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ABSTRACT Board games are extensively studied in the AI community because of their ability to
reflect/represent real-world problems with a high-level of abstraction, and their irreplaceable role as testbeds
of state-of-the-art AI algorithms. Modern board games are commonly featured with partially observable
state spaces and imperfect information. Despite some recent successes in AI tackling perfect information
board games like chess and Go, most imperfect information games are still challenging and have yet to
be solved. This paper empirically explores the capabilities of a state-of-the-art Reinforcement Learning
(RL) algorithm – Proximal Policy Optimization (PPO) in playing Ticket to Ride, a popular board game
with features of imperfect information, large state-action space, and delayed rewards. This paper explores
the feasibility of the proposed generalizable modelling and training schemes using a general-purpose RL
algorithm with no domain knowledge-based heuristics beyond game rules, game states and scores to tackle
this complex imperfect information game. The performance of the proposed methodology is demonstrated in
a scaled-down version of Ticket to Ride with a range of RL agents obtained with different training schemes.
All RL agents achieve clear advantages over a set of well-designed heuristic agents. The agent constructed
through a self-play training scheme outperforms the other RL agents in a Round Robin tournament. The
high performance and versality of this self-play agent provide a solid demonstration of the capabilities of
this framework.

INDEX TERMS Board games, imperfect information games, proximal policy optimization, reinforcement
learning, ticket to ride.

I. INTRODUCTION
Compared to other forms of games (e.g., video games, sports,
and card games), board games can be high-level abstrac-
tions of complex problems including real-world problems [1],
[2]. Some board games are designed with a purpose to
provide an abstract version of real-world mechanisms or
problem spaces. For example, the game QE models the
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economic mechanism of Quantitative Easing [3], while the
COIN series gamesmodel asymmetric historical conflicts [4].
Some board games are constructed to highlight insights about
real-world domains, analyze historic events in greater depth
or otherwise inspire understanding and knowledge of the
real-world contexts represented. Examples of these are the
games Cuba Libre [5], and Xiang Qi [6]. In short, beyond
entertainment, board games often have practical significance.
One significant example of board games impacting real-
world decision-making is in wargaming, which has been used
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throughout history to aid decision makers [7], [8]. Therefore,
board games can be highly suitable vehicles for research.
Board games are also important benchmark problems of arti-
ficial intelligence research [9], [10], [11], [12]. Many key
moments in the evolution of Artificial Intelligence (AI) have
been introduced through the implementation of AI playing
board games. Examples of this include Deep Blue becoming
the first computer program to defeat a human chess champion
in 1997 [13], AlphaGo [14] defeating human Go masters
in 2016, given that Go was previously considered the most
challenging classic games for AI [15], and its successor,
AlphaZero [16], achieving even better results without relying
on human data, guidance or domain knowledge beyond game
rules.

This paper investigates the ability of a general-purpose
Reinforcement Learning (RL) algorithm - Proximal Policy
Optimization (PPO) - to learn to play the commercial board
game ‘‘Ticket to Ride’’ (T2R). T2R is a world-famous net-
work building game with imperfect information and delayed
rewards [17]. Winning the game requires considerable plan-
ning on resources acquisition, network building and contract
fulfilment. Reaching a high level of performance in T2R
is challenging for current AI algorithms [17]. There are
several reasons for this. Firstly, the state-action space of
T2R is huge, even compared to games such as chess. The
original version of T2R has more than 1054 possible states,
which is at least 1011 higher than that of chess [18]. The
action space is also large given the various options pro-
vided for a player, which culminates with a high branching
factor for a tree-based algorithm. Secondly, T2R is also an
imperfect information game with stochasticity as it has card
drafting and hand management mechanisms like poker does,
which makes the game non-deterministic. Finally, as delayed
reward structures are challenging for RL agents [19], [20],
[21], each delayed reward involved in fulfilling a hidden
contract adds extra difficulty in converging to the opti-
mal value function/network and the number of contracts
is even indefinite. Because of these difficulties, existing
T2R AI agents have either not demonstrated human level
abilities or contain a considerable proportion of rule-based
heuristics [17], [18], [22].

Being able to solve a complex imperfect information game
with a general-purpose algorithm is of great importance [23],
[24]. Firstly, although state-of-the-art algorithms such as
tree-based, game theory-based, Counterfactual Regret Min-
imization (CFR) algorithms, and/or RL based algorithms
have achieved superhuman performance in some imperfect
information game with smaller state-action space [9], [12],
[25], [26], [27], [28], [29], complex imperfect information
games remain an open challenge for AI. Secondly, to achieve
superhuman performance in more complex board games,
existing algorithms usually require the usage of human data,
guidance or domain knowledge in the architecture design,
feature selection, and fine tuning of task specific hyperpa-
rameters [16], [30].

This paper demonstrates the feasibility of using a
general-purpose RL algorithm to play T2R with no domain
knowledge beyond game rules, game states and scores. Induc-
tive biases are only introduced when necessary, such as the
reward shaping in line with the game rules and the intuitive
ways of encoding the state-action space. In a two-player
setting, different training strategies with different opponent
arrangements are introduced in the training process including
a self-play strategy [31]. Considering the high complexity
of public versions of T2R, a simplified version of T2R is
created to limit the computational requirements of the early
experiments. The performance of the RL agents is tested on
a variety of well-designed heuristic AI players [32].

The contributions of this paper include:

1) The imperfect information game T2R is formalized
into a Partially Observable Markov Decision Process
(POMDP). The modelling approaches can be general-
ized to other complex board gameswith similar settings
when applying general purpose RL algorithms.

2) A range of RL agents are obtained through different RL
training schemes. These RL agents are demonstrated
to achieve advantages over a range of well-designed
heuristic agents in the simplified version of T2R.

3) The capability of a general-purpose RL algorithm
(PPO) to play a complex, imperfect information board
game (T2R) with limited domain knowledge is demon-
strated. A self-play agent that more strictly excludes the
impact of domain knowledge outperforms all the other
RL agents and is demonstrated to be more versatile
in competing with different opponents including both
heuristics and RL agents.

The remainder of this paper is as follows. Firstly, the
background is given in Section II, including an introduction
to T2R, and the current development of AI agents in playing
board games. Section III details the proposed methodology:
Section III-A models T2R with detailed descriptions of the
state space and action space; Section III-B gives the configu-
ration of the scaled-down map; Section III-C summarizes the
strategies of the heuristic agents; Section III-D specifies the
training schemes for obtaining RL agents. All experimental
results are provided in Section IV including the performance
of the RL agents evaluated through games with the heuristic
agents and a Round Robin tournament among the RL agents.
Section V summarizes this paper.

II. BACKGROUND
A. TICKET TO RIDE
Ticket to Ride (T2R) is a competitive, mid-weight (com-
plexity) Euro game [33] in which the players are budding
tycoons seeking to lay their rail networks across a conti-
nent/country/region; to maximize the routes they cover and
most importantly satisfy individual contracts or destination
tickets (varied cities on the map that they must connect
through their rail networks) [34].
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There are three types of actions available at each game
turn (as in the original version of T2R). The first action
is edge connection. The board begins with a pre-defined
network between cities andwithout any established networks.
These networks emerge through play and are constructed an
edge at a time by the players. Each edge requires a certain
number and type(s) of resource to be built, with the num-
ber representing the length (or span) of that connection and
the type being specified by a single color. These individual
resources are represented as train cards of different colors
(red, yellow, blue, black, etc.). Each connection of an edge
must be built in a single action, and only after the player
has gathered and then spent, the necessary resources (i.e.,
a certain number of train cards with the right color). At the
same time, the equivalent number of player tokens (plastic
train cars in the physical board game) are deployed on the
map as a representation of occupying that edge. The second
action is drawing train cards. The train cards are collected by
players through a card drafting mechanism, which provides
players the options to draw from a stack of face-down cards,
or from 5 face-up cards. The third action is drawing desti-
nation tickets (destination tickets are used interchangeably
with tickets throughout this paper). As another non-trivial
winning strategy, drawing tickets comes with high stake as
completing a ticket (connecting the two destinations named
on the ticket through building successive connections) results
in bonus points (written on the ticket, and proportional to
the difficulty of its fulfilment), but failing to do so results in
deduction of the same number of points. It is mandatory to
keep a minimal number of destination tickets at the start of a
game and more can be drawn during the game. Ticket points
are finalized at the end of a game.

