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ABSTRACT With urban and rural infrastructure development, the power system is being forced to operate
at or near its full capacity. This paper proposes four new methodologies to find the solution to the optimal
reactive power dispatch (ORPD) problem, considering the capabilities of modern DFIG-basedWTs andVSI-
based solar PV. The proposed formulation considers the techno-economic objective functions, specifically
the minimization of the active and reactive power cost and the maximization of reactive power reserve. This
leads to an effective solution to the probabilistic multi-objective ORPD (PMO-ORPD) problem, especially
in the context of modern wind farms (WFs) and solar PV. The proposed formulations are necessary for
effectively managing power systems with renewable energy sources and contribute to developing efficient
and sustainable power systems. Additionally, this study employs probabilistic mathematical modeling
that incorporates Weibull, lognormal, and normal probability distribution functions (PDFs) to represent
uncertainties in the wind, solar, and load demand. Monte-Carlo simulation (MCS) is employed to generate
probabilistic scenarios, allowing for a comprehensive analysis of the PMO-ORPDproblem. A new two-phase
(ToP) multi-objective evolutionary algorithm is proposed, which incorporates the superiority of feasibility
constraints to effectively solve the probabilistic multi-objective optimal reactive power dispatch (PMO-
ORPD) problem. From the analysis and comparison of simulation results, it has been observed that the
proposed algorithm effectively solves the deterministic and PMO-ORPD problems.

INDEX TERMS Constraint domination principle, multi-objective evolutionary algorithms, optimal reactive
power dispatch, reactive power reserve, renewable energy sources.

I. INTRODUCTION
A. LITERATURE REVIEW
The power system is mostly run under stressed operating
conditions due to rapid load growth. A rise in greenhouse
gas emissions has accompanied the increasing load growth in
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power systems, a major drawback as more power is required
to meet the growing demand and traditional fossil fuel-based
power plants are used more frequently, resulting in higher
emissions. This has a detrimental environmental impact, con-
tributing to global climate change and other environmental
issues. Therefore, power systems need to incorporate clean
and sustainable energy sources, such as wind and solar, into
their generation mix to mitigate the negative impact of load
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growth on greenhouse gas emissions. In the atmosphere,
they do not impact greenhouse gases like NOx and SOx [1].
Alternatively, renewable energy sources (RES), particularly
wind and solar, have recently received much attention from
academic and industrial circles. As more renewable energy
sources, such as solar and wind, are integrated into the power
system, managing their variable and intermittent nature has
become a major challenge [2]. The power system needs to
be flexible enough to accommodate changes in power output
and demand and ensure the grid’s stability [3].

Furthermore, increasing load demand, i.e., the power sys-
tem operators (SO), are supposed to move the transmission
system with higher loading and lower capacity margin. With
the increased loading of the new transmission system, the
question of voltage stability is a major concern in the oper-
ation of a power system. Voltage stability is a critical aspect
of power system operation that refers to the ability of a power
system to maintain a steady voltage profile under normal and
abnormal operating conditions. Voltage stability is particu-
larly important in load growth, which refers to the increasing
demand for electricity in a power system over time [4].

One key factor affecting voltage stability is the system’s
reactive power level. When a power system experiences a
disturbance that causes a change in voltage, reactive power
is needed to restore the voltage to its desired level. The volt-
age may fluctuate or collapse if insufficient reactive power
reserve is available in the system, leading to a potential
system blackout. Therefore, it is essential to ensure sufficient
reactive power reserve in the system to maintain voltage sta-
bility during disturbances. This can be achieved by installing
reactive power compensation devices such as shunt capaci-
tors, reactors, or operating generators with sufficient reactive
power output. Proper voltage control schemes and system
planning can also ensure adequate reactive power reserve to
maintain voltage stability [5]. Therefore, the availability of a
sufficient amount of reactive power supply in the network is
thus very critical for the safe and efficient operation of the
electrical power system. Voltage stability is a power system’s
ability to retain appropriate voltages under normal conditions
and after a disruption [6]. The SO must also ensure that any
contingency or unexpected load variation does not produce
a voltage instability that can lead to voltage collapse. Volt-
age instability point and hence the voltage collapse can be
minimized with appropriate availability and distribution of
reactive power.

Several scholarly articles have examined the ORDP prob-
lem specifically for systems comprised of conventional
thermal units using classical optimization techniques such
as linear programming (L.P.) [7] and quadratic program-
ming (Q.P.) [8]. These cannot find the global or near-global
optimal solution to the ORPD problem. Also, these tech-
niques are implemented to find the solution to the ORPD
problem by considering theoretical assumptions such as
ORPD is convex, continuous, and differential. With the grow-
ing sophistication of computational intelligence, numerous

single objective evolutionary algorithms (E.A.s) are being
implemented and analyzed for solving non-convex, non-
linear ORPD optimization problems considered conventional
thermal generators. These include teaching learning-based
optimization (TLBO) [9], ant colony optimization [10],
quasi-opposition TLBO (QOTLBO) [11], hybrid imperialist
competitive algorithm (ICA), and particle swarm optimiza-
tion (PSO) hybrid ICA-PSO [12], artificial bee colony
with firefly (ABC-FF) [13], modified GAME theory [14],
quasi-oppositional differential evolution (QODEA) [15] and
artificial bee colony (ABC) [5].

Considering only thermal generators to solve the ORPD
problem can limit the potential for optimal solutions that
balance cost, reliability, and environmental sustainability.
Incorporating uncertain renewable resources such as wind
and solar generation can provide a more comprehensive
and robust approach to power system planning and opti-
mization. Several studies have examined the integration of
uncertain load and wind power into the ORPD problem,
such as success history-based adaptive differential evolution
(SHADE) [16], TLBO [17], and improved marine predator
algorithm (IMPA) [18].

