal plasma current Iφ , whose current density is denoted
by Jφ . The plasma equilibrium is a state where the pressure
gradient force balances the electromagnetic force, that is,
the equilibrium is described by the plasma pressure and the
magnetic field. For plasma with axisymmetry, the pressure
and the poloidal magnetic field are shown to be a function of
the poloidal magnetic flux function ψ which is a function of
R and Z .

Therefore, the model (2) descibing the equilibrium
for axisymmetric toroidal plasmas is represented as
follows [4], [5].

1∗ψ(R,Z ) = −µ0RJφ(ψ(R,Z ),R,Z ),

Jφ(ψ(R,Z ),R,Z ) =
F(ψ(R,Z ))F ′(ψ(R,Z ))

µ0R
+ RP′(ψ(R,Z )), (R, φ,Z ) ∈ �V

(28)

where F is the poloidal current function F(ψ(R,Z )) =

RBφ(R,Z ) and P(ψ(R,Z )) is the pressure function. In the
above equation, F ′and P′ are F ′

= dF/dψ and P′
= dP/dψ .

The differential operator 1∗ is given by

1∗
=

∂2

∂R2
−

1
R
∂

∂R
+

∂2

∂Z2 . (29)

The boundary condition for (28) is a fixed boundary given as

ψ(R,Z ) = c (constant) (R,Z ) ∈ ∂� (30)

The constant c in (30) is chosen to be 0, which means that
the poloidal flux is defined by taking the boundary ∂� as
a reference. The partial differential equation (28) is the GS
equation.

B. DEVIATION of ADJOINT EQUATION
Here, we will derive the adjoint equation for the mathemat-
ical model (28) of the toroidal plasma with axial symmetry.
We first derive the adjoint operator for 1∗ defined by (29),
then write down the remaining terms, in the axisymmetric
toroidal coordinate system, except for the terms associated
with the measurement system (the last term in (27)).

In this coordinate system, in carrying out the volume inte-
gral, it can be separated into the azimuthal angle φ and the
other R and Z coordinates, and the azimuthal angle integra-
tion from 0 to 2π is simply the multiplication of 2π , and
therefore, we will omit this part and write down the integral
over the (R,Z ) plane. The volume element in �V is denoted
by dV = RdφdRdZ , and the surface element on ∂�V is
denoted by dS = dSn, where n is the surface normal vector
on ∂�V . The surface element in the region projected on a
poloidal plane, �, is denoted by dA = dRdZ , and the values
of R at the outer and the inner boundary are denoted by R+(Z )
and R−(Z ), respectively.

Specifically, volume integral of an axisymmetric func-
tion f (R,Z ) over the region �V can be separated into the
azimuthal integral over φ and the surface integral over the
region � as follows,∫

�V

f (R,Z )dV =

∫ 2π

0
dφ

∫
�

Rf (R,Z )dA (31)

From (19) the adjoint operator 1̂∗ for the operator 1∗ given
by (29) is defined by the following relation∫

�V

χ1∗ψdV =

∫
�V

ψ1̂∗χdV (32)

where χ and ψ are functions defined in the region �V and
satisfy the boundary condition (30).

In order to derive 1̂∗, we start with expressing1∗ in terms
of Laplacian 1 which is a self-adjoint operator. In axisym-
metric geometry 1 is defined as

1 =
∂2

∂R2
+

1
R
∂

∂R
+

∂2

∂Z2 (33)

and therefore 1∗ is expressed as follows,

1∗
= 1−

2
R
∂

∂R
. (34)
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Using this expression, the left-hand side of (32) becomes∫
�V

χ

(
1−

2
R
∂

∂R

)
ψdV

=

∫
�V

χ1ψdV −

∫
�V

χ
2
R
∂ψ

∂R
dV . (35)

The second term in the right-hand side of (35) can be trans-
formed as∫

�V

χ
2
R
∂ψ

∂R
dV =

∫ 2π

0
dφ

∫
�

2χ
∂ψ

∂R
dA

= 2π
∫
�

2[χψ]R
+(Z )
R−(Z )dZ − 2π

∫
�

2ψ
∂χ

∂R
dA. (36)

Sinceψ and χ are zero at the boundary ∂�V , the first term of
the right side of (36) vanishes. Using the self-adjoint charac-
teristic of Laplacian 1, the right-hand side of (35) becomes∫