The end-game condition is triggered once the usage of
tokens of a player has passed a threshold. The winner is
determined by calculating the total points of the players at
the end of the game.

T2R is a partially observable game. The cards of a player
are hidden from the others including tickets and train cards.
Tickets are always hidden from the other players. Although
the train card drawn from the face-up cards are known by
the other players, the initial cards and the cards drawn from
stack are unknown. Stochasticity is introduced by the drafting
mechanisms of tickets and train cards.

B. AI IN BOARD GAMES
1) HEURISTIC AGENTS
Heuristic agents rely on heuristic rules and evaluations that
are abstracted from a priori knowledge of a pre-defined prob-
lem. Before the rise of computationally intensive Artificial
Intelligence (AI), heuristic agents had been the most intuitive
and feasible way to build an AI agent in playing games [35],
[36].

Pure heuristic agents have advantages and disadvantages.
A heuristic agent can directly inherit human knowledge in
playing the game without a learning process, although the

abstraction and modelling of human knowledge can be a
challenge. Consequently, it does not rely on a large amount of
game data to form its policy, and thus, is less computationally
demanding. However, heuristic agents tend to be inflexible
and predictable in their moves, aiding in the development
of effective counterstrategies [37]. Heuristics also typically
need to be re-developed for new game environments, making
them less useful as general game-playing algorithms. Due
to the pre-defined nature, a heuristic agent may not be ver-
satile in all circumstances so that its performance may be
sensitive to circumstance changes. This opens the opportunity
to build heuristics with different characteristics [17], [38].
Silva et al. [17] developed four heuristic agents playing T2R
with different playing styles. The heuristic agents with dif-
ferent ‘‘characteristics’’ were inspired by the game strategies
shared in the community of T2R. Such a variety set of players
were used for automated playtesting. Two classes of failure
states were identified. These heuristic agents were used in
analyzing the characteristics of different maps including the
most favorable cities.

Heuristic rules and evaluation methods are still important
parts of state-of-the-art AI players since they are commonly
integrated into modern AI algorithms such as game theory-
based, tree-based approaches, Monte Carlo Tree Search, and
Deep Reinforcement Learning [12], [13], [20], [37], [39]
to accelerate the learning process of the combined policy.
Beyond that, heuristic agents are often used as benchmarks
thanks to their ease of implementation and limited demand in
computational power [38].

2) SEARCH ALGORITHMS
Tree-search algorithms are commonly used to solve problems
with sequential decisions, including games [40], [41]. For a
game of perfect information, a comprehensive search of the
tree with a proper evaluationmethod can be used to determine
the optimal moves. The size of a search tree is determined
by its width (number of legal moves per position) and depth
(number of turns from a position to a final game state) [14].
For complex games with large search trees (e.g., chess and
Go), it is usually impractical to conduct an exhaustive search.
Methods have been developed to reduce the search space
by reducing the depth [42], [43], [44] and the width of the
search [13], [45], [46]. Monte Carlo Tree Search (MCTS),
and its variants, have been extensively used in solving games
with such large search trees.

MCTS has shown advantages in large, fully observable
games [47], [48], [49], [50], such as chess [51] and Go [52],
[53]. However, it is a more normal case in games to have
partly observable states from the perspective of one or more
players. These games are also referred to as imperfect infor-
mation games (the opposite to perfect information games) [9].
Imperfect information games can be easily found in card
games (e.g., bridge, DouDi Zhu and Skat), board games (e.g.,
backgammon, Settlers of Catan and Ticket to Ride), and digi-
tal Real-Time Strategy (RTS) games with the common setting
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of the ‘‘fog of war’’ (e.g., Starcraft II, Dota 2 and League
of Legends). Game theory has extensively studied imperfect
information games, but the complexity of most real-world
games makes it impractical to obtain a Nash Equilibrium
strategy as proper abstraction is required, e.g., Counterfactual
Regret Minimization (CFR) [54].

Extensions and modifications of MCTS have been devel-
oped to address imperfect information games. One approach
to the imperfect information problem is determinization, also
known as Perfect Information Monte Carlo (PIMC) [9], [55].
However, determinization MCTS faces some major chal-
lenges including strategy fusion, non-locality, computational
budget sharing, and fake omniscience [56], [57]. As a result,
determinization MCTS can have poor performance in many
real-world games [58].
Information Set MCTS (ISMCTS) was proposed to address

the strategy fusion and computational budget problems [38],
[57], [59]. With each node representing an information set
rather than states, statistics about moves can be recorded
in this one tree instead of the multiple trees derived from
determinization methods, which is more computationally
efficient [57]. Furthermore, ISMCTS addresses the strategy
fusion problem by sharing information between determiniza-
tions. Huchler [18] developed AI players to play T2R
(original version) under the MCTS framework. Four agents
were developed including the two variants of ISMCTS
(Single-Observer MCTS and Multi-Observer MCTS) [57],
determinized UCT and a voting strategy with the options of
several classic enhancements. Although the positive impact
of some enhancements to MCTS was confirmed, it demon-
strated the MCTS agents were not superior to a Flat Monte
Carlo agent in the T2R implementation. There is need for
improvement for ISMCTS when it deals with large branching
factor at opponent nodes [57]. In addition, ISMCTS hinders
the searching player to exploit situations where opponent
is lack of information, which is the normal case in a real
game [57].
Belief Distribution is another approach to tackle imper-

fect information games. It usually involves the inference
of the complete game states based on historic and current
game information [60], [61]. Silver and Veness [50] proposed
POMCP to achieve online planning in large Partially Observ-
able Markov Processes (POMDPs) through integrating a
Monte-Carlo update of the agent’s belief state with MCTS.
The belief state was approximated using an unweighted par-
ticle filter. High level performance was achieved with no
prior knowledge in tackling 3 POMDPs (games). Uriarte and
Ontañón [39] enhanced MCTS with single belief state gen-
eration by proposing three sampling strategies in the context
of a partially observable Real Time Strategy game (µRTS).
MCTS enhanced by each of these sampling strategies gen-
erated superior performance than the baseline performance
generated with an ϵ-Greedy MCTS [62].

In addition, opponent modelling is another approach to
address imperfect information MCTS as the hidden informa-

tion in imperfect information games is usually related to the
lack of opponent information [63], [64], [65], [66].

3) REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a machine learning
algorithm which enables an agent to learn a policy for choos-
ing a sequence of actions which optimizes the long-term
total reward achieved when interacting with an environ-
ment [67]. RL problems are often formulated as Markov
Decision Processes (MDPs), in which the next state of the
system is only related to the current state and the action.
At a time point t , the agent performs an action at given an
observation of the environment st (aka. a state) through its
policy π (at |st ), which denotes the possibility of performing
action at at state st . Each time an agent performs an action,
the agent receives a reward rt from the environment and
the environment is updated to the next state st+1. The state
transition can be formulated through transition probability
P(st+1|st , at ). The goodness of an action at at state st using
policy π can be determined by an action-value function
Qπ (st , at ). Furthermore, state-value Vπ which determines
the value of state st considering all possible actions at ∈

A when applying policy π can be denoted as Vπ (st) =∑
at∈A π (at |st ) · Qπ (st , at). RL algorithms can be catego-

rized as model-based and model-free depending on whether
to develop a predictive model to approximate state transition;
model-based algorithms obtain transition functions through
learning, by contrast, model-free algorithms do not. Within
the class of model-free reinforcement learning algorithms,
there are two basic approaches to training RL, namely, value-
based approaches and policy-based approaches. Value-based
RL algorithms learn the optimal value function Q∗

π (st , at ) so
that the RL agent can choose actions with the highest value.
Policy-based algorithms optimize the agent’s policy π (at |st )
and perform actions based on the optimized policy. Actor-
critic algorithms are further developments building on the
two basic branches. They combine the learning of the policy
and value function. In the training, the actor learns the action
policy based on the estimated state value provided by the
critic (value function) which is also part of the training loop.
In practice, to solve complex problems with a large number
of state-action pairs, neural networks, especially deep neural
networks, are usually used to approximate value functions
and action policies.

