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ABSTRACT Soldier burden is influenced by the environment, metabolic demands, equipment properties,
and psychological stressors; however, much of our knowledge of soldier burden is in the context of
body-borne load mass in controlled laboratory environments. Thus, to further our understanding of how all
aspects of soldier burden affect the survivability tradespace (i.e., performance, health, and susceptibility to
enemy action), field-based motion capture methods are needed. We developed a human activity recognition
method using the deep convolutional long short-term memory neural network architecture, trained using a
single inertial measurement unit on the upper back, to identify eleven tactical movement patterns commonly
performed by soldiers. Using a two-step logical algorithm, real-world constraints are forced, and class labels
are expanded to 19 movements. Presented are three models based on Indoor, SectionAttack (outdoors),
and a General approach. Across all three approaches, we obtained an average accuracy of 90.0%. Further,
we used these predictions to calculate meaningful tradespace metrics, which had an excellent agreement with
calculations using the true labels. Military leaders and defence scientists can use this approach to quantify
tradespace metrics in the field, as a preprocessing tool to supplement other technology, and make data-driven
decisions that can help improve performance, decrease susceptibility, and increase overall mission success.

INDEX TERMS Activity recognition, performance, LSTM, military, wearables, DNN.

I. INTRODUCTION
Military personnel perform a variety of tactical move-
ment patterns during training and deployment. Typically,
these movements are performed while subjected to vari-
ous aspects of soldier burden: environmental conditions,
metabolic demands, equipment properties (i.e., mass, mass
distribution, coverage, bulk, stiffness, breathability, and ther-
mal resistance), and psychological stressors [1]. However,
during biomechanical research investigations, soldiers often
perform movement protocols in a controlled indoor motion
capture laboratory with a narrow focus on the mass of
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the body-borne load. Using this data collection frame-
work, previous literature has unanimously identified many
negative kinematic [2], [3], kinetic [4], [5], [6], and per-
formance [7], [8], [9], [10], [11], [12] outcomes due to
heavy body-borne load mass. Although these investigations
are essential to our fundamental understanding of the under-
lying phenomena that affect a soldier’s movement pattern,
they do not fully reflect the movement patterns of soldiers
in the field as influenced by the mission, threat, environ-
ment, and commander’s intent. Thus, to truly understand a
soldier’s movements within the operational environment and
the impact soldier burden has on these movements, a motion
capture method that can efficiently and reliably collect mean-
ingful data in the field is needed.
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One technology that is suitable for field use are inertial
measurement units (IMUs). IMUs are small wearable devices
that typically include an accelerometer, gyroscope, and mag-
netometer. These devices are highly transportable, can collect
over long periods of time, and can be combined with a
biomechanical model to calculate joint angles [13], [14].
Previous work by Mavor et al. (2022) validated a 17-sensor
IMU suit [15] and used data from this suit to morph move-
ment patterns to represent intermediary body-borne loads
and personal characteristics. While such a suit can provide a
tremendous amount of biomechanical information and drive
many essential research questions, it is not practical for
widespread usage as it is costly, must be set up and cal-
ibrated correctly by trained individuals, and is susceptible
to damage in an operational environment (e.g., wires can
get pulled/frayed, the onboard computer can breakdown if
struck, and one of the many sensors can move, nullifying the
calibration). An alternative method is to use a single IMU
that does not need to be calibrated to a biomechanical model
and can be easily outfitted on the participant. Although it is
impossible to determine gross kinematic differences caused
by soldier burden, a single IMU is field-deployable, is rel-
atively inexpensive, enables the measurement of multiple
participants simultaneously, and could be used for gather-
ing performance and susceptibility metrics. Previous military
investigations using a single IMU have been able to deter-
mine performance degradations due to body-borne load and
personal characteristics [17], [18] and have been used to
recognize operationally-relevant movement patterns in the
field [19], [20].

