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ABSTRACT Coffee leaf diseases can significantly impact the productivity and quality of the crops. Accurate
and timely identification of these diseases is crucial for effective management and control. This paper
proposes a hybrid feature fusion approach for identifying coffee leaf disease, including early and late
feature fusion. First, we propose several hybrid models to extract the information feature in the input
images by combining MobileNetV3, Swin Transformer, and variational autoencoder (VAE). MobileNetV3,
acting on the inductive bias of locality, can extract image features that are closer to one another (local
features), while the Swin Transformer is able to extract feature interactions that are further apart (high-
level features). These differently extracted features contain complementary information that enriches a
unified feature map. Second, the extracted images from models are fused in the early fusion network. The
early-fusion learner network is deployed to learn the rich information from the extracted feature. The late
fusion network is implemented to comprehensively learn the fused feature before a classification network
classifies coffee leaf diseases. The proposed hybrid feature fusion approach is evaluated on a challenging, real
world Robusta Coffee Leaf (RoCoLe) dataset with various diseases, including red spider mite and leaf rust
disease. The results show that our approach, the hybrid feature fusion ofMobileNetV3 and Swin Transformer,
outperforms the individual models with an accuracy of 84.29%. In conclusion, the hybrid feature fusion
approach combining MobileNetV3 and Swin Transformer models is a promising approach for coffee leaf
disease identification, providing accurate and timely diagnosis for effective management and control of the
diseases in real-world conditions.

INDEX TERMS Coffee leaf disease classification, feature fusion, hybrid model.

I. INTRODUCTION
Agriculture forms a big portion of the world’s economy,
amounting to over 4% of the world’s gross domestic prod-
uct (GDP) [1]. Additionally, its economic benefits extend
to reducing overall poverty, raising income, and increasing
employment possibilities in many African and Asian coun-
tries such as Vietnam, Indonesia, and Ethiopia. Their main
type of coffee production is Robusta beans which are fre-
quently plagued with major diseases such as leaf rust and
red spider mites. These plagues can impact yield losses by
over 75% in severe cases and over two billion US dollars
annually [2]. Typically, trained personnel manually inspect
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individual leaves to identify the presence of any diseases. This
solution would require extensive time and effort since coffee
plantations may start from 5 hectares up to several hundred
hectares.

Initially, computer vision and machine learning algorithms
have been proposed to solve the detection of plant leaf
diseases [3], [4]. The leaf was captured using a digital
camera and concurrently identified using machine learn-
ing algorithms such as k-means clustering [3], radial basis
function network [4], etc. However, the machine learning
algorithm requires hand-crafted feature extractions that were
prepared on individual images to obtain meaningful fea-
tures before the classifier performs classification [5], [6], [7].
Therefore, the deep learning algorithm is proposed to auto-
matically perform feature extraction [6], [8], [9]. In the
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meantime, many plant leaf disease datasets have been gen-
erated [10], [11], [12], [13]. Eventually, deep learning
algorithms have been gaining attention in classifying plant
leaf diseases [14], [15], [16]. As a result, Convolutional Neu-
ral Networks (CNN), a subset of deep learning, have been
intensively utilized. CNN is able to perform the necessary
feature extractions automatically and has several popular
architectures. CNN models such as VGG [14], ResNet [15],
DenseNet [16], EffecientNet [7], [17], and MobileNet [18]
that were trained on ImageNet [19] are proposed and suc-
cessfully classified plant leaf diseases. In addition, the com-
bined CNN model and attention mechanism have also been
introduced [20], [21].

Although the improvements occur from the use of an
advanced deep learning approach over traditional solutions,
there remains a challenge for unconditioned images in
real-world situations [17]. Real-world condition images are
often taken using a mobile device without much modification
to the background of the leaf subject. Unmodified back-
grounds are usually similarly colored to the issue, including a
combination of other leaves, grasses, and trees. Hence, there
is not much color distinction between the image elements.
Traditionally, CNNs are the popular technique for image
classification tasks due to their inductive biases associated
with locality and weight sharing [22]. Both of these rely
heavily on the contrasts that can be drawn out from closely
located pixels of an image. Therefore, it is assumed that
the performance of CNN-based image classification models
would significantly impact when applied to real-world con-
dition leaf diseases [17]. Each CNN backboned model has
a distinct way of extracting features from an image based
on their architecture. There may be models that focus more
on individual channels (depthwise convolutions) or larger
spatial dimensions (spatial convolutions) of an image and
thus resulting in different feature vector maps generated.