In the past few decades, there has been a growing
interest in utilizing multi-objective evolutionary algo-
rithms (MOEAs) to efficiently solve MOORPD prob-
lems for systems with thermal generators, considering
the diverse and complex objectives associated with these
systems. That includes non-dominated sorting genetic
algorithm II (NSGAII) [19], improved generalized D.E.
(I-GDE3) [20], Two-Archive Multi-objective Grey Wolf
Optimizer (2ArchMGWO) [21], classification and Pareto
domination based MOEA (CPSMOEA) [22], modi-
fied NSGAII (MNSGAII) [23], hybrid fuzzy MOEA
(HFMOEA) [24], multi-objective Chaotic improved PSO
(MOCIPSO) [25], classification and Pareto domination
based MOEA (CPDMOEA) [22], multi-objective D.E.
(MODE) [26], Chaotic Parallel Vector Evaluated Interac-
tive Honey Bee Mating Optimization (CPVEIHBMO) [27],
multi-objective ant lion optimization (MOALO) [28], multi-
objective Imperialist Competitive Algorithm (MOICA) [29]
and strength Pareto multi-group search optimizer (SPMGSO)
[30] were applied to solve MOORPD problems considering
conventional thermal generators. In recent years, renew-
able energy sources such as wind and solar power have
become increasingly popular, which poses a challenge for
the MOORPD problem due to their uncertain behavior.
In the realm of MOORPD problem-solving, incorporat-
ing the uncertainty of wind and solar generation has been
achieved through the use of optimization techniques such
as general algebraic modeling system (GAMS) [31], [32],
hybrid artificial physics optimization (APO) and PSO called
APO-PSO [33], NSGA-II [34], enhanced firefly algorithm
(EFA) [35], opposition-based self-adaptive modified gravita-
tional search algorithm OSAMGSA [36], and two-point esti-
mate method (TPEM) [37]. In these probabilistic MOORPD
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problems, reactive power reserve (RPR) was not considered.
Reactive power reserve plays a critical role in maintaining
stable voltage levels in power systems. Without considering
RPR, the system can become unstable and suffer from voltage
collapse, leading to power outages, voltage fluctuations,
reduce the reliability of the system and increase the risk of
blackouts. Neglecting RPR can also reduce the efficiency of
the system and increase the operating costs, as maintaining
a balance between active and reactive power. Therefore, it is
critical to consider RPR in the MOORPD problems to ensure
the stable, reliable, and efficient operation of power systems.
Stochastic multi-objective optimal dispatch (SMO-OD) [6]
were implemented to considered the RPR. However, cost
of active power generation were not neglected during opti-
mization. Without proper consideration of the cost of active
power, the optimization process may prioritize the reduction
of reactive power generation costs at the expense of increased
active power generation costs. This can lead to solutions
that are not cost-effective and may not meet the economic
requirements of the system. The literature review on the
ORPD problem is presented in Table 1, which integrates the
main findings and limitations of various methodologies used
in previous research.

Both wind and solar power generation are probabilistic;
due to their high share of these, voltage stability and the
expected reactive power reserve (ERPR) can precariously
affect them. In addition to the above problems, conventional
thermal generators are the key RPR providers in the power
system. In recent years, DFIG-based wind turbine (W.T.) and
VSI-based solar PV. systems have been able to participate
in providing the reactive power reserve (RPR) according to
their reactive power capacity curve [40], [41]. The increased
integration of wind and solar PV. generation can reduce reac-
tive power generation from conventional thermal generators,
increasing the RPR of the system.Maximizing RPR is crucial
formaintaining system stability, improving system efficiency,
and ensuring the reliable and sustainable operation of the
power system [5], [6].

DFIG-based wind farms and VSI-based solar PV. systems
are known to have limitations in providing reactive power
support to the grid. The electrical system requires reactive
power to maintain voltage stability and ensure the system’s
proper functioning [31]. One of the main challenges with
DFIG-based wind farms is their limited capacity to provide
reactive power support. This is because the reactive power
output of the DFIG is limited by its rotor current and the
rotor voltage [40], [41]. As a result, when the wind farm
operates at the full reactive power limit, it may not be able to
provide sufficient reactive power support to the grid, leading
to voltage instability.

Similarly, VSI-based solar PV. systems also have limita-
tions in providing reactive power support. This is because
they rely on grid-tied inverters not designed to provide reac-
tive power support [6]. As a result, when the solar PV. system
operates at the full reactive power limit, it may not be able to
provide sufficient reactive power support to the grid, leading

to voltage instability. Operating near the steady-state stability
limit can be undesirable because the electrical system oper-
ates very close to its maximum capacity, increasing the risk of
voltage instability and system failure [32], [36], [37]. There-
fore, it is important to ensure that DFIG-basedwind farms and
VSI-based solar PV. systems are properly synchronized with
other reactive power regulators, such as synchronous gener-
ators, shunt VAR compensators (SVC), and MVAr injection
from the transmission line charging, to maintain voltage sta-
bility and ensure the proper functioning of the system [33],
[34], [35]. Moreover, both wind and solar power generation
are probabilistic. The high share of these sources can lead to
voltage instability and a precarious depletion of the expected
reactive power reserve (ERPR).

To address these issues, this paper proposed a newmethod-
ology to efficiently solve the optimal reactive power dispatch
(ORPD) problem, considering modern DFIG-basedWTs and
VSI-based solar PV. capabilities in the power system. Further,
the new techno-economic formulation-based frame resolved
not only technical issues (power loss, voltage deviation, and
voltage stability index) but also encounter economic issues
(cost of active and reactive power, cost of a capacitor, cost
of active power loss, and cost of transmission line charging)
in the presence of uncertain wind and solar PV. generation.
Moreover, the mathematical model of uncertain wind and
solar power generation should be properly taken into account
to make a realistic technical and economic framework.

B. MOTIVATION
The prime goal of ORPD is to calculate the voltage at PV.
buses excluding the slack bus, the transformer’s off-nominal
turns ratio, and the MVAR injection of SVC. Practically
ORPD is a constrained type multi-objective, mixed-integer
(transformer turns ratio and SVC are discrete variables), and
nonlinear problem. From Table 1, it is concluded that most
of the authors considered a conventional ORPD problem to
minimize technical single or weighted sum multi-objective
function(s) such as minimization of active power loss PLoss,
voltage deviation (V.D.), and maximize (VSI) Lindex . How-
ever, in the sense of a deregulated power system, such a
formulation seen in the table does not always guarantee that
the solution to the problem is appropriate. Therefore, eco-
nomic objective functions must involve in addition to the
technical issues. Some papers in [6], [26], [31], [35], and
[38] considered the cost of active or reactive power generation
from conventional thermal generators and wind farms. At the
same time, the cost of SVC, the effect of MVAr injection
from line charging, the cost of power loss, and the combined
cost of active and reactive power are not considered. These
parameters directly or indirectly affect a power system’s reac-
tive power and voltage level. Different models of DFIG-based
WFs have been used in the literature, which are limited to
either a maximum power factor cos ϕ or fixed regulation
limit [31], [37]. These models are not fully accurate and
therefore do not allow the full advantage of the reactive power
injection/absorption from the DFIG-based WT.
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TABLE 1. Literature review of optimal power dispatch.

C. CONTRIBUTION
The optimization of active and reactive power generating
costs and the maximizing of reactive power reserve (RPR)
were taken into consideration in a few articles that solved
deterministic and probabilistic single objective ORPD prob-
lems. The authors have conducted a literature review and
found that no previous studies have considered a PMO-ORPD
problem that simultaneously incorporates techno-economic
objective formulations, including the cost of active and reac-
tive power, as well as Reactive Power Reserve (RPR) and
Lindex , in the presence of Doubly-Fed Induction Genera-
tor (DFIG)-based Wind Turbines (W.T.) and Voltage-Source

Inverter (VSI)-based solar Photovoltaic (PV.) systems. Also,
research on managing the RPR generated by the DFIG-based
WT and VSI-base solar PV. system with the maximization
of RPR of thermal generators has not yet been examined.
In the proposed formulation, the two main objective func-
tions are the minimization of the expected cost of reactive
power-producing devices and the maximization of expected
RPR (ERPR). Four new formulations are modeled for dereg-
ulated power systems to solve the PMO-ORPD problem
focusing on system voltage security. For a realistic system,
1000 scenarios are generated using the active power of wind,
solar PV., and variable load demand then the fuzzy C-means
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(FCM) clustering technique is applied to find the 20 represen-
tative scenarios. The multi-objective problem is solved using
a constrained two-phase (ToP) algorithm that computes the
number of non-dominated solutions (Pareto Front) for the
system operator in a single simulation run.