�V

χ1ψdV −

∫
�V

χ
2
R
∂ψ

∂R
dV

=

∫
�V

ψ1χdV +

∫
�V

ψ
2
R
∂

∂R
χdV

=

∫
�V

ψ

(
1+

2
R
∂

∂R

)
χdV . (37)

Combining (32), (35) and (37), we obtain the following equa-
tion∫

�V

χ1∗ψdV =

∫
�V

χ

(
1−

2
R
∂

∂R

)
ψdV

=

∫
�V

ψ

(
1+

2
R
∂

∂R

)
χdV =

∫
�V

ψ1̂∗χdV (38)

from which the expression for the adjoint operator 1̂∗ is
obtained

1̂∗
= 1+

2
R
∂

∂R
= 1∗

+
4
R
∂

∂R
. (39)

Thus, letting ψ̂(R,Z ) be the adjoint variable of ψ(R,Z ),
and using the adjoint operator (39), equation (27) can be
written down in axisymmetric cylindrical coordinate system
as follows,(

∂2

∂R2
+

3
R
∂

∂R
+

∂2

∂Z2

)
ψ̂(R,Z )

=
∂f
∂ψ

ψ̂(R,Z )

+
∂f

∂ψ(Rex ,Zex)
δ(R− Rex ,Z − Zex)ψ̂(R,Z )

+6
Nm
i=1wiei

∂fmi
∂ψ

(40)

where δ(R − Rex ,Z − Zex) is the two-dimensional delta
function in (R,Z ) plane, and f is given as follows.

f (R,Z ) = −µ0RJφ(ψ(R,Z ), ψ(Rex ,Zex),R,Z ) (41)

In the last term of the right-hand side in (40), fmi is an operator
associated with the measurement process. Once the expres-
sion of this term is obtained in the cylindrical coordinate
system, which will be done in the following section V-A, then
(40) constitutes the adjoint equation for the target plasma.

C. METHOD for SOLVING the ADJOINT EQUATION
1) BASIC POLICY
In solving the adjoint equation (40) to compute the gradient
vector of the cost function, it is desirable to use the same
numerical scheme as that used in solving the target GS equa-
tion in order to secure the numerical accuracy. There are
two major publications about equilibrium reconstruction for
RFP plasmas [23] and [24]. In these papers, the GS equation
is transformed into an integral equation using the analytic
formula of the Green’s function of the partial differential
operator. Since the GS equation is nonlinear, it is necessary to
numerically solve the integral equation by using an iteration
scheme.

In this paper, in solving the adjoint equation, we use the
method using the Green’s function, similar to what is used
in [23] and [24] in solving the GS equation. However, it is
difficult to derive analytic formula of the Green’s function of
the derived adjoint operator (39). Therefore, we propose the
following method to solve the adjoint equation by using the
analytic formula of Green’s function of the Laplacian.

2) TRANSFORMATION to INTEGRAL EQUATION WITH
GREEN’s FUNCTION of LAPLACIAN
The adjoint equation (40) can be transformed into the fol-
lowing partial differential equation (42) with respect to a
new variable ϕ̂ defined as a product of the adjoint variable
ψ̂ and radial coordinate R, ϕ̂(R,Z ) = Rψ̂(R,Z ). After a
straightforward calculation, the adjoint equation (40) can be
transformed to the following partial differential equation for
ϕ̂(R,Z ),

(1−W (R,Z ))ϕ̂(R,Z ) = Rρ(R,Z ) (42)

whereW (R,Z ) and ρ(R,Z ) are defined as

W (R,Z ) =
1
R2

+
∂f

∂ψ(Rex ,Zex)
δ(R− Rex ,Z − Zex) +

∂f
∂ψ

(43)

ρ(R,Z ) = 6
Nm
i=1wiei

∂fmi
∂ψ

(44)

It should be noted that in (42) the operator acting on ϕ̂(R,Z )
does not contain differential operator other than the Laplacian
1. In such a circumstance, (42) is transformed to the follow-
ing integral equation for ϕ̂(R,Z ) using the Green’s function,
denoted by GL , for the Laplacian 1,

ϕ̂(R,Z ) =

∫
�

GLW (R′,Z ′)ϕ̂(R′,Z ′)R′dA′

+

∫
�

GLR′ρ(R′,Z ′)R′dA′. (45)

GL corresponds to the electrostatic potential at (R,Z ) pro-
duced by a unit charge distributed on a toroidal ring located
at (R′,Z ′) and is given by the following equation

GL =
1
2π

√
R′

R
kK (k) (46)
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whereK (k) is the complete elliptic integral of the second kind
given as follows

K (k) =

∫ π
2

0

dθ

[1 − k2 sin2 θ]0.5
(47)

and k2 = 4RR′/((R + R′)2 + Z2). Thus we obtain the
integral equation (45) which is transformed from the adjoint
equation (42).