Feature fusion is a deep learning technique that com-
bines several feature maps generated from CNN, or any
hierarchical models, into an enriched integrated feature
representation [23]. Combinations often employ concatena-
tion, which may compensate for the inadequacy of features
extracted from a single network [24]. Other advantages that
may be drawn out from using this technique over creat-
ing a single large network are lower computational costs
and improved classification capabilities. Apart from feature
fusion, the possibility of combining decision-level outputs
frommultiple networks like that of an ensemble model exists.
A hybrid of both these techniques may also be employed to
reap even more benefits.

This study strives to resolve the difficulties encountered in
classifying coffee leaf diseases in real-world conditions. The
root problem could lie in the real-world coffee leaf disease
images, which often showcase subjects that blend in or have
similar colors to the background. These conditions can be
observed in the Robusta Coffee Leaf (RoCoLe) dataset [11],
which consists of 1,560 leaf images showing red spider

mites and coffee leaf rusts equipped with detailed annota-
tions. Thus, as mentioned earlier, the dataset is suitable for
evaluating the problem in the real-world. Other studies have
struggled to obtain an effective classification performance
using a single network scheme, and feature fusions are yet
to be investigated to solve this problem. Based on the pre-
liminary findings that feature fusion could enrich extracted
features and produce better results, we employed a series
of experiments to investigate feature fusion and its various
variants in this real-world coffee leaf disease problem. This
study has several contributions to be highlighted:

1. We propose the use of hybrid feature fusion, including
early and late feature fusion in real-world coffee leaf disease
classification

2. We evaluate the performance of several hybrid feature
fusions models on the RoCoLe dataset and derive a model
selection criterion.

3. We investigate the effectiveness of hybrid fusion against
a single conventional network based on real-world condition
RoCoLe dataset [11] classification performance

Apart from this introduction, this paper is structured with
four remainingmain sections: the relatedworks of deep learn-
ing in plant leaf diseases, the methodology used in this study,
the experiment results, and conclusions. The methodology
includes the feature extractions of different deep learning
methods, includingMobileNetV3 and Swin Transformer, dif-
ferent types of feature fusions, and fusion model selection
for our proposed method. In our experiment results, a com-
parative report on the developed model for selection was
done, followed by a comparison to other benchmarks and the
proposed method. The end of this paper is concluded with a
summary of the findings of this study.

II. RELATED WORKS
Agriculture plays a vital role in a country’s economy by pro-
viding food and employment opportunities for a large portion
of the population. However, plant diseases can lead to inferior
crop yield and hinder economic growth. Several proposed
techniques have been developed to address plant leaf disease
identification challenges. In this section, we provide a brief
overview of some relevant research techniques in this field.

A new classification technique is developed in [25]
using the boosted support vector machine-based Arithmetic
optimization algorithm. The input image is segmented by
the vector value model, then extracted by the greyscale
co-occurrence matrix. The extracted feature is classified
using the proposed method, achieving an accuracy of 98.6%.
In [26], a detection for local tomato leaf disease is proposed
based on image processing. The gray level co-occurrence
matrix is employed as feature extraction to calculate 13 sta-
tistical features. Then, a support vector machine is selected
to classify those features into four classes. In [14], a new
framework called AgriDet was developed by combining the
inception module and VGG network to classify plant leaf
disease. The Inception-VGG is used as a feature extractor,
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while the Kohonen layer is employed to learn multi-scale fea-
tures. The framework includes the pre-processing image part,
which encompasses scaling, enhancement, and contrast. The
proposed framework achieves an accuracy of 93.24%. In [16],
an improved DenseNet was proposed to classify potato leaf
diseases. The improvedDenseNet has an extra transition layer
and a re-weighted cross-entropy to enhance classification in
the imbalanced dataset. The proposed method achieved an
accuracy of 97.2%.