The best compromise solution from the non-dominated
solution is computed with the help of fuzzy decision-making
(FDM) theory. The main contributions of this work are
detailed as follows:

• A new probabilistic multi-objective optimal reactive
power dispatch (PMO-ORPD)model is proposed, which
considers the integration of DFIG-based WT and VSI-
based solar PV. and considers techno-economic objec-
tive functions.

• The proposed PMO-ORPD model is solved using a new
two-phase (ToP) multi-objective evolutionary algorithm
(MOEA) that integrates the superiority of feasibility
constraint handling to solve the ORPD problem effi-
ciently.

• Incorporated appropriate probability distribution func-
tions (PDFs) to model the probabilistic wind and solar
generation and applied a Fuzzy C-means (FCM) clus-
tering technique to extract the most representative
scenarios to reduce the problem’s computational com-
plexity.

• The proposed algorithm has been compared to var-
ious recent constrained multi-objective evolutionary
algorithms (CMOEAs) that have not been previously
employed to solve the classical ORPD problem.

The remaining sections of the paper are divided as follows.
The MO-ORPD problem is formulated in Section II, which
involves uncertain generation and demand modeling, for-
mulation of objective functions, and constraints. Section III
deliberates the proposed algorithm. Section IV provides the
investigation of simulation results. SectionV gives the discus-
sion, and Section VI elucidates the conclusion of this work.

II. PROBLEM FORMULATION
In the following subsections, PDFs of wind solar and load
demand are modeled. Next, modeling the reactive power
capability curve of DFIG-based Wind and VSI-based solar
PV. was discussed. The operating cost of active and reactive
power is computed in this section. Two classical formulations
based on objective technical functions and four new formu-
lations based on techno-economic formulation are modeled.
The decision variables, multi-objective functions, and opera-
tional constraints are formulated.

A. MODELING OF UNCERTAIN LOAD DEMAND, WIND,
AND SOLAR GENERATION
In the literature, load demand, wind, and solar power gen-
eration have all been modeled using normal, Weibull, and
lognormal PDFs [6]. The PDFs mentioned above are math-
ematically defined as:

Weibull PDF for the wind velocity (v) estimating:

1ν (v) =

(
b
a

)( v
a

)(b−1)
× e

[
−( va )

b
]

(1)

Lognormal PDF for the solar irradiance (G) predicting:

1G (G) =
1

G× d
√
2π

e

[
−(lnG−c)2

2d2

]
(2)

Active and reactive load demand (l) is modeled as;

1D (l) =
1

σ
√
25

× e
−

(
(l−µ)2

2σ2

)
(3)

1 shows probability; a, b, c, d µ, and σ are the standard
parameters of Weibull, lognormal and normal PDF are given
in Table 9 in an appendix. Wind power is the function of wind
velocity (v) and is calculated as [34]:

pgW (v) =


0, forν < vin and v > νout

Pwr

(
v− νin

νr − vin

)
for vin ≤ v ≤ vr

Pwr for vr < ν ≤ vout

(4)

whereas the parameters vin, vr and νout are the cut-in, rated,
and cut-out wind speeds. Solar power (pgS ) is the function of
solar irradiance and is calculated as [34]:

pgS (G) =


Psr

(
G2

GsTdRc

)
for 0 < G < Rc

Psr

(
G
GsTd

)
for G ≥ Rc

(5)

where Gstd and Rc are the solar irradiances and certain irra-
diance at 1000 W/m2 and 120 W/m2, respectively, figure
1 shows the generation of normal, Weibull, and lognor-
mal PDFs considering 1000 Monte Carlo simulation (MCS)
states. Parameters for the generation of probabilistic scenar-
ios of load, wind, and solar PV. generation are reported in
Appendix Table 9.

For a given scenario, the computation of the objective func-
tions of a candidate planning will pose a heavy computational
burden in the optimization process. Therefore, a clustering
approach, which can reduce the computational burden by
eliminating identical scenarios, is employed to find the rep-
resentative scenarios. This paper applies a fuzzy C-means
clustering method to find the 20 representative scenarios.
In this method, all 1000 MCS load, wind, and solar PV.
power scenarios are initially normalized between 0 and 1.
Then, it is possible to further divide each normalized variable
into a specified number of clusters. Through this, it is pos-
sible to generate the total number of possible representative
clusters/scenarios Nsc and their associated probability ρsc.
For detail, see fcm built-in MATLAB function for computing
representative scenarios and their probability.
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FIGURE 1. PDF functions of wind, solar, and load demand considering 1000 samples of MCS.

FIGURE 2. Reactive power Capability curve a) DFIG-based wind and b)
VSI-based solar PV. [41].

B. MODELING OF REACTIVE POWER CAPABILITY LIMIT
FOR WIND AND SOLAR PV SYSTEMS
In the literature, wind and solar usually inject active power
into the system. Whereas, the reactive power from these
sources can be injected into the system, which helps to
strengthen the voltage profile, and RPR and minimize energy
loss. The lack of attention at the planning stage to the reactive
power injection/absorption by Wind and solar PV. generation
units could contribute to a possible rise in investment costs.
Therefore, this paper integrates renewable energy source
technologies, includingDFIG-basedWT andVSI-based solar
PV.with the system. The reactive power capability constraints
of these probabilistic sources shown in Fig. 2 are discussed
below.

1) DFIG-BASED WT
Maximum reactive power absorption/injection ofDFIG-based
WT depends on the slip (s) and probabilistic active power

generation (pgW ,sc), whereas active power is the function
of wind speed (v). From Figure 2 (a), it is clearly showing
that the maximum reactive power absorption or injection
Qw,absorbi,sc /Qw,injecti,sc depends on the stator/ rotor current limit

I scwdi / I scwdi , respectively. Mathematically, Qw,absorbi,sc /Qw,injecti,sc
can be computed as [41]

Qw,absorbi,sc = −

√(∣∣Vi,sc∣∣ I scwdi

)2
−

(
pgW ,sc
1 − ssc

)2

(6)

Qw,injecti,sc =
|Vi,sc||Zmi |I rcwdi sinγi,sc

|Z si + Zmi |
−

|Vi,sc|2(X sn + Xmn )
|Z si + Zmi |2

(7)

where Vi,sc is the system voltage at bus i over a scenario (sc)
and si,sc is the slip of a DFIG-based wind unit at a scenario
(sc). Zmi = Rmi + jXmi and Z si = Rsi + jX si are the equivalent
main and stator impedances respectively ofW.T. Power factor
angle γi,sc is given as