RL is renowned for its broad application potential in solv-
ing real world problems. This is because RL enables learning
through consuming the decision outcomes of the learning
agents. A high degree of autonomy bypasses the need for
constant expert input into the training [68]. Therefore, RL,
especially DRL, is widely used in solving a large range of
real-world problems, especially the ones involve sequential
decision-making. For example, in robotics, RL has been
extensively used in learning tasks in the physical world with
practical constraints, such asmanipulation [69], grasping [70]
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and legged locomotion tasks [71]; in recommending sys-
tems, RL has been leading recent developments because the
recommendation problem can be formulated as a sequential
decision problem across the long-term user engagement [72];
in transportation, RL has been applied to both emerging
and conventional problems such as autonomous driving [73],
energy efficient driving [74], traffic control [75] and vehicle
routing [76] in different transportation systems; in manufac-
turing, RL has showed its efficacy in improving production
scheduling [77] and maintenance [78]; in energy, RL is
applied to major subfields such as energy management
systems [79], dispatch [80], vehicle energy systems [81],
[82], [83], grid [84] and energy markets [85]; in gaming,
RL has achieved success in reaching super-human perfor-
mance [11], improving gaming experience [86] and game
development [87]. The list goes on. Among these application
fields, gaming is one of the major arenas that propel innova-
tion in RL.

One of the earliest successes of applying RL in game play-
ing is the TD-Gammon proposed by Tesauro [88]. Through
a self-play strategy with a copy of the RL agent itself,
it was able to approximate an evaluation function with little
a priori domain knowledge. Augmented with domain knowl-
edge, TD-Gammon surpassed most human grandmasters in
backgammon. Pfeiffer [37] synthesized an RL-based AI with
a priori knowledge for Settlers of Catan. The Q-function was
approximated through a tree-based approximator. A hierar-
chical RL framework was used with a perspective that the
high-level policy determines whether to execute low-level
policies. Heuristics based on a priori knowledge were used in
different parts of the framework including feature selection
and calculation, and low-level action determination.

Deep Q-Network (DQN) uses a deep neural network to
learn the optimal value function and has achieved huge
success in harnessing high-dimensional sensory inputs for
learning action policies [11]. This success has been marked
by the universality and the high performance in classic
Atari 2600 games using only inputs from pixels from the
displays and game scores. In the realm of board games,
Xenou et al. [36] proposed a novel online Deep Recurrent RL
(DRRL) algorithm by implementing Q-decomposition [89]
to achieve local action evaluation only with action-dependent
features. DRRL was used in Settlers of Catan and outper-
formed the state-of-the-art heuristic jSettler [35]. Strömberg
and Lind [22] used DQN to tackle T2R in a simplified version
of the original version of T2R. Several agents were obtained
with different reward systems through RL. The RL agents
achieved high win rate (>80%) versus an agent taking com-
pletely random actions.

AlphaGo [14] was the first computer program to defeat a
human professional player in the game of Go, a game famous
for its enormous search space and viewed as a grand challenge
for AI algorithms [15]. AlphaGo integrates RL with MCTS
by using a policy network (a deep neural network) and a
value network (with similar structure as the policy network)
for move selection and position evaluation in a Monte Carlo

search algorithm. In the pipeline of trainingAlphaGo, the pol-
icy network was initialized through supervised learning using
expert human player moves before it was further improved
through self-play with randomly selected previous iteration
of the policy network. The value network was trained by
regression on state-outcome pairs based on 30million distinct
states with each sampled from a separate game. AlphaGo
required significant amounts of human expert moves in the
training process, to provide domain knowledge. To address
this problem, AlphaZero [16] was proposed with several
improvements and the most prominent difference is that it
depends solely on a self-play reinforcement learning strategy,
i.e., training from tabula rasa with no human data. During
training from games of self-play, guided by a versatile deep
neural network (which combines the roles of the policy net-
work and the value network in AlphaGo), MCTS was used in
selecting each move. AlphaZero outperformed the strongest
previous versions of AlphaGo. AlphaZero was further gen-
eralized to other games including Shogi and chess [51].
However, neither AlphaGo nor AlphaZero was designed for
imperfect information games, especially the ones with a high
branching factor.

Brown et al. [28] proposed Deep Counterfactual Regret
Minimization (Deep CFR) to address the dependence of
domain knowledge of conventional tabular CFRs in the
abstraction of game states. It was achieved through using
function approximation to approximate the behavior of CFR.
While it achieved good performance in large poker games (2-
player zero-sum imperfect information games), more scalable
sampling strategies will be needed to extend Deep CFR to
larger games.

Proximal Policy Optimization (PPO) is a state-of-the-
art RL algorithm [90]. It was developed by OpenAI as a
general-purpose RL algorithm to address the stepsize prob-
lems experienced by the existing policy gradient methods.
It is well known for its ease of implementation, appropriate
sample complexity and ease of tuning [91]. It has been show-
ing comparable or better performance in Atari benchmarks
compared to other widely used algorithms such as TRPO [92]
andACER [93]. PPO has boosted the recent success of defeat-
ing human world champions in Dota 2 – a popular imperfect
information zero-sum competitive game with two opposing
teams – through the OpenAI Five AI system [20]. In this
PPO powered AI system, self-play was implemented in the
policy learning process. Reward shaping was introduced to
balance the relative importance between individual reward
and team reward. Considering the merits of PPO such as the
high compatibility, good performance and ease of use, it is
chosen to be the algorithm in our investigation into the AI
capabilities in playing T2R.

III. METHODOLOGY
This section models T2R as a Partially Observable Markov
Decision Process (POMDP) with detailed descriptions of
the state space and action space. Secondly, the scaled-down
version of T2R is created based on the design principles
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TABLE 1. Nomenclature.

abstracted from the analysis of different versions of T2R
with various complexity (the abstracted design principles can
be found in Appendix A). Thirdly, the heuristic agents used
in the experimental demonstration are introduced. Finally,
the proposed training schemes for obtaining RL agents are
specified. The symbols and abbreviations used in this section
are summarized in Table 1.

A. MODELLING TICKET TO RIDE
The POMDP of Ticket to Ride (T2R) can be modelled
through a tuple G = (P, S, Z, O, A, L, T , W , s0) [39]. P =

{p1, p2, . . . , pρ} is the set of players. S is the set of possible
game states. Z is the set of possible observations. O(p, s)
observation function at state s from the point of view of player
p.A is the set of possible actions. L(p, a, s) is a function which
returns whether action a is a legal action at state s for player
p. T (st , a) is the transition function. W is the function which
determines the winner. s0 is the initial state.

The modelling of state space and action space for T2R is
elaborated in the rest of this section.