In [20], a modification of GoogLeNet, rE-GoogLeNet,
is developed by replacing the kernel filter from 7 × 7 to
three kernel filters of 3 × 3, adding an ECA attention in
the inception module, a residual network, and leaky-ReLU.
The proposed network includes a simple classifier to
reduce the complexity. The modified network achieved an
accuracy of 99.58%. In [27], a combination of principal
component analysis and a deep neural network called Deep-
Net is proposed. A generative adversarial network (GAN) is
employed to add a mixture to the dataset. A faster-Region-
based Convolutional Neural Network (F-RCNN) is used as
a classifier and achieves an accuracy of 99.60%. In [28],
a fine-grained disease classification that utilizes attention
mechanisms is proposed. A reconstruction-generation model,
as well as adversarial loss, are employed to suppress the
noise. The proposed method achieves higher accuracy and
less memory since the model does not increase the model
complexity during inference. In [18], a transfer learning
method using pre-trainedMobilNetV2 is proposed for tomato
leaf diseases to extract input features. The augmentation step
is utilized to tackle the imbalanced dataset. The proposed
method achieves a floating point of 4.87M and a size of
9.69MB with an accuracy of 99.30%. An efficient CNN is
also proposed in [6] by combining the Inception module
and pre-trained MobileNet called MobInc-Net. The proposed
MobInc achieves an accuracy of 97.89% for the custom
dataset. In [7], two pre-trained CNNS, EfficientNetB0 and
DenseNet121, are utilized to extract deep features of corn
images. The proposed CNNs obtain an accuracy of 98.56%,
superior to other pre-trained CNNs. In [21], a combination of
transformer and Inception is proposed to capture long-range
and cross-channel features to improve fine-grained learning.
This model outperforms previous models based on convolu-
tion and vision transformers, achieving high accuracy onmul-
tiple datasets with an accuracy of 99.94% on the Plant Village
dataset, 99.22% on the ibean dataset, 86.89% on the AI2018
dataset, and 77.54% on PlantDoc. In [17], several plant
leaf datasets, including RoCoLe, BRACOL, Plant Pathology,
and Plant Village, were analyzed using several pre-trained
models such as EfficientB0, MobileNetV2, InceptionV2,
ResNet50, and VGG16. The proposed method explored the
influential factors affecting models’ accuracy using different
conditions: laboratory and real-life conditions. In conclu-
sion, the accuracy dropped from 92.67% to 54.41% in the
worst case due to the complexity of the real-life background.
In [15], an attempt to explore the visualization was presented

using several approaches. The proposedmethodwas expected
to understand what the deep learning model sees when clas-
sifying images. In the end, the guided SVM was utilized
to show the accuracy improvement compared to the Naïve
approach. Table 1 shows the comparison of related works.

III. METHODOLOGY
A. FEATURE EXTRACTION USING DEEP LEARNING
1) MOBILENETV3
Based on the MobileNet family of CNN models, the third
iteration of this family presents an improved performance
over the MobileNetV2 in terms of accuracy, by 3.2%, and
inference time, over 20%, on the ImageNet benchmark. This
model places among the best for performance to inference
time ratio. The architecture still has the inverted residual and
linear bottleneck that MobileNetV2 has. However, several
architectural changes were made in order to achieve such
improvements, namely the addition of squeeze and exci-
tation in the residual layer, a modified swish nonlinearity
called hard-swish, a redesign of the computationally costly
last stage, as well as platform-aware Neural Architecture
Search (NAS) for block search and NetAdapt for per layer
search of an optimal number of filters. The squeeze and
excitation implemented for MobileNetV3 [29] differ from
that found in MnasNet, despite being built upon the same
MobileNetV2. MnasNet adopted the squeeze and excitation
into the bottleneck layers, whereas the MobileNetV3 applied
it on the residual layer with ReLu and hard-swish nonlin-
earities depending on the layer. Two developed versions of
the MobileNetV3 targetted a low and high resource corre-
sponding to the small and large suffixes. As with most CNN
backbone models, the features extraction method relies heav-
ily on inductive biases from the locality and weight sharing
that thrive on opposite edges [22].