Human activity recognition (HAR) is a domain of machine
learning research that typically uses deep neural networks
(DNNs) to recognize movement patterns based on data
obtained from various wearable sensors: a single IMU
setup [21], [22], multiple IMU setup [23], IMUs + heart
rate monitor [19], IMU + EMG [24], optical motion cap-
ture systems [25], and smartphones [26], [27], among
others. Researchers have applied HAR to these various
data types to recognize hand gestures [23], activities of
daily living [21], [23], [27], non-specific sporting move-
ments [25], workplace postures [28] and tasks [24], and
military activities [19], [20], [29], among many others.
Using the knowledge obtained from the HAR algorithms,
researchers have been able to perform workplace ergonomic
assessments [28], [30] and at-homemonitoring of activities of
daily living [22]. In a military context, by using a single IMU
to recognize what activities soldiers are performing, with or
without combining other wearable technology, there is poten-
tial to advance other fields of study within defence science,
such as fatigue research (e.g., knowing what activities lead
up to sustained heart rate or the evaluation of performance
decline over time), ergonomics (e.g., task frequency, rest,
interaction with objects), team-based interactions, training
(i.e., digitize drills to visualize), and survivability (i.e., firing
at digitized avatars, calculation of exposure time), among
others.

This work aimed to investigate the efficacy of using a
single IMU sensor to recognize key military movements
and calculate tradespace metrics. Presented are a series of
DNNs, trained to recognize operationally-relevant move-
ment patterns using data from a single IMU, obtained from
data collected in an indoor laboratory and during an out-
door two-person 60-metre simulated section attack drill.
Three types of DNN architectures, 1) convolutional neu-
ral network (CNN), 2) fully connected DNN (FC), and 3)
deep convolutional long short-term memory neural network
(DeepConvLSTM), were trained using three approaches:
indoor-specific, section attack-specific, and general (i.e., both
indoor and section attack data). Predictions made by the
DNNs were processed through a two-step logical algorithm
to ensure predictions adhered to real-world constraints and to
expand the number of class labels from 11 to 19. We present
our models’ performance using traditional machine learn-
ing metrics (i.e., accuracy and F1-scores) and compare the
survivability tradespace metrics (i.e., exposure time, suscep-
tibility to enemy action) calculated using the predicted labels
versus the true labels for our test participants. It should be
declared that this paper reuses content from thesis [31] with
permission.

II. EXPERIMENTAL DESIGN
A. PARTICIPANTS
Seventeen male dismounted combat arms reserve force
soldiers (consisting of Privates, Corporals, andMaster Corpo-
rals) from the Canadian Armed Forces (CAF) were recruited.
Participants’ mean height, mass, age, and years served were
1.83 m (±8.9), 81.7 kg (±9.2), 26.6 years (±7.2), and
3.8 years of service (±2.2), respectively. All experimental
protocols followed the Declaration of Helsinki and were
approved by the University of Ottawa (H-06-18-721) and
Defence Research and Development Canada (2019-026)
Research Ethics Boards. All participants provided free and
informed consent prior to participating in these protocols.

B. EQUIPMENT
Participants performed a series of movements under four load
conditions: 1) Slick ∼5.5 kg, comprising of a CAF helmet,
a replica C7A2 rifle, and the temperate combat clothing
ensemble (T-shirt, combat shirt, combat trousers, combat
boots); 2) Full Fighting Order (FFO) ∼22 kg, comprising
Slick + CAF issued fragmentation protective vest (with 2 in-
service ballistic plates, front and back) + a fully loaded
tactical vest (2 replica grenades, 2 replica smoke grenades,
4 replica C7 magazines, a simulated canister of C9 ammu-
nition, 2 field dressings, and a water-filled 1 L canteen); 3)
Backpack 38 kg, comprising FFO + a loaded CAF daypack
weighing 16 kg; and 4) Pockets 38 kg, comprising of FFO +

16 kg worth of non-ferrous plates added to the fragmentation
vest (section attack only). Participants’ whole-body move-
ment patterns were recorded at 240 Hz for all conditions
using an Xsens IMU suit (MVN Link, Xsens, Netherlands)
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validated for military-based tasks [15]. Concurrently, move-
ment patterns were collected at 100 Hz using a single IMU
(S5, Catapult Sports Pty Ltd., Australia) designed for high-
performance activities. The IMU was placed on the back of
the upper torso using a specialized sports pinnie.