1) STATE SPACE
For each player playing T2R, only partial information of the
game can be perceived, i.e., POMDP. Due to the nature of the
problem, it is not intended to construct a comprehensive state
space with complete information. Rather, only the observ-
able states are taken into consideration. This observable state
space involves 6 distinct dimensions which are defined by
the corresponding variables that are related to the status of
the game. The representation and encoding approach of each

dimension are explained in detail together with the equations
for calculating the number of possible states.

a: BOARD STATES
Board status is composed of a combination of the state of
each edge on the board, i.e., which edges are filled, which
edges are claimed by each player. It arguably contains the
most important information reflecting the state of the game.
Each edge has (ρ + 1) mutually exclusive possible states,
i.e., an edge is either claimed by Player 1, or Player 2, . . . ,
or Player ρ, or no one, ρ is the number of players. The
board status is denoted as ZB = {B1, B2, . . . ,Bm}, where Bi
represents the state of Edge i, the total number of edges is m.
By considering the possible states of all edges, an estimate of
the number of possible board statuses |ZB| can be calculated
by (1).

|ZB| = (ρ + 1)m (1)

b: TRAIN CARS
The number of train cars (player tokens) is fixed at the begin-
ning of the game. The number used (and remaining) is public
information. It is an important indicator of the game state as
it is the variable triggering game end conditions. The number
of train cars left can be any integer between 0 andC . The state
of train cars left is denoted as ZC = {C1, C2, . . . ,Cρ}, where
Ci is the number of train cars (player tokens) left for Player
i. The number of states originated from the number of train
cars left |ZC | can be calculated by (2).

|ZC | = (C + 1)ρ (2)

c: FACE-UP CARDS
As written in the rules of T2R, there are always 5 face-up
(train) cards shown as the available options for players to
draw from. Whenever a face-up card is taken, it is immedi-
ately replaced with a card from the top of the deck so that
there are always 5 options for card selection. Face-up cards
are important determining factor of the decisions of a player
either for choosing from the 3 types of actions or choosing
the specific card to draw (in a turn of drawing card action,
players can choose to pick from the face-up cards or draw
from deck). Each possible permutation of the 5 face-up cards
is considered a unique state (rather than the combination).
This is in accordance with the way to model the drawing
face-up cards action, which will be elaborated later in this
section. As a result, all possible states of face-up cards are
equivalent to the total permutations of the face-up cards. The
state of face-up cards can be denoted as ZF = {F1, F2, F3,
F4, F5}. Each spot of the 5 face-up cards can be taken by one
of the R colored cards or the wild card or no card (in case that
the card deck is running out). Hence, Fi has (R + 2) possible
state, i= 1, 2, . . . , 5. Therefore, the possible number of states
of face-up cards |ZF | can be calculated by (3).

|ZF | = (R+ 2)5 (3)
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d: HAND CARDS
From the perspective of a player, its hand cards contain
essential information defining the state of the game. The
total number of hand cards can be any integer from 0 to the
largest number of cards in the deck. In addition, the order of
obtaining the cards is irrelevant. Therefore, hand cards are
recorded by a counter of cards in different colors, which can
be denoted as ZH = {H1, H2, . . . , HR, Hwild}, where Hi is
the number of hand cards in Color i (i = 1, 2, . . . , R), the
possible states ofHi ∈ {0, 1, 2, . . . ,NC},Hwild is the number
of wild cards in hand cards, the possible states of Hwild ∈ {0,
1, 2, . . . ,Nw}. The number of possible combinations of hand
cards |ZH | can be calculated by (4).

|ZH | = (NC + 1)R · (NW + 1) (4)

e: DESTINATION TICKETS
The destination tickets possessed by a player are important
information when defining the game state, as succeeding or
failing to fulfil a destination ticket leads to significant effect
on the outcome of victory points (a plus or minus difference).
As there are multiple chances for a player to draw tickets
during a game, the number of destination tickets is dynamic.
The state of the destination ticket of a player is defined by
whether each destination ticket is possessed by the player, i.e.,
ZD = {DES1, DES2, . . . , DESD}, where DESi is a binary
value determining the state of possession of Ticket i (i =

1, 2, . . . ,D). Since the complete set of destination tickets can
be a priori knowledge, the total number of states in terms of
the destination tickets |ZD| can be calculated by (5).

|ZD| = 2D (5)

f: POSSIBLE DESTINATIONS
When a player chooses to draw destination tickets, NP desti-
nation tickets are dealt to the player for selection. The player
must keep at least one ticket, up to NP tickets. This temporal
information is only shown when the drawing destination tick-
ets action is in progress. To make the dealt tickets visible to a
player, a vector of NP values indicating the information of the
dealt tickets is introduced. i.e., ZP = {P1, P2, . . . ,PNP}. Pi
specifies the ith ticket delt with the possibilities of being any
of the tickets in the deck or none (considering the possibility
of the ticket deck is run out). The total number of states of the
possible destinations |ZP| can be calculated by (6).

|ZP| = (D+ 1)NP (6)

The complete observable state is the combination of the
states specified in all these dimensions, Z = {ZB, ZC , ZF ,
ZH , ZD, ZP}. The complete size of the observable state space
|Z| for a player can be calculated by (7).

|Z| = |ZB| × |ZC | × |ZF | × |ZH | × |ZD| × |ZP| (7)

Although aiming for accurate estimate, this is still an over-
estimation due to the way that the game is modelled. Some
states may never be reached such as some board states, hand

FIGURE 1. Decision process within a drawing train card turn. r is the
number of remaining moves.

card states and destination ticket states. However, it is certain
that all possible observable states are taken into considera-
tion.

2) ACTION SPACE
Action space is composed of all the available actions of a
player. Three types of actions from the original version of
T2R are considered, i.e., drawing cards, drawing destination
tickets, and connecting cities. Under each of these action
dimensions, there are multiple possible action choices.

a: DRAWING TRAIN CARDS
At each turn of a player, the player can draw 2 train cards
from deck or among face-up cards, except that only one card
can be kept if a wild card is selected from face-up cards. The
decision process for drawing card actions is shown in Fig. 1.
Despite two opportunities of drawing cards being provided in
each turn, we consider drawing each card an action. In other
words, a player can perform 2 actions in a single turn if
he/she chooses to draw cards. A player can choose to draw
from deck or from face-up cards. In addition to the option
of drawing from deck, drawing from face-up cards action
can be modelled by specifying which of the 5 indexed spots
to choose from (without considering the color of the cards),
hence, another 5 possible options. Therefore, the total number
of possible actions for a single drawing card action |Atr | is 6.
Using the index of the 5 face-up cards as the representation

of the drawing action is concise and straightforward. This
modelling choice is made because the information regarding
the sequence order of the face-up cards is kept in the state
space (face-up cards dimension) and a player can also obtain
the color information of a recently drawn card through the
update of the hand card state.

b: DRAWING DESTINATION TICKETS
There are two consecutive steps within a single turn of
a player performing a drawing destination ticket action.
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In other words, the action is a 2-stage process. The first stage
is to decide whether to draw tickets. If the decision is positive,
the game state (possible destinations) needs to be updated as
a number of tickets (NP) will be dealt to the player. Then the
second stage is to decide which ticket to keep considering the
dealt tickets and current game status. Although both drawing
train card actions and drawing ticket actions may involve
2 consecutive sub-actions, the action spaces of a drawing
ticket action in the 2 stages are different since the player
cannot see through the options in Stage 2 of drawing ticket
action before going through Stage 1. The Stage 1 action is a
single option (|A1

d | = 1) that can be made together with all
the other possible actions of the other two types of actions.
The Stage 2 action needs to be made according to a separate
list of combinations of the indexes of the tickets (e.g., 0, 1,
2). For instance, if two tickets are dealt to the player (NP =

2), the complete set of possible drawing ticket actions include
3 options (|A2

d | = 3), i.e., {(0), (1), (0, 1)}. The number of
possible actions at Stage 2 can be calculated by (8).

|A2
d | =

∑NP

i=1

(
NP
i

)
(8)

The total number of actions related to drawing tickets
|Ad

∣∣= 1 + |A2
d

∣∣.
c: CONNECTING CITIES
The possible actions of connecting cities are dependent on
the number of edges and the color of the edges. To connect a
colored edge, cards of the same color are required and the
number of cards of this color should meet the number of
segments of this edge.Wild cards can be a replacement of any
color as required. Therefore, in the case of connecting a col-
ored edge, the action choice of connecting (cc) is determined
by the number of wild cards used. To connect a no color edge
(grey edge), cards of any same color which meet the number
of segments of this edge are valid. There are also options to
use wild cards as replacement instead for the chosen color.
The number of action choices to connect an edge can be
calculated by (9).

cc =

{
ns+ 1 if the edge is coloured
R · ns+ 1 if the edge has no colour

(9)

By considering the possible connection actions for all
edges, the total number of connecting actions (|Ac|) can be
calculated by (10).

|Ac| =

∑m

i=1
((nsi + 1) · 1 (Edge i is coloured)

+ (R · nsi + 1) · 1 (Edge i has no colour)) (10)

The complete size of the action space |A| can be calculated
by (11).

|A| = |Atr
∣∣+ |Ad | + |Ac

∣∣ (11)

FIGURE 2. Small map (length of each edge is labelled).