3) DISCRETIZATION
In order to obtain numerical solution to (45), we discretize
it and obtain the matrix expression. Discretize the region �
into grid points, the number of which is denoted by N and
i-th grid point by xi. Let GL be the matrix representation of
the Green’s function GL after discretizing the region � into
grid points. Let ρ⃗ and ⃗̂

ψ be the vector representation of the
function ρ(R,Z ) and the adjoint variable ψ̂ , respectively. The
resultant matrix equation for equation (45) becomes

⃗̂
ψ = GL · ρ⃗ + GLdiag

(
1

R(x)2
+
∂f
∂ψ

)
⃗̂
ψ + GLFex ⃗̂

ψ (48)

Fex is the N ×N matrix where the (ex, ex)-th element equals
∂f (xex)/∂ψ(xex) and all other array elements are equal to 0,
where, for simplicity, we assume that the point xex is equal to
one of the grid points, which is denoted by xex (See equation
(30) in reference [23].). The equation (48) can be further
modified as follows

⃗̂
ψ − GLdiag

(
1

R(x)2
+
∂f
∂ψ

)
⃗̂
ψ − GLFex ⃗̂

ψ = GL · ρ⃗.

(49)

By defining the coefficient matrices as

A = E − GLdiag
(

1
R(x)2

+
∂f
∂ψ

)
− GLFex (50)

B = GL · ρ⃗, (51)

we obtain the following matrix equation

A ⃗̂
ψ = B (52)

The adjoint variable ⃗̂
ψ is obtained by solving the matrix

equation (52).

V. EXPERIMENTS
It should be noted that the proposed method is applicable to
axisymmetric plasmas, including tokamaks and RFPs. Some
research programs for the RFP configuration are in progress
in the world [25] because of its potential of a compact fusion
reactor. In this section, we apply the proposed method of
the equilibrium reconstruction to a real RFP plasma in order
to evaluate its performance by quantitatively comparing the
reconstruction results with those in our previous publica-
tion [23]. We conducted the following two experiments. The
first one is the numerical experiment in which the proposed
algorithm is applied to artificial simulation data, in order to
evaluate the accuracy of the proposed method. The second

FIGURE 3. A photograph of RELAX device.

FIGURE 4. Poloidal cross section of the plasma and geometric
arrangement of the sensors for plasma data in RELAX.

one is the real experiment in which the proposed algorithm
is applied to the real experimental data obtained from an
RFP experimental device (REversed field Pinch of Low-
Aspect-ratio eXperiment (RELAX)) [27] developed at Kyoto
Institute of Technology as shown in Fig. 3.

A. MATHEMATICAL MODEL of RELAX AND ITS SENSING
PROCESSES
The mathematical model of the equilibrium of RELAX is
described by the partial differential equation (28) and (29),
and its boundary condition is described by (30) with c = 0.
RELAX is equipped with some sensors, and the following
six signals are used for equilibrium reconstruction in the
experiments. Figure 4 shows a poloidal cross section of the
plasma and geometric arrangement of the sensors and sensing
processes in RELAX, the major radius R is 0.51 m and minor
radius a 0.25m. In the following, we describe the mathemat-
ical models (7) for those sensing processes.
Magnetic Sensor 1: The total toroidal plasma current Iφ is

measured by this sensor. The measurement process is mod-
eled by integration of the toroidal current density Jφ over the
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poloidal cross section,

m1 = Fm1 (ψ) =

∫
�

Jφ(ψ(R,Z ),R,Z )dA. (53)

Magnetic Sensor 2: The toroidal magnetic flux inside the
boundary ∂� is measured by this sensor. The measurement
process is modeled as follows,

m2 = Fm2 (ψ) =
1
πa2

∫
�

F(ψ(R,Z ))
R

dA. (54)

Density Sensor 1: The line-averaged electron density is
measured by the interferometer [33]. The measurement pro-
cess is modeled as the line integral of the density in the Z
direction at R = Rc divided by the chord length, where
(Rc,Zc) is the geometric center in poloidal cross section of
the vacuum vessel as shown in Fig. 4.

m3 = Fm3 (ψ) = (1/2a)
∫ Zc+a

Zc−a
n(Rc,Z )dZ . (55)