2) SWIN TRANSFORMER
In CNN architectures, the typical interaction between pixels
of an image is based on the assumption of locality, which
gives more importance to drastic pixel intensity changes
from closeby pixels than those that are further apart. On the
other hand, Swin Transformer does not have a CNN back-
bone for vision classification. It leverages on the transformer
architecture that are commonly found in Natural Language
Processing (NLP) and more recently imported into com-
puter vision tasks in Vision Transformers [30] and its
derivatives [31]. As previously identified, there are issues
regarding the use of transformers in vision tasks, namely
the greater requirement for training data and consequent
lack of inductive biases, when compared to CNNs [30].
The Swin Transformer is developed using shifting windows
self-attention to tackle this problem. By introducing a hier-
archical representation of self-attention on local windows
while also allowing for global cross-window relationships,
the benefit of transformers in capturing long-range, global
pixel interactions is not lost. Compared to the ViT that
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TABLE 1. The summary of related works.

directly works on large image patches, the Swin constructs
multiple layers of differently-sized patches of the same image
as shown in Figure 1. By doing so, the layers could form a
hierarchical representation that enables the Swin to leverage
the multi-scaled information for advanced dense predictions,
including for classification purposes [31]. It also presents
computational benefits linear to image size and the ability
to operate at various scales. These features have allowed it
to achieve 87.3% accuracy on the ImageNet-1K benchmark.
In contrast to CNN backbone models, the feature extraction
of this Swin Transformer does not rely solely on inductive
biases but also include the global self-attention mechanism
embedded in the transformer architecture.

3) VARIATIONAL AUTOENCODER
Autoencoders (AE) are unsupervised learning techniques
that take data inputs without any label to guide the learn-
ing process. It reduces dimensionality and is a non-linear
principal component analysis (PCA). There are two main
parts of an autoencoder: encoder and decoder. The encoder
functions to encode input information into the latent encoded
vectors. In contrast, the decoder works in the opposite
direction, that is, to regenerate the features back from
the latent vectors. Latent vectors are products of the
encoder by compressing the input information. Outputs
of the AE are expected to represent the original data
better.
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FIGURE 1. The illustration of the hierarchical feature maps generated by
swin transformer compared to the single-scale feature map of the vision
transformer.

A variational autoencoder (VAE) employs principles of
probability theory and Bayes theorem. Instead of using
a function to create the latent attributes, VAE utilizes a
probability distribution to represent the latent space. Math-
ematically, the VAE takes in observed data x and attempts
to obtain a good value of latent variables z by using p(z|x),
or simply p(z), to generate a distribution of possible param-
eters [33]. As the decoder is simply reconstructing the latent
variable back into data, the process can be thought of as
p(x|z). The overall network can be thought of as a joint prob-
ability model p(x|z) = p(x|z) p(z). Since the latent variable
is generated using a probability distribution, it is possible
for the final output to be new content. Hence, it inherently
has a generative property. Additionally, due to the Bayesian
properties of the VAE, it is more suitable for larger datasets
in terms of computation and could provide better represen-
tations [34]. Incorporating VAE into an image classification
network would mean that novel image information is intro-
duced within the neural network. As more variations are
introduced to the neural network, and assuming the net-
work learns properly, the final model’s generalization ability
should improve.

B. FEATURE FUSION
When the use of single networks is not sufficient, a combi-
nation of several models may be the most convenient method
of developing a new high-performing network. This method
of using multi-modal machine learning could be referred to
as fusion. Fusion simply refers to the combination of two or
more networks by means of concatenation. Rather than addi-
tion and subtraction operation that alters the weight value in a
particular layer, concatenation simply creates a larger vector
on one of the dimensions and due to this it can be done in
varying stages of the network. However, it is a requirement for
the feature maps of the two modalities to have one identical
dimension values that will be concatenated. A consequence
of this technique is the massive layer created immediately
after the fusion is done. By leveraging multiple machine
learningmodels to perform the task at hand, performancemay
experience a boost while inference time andmodel size would
need to be compromised.