γi,sc = cos−1

(
Pwdn,sc|Z

s
i + Zmi |

2
+ |Vi,sc|2

(
Rsi + Rmi

)(
1 − si,st

)
|Vi,st ||Zmi ||Z si + Zmi |I rcwdi

)
(8)

2) VSI-BASED SOLAR PV
Figure 2 (b) clearly shows that the maximum absorption/
injection (reactive power capability limit) of VSI-based solar
PV. depends on the inverter current limit Ipv,ini [5]. Maximum
and minimum reactive capability limits of VSI-based solar
PV. can be computed as

Qpv,maxi,sc ,Qpv,mini,sc = ±

√
(|Vi,sc|I

pv,in
i )2 − (pgS,sc(G))2 (9)

Parameters for the computation reactive power limit, for both
wind and solar PV. generation, are given in Table 12 of the
Appendix.
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C. OBJECTIVE FUNCTIONS AND CONSTRAINTS
1) CLASSICAL FORMULATION
In the literature, expected PLoss (EPLoss), expected V.D.
(EVD), and expected Lindex (ELindex) [5] objective functions
are used for deterministic and probabilistic ORPD problems.
These objective functions can be calculated as:

EPLoss =

∑Nsc

sc=1

× ρsc

(∑nl

k=1
Gk(ij)[V 2

i + V 2
j − 2ViVjcos(δij)]

)
(10)

EVD =

∑Nsc

sc=1
ρsc

(∑NL

L=1
|VL − 1|

)
(11)

ELindex =

∑Nsc

sc=1
ρsc × Lindex,sc (12)

whereas k is the branch connecting i and j sending and
receiving end buses, Nsc is the total number of representative
scenarios, Gis branch conductance, δ voltage angle, N.L. is
the load buses. ELindex indicator [5] has developed on Lj
local indicator. Let N.G.and N.L. be the number of generator
and load buses, respectively, then local indicator Lj can be
calculated as;

Lj =

∣∣∣∣1 −

∑GN

i=1
Fji
Vi
Vj

∣∣∣∣ ,where j = 1, 2, . . . ,NL (13)

Lindex = min
(
max

(
Lj
))

(14)

where ,Fji = −[YLL]−1[YLG] and Sub-matrices YLL and YLG
are calculated from the YBUS matrix after separating PV. and
P.Q. buses.

This paper considers two classical formulations, the opti-
mization of technical objective functions,. These are,

• Classical formulation, C1: simultaneous minimization
of EPLoss and EVD

• Classical formulation, C2: simultaneous minimization
of EPLoss and ELindex

C1 and C2 are both available in the literature.

2) PROPOSED FORMULATION
The system voltage level affects active and reactive power
losses in a power system. Therefore, operational cost is the
total cost incurred by the system to maintain the given ther-
mal generator capacity, Lindex , and voltage level. Renewable
energy generation, however, is seasonal and varies depending
on the circumstance. Therefore, this paper aims to find the
solution to the PMO-ORPD problem so that the expected
RPR (ERPR) is maximized along with the minimization of
the expected energy cost. Technically, it can be said that
the system’s reactive power and voltage profile depend on
each other. Therefore, in the proposed formulation, ERPR is
maximized. Here, the authors proposed various formulations
of simultaneously 2 and 3 objective functions. For each pro-
posed formulation operating cost of reactive power includes
the cost of reactive power, the cost of active power loss, the
cost of shunt capacitors, and the cost of reactive injection

from line charging. Mathematically expected total operating
cost (ETCt ) is computed as:

ETCt =

∑Nsc

sc=1
ρsc ×

∑NG

G=1

(
CPG,s c + CQt + CLt

)
(15)

where, NG, NC and NCh are the total number of generators,
shunt condensers, and transmission line that injects reactive
power from line charging, respectively, PGLi is the total
amount of active power loss allocated to the ith generator for
the whole system and PGi is the amount of power supplied by
ith generator. From (15), CPG and CQt are the total active and
reactive power costs and CLt is system active power loss cost
in $/h. These can be defined as:

CPG = aiP2Gi + biPGi + ci (16)

CQt =

∑NG

G=1
CQG,s c +

∑NC

c=1
CQC ,s c +

∑Nch

ch=1
CQch,,s c

(17)

CQG =

∑NG

G=1
aQQ2

Gi + bQQGi + CQ (18)

CQC = $ 0.1324 · QCap/MVAr − hr (19)

CQCh = cch · QCh (20)

Qch =

∑Nbr

ij=1
QCi−j (21)

QCi−j = V 2
i
yCij
2

+ V 2
j
yCij
2

(22)

where aQ, bQ, cQ are the cost coefficients determined from
the active power cost coefficients ai, bi, ci [42] andCQC is the
cost of synchronous condenser, QCap is the decision variable
between 0 to 5 MVAr, cch is the reactive power per unit cost
supplied by transmission line charging. QCi−j is computed
after the load flow by knowing the voltage at from Vi and to
Vj bus,YCij is the line charging admittance of pi transmission
line,Nbr are the total number of lines.
The expected cost of total reactive power can be calculated

as

ETCQt =

∑Nsc

sc=1
ρsc × CQt (23)

In this paper, the cost of active power loss CLt is computed
by using Pro Rata Allocation (PRA) [43]method.

CLt =

∑NG

i=1

((
aiP2Gi + biPGi + ci

)
KG
)

(24)

whereKG is the Loss allocation factor (LAF) for the generator
at bus i. For the computation of LAF, PRA method propor-
tionally allocates 50% of losses to the generators, that is,

KG =
1
2
PTloss
PG

(25)

where, PG is the total amount of active power generation
and PTloss is the total active power loss. It should be noted
that generation loss allocation factors KG are identical for all
buses. Additionally, it should be noted that losses allocated to
generators are always positive. The expected reactive power
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reserve (ERPR) at the scenario (sc) is expressed as follows

ERPR =

∑Nsc

sc=1

(
ρsc

∑NG

G=1

(
QGi , sc

max
− QGi , sc

))
(26)

The following PMO-ORPD objective function formulation
has been proposed considering the techno-economic objec-
tive functions.

• Formulation 1— minimization of ETCQt vs maximizes
the ERPR

• Formulation 2— minimize the ETC t vs maximizes the
ERPR

• Formulation 3— minimization of ETCQt vs maximizes
the ERPR along with maximizing Qch

• Formulation 4 — minimization of ETCQt vs maximizes
the ERPR along with maximizing Qch vs ELindex

Coefficients for calculating the cost of active and reactive
power are given in Table 11 of the Appendix.