B. CREATION OF A SCALED-DOWN VERSION OF TICKET
TO RIDE
Due to the identified challenges in AI playing T2R, it is
anticipated to be a difficult problem for RL (computationally
costly) [17], [22]. Even the smallest commercial version of
the game (Ticket to Ride: New York [94]) has 1049 estimated
possible states and 235 possible actions according to (7)
and (11). In comparison, chess has 1043 estimated possible
states and 30 legal actions in a typical position [95]. Given
a limited computational budget, one solution is to implement
the proposed RLmodel in a scaled-down version of the game.
As discussed in Section III-A, having a smaller map that
consists of a reduced number of vertices, edges, cards, and
train cars will result in fewer possible states and actions,
namely, a smaller state-action space. The complexity of a
sequential decision-making problem is associated with the
size of state-action space [96]. For instance, in the context of
DRL, more states result in extra work on learning a value net-
work and an increased number of state-action pairs means a
larger output dimension in the policy network. Hence, higher
computational time is expected for solving problems with
larger state-action space, and vice versa. Therefore, to fulfil
the goal to demonstrate the capabilities of the proposed RL
agents in playing T2R, a scaled-down map (referred to as
Small Map) which is smaller than any commercial version
of T2R is created (as shown in Fig. 2) based on game design
principles used by a range of different versions (i.e., different
maps or network layouts) of T2R (see details in Appendix A).
All essential rules of T2R are strictly followed.

The configuration of Small Map is listed in Table 2. The
map is an undirected, connected network made of 8 vertices
and 16 edges. Each vertex is indexed with a distinct number
(from 1 to 8). Out of the 16 edges, 12 are colored and 4 have
no color (also known as grey edges). The 12 colored edges are
evenly distributed in 4 colors (red, blue, yellow and green),
i.e., 3 edges in each color. The number of segments in each
color is exactly 6. Each edge is made of either 1, 2 or 3 seg-
ments. On average, each edge has 2 segments. Each vertex is
connected to at least 3 other nodes. The degrees of the vertices
range from 3 to 6. The most connected vertices are Vertex
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TABLE 2. Configuration of small map.

TABLE 3. Destination tickets of small map.

4 and Vertex 7, which are connected to 6 and 5 other nodes,
respectively.

In addition to the graph features of themap, there are 6 train
cards per color (NC = 6), and 8 wild cards (NW = 8). In total,
there are 32 train cards in the deck. As listed in Table 3,
8 destination tickets (D = 8) are designed. Every vertex is
mentioned by at least one ticket (and at most 3). The points on
the tickets equal the number of segments of the shortest path
connecting the destinations. Each ticket can be completed by
connecting at least 2 edges. The average number of points of
a ticket is 3.75. Each player starts the game with 10 train cars
(C = 10).
Based on (7) and (11), the total number of observable

possible states for a player in the simplified version of T2R is
1.7 × 1020 (the total number of possible states in a 2-player
game is approximately 1027). The number of possible actions
is 78. Both the numbers of possible states and possible actions
are significantly fewer than that of the smallest commercial
version of T2R.

C. HEURISTIC AGENTS
Heuristic agents employ heuristic functions for action selec-
tion. Heuristic functions provide relational representation of
states, actions and policies that are used to provide a natural
abstraction of the domain. As the core of the action selection
policy of a heuristic agent, a heuristic function can be derived
from a preference policy, called heuristic policy πH , which
indicates that a preference of a certain action over others.

Such a non-deterministic policy can be handcrafted or derived
in several different manners [17], [38].

Six handcrafted heuristic AI agents are used in this paper.
The first five are introduced in the T2R implementation
developed by Schwarcz et al. [32]. Each of these heuristic
agents make their actions based on a distinct cost function.
The sixth heuristic agent is an ensemble of the other heuristic
agents. These heuristic agents are described as follows (the
details of the heuristic agent are specified in Appendix B):

1) CFBaseAI
CFBaseAI agent follows the if-then rules in the heuristic
decision tree. When it comes to the important decision nodes,
it will employ a specified cost function to evaluate the pos-
sible choices and choose the appropriate branch to perform
the action. Firstly, it keeps updating the best path (a subset of
the network) to complete its destination tickets according to
the evaluation of the cost function. Then, if this best path can
be located, it will choose the edge that costs least resources
(train cards) according to the heuristic values assigned to
the train cards. If there are not enough cards, it will get the
cards needed for the given path. If the best path cannot be
found, it will connect the edge with the best score when
there are outstanding destination tickets, or it will draw more
destination tickets.

2) CFRandomAI
CFRandomAI also selects the action during each step of the
searching space following the heuristic decision tree but it
makes random decisions at key decision nodes. After obtain-
ing the best path with the same cost function as CFBaseAI,
it makes random selection on the edge to connect among the
candidate edges identified by the best path. Also, CFRan-
domAI draws train cards and ticket cards randomly if the
decision tree has led it to these types of actions. Thus, it may
heavily depend on luck and introduce more uncertainty of the
playing.

3) CFActionEvalAI
CFActionEvalAI evaluates all valid actions given the tempo-
ral game state according to customized heuristic functions
for each type of action. CFActionEvalAI then selects the
best action according to the value evaluation by examining a
wide range of possibilities. This may offset the deterministic
features of such rule-based heuristics, but it requires a large
amount of fine tuning for the parameters in the heuristic
functions.

4) CFAdversarialAI
Like CFActionEvalAI, CFAdversarialAI also evaluates all the
possible actions in terms of the current game state, but it will
not perform the action with the highest value score all the
time. Instead, it will first evaluate the threatened edge of the
opponent and if it is claimable, the agent will claim the edge.
Otherwise, it will perform the same as CFActionEvalAI.
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5) CFCombinedAI
CFCombinedAI agent also takes the threatened edges into
consideration. Instead of trying to directly claim the threat-
ened edges, it assigns a higher weight to the threatened edges
and evaluates the edges in combination with the action eval-
uation function applied by CFActionEvalAI.

6) CFGameTreeAI
CFGameTreeAI is an ensemble of the other heuristic agents.
At each turn, the suggested actions of all the heuristic agents
are generated. Like a voting system, CFGameTreeAI deter-
mines an action based on the majority principle.

D. RL AGENTS
Reinforcement learning (RL) is used in this paper to train
an AI player to play T2R. Proximal Policy Optimization
(PPO) [90] is a state-of-the-art general purpose RL algorithm
used to train the RL agents. The PPO is implemented with a
Multi-Layer Perceptron (MLP) policy as the state space and
action space are discrete. As a part of the environment, the
opponent player plays a pivotal role in the training process of
the competing game. In this paper, only the 2-player setting is
focused. Eight RL Training Schemes (RLTS) defined by the
training partners (opponents) of the RL agent are introduced.
The heuristic algorithms elaborated in Section III-C are used
as the training partners as they have shown reasonable levels
of skills and have different strategical emphases in their game
play. Each of the 6 heuristic algorithms/agents is used as
the training partner in an RLTS. For convenience, each of
these RL agents is also referred to according to the corre-
sponding training scheme, i.e., RLRandomAI, RLBaseAI,
RLActionEvalAI, RLCombinedAI, RLAdversarialAI, and
RLGameTreeAI. For instance, RLRandomAI refers to the RL
agent which uses CFRandomAI as its training partner.