C. MOVEMENT PROTOCOL
1) INDOOR LABORATORY
Twelve soldiers performed two repetitions of eight
military-based movements under the Slick, FFO, and Back-
pack load conditions described above: run, run-to-kneel
(RTK), run-to-prone (RTP), kneel-to-run (KTR), prone-to-
run (PTR), kneel-to-prone (KTP), prone-to-kneel (PTK), and
walk. Trial order and weight conditions were randomized
for each participant; a total of 48 movement trials (8 move-
ments ∗ 2 repetitions ∗ 3 conditions = 48 movements) were
performed. All movements requiring forward progression
were done in a straight line measuring ten metres, and all
movements began/ended with the participant in standing.

2) OUTDOOR SECTION ATTACK
Ten soldiers performed two repetitions of fireteam pairs
within the context of a simulated 60-metre section attack
under the four load conditions (i.e., Slick, FFO, Backpack,
and Pockets). For each repetition, team members alternated
between fireteam leader and follower roles. Fireteam pairs
began by patrolling (walking and watching for threats) for
at least 10 m in open grassy terrain. At the command of a
Section Commander (non-participant), fireteam pairs began
advancing towards the threat and adopted tactical movements
(i.e., bounding rushes, wherein one soldier dashes from one
point of cover to another while simulated covering fire is pro-
vided by the fireteam partner and vice versa) until the desired
distance was reached (∼40 metres). Soldiers then completed
a simulated assault on the objective for the remaining distance
(∼20metres). These tactical movements replicate the individ-
ual movements and postures captured during the laboratory
data collection (run, RTK, KTR, PTR, KTR, PTK, and walk).

III. DATA PREPERATION
A. PREPROCESSING
Xsens IMU data were processed in Xsens MVN Analyze
2019.2.1 (Xsens, Netherlands) using the high-definition (HD)
reprocessing tool. Data were visually inspected, and segment
contact data were manually adjusted when necessary. Files
were exported in both .mvnx and .c3d file formats.

Catapult IMU data were downloaded and processed
through Sprint 5.1.7 (Catapult, Australia) to produce
comma-separated variable (CSV) files hosting the sensor’s
triaxial acceleration, triaxial gyroscope, and triaxial magne-
tometer data; GPS data were available outdoors but were not
used for this investigation. The output data were a continuous
stream hosting the entire data collection protocol; thus, data
were cropped and recombined to only include data when the
Xsens suit was collecting. This was done so that all input data

for the DNNs could be accurately labelled with ground truth
labels.

Before each load condition, a jumping task was performed
to synchronize the Catapult and Xsens IMU systems. Specif-
ically, the peak vertical acceleration from the Catapult and
Xsens (T8 segment) systems were used to align the data in
time using the serial date number calculated throughMatlab’s
(MathWorks, USA) datenum function.

B. GROUND TRUTH LABELS
Ground truth labels were visually identified using Matlab
2016b by a single labeller who plotted the Catapult IMU’s
vertical accelerometer and yaw gyroscope data, along with
Xsens’ vertical virtual marker position of the T8 spinal pro-
cess and used Matlab’s ginput function to select the bounds
of each movement type. The labeller also visualized the
whole-body movement patterns using the .c3d files to gain
additional information on the movements.

The labeller manually identified two class label sets: orig-
inal and expanded. The original set was used as ground
truth labels for the DNNs and consisted of eleven class
labels: stand, jump, descend, ascend, prone, kneel, stand-
to-run (STR), run, walk, crawl, and null. By processing the
DNNs’ predictions through a two-step logical algorithm, they
were expanded to give context to the ascend and descend
classes, resulting in 19 class labels (Table 1). The null class
was used as a catch-all for any movement the participant
performed that did not fit into any other movement; examples
include, but are not limited to bending over, shuffling feet
while standing, and turning.