3) DECISION VARIABLES AND CONSTRAINTS
Multi-objective functions are given as:

minF (x⃗) =
[
f1 (x⃗) , f2 (x⃗) , . . . , fM (x⃗)

]
;

s.tφ (x⃗) = 0, ψ(x⃗) ≤ 0 (27)

Vector F (x⃗) is the objective function, φ (x⃗) are the equality
constraints and ψ(x⃗) are inequality constraints. The decision
variable x⃗ is defined as;

−→x =

[VG,1, · · · ,VG,N G︸ ︷︷ ︸
VG

,Qc,1,Qc,N C︸ ︷︷ ︸
Qc

,Tk,1,Tk,N T︸ ︷︷ ︸
Tk

]T


(28)

where N.G., NC, and N.T. are the network’s total numbers of
generators, synchronous condensers, and transformers. In the
proposed formulation, active and reactive power balance con-
straints are computed as

PGi − PDi = Vi
∑NB

j=1
Vj
[
Gij cos

(
δij
)
− Bij sin

(
δij
)]
(29)

QGi − QDi = Vi
∑NB

j=1
Vj
[
Gij sin

(
δij
)
− Bij cos

(
δij
)]
(30)

whereas Gij and Bij are the conductance and susceptance
of transmission lines, PDi and QDi are the real and reactive

power demand. On the other hand, inequality constraints are.

Vmin
L ≤ VL ≤ Vmax

L (31)

Vmin
G ≤ VG ≤ Vmax

G (32)

PminG ≤ PG ≤ PmaxG (33)

QminG ≤ QG ≤ QmaxG (34)

Tminj ≤ Tj ≤ Tmaxj ∀j ∈ NT (35)

Qminc ≤ Qc ≤ Qmaxc (36)

Sl ≤ Smaxl (37)

VL is the Voltage at the load bus, VG voltage PV. bus, PGand
QG are the active and reactive power of generators, Tj is the
transformer tapings, Qc is the MVAr capacity of SVC and
Sl is the MVA branch flow limit. This paper considers the
base configurations of the IEEE 30-bus systems to perform
deterministic ORPD and compare the results with previously
published studies. All thermal generators are included in
the base designs. For stochastic ORPD, a DFID-based wind
generator and a VSI-based solar PV. are integrated into the
IEEE 30-bus system. Specifically, a wind power generat-
ing source replaces the thermal generator at bus 5, while
a photovoltaic power plant replaces the thermal generator
at bus 8. The modified system’s diagram is illustrated in
Figure 3.

III. CONSTRAINED TWO-PHASE (ToP) ALGORITHM
The paper focuses on optimizing multiple objectives includ-
ing the cost of reactive power injection, RPR, VD, PLoss,
and Lindex , which makes the problem more complex due to
the addition of constraints. This complexity makes it diffi-
cult for a multi-objective evolutionary algorithm (MOEA)
to identify promising feasible solutions for the PMOORPD
problem efficiently. Since a constrainedMOEAmust balance
all the objective functions within the feasible region, the
convergence speed of the population is unavoidably slow.
To address this issue, the proposed algorithm first aims to
identify high-quality feasible solutions as

minF (x) =
1
m

∑m

i=1
fi (x) (38)

where m is the number of objective functions. The primary
aim of the first phase is to offer high-quality feasible solutions
for the subsequent phase. Additionally, the search engines
for producing offspring utilize two well-known trail vector
strategies of differential evolution (D.E.). These strategies are

D.E./current-to-rand/l

u⃗i = x⃗i + F ∗ (x⃗r1 − x⃗i)+ F ∗ (x⃗r2 − x⃗r3) (39)

D.E./rand-to-best/l/bin

v⃗i = x⃗r1 + F ∗ (x⃗best − x⃗r1)+ F ∗ (x⃗r2 − x⃗r3) (40)

u⃗i,j =

{
v⃗i,j if randj < CR or j = jrand1, . . . ,D
x⃗i,j otherwise

(41)
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FIGURE 3. Proposed IEEE 30-bus system with a wind generator and a photovoltaic unit.

where, subscript i ∈ [1,Np] and j ∈ [1,D]; D is the decision
vector; vi = (vi,1, vx,2, . . . , vi,D)T is the ith mutant vector;
ui = (ui,1, ui,2, . . . , ui,D)T is the ith trial vector; r1, r2 and r3
are random integers between [1, Np], x⃗best is the best individ-
ual in the current population, randj arbitrary number [0, 1],
jrand is a random number [1,D],F and CR are the scaling
and crossover control parameters, and these are randomly
selected from the Fpool = [0.6; 0.8; 1.0] and CRpool = [0.1;
0.2; 1.0].

The feasibility rule constraint technique is utilized to
determine the superior solution between the x⃗i and u⃗i for
the next generation. It is imperative to terminate the first
phase once high-quality solutions have been achieved, even
if the entire population has not converged to a single
point. To accomplish this, the following two conditions are
established:

Condition 1: The feasibility proportion (Pf) should be
greater than 1/3, ensuring the feasible region has been
reached.

Condition 2: The normalized weighted sum of single
objective functions f̃ (x⃗) is calculated and added together.

f̃i (x⃗) =
fi (x⃗)− fmin (x⃗)
fmax (x⃗)− fmin (x⃗)

(42)

f (x⃗) =

∑m

i=1
f̃i (x⃗) (43)

Next, the values of f (x⃗) are sorted, and the largest difference
(δ) is computed for the top 33% of feasible solutions. If δ is
less than 0.2, the second condition ismet, indicating that some
high-quality solutions have been obtained and are converging
to smaller regions. The primary objective of the first phase is
to generate high-quality solutions for the subsequent phase.
However, the solutions obtained may not be well-distributed
or effectively converged. Thus, in the second phase, a popular
MOEA, namely the non-dominated sorting genetic algorithm
(NSGAII) along with the domination rule of (SPEA2) [44],
is employed to obtain a well-distributed and global Pareto
front. Each population in this dominance rule assigns a fitness
value based on the quantity of dominated solutions. Less
fitnesswill be associatedwith a solution if it dominates a large
number of other solutions, and vice versa. After that, fitness
values are taken into account when utilizing a tournament
selection operator to choose the mating pools (parents) of
each population.

Then, a simulated binary crossover operator is applied
between randomly selected parents from the mating pool to
create child populations for better exploitation. On the other
hand, the polynomial mutation operator is applied to increase
the exploitation of the capability of the proposed algorithm.
The combined population and offspring’s updated fitness
values (i.e., fitness) are then computed. Finally crowding
distance operator is applied to select the final survival of the
fittest population for the next generation. The procedure as
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FIGURE 4. Flow chart of proposed algorithm.

mentioned above is continued until terminating criteria are
satisfied. The steps of the second phase are given in the flow
chart shown in Figure 4.

IV. SIMULATION RESULTS AND DISCUSSION
To implement the proposed formulation, the IEEE 30-bus
network is considered to find the optimal solution to the
PMO-ORPD problem by injecting wind and solar power.
The proposed network has six units, nine shunt synchronous
condensers, and four transformers. Bus, branch, and gen-
erator data are taken from [45], and the parameters for
calculating cost functions are shown in Table 10 and 11 of
Appendix A.