The 7th RLTS namedRLEnsembleAI uses a combination of
5 heuristic agents as the training partner (all heuristics exclud-
ing CFGameTreeAI as CFGameTreeAI heuristic algorithm is
an ensemble of the other 5 heuristics). Each of the 5 heuristics
take turns to be the opponent of the RL agent for a fixed
number of timesteps (Te).
The 8th and final RLTS named RLSelfplayAI, is a

co-evolutionary approach (or self-play), which does not
involve any heuristic agents as the training partner [14],
[31], [97]. Rather, it allows the RL agent to compete with
a previous version of the RL agent itself during the training
process. As illustrated in Fig. 3, the RL agent starts training
from zero knowledge (Gen 0) with a random opponent. After
training for several timesteps (Ts), the original RL agent has
evolved to Gen 1 and the training opponent will be replaced
by the last generation of RL agent (Gen 0). The process
iterates until reaching the last generation. In other words,
RLSelfplayAI keeps learning continuously but the model is
capsulated every Ts timesteps and this model will perform
as the training opponent in the next checkpoint. At any time
point, the opponent of an RL agent is a player which plays

FIGURE 3. RLSelfplayAI training scheme.

the game according to the RL model obtained with at least Ts
fewer timesteps.

IV. EXPERIMENTAL INVESTIGATION
Two sets of experiments are conducted to empirically demon-
strate the capacity of Reinforcement Learning (RL) agents to
learn good policies for Ticket to Ride (T2R) using the frame-
work articulated above. The first experiment involves training
different RL agents through different training schemes and
testing the achieved RL agents by playing against a range of
heuristic players. The second experiment further examines
the capabilities of the RL agents beyond opponents with
heuristic policies through a Round Robin tournament among
all the obtained RL agents.

Two assumptions are taken in the experiments: Firstly, it is
assumed that the simplified version of T2R (Small Map)
is a good representation of the T2R games given that its
creation follows the extracted design principles (similar graph
attributes) of various versions of T2R; secondly, based on
the limited observations of game data, it is assumed that the
heuristic agents that were designed for commercial versions
of T2R also possess a similar level of competence in playing
the simplified version of T2R.

A. EXPERIMENTAL SETUP
The experimental setup is specified in this section including
the setup with respect to the RL algorithm, design of reward
system, and other parametric configurations.

1) RL IMPLEMENTATION
The RL is implemented through the online open-source RL
implementations, Stable Baselines 3 [98], [99]. This Pytorch
based package provides ample options for different RL algo-
rithms and their customizations. A customized environment
of T2R is created and synthesized with Stable Baselines 3.
PPO is set to be the RL learner. Two fully connected layers of
64 nodes are used in both actor and critic networks. Learning
rate is 3e-4. Discount factor 0.99. Clip range is 0.2.
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TABLE 4. Scoring system for edge building.

The valid actions at each turn are only a small subset of
the complete set of possible actions, with the list different at
each turn. The valid state of each action is determined by the
valid action function L(p, a, s), with invalid actions masked,
and therefore, unavailable for the player [100].

2) REWARD SYSTEM
The RL agents receive rewards from the environment every
time after performing an action. The value of the reward
is crucial for the learning process and has a great impact
on the training outcome. The reward system applied in the
experiment adopts reward shaping with a combination of
immediate reward and delayed reward which basically fol-
lows the scoring system of T2R [101]. Two types of rewards
are available to the learning player. Firstly, an immediate
reward is received once it builds a route (edge) with the same
value determined by the scoring system of T2R (as shown in
Table 4). The second type of reward is from the completion
of destination tickets. In the game, the ticket points are final-
ized at the end of the game. Completed tickets get positive
points stated on the ticket and uncompleted tickets get the
same negative points. A simple reward shaping is applied: At
the moment a ticket is drawn, a negative immediate reward
worth the points of the ticket is obtained; whenever the ticket
is completed, a positive reward worth double the points of
the ticket is gained. By doing so, the reward for a ticket is
reshaped and applied at the two critical time points, i.e., at the
ticket acquirement and the ticket completion. Other than the
turns in which these two types of rewards are received, the
reward of the turn will be 0.

3) EXPERIMENT PARAMETERS
For each of the RL agents, the total training timesteps are
1 million. Each timestep stands for an action of the RL agent.
For the RLEnsembleAI, it is trained with alternating heuristic
opponents. Each of them takes a turn of 10,000 timesteps
(Te = 10,000). For the RLSelfplayAI, every 1000 timesteps
the opponent upgrades to the next generation (Ts = 1000).

Models obtained at various stages of the training process
are used to test the performance of the RL agent. These mod-
els are saved every 10,000 timesteps. As a result, 100 models
were kept at 100 checkpoints. In the testing phase, each of
the 100 models was used for guiding agent’s actions for
1000 timesteps. In other words, the results at each checkpoint
are obtained from these 1000 timesteps. Moreover, 30 testing
runs are conducted with each of the 100 models for statistical
significance.

FIGURE 4. Average score of each RL agent and the opponents across the
training process.

B. RESULTS
The results of the two sets of experiments are presented in
this section, including the testing results obtained by the RL
agents and the Round Robin tournament among the obtained
RL agents.

1) PERFORMANCE OF RL AGENTS
The performance of each RL agent is evaluated based on
the average performance versus the complete set of heuristic
opponents. The average performance achieved by each RL
agent is recorded across the training process.

As can be seen in Fig. 4, the average score per game of
every RL agent keeps an increasing trend throughout the
training process. With more training, the delta of the increase
keeps decreasing. In contrast, starting at a winning position,
the heuristic opponents’ average score experiences a rapid
decrease at the early stage of the training and maintains a
significantly lower score than the RL agent for the rest of
the training process. The average score of each RL agent
surpasses that of the heuristic opponents within the first one
fifth of the complete training process.
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FIGURE 5. Average score of the RL agents and their opponents.

When the training is completed, the average score per
game of each RL agent over the set of heuristic opponents
is obtained as well as the performance of the corresponding
opponents (as shown in Fig. 5). The average scores of the RL
agents are at least 12.2 points, which is higher than the highest
average score of any heuristic agent throughout the training.
In fact, except for RLRandomAI (12.2) and RLSelfplayAI
(12.8), the average scores of all the RL agents fall into a
narrow range from 13.8 to 14.2. For every RL agent, after
the training, its average score is significantly higher than the
score of the heuristic opponents (approximately 50% higher
in all but one case). Such an advantage over the opponents
is larger than 4.9 points for all RL agents except for the RL
agent trained with CFRandomAI as only a 2.1-point margin
can be achieved versus its heuristic opponents.

As shown in Fig.4 and Fig. 6, at the beginning of the
training, heuristic agents have a clear advantage over RL
agents since RL agents perform almost randomly at this stage.
The average win rate of each heuristic agent versus such
random opponents is at least 0.75 and up to 0.91 (see Fig. 7).
This demonstrates the validity of the assumption about the
suitability of the heuristic agents in the scaled-down version
of the game. With more training, the win rate of every RL
agent shows a consistent increasing trend although the delta
of the increase keeps decreasing. Asymptotic behavior is
apparent in all cases by the end of training.

After the training, the final win rate achieved by each
RL agent versus all heuristic agents is shown in Fig. 8.
RLAdversarialAI (0.79) achieves the highest averagewin rate
whereas RLRandomAI (0.57) achieves the lowest. Other than
RLRandomAI, the win rate of all the RL agents ranges from
0.74 to 0.79. Although RLSelfplayAI tends to achieve lower
scores than the other RL agents, its average win rate (0.75) is
one of the highest among all eight RL agents.

The results are further analyzed for each matchup between
an RL agent and a heuristic agent. As illustrated in Fig. 9,
among all matchups, the average scores of the RL agents
vary in a range from 10.6 to 14.7. RLRandomAI and RLSelf-
playAI tend to achieve lower scores as their average scores
versus the opponents range from 10.6 to 12.7 and from

FIGURE 6. Average win rate of each RL agent across the training process.

FIGURE 7. Average win rate of heuristic agents versus random players.

12.3 to 13, respectively. RLRandomAI achieves the low-
est average score (10.6) among all matchups when playing
with CFAdversarialAI. It is also noticed that the average
scores of RL agents tend to be lower when they compete
with CFRandomAI and CFAdversarialAI. This indicates the
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FIGURE 8. Win rate of each RL agent averaged across all the heuristic
opponents.

FIGURE 9. Average score achieved by RL agent versus different heuristic
opponents.

FIGURE 10. Average win rate achieved by RL agent versus different
heuristic opponents.

higher difficulty for RL agents to achieve high score against
CFRandomAI and CFAdversarialAI.