TABLE 1. Original and expanded class labels.

C. DATA ORGANIZATION
The data were divided into training, validation, and test sub-
sets by participant (i.e., samples from one participant were
always kept together in the same subset), shown in Table 2.
The same subsets for a given approach were used across all
models (i.e., CNN, FC, and DeepConvLSTM) to allow for
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TABLE 2. Datasets used for each approach.

direct comparisons. Across all approaches, the validation and
test participants were not exposed during training to provide
an unbiased estimate of model generalizability. In the General
approach, indoor and section attack data were represented in
the validation and test subsets with a distribution similar to
the training subset.

For all approaches, a single matrix was created for each
subset by concatenating data from all movement trials and
conditions performed by the participants in that subset. Nor-
malization was conducted on a feature-by-feature basis by
subtracting the mean and dividing by the standard deviation
of all data frames across participants and movements in the
corresponding subset [32]. A sliding window approach was
used to divide the data into segments containing an equal
number of data frames (i.e., 64 or 128), where the step size
was set to 1/4 of the window size. Each segment was assigned
a label according to the movement performed for the majority
of that segment. The length and width of the input data was
the window size and nine features (x, y, and z component of
the linear accelerometer, gyroscope, and magnetometer data
from the Catapult IMU), respectively.

IV. DEEP NEURAL NETWORK-BASED HUMAN ACTIVITY
RECOGNITION
A hold-out testing approach was employed to train and
evaluate the DNNs for activity recognition. Three approaches
to model development were employed: Indoor-specific,
Section Attack-specific, and General. The Indoor and
Section Attack approaches were used to develop models to
classify only indoor or section attack data, respectively. The
General approach was used to develop models to classify
activities from either scenario. For each approach, three
neural network architectures were employed (3 approaches
∗ 3 architectures = 9 models).

A. MODEL ARCHITECTURES, HYPERPARAMETER
OPTIMIZATION, AND TRAINING
To perform activity recognition, three neural network archi-
tectures based on previous work were implemented in Python
3.8.12 [33] using Tensorflow 2.3.0 [34]: shallow CNN [35],
FC [36], and DeepConvLSTM [23]. All machine learning
development was synchronously distributed using a mirrored
strategy across three Nvidia Titan RTX GPUs (Nvidia, USA)

with 24 GB of GDDR6 memory each. This was performed
on a server running Ubuntu 18.04 powered by two Intel Xeon
Gold 6248 CPUs @ 2.50GHz (Intel, USA) and 384 GB of
DDR4 RAM.

A combination of reliance on previous work and hyperpa-
rameter optimization was used to select the hyperparameters
for each model. Hyperparameter optimization was performed
using the indoor dataset and KerasTuner library [37] with
the objective of maximizing validation accuracy. Bayesian
hyperparameter optimization was implemented to search
the hyperparameter spaces defined for each model [38],
presented in Table 3; bolded values were the optimized
hyperparameters that were used to train the models for all
approaches.

All models were trained using a batch size of 100 sam-
ples, a maximum epoch of 500, and early stopping was
implemented via monitoring the training accuracy with a
patience of three. Training data were randomly shuffled
before each epoch to reduce the risk of overfitting. The
categorical cross-entropy function was used to compute loss
for all models and was minimized using either stochastic
gradient descent (SGD), or root mean squared propagation
(RMSProp). When training was stopped, the weights from
the epoch with the smallest validation loss were retained and
used to classify all samples in the test set. Loss, accuracy,
and weighted average F1-score were computed to evaluate
test performance. The architectures and hyperparameter opti-
mization procedures for each model are described in the
following sections.

B. CONVOLUTIONAL NEURAL NETWORK
The CNN was comprised of an input layer, a convolutional
layer with a rectified linear unit (ReLU) activation function,
and a dense layer with a softmax activation function (Fig. 1).
During training, the model parameters were optimized using
SGD. The SGD hyperparameters (i.e., learning rate and
momentum), the number of convolutional filters, and the
convolutional kernel size were tuned during hyperparameter
optimization (Table 3).