Density Sensor 2: The Thomson scattering system mea-
sures the electron density at the geometrical center in the
poloidal cross section of the vacuum vessel [34]. The mea-
surement process is modeled as follows,

m4 = Fm4 (ψ) =

∫
�

δ(R− Rc)δ(Z − Zc)n(R,Z )dA. (56)

Temperature Sensor 1: The line-of-sight electron tem-
perature is measured by the double-filtered soft-X ray
detector [35]. This measurement process is modeled as the
line integration of the temperature in the radial (R) direction
at Z = Zc divided by the chord length

m5 = Fm5 (ψ) = (1/2a)
∫ Rc+a

Rc−a
T (R,Zc)dR. (57)

Temperature Sensor 2: The Thomson scattering system
measures the electron temperature at the geometrical center
in the poloidal cross section of the vacuum vessel [34]. It is
modeled as follows

m6 = Fm6 (ψ) =

∫
�

δ(R− Rc)δ(Z − Zc)T (R,Z )dA. (58)

B. EXPERIMENTAL RESULTS
In the experiments we adopt the same parametrizationmethod
as in our previous paper [23]. In the followings we first
explain the parametrization method, and then numerical and
experimental results will be shown.

1) PARAMETRIZATION
The unknown parts in the target equation, F(ψ) and P(ψ),
should be parametrized by some free parameters. According
to the model characterizing the field-aligned current by two
parameters, F ′

= dF/dψ is expressed as [29]

F ′
=

Bφ0R0
ψmax − ψmin

(1 +
1
α
)(1 − ψ00

α) (59)

where ψ00 are defined as

ψ00 =
ψ − ψmin

ψmax − ψmin
.

ψmin is the minimum value of ψ , i.e., ψmin = min
R,Z

ψ(R,Z )

and ψmax is the value of ψ at boundary, i.e., ψmax = ψ(R,Z )
at (R,Z ) ∈ ∂�. In the target plasma, ψ is generally a
monotonic function and becomes maximum at the boundary.
Bφ0 is the toroidal magnetic field at the position where ψ
takes its minimum value, that is, Bφ0 = Bφ(Rmin,Zmin) where
(Rmin,Zmin) is so called the magnetic axis defined by

(Rmin,Zmin) = arg min
R,Z

ψ(R,Z ). (60)

The function F in (28) is determined by integrating F ′ with
value of F at the boundary F = F(ψmax) = RBφ(R,Z ),
(R,Z ) ∈ ∂�. Note that Bφ(R,Z ) at (R, Z ) ∈ ∂� is the
toroidal magnetic field at the boundary. It is given by a
magnetic sensor attached to the plasma boundary in the exper-
iment.

The pressure P(ψ) is expressed by the product of the
density n(ψ(R,Z )) and the temperature kBT (ψ(R,Z )),

P(ψ) = n(ψ)kBT (ψ) (61)

where kB is the Boltzmann constant. In the above equation,
we parameterize the density n and the temperature T as
follows

n = n0(1 − ψ00
β ), (62)

T = T0(1 − ψ00
γ ) (63)

where n0 and T0 are the density and temperature on the
magnetic axis, respectively.

Note that the point (R,Z ) = (Rmin,Zmin) in (60) satisfies
following equations

∂ψ

∂R
(Rmin,Zmin) = 0,

∂ψ

∂Z
(Rmin,Zmin) = 0. (64)

This equation corresponds to the (5) with c = 0. In the present
work we assume that radial profiles of ion temperature and
density are equal to those of electrons. We define

p = [Bφ0, α, n0, β,T0, γ ]t (65)

as the free parameters.

2) RESULTS OF NUMERICAL EXPERIMENT
In numerical experiments we generate artificial simulation
datam1,m2, · · · ,m6 as follows. They are obtained by solving
the mathematical model (28), (59), (61), (30) and (64) of the
target plasma with the parameters p being given a certain
value, denoted by ptrue, and by calculating the sensing pro-
cesses from (53) to (58) with the solution.

In order to evaluate the proposed method, we conduct
numerical experiments with three different methods for
searching the minimum value of the cost function (8). One
is the proposed method based on the adjoint equation and
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TABLE 1. Comparison of ptrue and obtained values of the free parameter p by the three methods. Initial guess p = [2, 4.5, 1.3, 5, 3, 5]t .