1) EARLY-FEATURE FUSION
Sincemost computer vision networks’ early section functions
extract meaningful features, early-stage fusion combines the

learned feature maps of each model into a single, large fea-
ture representation. Mathematically, it could be described as
xconcat = concatenate [x1, x2, . . . , xn] where xi is the input
vector of each modality. Further processing would be done on
this unified feature map as xconcat would be the input to the
first DL layer. Compared to a single network feature map,
this fused feature representation would be highly enriched
with features from multiple networks. As the network does
not differentiate features from different modalities, there can
be two contrasting scenarios when using the early-feature
fusion technique. Ideally, to obtain an improved performance
using this approach, each fusedmodel must focus on different
meaningful features that complement each other. As a result,
it would allow later stages of the network to make decision
scores based on cross-modal features. However, combining a
perfectly feature map from one network with another can also
be combined with another that merely extracts noise features
from the same image. In this case, the fusion would create a
disrupted feature map, leading to poorer performance. This
early-feature fusion is the lesser-used method, as the dimen-
sion of the generated feature maps could often vary with each
modality. Different kernel sizes, strides, and paddings are
among the reasons each model has differently sized feature
maps. It has also been reported that early-feature fusion pro-
vides more robust performances when varying noise levels
are involved compared to late fusion [35].

2) LATE-FEATURE FUSION
In this method, each input feature is extracted and sub-
sequently processed by each network individually. Fully
connected layers at each modality’s end are responsible for
creating prediction scores. Each base model prediction is
then aggregated to form a final prediction of p(y|xi), where
xi is the prediction scores from the i-th base models. Pre-
diction error and generalization error can be reduced by
using this technique as it employs the wisdom of crowds
to make predictions [36]. However, the drawback of this
technique is that multimodal relationships are not learned
by the final model [37]. This could be an advantage when
different modalities are less correlated. It could be uti-
lized with shallow machine learning and deep learning as
late fusion combines decision-level predictions rather than
learned extracted features. Like bagging ensemble modeling,
late-feature fusion has been employed more frequently due
to its practicality [38]. An imbalance in the input dimensions
does not affect the final predictions as higher dimensional
modalities take precedence over lower dimensions [37].

C. PROPOSED METHOD
The early- and late-feature fusion techniques have their ben-
efits and drawbacks. It can also be implemented in most
computer vision architectures. In hopes that the benefits
can be leveraged for better performance, this study sought
to incorporate both techniques into a single neural net-
work architecture and call it a hybrid fusion. Hybrid fusion
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FIGURE 2. The architecture of hybrid fusion of MobileNetV3 and swin transformer.

would incorporate the early- feature fusion technique and the
late-late feature fusion a single network. Early fusion would
offer an enriched feature vector for the consequent layer of
the network through its cross-modality feature correlations
and inherent noise-resistant design. In contrast, late fusion
minimizes the generalization and prediction errors. The most
apparent drawback of this technique would be the larger final
weights associated with the multiple concatenations after
fusion.

1) MOBILENETV3 AND SWIN TRANSFORMER
As the final model was likely to contain large weights due
to the fusion of multiple models, we employed a relatively
mobile model in the MobileNetV3Large alongside the base
Swin Transformer. The intuition behind the fusion of a CNN
backbone with a Transformer backbone is to introduce a
global self-attention that focuses on long-range dependencies
into the locally-focused inductive biases. As a result, the final
model would consider both global and local properties of
the image and optimize its importance as it learns. For this
particular architecture, aMnum or multiplier number of 2 and
4 were experimented with. For ease of comparison, later on,
the model with a multiplier of 2 will be called the ‘mini’
version. The choice of activation function was swish for the
late fusion learner block, and all other dense layers were given
ReLU non-linearity. Figure 2 shows the architecture of the
hybrid feature fusion ofMobileNetV3 and Swin Transformer.