In the following subsequent subsections, simulation results
and their detailed analysis and comparison are considered
to investigate the effectiveness and performance of the pro-

posed algorithm to solve deterministic and probabilistic
MO-ORPD problems along with the integration of wind
and solar generation. A deterministic MOORPD problem
(without wind and solar) is considered to compare the pro-
posed algorithm with the recently implemented methods.
In the deterministic case, three recent constrained MOEA
such as constrained co-evolutionary multi-objective opti-
mization (CCMO) [46], ToP [47], and constrained two
evolutionary archives algorithm (CTAEA) [48] and one for-
mer NSGAII [49] methods are implemented and select the
best MOEA for the solution of PMO-ORPD problem.

A. DETERMINISTIC MO-ORPD
The control variables for the system include the voltage level
of all generators, transformer tap ratio, and shunt VAR injec-
tions. These variables are continuous (generator’s power and
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voltages) and discrete (tap ratio of transformer and shunt VAR
injection). For the fair composition between the implemented
algorithms and recent methods available in the literature, all
the control variables are considered continuous as well as
mixed-integer in the base case. Each case is run 25 times
independently, 25 Pareto fronts are obtained and the best P.F.
is selected by using statistical data of hyper-volume (H.V.)
performance indicator. To make a fair comparison of the dif-
ferent cases, the values of objective functions vary, so they are
first normalized to ensure a uniform range between 0 and 1.
A reference point of (1, 1,. . . ,1)M is then used to compute the
hyper-volume indicator (HVI). When comparing the P.F.s of
different algorithm runs, the P.F. with the highest HVI value
attained by the algorithm is considered the most optimal. For
those interested in H.V. consider the reference [50].

The fuzzy decision-making (FDM) theory is used to
choose the P.F.s of compromise solution [51]. The fuzzy set
theory’s membership function is explained as;

µkm =


1 forf km ≤ f minm
f maxm − f km
f maxm − f minm

forf minm < f km < f maxm

0 forf km ≥ f maxm

(44)

where, f km is the objective function,m is the index of objective
functions, k is the nondominated solution, µkm is membership
function. Normalized membership (µk ) function is computed
by

µk =
6M
m=1µ

k
m

6
Nd
k=16

M
m=1µ

k
m

(45)

Out of all non-dominated solutions (Nd ), a larger value of µk

is the best compromise solution. Table 2 shows the statistical-
value of H.V. of all the implemented algorithms and the BCS
using FDM theory.

From Table 2, simulation results of H.V. and BCS in both
cases, ToP gives the best results compared to all the other
algorithms. Table 2 reveals that the lowest loss obtained in
Case 1 is 4.4129 MW, whereas the V.D. is 0.0894 p.u subject
to satisfying all the constraints obtained by ToP.

Additionally, all decision variables are feasible. The
decision-maker must carefully choose the best options
because certain reactive power levels are close to the max-
imum value. The load bus voltage is also within a narrow
range of acceptable limitations. Due to the system voltage
level being forced to be close to unity, the second objective
function will not result in under or over-voltage problems.

However, this could also impact generators or VAR com-
pensating equipment to the point that they exceed their
reactive capacity restrictions. Furthermore, the supply and
compensation of reactive power in the power system depend
on several other factors, such as the constant transmission line
parameters, load bus voltage type, and location of the load.
However, in this work, ToP, with the CDP constraint handling
technique, finds the solution within a feasible search space
where the reactive power supply must lie within a desirable

FIGURE 5. Best P.F. of all the algorithms and their B.C.

limit. Figure 5 shows the final non-dominated solutions of the
best P.F. of all the algorithms for both of the cases.

From Figure 5, it cannot be observed which MOEA gives
the best P.F. in terms of both exploration and exploitation.
Therefore, researchers used statistical tools such as H.V.,
min-max, the mean, and standard deviation to find the best
MOEA. Further, the decision vector and objective functions
of the best compromise solution are shown in Table 3. It can
be observed from Table 3 that the decision variables are
within the limit. The proposed algorithm efficiently finds
the feasible non-dominated solutions of both problems, i.e.,
continuous and mixed integers. Likewise, Table 4 compares
the proposed method with the recent methods available in the
literature. From the comparative Table 4, ToP outperforms as
compared to most of the algorithms in both of the objective
functions.

The analysis and comparative study show that the ToP
algorithm can find the most compromise solution compared
to other recent optimization algorithms. Also, showing the
values of H.V. and FDM results that the ToP outperforms
as compared to all the other algorithms. It can be said that
complex PMO-ORPD problems will be efficiently solved
with the help of Top algorithms. In the next subsection, newly
formulated problems of PMO-ORPD are solved with the help
of the ToP algorithm.

B. PROBABILISTIC MO-ORPD (PMO-ORPD)
In this section, simulation studies are carried out to illustrate
the proposed methodology for PMO-ORPD with integrating
reactive capability of DFIG-based Wind and VSI-based solar
PV. generation and system uncertainties.

In the PMO-ORPD problem, the proposed network is mod-
ified by replacing thermal generators at buses 5 & 8 with
DFIG-based wind turbines (25 turbines of each 3MW) and
VSI-based solar PV. (50 M.W. capacity) renewable genera-
tors. Furthermore, two classical formulations of simultaneous
and four new formulations are designed considering the
techno-economic of two and three objective functions. These
are:
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TABLE 2. The statistical value of H.V. of all the implemented algorithms and the BCS using FDM theory.

TABLE 3. Simulation results of the base case of continuous and mixed integer type problems.

TABLE 4. Comparison of simulation results of BCS of the proposed
method with the recent literature.

• Classical formulation, C1: simultaneous minimization
of EPLoss and EVD

• Classical formulation, C2: simultaneous minimization
of EPLoss and ELindex

• Formulation 1— minimization of ETCQt vs maximizes
the ERPR

• Formulation 2— minimize the ETC t vs maximizes the
ERPR

• Formulation 3— minimization of ETCQt vs. maximizes
the ERPR along with maximizing Qch

• Formulation 4 —minimization of ETCQt vs. maximizes
the ERPR along with maximizing Qch vs. ELindex

Moreover, 1000 scenarios with the help of MCS are gener-
ated. Afterward, the fuzzy C-means (fcm) technique chooses
the 20 representative scenarios, limiting the problem’s com-
plexity. Although the size of the representative set is very
small as compared to the size of the probabilistic search
space, it statistically guarantees a probability of 99.99%
that at least one of the top 1% solutions will be in the
980 sample solutions. Furthermore, each scenario gives
40 non-dominated solutions, and from that, BCS is consid-
ered by applying FDM theory. Proposed scenarios are shown
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TABLE 5. Proposed representative scenarios and their probabilities.

in Table 5; column six provides the probability of scenario,
probability of scenario 3 is about 50% which shows the
appearance of solar irradiance of half of a day. Table 5 clearly
shows that in the same scenario, the maximum value of wind
and solar PV. does not appear, and it is rarely in a realistic
system.