The win rates of all the matchups are shown in Fig. 10. The
win rate achieved by RLRandomAI are significantly lower
than any other RL agents in all scenarios with any heuristic
opponent as the win rate ranges from 0.54 to 0.61. In contrast,
although RLSelfplayAI achieves low average score (compa-

FIGURE 11. Average win rate (of the entire pool of RL agents) versus each
heuristic opponent.

FIGURE 12. Average win rate (of Player 1) in a Round Robin between two
RL players.

rable with RLRandomAI), its win rate is comparable with
most of the other RL agents, ranging from 0.7 to 0.78. The
win rate of RL agent tends to be lower when the opponent is
CFRandomAI or CFAdversarialAI, especially CFRandomAI.

As shown in Fig. 11, through differentiating the heuristic
opponent, on average, the lowest average win rate can be
expected when RL agents compete with CFRandomAI (0.65)
compared to their average win rate achieved with the other
heuristic opponents (ranges from 0.71 to 0.77).

2) ROUND ROBIN TOURNAMENT
A Round Robin tournament is conducted among all the
RL agents. Each of the agents has the chance to start the
game first (referred to as Player 1). The agent who starts
next is referred to as Player 2. Each match between two
players is conducted for 30,000 timesteps (which equates to
between 2054 and 2222 games). The results shown are an
average across all the games that happen within the specified
timesteps.

As shown in Fig. 12, the win rate matrix is symmetric.
In contrast to its relatively poor performance compared to
the other RL agents in competition to their heuristic coun-
terparts, RLSelfplayAI is the only RL agent which achieves
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advantages over all the other RL agents in terms of win rate as
its win rate versus any other RL agent is at least 0.59 and up
to 0.7. RLRandomAI performs poorly versus most the other
RL agents as it only achieves at most a 0.39 win rate over any
other RL agent except for RLActionEvalAI (0.47). In other
matchups, the performance of both players is close as the
average win rate ranges from 0.44 to 0.56.

The low win rate achieved by RLRandomAI is consistent
with the significantly worse performance versus the heuris-
tic agents. However, while RLSelfplayAI achieves the best
performance against the other RL agents, that is not the case
against the heuristic opponents. It is believed that this RL
agent possesses some uniqueness compared to the RL agents
and the heuristic agents. Since RLSelfplayAI is not trained
with any heuristic agent but with a previous version of itself,
its training experience does not overfit to the constrained
paradigms resulting from the hard-coded rules of the heuristic
opponents. Hence, RLSelfplayAI is more versatile and can
deal with various opponents, including both different heuris-
tic agents and RL agents.

V. CONCLUSION
This paper demonstrated the capabilities of AI agents trained
with general-purpose RL algorithm (PPO) in playing a com-
plex imperfect information board game with delayed rewards
– Ticket to Ride (T2R) with no domain knowledge beyond
game rules, game states and scores. Inductive bias is only
introduced when necessary, such as a simple reward shap-
ing and the intuitive ways of encoding state-action space,
which are reflections of the game rules. Eight RL agents
were obtained through different training schemes, which
were defined by the opponent involved in the training under
the 2-player setting. It was demonstrated that all these RL
agents achieved advantage over a set of heuristic opponents
including the RL agent trained with a self-play strategy
(RLSelfplayAI). Furthermore, RLSelfplayAI was demon-
strated to be the best RL agent when competing with any of
the RL agents. It was the only RL agent that achieved advan-
tages over all the other RL agents. Moreover, RLSelfplayAI
has shown better versatility in competing with different
opponents including both heuristics and RL agents. This
suggests that without involving any heuristics, such as oppo-
nents with hard-coded heuristic rules for playing T2R, the
general-purpose RL algorithm (PPO) can still achieve high
performance and versatility through self-play. It is also rec-
ognized that there is still room to improve the training scheme
of RLSelfplayAI as evidenced by its relative performance
against heuristic agents.

Future work is planned. Firstly, the success of RL in this
simplified version of T2R presents an opportunity to take
the same method to a larger implementation of the game.
The next step will be the demonstration of the capabilities
of RL agents in the commercial versions (larger maps) of
T2R. Secondly, multiplayer games are more general situa-
tions and will unfold more possibilities than 2-player games.
Future work on the multiplayer settings instead of the current

2-player setting will be conducted by further improving the
RL algorithms and training schemes. Thirdly, previous states
were not taken into account in training the RL policy in
this implementation. However, past states are suspected to
be important in inferring belief states in Partially Observ-
able Markov Decision Processes (POMDP) [102]. Therefore,
using historic data sequence through Recurrent Neural Net-
works (RNNs) may advance the current RL algorithm in
tackling T2R.

APPENDIX
A. GAME DESIGN PRINCIPLES
As one of the most successful board games in the world, the
elegant design of T2R has been celebrated by players around
the world since the success of the original version in 2004.
To accommodate the enthusiasm, a variety of versions of the
game have been released in the last two decades. In the hope
of understanding the design choices, this section investigates
different versions of T2R from several essential aspects of the
game design in terms of the numeric and graphic parameters.

1) NUMERIC PARAMETERS OF VARIOUS TICKET TO RIDE
VERSIONS
The numerical parameters of a considerable range of different
Ticket to Ride versions are summarized in Table 5. Further
analysis of these numerical configurations is given below.

a: VERTICES
Among the parameters, the number of vertices/cities/regions
(n) is an independent variable to the other parameters. The
number of cities determines the complexity/difficulty of the
game/task to a significant extent. Among the investigated
versions, it varies from 14 to 47.

b: EDGES
All vertices on a T2R map are connected through edges. The
choice of connecting cities with edges is reflected by the
distribution of degrees (refer to the next section for further
analysis on degrees). In all analyzed versions, the number of
edges is approximately 2 times the number of vertices (2n).
Moreover, the sum of degrees of all vertices is 2 times the
number of edges. As a result, the average value of the degree
of a city is 4, i.e., on average, each city has 4 edges or is
connected to 4 other cities.

c: NUMBER OF DESTINATION TICKETS
The number of destination tickets approximates n in most
investigated versions. The set of tickets in each version tends
to nominate each city in the map as a destination at least once.

d: NUMBER OF COLORS
The colors on edges are in accordance with the colors on
train cards. The number of colors is either 6 or 8. The choice
is related to the size of the map (the number of vertices).
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TABLE 5. Configuration summary of different versions of ticket to ride.

TABLE 6. Map attribute analysis of different versions of ticket to ride.

In specific, versions with 35 or more vertices have 8 colors,
whereas the smaller maps have 6 colors.

2) GRAPHIC ATTRIBUTES
In addition to the numeric parameters regarding the general
settings, further analysis is conducted on a variety of graphic
attributes that further define the dynamics of the game (as
shown in Table 6). A large map (Europe version) and a small
map (New York version) are taken as examples in some in-
depth analysis.

a: DEGREE DISTRIBUTION
The level of degree of a vertex in a map is a result of the
design choices made regarding spatial connections between
cities and edges. Some statistics of the distribution of degrees
are summarized in Table 6 including mean degree, mini-
mum degree, maximum degree, number of vertices with the
minimum degree, number of vertices with the maximum

degree. The degrees are calculated by only counting dou-
ble/triple/quadruple edges once. Although the distribution
of degrees varies in different versions of T2R, their mean
degrees are all 4. In other words, the higher complexity of
a version with a larger map is not introduced by increasing
the degrees of vertices. The number of vertices is still the
dominant factor.

b: EDGE COLOR DISTRIBUTION
The number of edges in each color tends to be the same in
each version with a few biases. The number of edges in each
color differs across different versions. It is a function of the
total number of edges and the number of edge colors.

Similarly, the number of segments in each color (including
all edges in the color) tends to be around the same value
in each version. This design principle is more consistently
adopted than that around the number of edges in each color
since the bias tends to be smaller.
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FIGURE 13. Visualization of the heuristics used for CFBaseAI.