2) VAE-CNN AND SWIN TRANSFORMER
This model was developed involving three distinct archi-
tectures, including VAE, Large Swin Transformer, and a
custom-crafted 2D-Convolution Network. Apart from the
Swin Transformer, all other modalities were trained from
scratch. The custom Conv2D model architecture can be
observed in Table 2. In this architecture, since more modali-
ties are involved, the base number of units for the dense layers

TABLE 2. Units for magnetic properties parameter of custom Conv2d
model.

was raised, whereas the Mnum value was assigned a value of
3. All layers after the three modalities were given a swish
non-linearity activation function. Similarly, to the previous
model, we incorporated an early and late fusion with their
dense learner blocks. Figure 3 shows the architecture of the
Hybrid Fusion of VAE-CNN and Swin Transformer.

D. DATASET
Our study investigates the effectiveness of our proposed
method in real-world conditions of plant leaf disease clas-
sification. Accordingly, the RoCoLe dataset [11] with these
properties was used. RoCoLe stands for Robusta Coffee Leaf,
and it is a dataset collected in Ecuador designed for training,
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FIGURE 3. The architecture of hybrid fusion of VAE-CNN and swin-transformer.

FIGURE 4. The example of RoCoLe dataset.

testing, and validating machine learning algorithms in binary
or multi-class tasks. There are 1,560 images in the dataset
provides three images for each 390 coffee plants. It consists
of the front and back sides of the plants at different health
states and with various diseases, including rust and red spider
mites. The dataset also provides the severity level of the leaf
infected. The images were captured using a 5-MP smart-
phone camera from an approximate distance of 200-300 mm
from the object in various lighting and background condi-
tions. As these were taken in real-world conditions, lighting
and humidity may vary depending on the weather condi-
tions, whereas the background may contain weeds or other
plants. These conditions provide a representative sample of
real-world conditions for the coffee leaf plants. Figure 4
shows the example of each class.

To maintain the real-world image conditions, no image
preprocessing was applied before feeding into the model.
By doing so, we could assess the model’s capability on
uncontrolled, real-world images containing various noises
and interferences. Instead, data augmentation was applied
to prevent overfitting from these noises and allow better
generalization. The data augmentation in this study were

pixel rescaling, horizontal and vertical flips, height and width
shifting, and a maximum of 20-degree rotation. None of these
alter the image quality. Afterward, the dataset is divided into
train and testing sets following the k-fold cross-validation
method. This method was selected instead of the three-way
split (train, validation, and test), as the number of images
in the dataset is limited. We opted to use 5-fold to split our
dataset, where four parts are used for training the model, and
one unseen part is used for testing. The dataset parts were
uniquely iterated for training and testing the model. Metrics
obtained from evaluating the model are based on the unseen
testing dataset.

IV. EXPERIMENT AND RESULTS
In order to develop an optimized deep learningmodel, it needs
to be trained using an optimizer and loss function. Two
distinct models were developed, employing different training
optimizers and loss function parameters. All model training
was done for 50 epochs with the label-smoothened cate-
gorical cross-entropy loss function. We limit the epochs to
50 as our preliminary exploration discovered that 100 epochs
and more did not impact performance significantly. Another
acquired benefit of this is the reduced model training time.
This loss function can bewritten as an equation in Equation 1,
where yi is the probability distribution of a prediction and
yi′ is the actual probability distribution. Furthermore, ∈

controls the smoothing factor, while K is the number of
prediction classes for a particular learning task. Except for the
‘normal’ MobileNetV3 and Swin Transformer model with a
0.3 smoothing factor, all other models were trained with a
smoothing factor of 0.1. For both the MobileNetV3 and Swin
Transformer, the Adam optimizer was utilized with a base
learning rate of 0.00001. In contrast, the VAE-CNN and Swin
Transformer model used a stochastic gradient descent (SGD)
optimizer with a smaller base learning rate of 0.000001,
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TABLE 3. The comparison of hybrid feature fusion models.

a momentum of 0.99, and a decay rate based on the quotient
between the base learning rate and the number of epochs.
All of these hyperparameters were determined to be the best
through a preliminary hyperparameter selection experiment
based on several number of learning rate, SGD optimizer, and
momentum. As a result, we limit our proposed methods to
these hyperparameter selection results.