Table 6 presents the simulation results of BCS solutions
of all the objective functions. In Table 6 all the objective
functions are minimized. However, maximization of RPR is
done by minimization of -RPR. Table 6 shows that the max-
imum value of all the objective functions appears in sc7 and
sc20, whereas a minimum value appears in sc1, sc4, and sc8.
Therefore, extreme scenarios are 1, 4, 7, 8, and 20. Probability
of each scenario ρsc from the last column of Table 5 and BCS
of individual objective functions in Table 6 can be used to
compute the expected values of objective functions as shown
in Table 7.
In Table 7, bold values are the best values in the associ-

ated formulation. Comparing the simulation of four proposed
formulations with the two classical formulations, we arrive at
the following findings:

• The cost of active power generation is 743 $/h in both
classical and proposed formulations is same. The cost
of reactive power generation is optimal in the proposed
formulation at 140 $/h compared to a classical formula-
tion of 222.60 $/h in C1 and 226.04 $/h in C2. The cost
of reactive power is minimal in a proposed formulation
of 192 $/h compared to a classical formulation of 276
$/h. The overall cost of active and reactive power energy
is minimum in the proposed formulation F4 which is
935.89 $/h, on the other hand, the energy cost in a
classical formulation is about 1017.01 $/h. The cost of
overall energy is minimal in the proposed formulation
compared to the classical formulation because the cost

of energy-producing devices is considered one of the
objective functions in all four proposed formulations.

• The expected RPR is maximum in F4 proposed formu-
lation, 283.23 MVAr, and minimum in C2, 264.6 MVAr.

• Expected power loss (EPLoss) is minimum in C2,
5.223 MW, marginally less than the proposed formula-
tion F4, 5.364 MW.

• The expected voltage deviation (V.D.) minimum in the
C1 formulation is 0.296; after that minimum V.D. seen
in formulation, F4 is 0.432. This paper’s minimum load
bus voltage is 0.95 p.u, whereas the maximum load bus
voltage is 1.05 p.u. From these extreme voltage limits,
aggregate V.D. is 1.2 p.u (24∗0.05=1.2, where 24 are
load buses). In all the formulations, V.D. is less than
1.2 p.u.

Lindex is minimum in C2 and F4 formulations which
is 0.126 p.u. Line charging injection is maximum in
C1 (18.044 MVAr), marginally better than F4, which is
17.948 MVAr.

• The average bus voltage is best in the F4 formulation,
whereas the standard deviation (S.D.) is seen well in the
C1 classical formulation.

The above remarks clearly show that if the system operator
is interested in maximizing the ERPR and minimizing the
expected cost of reactive power, the proposed formulation F4
gives better results than other formulations. Moreover, with
the maximization of RPR, system dynamic voltage stability
is also maximized because the generator’s reactive power is
the best source to control the voltage stability. For simplicity
and better visibility, Pareto fronts (P.F.) of worst and best sce-
narios of formulation C1 and C2, sc1, sc4, and sc20 (extreme
scenarios), are shown in Figure 6.

The red circle is the best compromise solution (BCS), com-
puted using the fuzzy decision method. Figure 6 shows that
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TABLE 6. Simulation results of BCS of all the formulation.

TABLE 7. Expected values of objective functions and parameters for the formulations.

the proposed method finds the widely spread and converged
P.F. Also, the P.F. of extreme scenarios for the formulations
F1, F2, and F3 are shown in Figure 6. Due to high RPR,
the proposed formulation ensures better power system sta-
bility and supports the voltage profile of the system at the
time of contingency. Figure 6 clearly shows that the quality
of obtained solutions most widely depends upon the load
demand. With the increase in load demand, finding the uni-
form optimal solution that makes a trade-off between RPR
and cost is very difficult. Therefore, the P.F.s of sc20 (at the
load of 104%) in Figure 6 is discontinuous. Extreme scenarios
of the final non-dominated solution of formulation F4 are
shown in Figure 6. Formulation F4 gives a better voltage
profile and Lindex than all other formulations. Maximum
expected RPR capacity is also obtained in this formulation
F4. It is clear from the previously described figures that
the suggested method may obtain a widely dispersed and
complete P.F. for the decision-maker to select a single ideal
option. Additionally, Figure 7 shows that all of the decision

vectors are feasible. In Figure 7, each box plot shows the val-
ues of generator voltage, SVC, and transformer tap settings
for all 20 scenarios.

Figure 8 shows the voltage profile and Lindexof all the
formulations sc20 (maximum load demand). All the variables
are within the desirable limit. The proposed formulation’s
voltage stability index is slightly better than the classical one.

Figure 9 compares the expected total reactive power injec-
tion in all the formulations and the combined wind and solar
integration share. It is observed from this Figure 9 that in
both of the classical formulations, overall, all reactive power
injection is a maximum of about 90 MVAr compared to
the proposed formulation, which injects about 70 MVAr.
It means that classical formulation will not be able to con-
tribute to securing the power system if the load is increased
or at the time of contingency appears. On the other hand,
sufficient RPR is available in the proposed formulation to
secure the system under load variation, and contingency
occurred.
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FIGURE 6. Final PF and BCS of extreme scenarios of formulation C1 and C2.

However, cumulative wind and solar injection are opposite
to overallMVAr injection. Combinedwind and solar share are
minima in the classical formulation, whereas it is maximum
injected in the proposed formulation. Therefore, wind and
solar generation sufficiently support to increase in the ERPR
of thermal generators.ERPR of thermal generators is themain
source to respond to the variation in load demand and under
fault conditions.

C. PROBABILISTIC MOOPRD ON 118BUS LARGE-SCALE
POWER SYSTEM
To show the superiority and performance of the proposed
algorithm, a large-scale 118-bus test system [54] is consid-
ered to solve the PMO-ORPD problem. This test system
comprised 118 buses, 54 generators, and 216 transmission

lines. Cumulative active and reactive power demand at 100%
loading is 6787.2 MW and 2300.8 MVAr, respectively. It has
nine transformers located at branches 9, 37, 42, 61, 107,
110, 119, 125, and 150 and fourteen shunt Var compensators
installed at buses 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105,
107, and 110. In this work, IEEE 118-bus is modified as in
[56] by injecting 12 wind generators at buses 1, 6, 9, 18, 19,
41, 43, 44, 62, 63, 72, and 80. The proposed test system has
a reference generator located on bus 69. The single-line dia-
gram of the IEEE 118-bus tests system is shown in Figure 10.
Simulation results of two classical formulations (C1 and C2)
and two proposed formulations (F1 and F2) are given in
Table 8.

Expected cost of active power generation is varied due
to uncertain wind integration. The expected cost of reactive
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FIGURE 7. Box plot of generator voltage, SVC, and transformer tap settings of formulation C1, C2, and F4.

FIGURE 8. Voltage profile (p.u) and Lindex of sc20 for all the formulations.

power generation is more than 50% less than classical for-
mulations. Proposed formulations optimally injectMVAr into
the system. Therefore, reactive power loss is marginally high
compared to classical formulations. Expected reactive power
reserve is approximately same in F, F2 and classical C1.