TABLE 2. Results of the gradient calculation by the proposed method and the method in [23], and their computational time.

second is the method based on the sensitivity equation pro-
posed in [23]; they are gradient-based optimizations. In the
experiments, we use the conjugate gradient method (CGM)
for these two methods. Third is the Amoeba (downhill sim-
plex) method used in [24], without using the gradients.

We normalize the free parameter p as follows

p = [p1, p2, p3, p4, p5, p6]t

=

[
Bφ0
B̂φ0

, α,
n0
n̂0
, β,

T0
T̂0
, γ

]t
(66)

where B̂φ0, n̂0, T̂0 are given as B̂φ0 = 0.1 T, n̂0 = 1019 m−3

and T̂0 = 106 K, respectively. In the present numerical
experiment, the artificial data m1,m2, · · · ,m6 are obtained
by giving the value of ptrue as [4, 3, 3, 5, 4, 3]

t . We set the
initial guess of p as [2, 4.5, 1.3, 5, 3, 5]t . The weights wi of
the cost function are chosen as (w1,w2,w3,w4,w5,w6) =

(1/d21 , 1/d
2
2 , 1/d

2
3 , 1/d

2
4 , 1/d

2
5 , 1/d

2
6 ) in order to normalize

the contribution from each sensor to the cost function. Table 1
shows ptrue and the obtained values of the free parameters p
by the three methods. Here, we determine that the optimal
solution is obtained when the error E(p) becomes less than
10−8. It is clearly observed that the parameter p converges
to ptrue with relative errors less than 0.03 % for the three
methods. Specifically, the maximum relative error is 0.03
% in p2 for the Amoeba method, and 0.02 % in p6 for the
proposed method. Moreover, we have also confirmed that
the parameter p converges to ptrue from some other initial
guesses.

First we compare the performance of calculating the gra-
dients between the proposed method and the method in our
previous paper [23]. Table 2 shows the result of the gradient
calculations, in which the values of the gradients obtained
at the initial guess are shown together with the computation
time for the two methods. The difference in the algorithms
for computing gradients between the proposed method and
the method in our previous paper [23] is Step 3 and Step 4 in
Fig. 1. The time for the gradient calculations in Table 2 means
the computational time for performing Step 3 and Step 4
of the proposed method and that for the method in [23] for

TABLE 3. Comparison of the number of iterations and the total
calculation time, and the avrearged calculation time per unit iteration.

the corresponding steps. It is observed that the values of the
gradient are almost the same between the two methods. The
difference appears in the fourth digit of ∂E/∂p6, the value of
which is unity. On the other hand, the computational time of
the proposed method is reduced to 0.175 of that of the method
in [23]. Note that, in this case the number of the sensitivity
equations to be solved in [23] is six and that of the adjoint
equation on the proposed method is one.

Figure 5 shows an example the convergence behavior
of E(p) of the proposed method (method based on adjoint
method, black line) and the method based on sensitivity equa-
tions (magenta line) in our previous paper [23]. For reference,
the Amoeba method (cyan line) in [24] is also shown. In the
figure, the horizontal axis is the number of iterations and the
vertical axis is the value of E(p). It is found that in the two
gradient-based methods (black and magenta lines) the values
of E(p) decrease rapidly and the convergence behavior of the
two methods is almost the same. On the other hand, in the
Amoeba method (cyan line) the convergence is much slower
than that of the two gradient-based methods. We compare the
iteration numbers and computational time required to reach
the optimal solution between those two gradient methods for
the result of Fig. 5. Table 3 shows the number of iterations
and the total calculation time to obtain the optimal solu-
tion, and the avrearged calculation time per one iteration for
computing the gradients. For reference, the results obtained
by the Amoeba method are also shown. Comparing the two
gradient-based methods, the number of iterations to obtain
the optimal solution is almost the same: 52 for the proposed
method and 56 for the previous method [23]. The total cal-
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TABLE 4. Comparison of the real experimental data (Shot No. 20170731007), the outputs of the sensing process obtained from equilibria reconstructed by
the proposed and the Amoeba methods.

FIGURE 5. Comparison of convergence behavior of the cost function
versus the number of iterations among the three methods (Proposed
Method: black, Method in [23]: magenta, Amoeba Method: cyan).

culation time for the proposed method is reduced to less than
half of that for the previous method: 55.777 s for the proposed
method and 120.15 s for the previous method. In the last
column, the average calculation time is shown for the two
methods, showing that the reduction in the average gradient
computational time from 1.223 s to 0.138 s is the main
cause of the reduction in the total calculation time for the
proposed method. On the other hand, in the Amoeba method,
the number of iterations is 446, much larger than that in the
gradient-based methods. However, the total calculation time
for the amoeba method is 62.204 s, which is longer than that
for the proposedmethod. From the above comparison, we can
conclude that the proposed method based on the adjoint equa-
tion is superior to both the previous gradient-based method
(based on the sensitivity equation) and the Amoeba method
in which gradient calculation is not needed.