Ly′ = −

∑
i

(
y′i(1− ∈) +

∈

K

)
log(yi) (1)

As deep learning models are prone to overfitting when
trained with fewer data, we employed 3 (three) methods
towards the data, the model, and the evaluation in our exper-
iments to reduce the effects. Data augmentation was done on
the dataset to increase the image variations prior to training.
Our proposed methods used layer normalization to redis-
tribute the weights in a particular layer across all features.
It results in less overfitting and faster training time. Lastly,
our evaluation utilizes the 5-fold cross-validation. It produces
cross-validated metrics that are the result of averaging across
all 5 runs, each trained on different dataset splits.

Evaluation is a crucial part of analyzing our developed
models, and it is done based on several key metrics. These
metrics include accuracy, precision, recall, and F1-score.
Accuracy is the ratio of correct prediction labels to the total
number of predictions made across all labels. In the interest
of discovering the performance of positively predicted labels,
precision and recall are used. Precision is calculated by the
number of predicted true positives divided by the total number
of predicted positives. On the other hand, recall is the ratio of
correct positive predicted labels to the total number of posi-
tive labels. These equations can be observed in Equations 2,
3, and 4. F1-score is also the harmonic mean between the
precision and accuracy, which could be calculated as such
in Equation 5. As previously mentioned in Section III-D,
all evaluation metrics were obtained on the unseen, testing
part of the 5-fold cross-validation. Accordingly, comparisons
done further down this section would be based on these
critical metrics.

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-Score = 2 ×
Precision × Recall
Precision + Recall

(5)

In our experiment, several models were developed to solve
the real-world condition of coffee leaf disease classifica-
tion. Table 3 shows of our proposed hybrid feature fusion
models. As the key to the feature fusion technique is to
extract complimentary features and create a unified vector,
a combination of CNN and Transformer was primarily used
in the experiment. CNN and Transformers have different
focuses when it comes to extracting relevant features. The
former primarily extract from local pixels, whereas the lat-
ter could leverage the attention mechanism to capture more
distant features. Further considerations when selecting the
pre-trained models for feature extraction is the resulting large
feature vector. Hence, the MobileNetV3 was selected as the
CNN. Vision transformers struggle to create inductive biases
with small datasets, as experienced in the ViT and DeiT.
As a result, Swin Transformer was selected. Initially, a ‘mini’
fusion version was developed with fewer units in the dense
layers. It achieved a satisfactory result with 83.01% accuracy,
81.59% precision, 83.01% recall, and an F1-score of 81.42%.
Since real-world condition images contain backgrounds

that may be considered as noise in the classification subject,
the intuition to incorporate VAE is to leverage the proper-
ties of an autoencoder that could perform non-linear PCA
while generating novel images to enrich the training dataset.
This incorporation would prove beneficial, as seen from the
performance improvements over the Mini MobileNetV3 +

Swin Transformer model. This model was able to increase the
accuracy of the classification by almost 1%. However, this
was not explored further due to the large memory require-
ment. This was also the reason why the CNN after the
VAE modality was not a pre-trained vision model. Instead,
a simple optimized CNN model was selected. Subsequently,
this also prompted an investigation into improving the later
dense layers of theMobileNetV3+ Swin Transformermodel.
By doubling the units of the later dense layers, classifica-
tion performance increased by 1.28% over the mini model.
Precision also rose to 84.67% and recall to 84.29%. The
F1-score of the model was improved by 2.22% to 83.64%.
With relatively similar memory usage, this model could out-
perform the VAE-CNN + Swin Transformer model.

Based on our experiment, Figure 5 depicts the training and
validation accuracy and training and validation loss of hybrid
feature fusion with MobileNetV3 and Swin Transformer.
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TABLE 4. The comparison of MobileNetV3 + swin transformer to existing models.

FIGURE 5. The training and validation accuracy and training and
validation loss of MobileNetV3 + swin Transforme.

The x-axis represents the epoch, and the y-axis shows the
accuracy. The graph shows that the training and validation
accuracy performs an increased trend as the epoch increases.
In the meantime, the training and validation loss tends to
decline and reaching convergence. The narrow gap between
training and validation accuracy represents the consistent
model. We show the confusion matrix of our proposed
method in Figure 6. The diagonal line, from top left to
bottom right, in Figure 6 shows the correct classification
of coffee leaf diseases. It can be seen that our proposed
method correctly classified more of the leaf diseases rather
than misclassifying them.With only four misclassified leaves
in place of the healthy leaf, our hybrid feature fusion cor-
rectly classified 138 leaves. The red spider mite leaf could be
predicted in 19 of 36 leaves accurately. Lastly, the proposed
method could correctly classify 106 of 134 rust leaves.