Simulation results in Table 8 demonstrate that the pro-
posed formulation distributes the reactive power of generators

FIGURE 9. Comparison of total reactive power output and combined
maximum share of wind and reactive solar power.

optimally compared to classical formulations. The proposed
formulation considers the impact of MVAR excitation across
all the series and shunt components of the system. The
final nondominated solutions of C1, C2, and F1, F2, are
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FIGURE 10. Proposed IEEE 118-bus system [54].

FIGURE 11. Final non-dominated solutions of IEEE 118-bus system.
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FIGURE 12. Comparison of voltage profile, Lindex, and MVAr injection of C1, C2, and F1, F2.

TABLE 8. Expected values of objective functions and parameters for the
formulations.

TABLE 9. Parameters of PDFs.

shown in Figure 11. The figure shows the proposed algorithm
finds the evenly distributed final nondominated solutions of
conflicting objective functions. The best compromise solu-
tion is obtained by applying fuzzy weight decision-making.
Figure 12 (a) compares the voltage profile of the base

TABLE 10. Minimum and maximum values of active and reactive power.

case and C1, C2, F2, and F2 of the 118-bus tests sys-
tem. F1 found a better voltage profile than the base case,
C2, and F2. Whereas, in terms of voltage profile, C1 out-
performs. Table 8 elucidate that the proposed formulation
outperforms C1 and C2 formulations. Furthermore, Lindex
of all P.Q. buses and MVAr injection of all the 54 gener-
ators of classical and proposed formulations are shown in
Figure 12 (b)-(c).

V. DISCUSSION
The multi-objective optimal reactive power dispatch (MO-
RPD) problem is a significant research area in power systems
engineering. It involves allocating reactive power among
various devices in the power system to optimize multiple
objectives simultaneously. Recent Extensive literature on
ORPD is presented in Table 1, which integrates the main
findings and limitations of various methodologies used in
previous research to solve single and multi-objective ORPD
problems. From Table 1, small IEEE 30-bus and large-scale
118-bus test systems are widely used in the literature.

Therefore, in this paper, the IEEE 30-bus and 118-bus tests
system are considered to solve the ORPD problem.
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TABLE 11. Constant parameters for the calculation of cost of thermal,
wind and solar generators.

TABLE 12. Parameters for Qmax and Qmin of DFIG-based wind and
VSI-based solar RES.

Classically in the literature, as shown in Table 1, power
loss, V.D., and stability index, Lindex is frequently used to
find the solution to ORPD problems. In this paper, these clas-
sical formulations are considered to compare the proposed
algorithm with the available methods in the literature to show
the superiority and performance of the proposed algorithm.
Tables 3 and 4 elucidate that the proposed algorithm finds
the approximate global optimal solution compared to other
methods available in the literature in terms of Pareto Front
(P.F.) and statistical comparison such (as maximum, min-
imum, and standard deviation values). Furthermore, hyper
volume indicator (HVI) is used to compare the distribution
and convergence of final non-dominated solutions of the
proposed algorithm with the recent methods available in the
literature.

Wind and solar power integration into the ORPD problem
have gained significant attention in recent decades. As renew-
able energy sources, wind and solar power have unique
characteristics that challenge their seamless integration into
power systems. Several recent studies have focused on incor-
porating wind and solar power considerations into ORPD
formulations to optimize the allocation of reactive power
resources. Therefore, this paper integrates renewable energy
source technologies with the proposed test systems, including
DFIG-based wind generators and VSI-based solar PV. units.
These probabilistic sources’ reactive power capability con-
straints are shown in Fig. 2.

In the literature, load demand, wind, and solar power
generation have all been modeled using normal, Weibull,
and lognormal probability density functions (PDFs). One
thousandMCS-based scenarios are generated using proposed
PDFs. Practically, solutions to these scenarios are computa-
tionally expensive. Therefore scenario reduction technique
based on distance metric has been employed to find the
representative 20 scenarios, as shown in table 5.

In addition, we have introduced four new formulations
for MO-RPD that aim to distribute reactive power optimally
across all devices, considering the impact of uncertain wind
and solar PV. generation. The mathematical derivation of
these formulations is given in Section II, part C. These for-
mulations consider all the devices that generate or absorb
reactive power. Through applying these four formulations,
we have demonstrated the effectiveness of our proposed
approach in achieving optimal reactive power allocation and
addressing the multiple objectives of power loss minimiza-
tion, voltage stability enhancement, cost of reactive power
generation, and maximizing reactive power reserve (RPR).
The simulation results obtained from our formulation indi-
cate significant improvements in system performance and
validate the efficacy of our proposed methodologies. Intro-
ducing these new formulations for multi-objective optimal
reactive power dispatch provides a comprehensive approach
to address the challenges associated with reactive power
allocation in power systems. By distributing reactive power
optimally among all devices, we can achieve improved sys-
tem efficiency, voltage stability, RPR, cost ofMVAr injection,
and integration of renewable energy sources.

VI. CONCLUSION
This paper formulated four new methodologies to solve the
optimal reactive power dispatch (ORPD) problem. The pro-
posed formulation considers the techno-economic objective
functions, specifically the minimization of the active and
reactive power cost, and the maximization of reactive power
reserve. This leads to an effective solution to the probabilistic
multi-objective ORPD (PMOORPD) problem, especially in
the context of modern wind farms (WFs) and solar PV. The
proposed formulations are necessary for effectivelymanaging
power systems with renewable energy sources and contribute
to developing efficient and sustainable power systems. To val-
idate the simulation results of the proposed algorithm, both
continuous and mixed-integer deterministic study cases were
analyzed and compared with the algorithms recently pub-
lished in the literature. Fuzzy decision-making theory extracts
the best compromise solution from the final non-dominated
solutions.

Besides, an accurate reactive power capability curve of
VSI-based solar PV. and DIFG-based wind turbines are
considered to solve the classical and proposed formulation.
To show the performance and effectiveness of the proposed
techno-economic formulation, IEEE 30-bus and 118-bus test
systems are modified to integrate wind and solar-based gen-
eration. Compared to the classical formulation, the proposed
formulation effectively solves the PMO-ORPD problem to
maximize expected RPR and minimize the expected active
and reactive power costs. Integrating wind and solar-based
reactive power into the power system can improve the
Expected RPR and system stability in several ways. For
example, it can help balance the reactive power demand and
supply, reduce voltage fluctuations, and enhance the power
system’s ability to handle disturbances.
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Additionally, integrating renewable energy sources can
reduce the dependence on traditional sources of reactive
power, such as synchronous generators, which can improve
the power system’s flexibility and resilience. Moreover, all
the decision variables and constraints are within limits. In the
future, IEEE 118 bus system is considered to implement
active power reserve and commit or de-commitment of units
by considering proposed formulations.

APPENDIX A
See Tables 9–12.
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