3) RESULTS OF REAL EXPERIMENT
We apply the proposed method to the data from the RFP
experimental apparatus RELAX developed at Kyoto Insti-
tute of Technology. In [23], the reconstruction method based
on the sensitivity equation has already been evaluated by
applying it to the experimental data for the shot number
20170731007. Here, we apply the proposed method and
Amoeba method to the same experimental data and compare
the reconstructed results. Table 4 shows the experimental data
(d1, d2, · · · , d6) from RELAX RFP machine, the outputs of
the sensing process (m1, m2, · · · , m6) obtained from recon-
structed equilibrium by the proposed method and those by
the Amoeba method. In Fig. 6, we compare the convergence

FIGURE 6. Comparison of convergence behavior of the cost function
versus the number of iterations between the proposed and the Amoeba
methods (Proposed Method: black, Amoeba Method: cyan).

behavior of the proposed (black) and Amoeba (cyan) meth-
ods. In the reconstruction using the real experimental data,
it is found that, with the proposed method, the value of E(p)
decreases rapidly to 5 × 10−5 after 36 iterations, and further
down to 5 × 10−7 after 90 iterations, fluctuating around
the minimum value of E(p). On the other hand, with the
Amoeba method, the value E(p) decreases to 5 × 10−5 after
129 iterations, but it never decreases further. That is, the
accuracy of the free parameter which provides the optimal
equilibrium is much higher for the proposed method than
for the Amoeba method. In equilibrium reconstruction using
the real experimental data, it is demonstrated that the pro-
posed method based on the adjoint equation has the following
great advantage that it brings about much higher accuracy of
the reconstructed equilibrium than the conventional Amoeba
method.

In order to validate the equilibria reconstructed by the pro-
posed method from perspective of real physical phenomena,
we use the samemethod as in our previous paper [23].We cal-
culate magnetic fields with reconstructed poloidal magnetic
flux ψ . The appropriateness of the reconstructed equilibria
is confirmed by comparing the experimental properties of
magnetic field fluctuation. We show an example of validation
in follows. The profile of the safety factor q is calculated
from the reconstructed magnetic field distribution, which is
essentially the same as the profile shown with the green line
in Fig. 7 of [23]. The calculated value of the on-axis safety
factor q(0) is about 0.25 or slightly lower, indicating that the
mode rational surface closest to the magnetic axis is q = 1/5.
Experimentally, the dominant mode number of fluctuation

tends to be m = 1, n = 5 in the discharge region of the
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RELAX plasma. This experimental observation suggests that
the innermost mode rational surface is q = 1/5, which is
consistent with the reconstructed safety factor profile.

VI. CONCLUSION
Equilibrium reconstruction of magnetic fusion plasmas is a
fundamental problem for the development of control methods
to maintain plasma stability. In this paper we discussed a
method for solving the equilibrium reconstruction problem
of magnetic fusion plasmas. We developed a method for
reconstructing the equilibrium state based on data assimila-
tion which supplements the modeling and analysis with data
obtained from equipped devices such as sensors. A recon-
struction algorithm based on the adjoint method is proposed
in order to significantly reduce the computational time com-
pared to our previous method [23] which is based on the
sensitivity equation. The proposed method can be applied to a
wide class of axisymmetric magnetic fusion plasmas includ-
ing the tokamak plasmas, and is expected to play an important
role in equilibrium reconstruction of magnetic fusion plas-
mas. The proposed algorithm is applied to a RELAX RFP
machine developed at Kyoto Institute of Technology to evalu-
ate its validity. It is confirmed that the proposed method leads
to the results with sufficient accuracy and dramatic reduction
of computation time compared with the existing methods.

With advancement of experimental research of fusion
plasmas, there may arise new requirements in equilibrium
reconstruction methods for both axisymmetric and non-
axisymmetric plasmas; in particular, for the development of
new methods which have a wider range of applicability in
parametrization methods and/or associated numerical algo-
rithms than the existing methods. The method proposed in
this paper may have a potential to provide a possible solution
to these requirements.
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