As shown in Table 4, our hybrid feature fusion with
MobileNetV3 and Swin Transformer achieves an accuracy

FIGURE 6. The confusion matrix of MobileNetV3 + swin transformer.

TABLE 5. The comparison of MobileNetV3 + Swin-Transformer to
benchmark models.

of 84.29%, a precision of 84.67%, a recall of 84.29%,
and an F1-score of 83.64%. This result is better than con-
ventional methods, such as MobileNetV3 [29] and Swin
Transformer [32]. MobileNetV3Large obtains an accuracy
of 80.26%, 4.41% lower than our method. Furthermore,
Swin Transformer only achieves 72.25 percent accuracy,
12.04 percent less than our proposed method. These results
further support our claim that the fusion of Swin Transformer
together with a complimentary CNN architecture, and vice
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versa, does extract differently focused features from the same
image and improves the combined feature map for better
classification accuracy. Unfortunately, Vision Transformer
performs the worst by achieving an accuracy of 57.44%,
a precision of 53.37%, a recall of 57.44%, and an F1-score
of 53.34%. With the highest performance of our proposed
method, it suffers the longer training time required to train
the model. It takes almost 2 hours to train the proposed
method, twice longer than the conventional method, which
takes around 40 minutes. It is evident since the hybrid feature
model requires training two models simultaneously. Overall,
the hybrid feature fusion of MobileNetV3 and Swin Trans-
former performs better than other conventional pre-trained
models in coffee leaf disease classification in terms of accu-
racy, precision, recall F1-score.
While there is a limited number of research done on

real-world condition classification of Robusta Coffee Leaf
Diseases, it was observed that classification accuracy suf-
fered greatly when the same models were applied to
real-world images [15], [17]. From a practical point of
view, models trained on real-world conditions are desirable
over laboratory-conditioned images. It allows classification
without plucking out the leaves and harming the plants.
However, the difficulty in producing satisfactory results
when using real-world condition images may be one of
the reasons very few studies strive to tackle this prob-
lem. Laboratory conditions would significantly inflate the
classifier’s performances and are not suitable comparators
for our purpose. Past studies using real-world condition
images, i.e., the RoCoLe dataset [11], have primarily used
existing pre-trained models such as the ResNet50 and
VGG16. The accuracy of these models was less superior
to our proposed approach by around 17.5% and 4.46%,
respectively.

V. CONCLUSION
We have explored a new automatic coffee leaf disease
classification using hybrid feature fusion. We select model
extraction from MobileNetV3, Swin Transformer, and vari-
ational autoencoder (VAE). The selected method combines
the feature extraction capabilities of MobileNetV3, which
is well-known for its efficient and lightweight feature
extraction capabilities, and Swin Transformer, which has
been reported to improve performance on many image classi-
fication tasks. Furthermore, the extracted features are learned
using two-hybrid feature fusion methods: early- and late-
feature fusion. The learned features are discriminated against
using a fully connected layer to detect the diseases. The
proposed method is evaluated using a public Robusta cof-
fee Leaf (RoCoLe) dataset by measuring the performance
metrics, including accuracy, precision, recall, and F1-score.
Compared to traditional methods, the hybrid feature fusion
of MobileNetV3 and Swin Transformer is consistent. It per-
forms better than individual conventional pre-trained models
and other hybrid methods for coffee leaf diseases, with an
overall testing accuracy of 84.29%.

In the future, the implementation of hybrid feature fusion
using hardware accelerators such as Intel Jetson Nano is
advised so that farmers in remote areas can utilize the
detection system using hand-carry hardware. In addition,
the application of hybrid feature fusion to other real-world
datasets is necessary to generalize the hybrid feature fusion.
Furthermore, the analysis of disease level for plant leaf dis-
ease is essential so that the measures are more effective.
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