For edges without color (grey edges), no clear pattern is
observed in terms of number of grey edges across different
versions.

c: TICKET POINTS VS. SHORTEST PATH
Based on analysis on Europe version and New York ver-
sion, for most destination tickets (Europe: 35/46, New York:
12/18), there is only one shortest path in terms of segments.
This is achieved through the highly asymmetric structure of
the train networks.

Furthermore, based on analyses on Europe version and
New York version, the number of points of a ticket equals
the segment length of the path (connecting the 2 destinations
of the ticket) with the fewest segments, or the least number of
train cars to complete the ticket/contract (only with 3 excep-
tions with minor bias in Europe version).

d: DOUBLE EDGES VS POPULARITY
The number of double edges varies from version to version.
There is a weak correlation between the choice of a double
edge with the number of times visited by the shortest path of
a destination ticket (0.37 for Europe version and 0.20 for New
York version). In other words, if an edge is visited by more
shortest paths, it is more likely that it is a double edge.

B. DESCRIPTION OF THE HEURISTIC AGENTS
1) CFBaseAI
CFBaseAI has a set of rules and a cost function to make deci-
sions in each round. CFBaseAI plays the game by following
the rules described in Fig. 13. It first attempts to examine
whether the desired path for completing destination cards has
been taken by the opponent, if yes, the agent will re-evaluate
the path for the destination cards, otherwise it will find the

FIGURE 14. Visualization of the heuristics used for CFRandomAI.

best path according to the value of cost function, as described
in Algorithm 1.

If the agent can find the path based on the cost func-
tion, then it calculates the available edges and chooses the
edge with the least cost value to claim (as described in
Algorithm 2). But if there are not enough cards, it will get the
cards needed for the given path. By doing that, the agent will
evaluate the value of face-up cards first, if the value of face-up
card is larger than 0, it will select face-up cards, otherwise the
agent will pick up cards from the deck.

If the agent cannot find the path based on the cost function,
it will pick the destination ticket if there is not enough des-
tination ticket in hand. Otherwise, it will claim a connection
with the best score if there is any available destination ticket.

Algorithm 1 Cost Function for Evaluating Individual Paths
Input: the path to calculate cost, the list of all path, a dictionary
containing the costs of all edges, hand cards, face-up cards,
Edge_Color_Exp
Output: cost of the path
possible_cards = [hand_cards face_up_cards]
for each card in possible_cards

If card in cards needed
card_needed −= card
cards_needed_num −= 1;
useful_card_num += 1;

end for each
for each card in card_needed do

If needed _ cards in grey color
Cost += card_needed_num;

else
Cost += card_needed_num ^Edge_Color_Exp;

end for each

The way to evaluate the face-up cards is described as
follows: the agent will go through each card in the face-up
cards by first examine whether the card is wild card or not,
if it is and the remaining action is two (no card has been
drawn), the value will plus wild card value, but if it is and
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FIGURE 15. Visualization of the heuristics used for CFAdversarialAI. The heuristic for CFActionEvalAI is the same except the step to evaluate the threated
edge of opponents is removed.

remaining action is one (one colored card is drawn or one
card is drawn from the deck), the value will decrease one.
If the card is not a wild card, the value will plus the card
value if it is the needed card. Thus, the face-up cards will be
evaluated and if the value is 0, the agent will select cards from
the deck.

2) CFRandomAI
The design of CFRandomAI is based on the CFBaseAI,
as depicted in Fig. 14. The workflows of those two agents
are similar except that after evaluating the best path based
on the cost function, randomness is introduced to finalize
the actions. To be more specific, CFRandomAI will choose
random actions when connecting an edge for best path and
drawing train cards. Besides, when there are not enough
cards to claim the edge, the agent will randomly select cards
from the deck instead of selecting cards from the face-up
cards.

3) CFActionEvalAI
CFActionEvalAI uses a set of cost functions to evaluate each
action in each turn and select the best action. The novelty
lies with two aspects: first is to evaluate each action based
on the path and cost function. The agent will initially repeat
the same process of CFBaseAI, updating the game states by
finding best path, available destination cards and train cards.
Then, the agent will get all the available actions based on

the game state and calculate the value score for each possi-
ble action. As shown in Algorithm 3, the CFActionEvalAI
agent has different heuristic mechanisms to calculate value
scores for different actions given the temporal state. Fig. 15
presents the flowchart/decision tree of CFActionEvalAI,
which is almost identical with CFBaseAI. The difference
is that the CFActionEvalAI calculates the value score for
each branch, then synthesize the results for the action space.
Thus, the value score will be calculated for each action, and
the agent will select the best action with the highest score
to implement.

4) CFAdversarialAI
CFAdversarialAI plays almost the same way as the CFAc-
tionEvalAI, but it will predict the threatened edge of the
opponent (steal edge) first before performing the original
action with the best value. The agent will perform the value
score calculation as the CFActionEvalAI, but it will evaluate
the possible steal edges, and find an action to claim it. If the
action is achievable, the agent will claim the threatened edge
of the opponent first instead of claiming their best choice,
as shown in Fig. 15.

5) CFCombinedAI
CFCombinedAI performs similarly to CFAdversarialAI,
except that rather than directly claiming the threatened edge
of the opponent, CFCombinedAI evaluates the value of
the threatened edge with Algorithm 4 and combines this
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Algorithm 2 Select Edge on the Path to Claim
Input: the path, the costs of all edges, Wild_card_cost,
Edge_Score_Multiplier, Edge_Score
Output: best action
cards_needed = get cards needed to connect the path
for each edge in path

all_connection_actions = get all possible connects;
for each action in all_connection_actions do

for card in action.cards (combinations of cards required by the
connection actions):

if card == wild card
Cost += Wild_card_cost;

else
Cost += cards_needed[card];

end
Cost −= Edge_Score_Multiplier ∗

Edge_Score[edge_cost]
end for each

end for each

Algorithm 3 Evaluate Action Based on Path and Cost Func-
tion
Input: action to be evaluated, path, threat_action_weight,
Wild_card_value, Edge_Score, remaining edge, remaining_edge_score,
wild_card_cost, num_cars
Output: the value of the action
cards_needed = get cards needed to connect the path
if edge in threatened edges

value += threatened_edges_score ∗ threat_action_weight;
if path is not none :

if edge in remaining edge do
value += Wild_card_value + Edge_Score \ path score

– remaining_edge_score:
else edge not in remaining edge

value += −1
for each card in cards required by action

if card is wildcard
value −= wild_card_cost

else
value −= cards_needed

end for each
if path is none:

value += Edge_Score
if draw destination card
value −= destination_threshold + num_cars
if draw deck cards:

value += wild_card_value
if draw face up cards:

if draw wild_card:
value += wild_card_value

else
value += cards_needed

score with the evaluation of the edge made by Algorithm 3.
In Algorithm 4, first, the double edges are removed from the
threatened edges because the double edge cannot be blocked
instantaneously. Then, it will evaluate each edge in the edge
groups by adding a score based on the player’s remaining
cards, adding score based on all the edge’s cost and adding
score based on the length of the edge group. If the score is
less than 0, the score will be 0. As shown in Algorithm 3,
if the action aims to claim the threatened edge, the value
will plus threatened edge score ∗ threat action weight, which
indicates that the threatened edge will be given high priority.
However, the threat action weight should be appropriately
defined.

Algorithm 4 Evaluate Threatened Edge
Input: threatened edge to be evaluated, T_multi_edge_penalty,
T_Remaining_Cars, T_edge_weight, T_edge_group_length
Output: the value of the action
if threatened edge in double edges

remove double edges;
penalty = (len(threatened_edges) − 1) ∗ T_multi_edge_penalty:
for each temp_edge_group in threatened_edges:

score = 0 – penalty
score += T_remainig_cards ∗ (num_total_cars – num_cars);
for each edge_group in temp_edge_group:

for each edge in edge_group:
score += edge cost ∗ T_edge_weight;

end for each
score +=

len(edge_group)^(T_edge_group_length);
score = 0;

end for each
end for each

6) CFGameTreeAI
CFGameTreeAI is an ensemble approach which gives equal
weight to the decisions of the previous five heuristic agents.
The action with the highest votes will be performed.
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