C. FULLY CONNECTED NEURAL NETWORK
The FC neural network was comprised of an input layer, three
dense (i.e., fully-connected) layers with ReLU activation
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FIGURE 1. Convolutional neural network architecture. The nine features were the x, y, and z components of the accelerometer,
gyroscope, and magnetometer signals from the inertial measurement unit. The sliding window size, the number of convolutional
feature maps (i.e., number of filters), and the kernel size were tuned during hyperparameter optimization. ReLU = rectified linear
unit.

FIGURE 2. Fully connected neural network architecture. The nine features were the x, y, and z components of the accelerometer,
gyroscope, and magnetometer signals from the inertial measurement unit. The sliding window size and the number of input units
in each dense (i.e., fully connected) layer were tuned during hyperparameter optimization. ReLU = rectified linear unit.

functions, and a dense output layer with a softmax activation
function (Fig 2). As a form of regularization, a drop-out
operator with a probability set to p= 0.5 was implemented on
the output of the dense layers. Model parameters were opti-
mized during training using SGD. The SGD hyperparameters
(i.e., learning rate and momentum) and the number of input
units in the dense layers were tuned during hyperparameter
optimization (Table 3).

D. DEEP CONVOLUTIONAL LONG SHORT-TERM NEURAL
NETWORK
The DeepConvLSTM model was comprised of an input
layer, four convolutional layers with ReLU activation

functions, two long short-term memory recurrent lay-
ers with hyperbolic tangent (tanh) activation functions,
and a dense layer with a softmax activation function
(Fig 3). A drop-out operator was implemented on the
inputs of the recurrent layers with a probability set
to p = 0.5.

Following procedures outlined by Ordóñez and Roggen
(2016), the model parameters were optimized during train-
ing by minimizing the cross-entropy loss function using
batch gradient descent and the RMSProp update rule. For
RMSProp, the decay factor was set to ρ = 0.9, and the
momentum was set to 0.0. The RMSProp learning rate, the
number of convolutional filters, the convolutional kernel size,
and the number of long short-term memory (LSTM) cells in
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TABLE 3. The hyperparameter search spaces for each architecture.

the LSTM recurrent layers were tuned during hyperparameter
optimization (Table 3).

V. PREDICTION PROCESSING
A. LOGICAL ALGORITHM
The predictions from the DNNs were processed through a
two-step logical algorithm implemented in Matlab 2016b
using an Acer Laptop with Intel®Core™i7-8750H CPU @
2.20GHz 2.21 GHz, 16 GB of RAM. In step one, the initial
predictions from the DNN were processed to update the
original label set to ensure that the predictions adhere to real-
world constraints. Examples of constraints are: no standing
after a descend, no standing before an ascend, kneel/prone
must be preceded by a descend if the previous label is a
stand, walk, or run, etc. The input to the logical algorithm
was a 3 × 5 matrix where the columns were the class labels
(rows 1 and 2 corrected; rows 3-5 predicted), the number
of windows for each class label (i.e., multiple windows can
contribute to the class labels), and the mean probability for
those windows for that class. The current step for the log-
ical algorithm was row three such that the algorithm could
consider the previous two and future two class labels. Con-
sidering real-world constraints and the DNN’s confidence in
those labels, the logical algorithm altered the current (i.e., row
3) class label, which was fed into the next step. If the step
failed, the logical algorithm was given the last and next five
labels, window sizes, and probabilities to make a decision and
could alter any previous label if real-world constraints were
violated.

After completing the first step, the second step iter-
ates through the updated original label set to generate the
expanded label set (Table 1). To expand the labels, the

algorithm was shown the similarly structured 3 × 5 matrix
described above; however, the algorithm only made changes
to the ascend and descend classes based on what the previous
and next class labels were. For example, if the current class
was a descend with a previous class of running and a next
class of kneeling, the current class descend would be altered
to a run-to-kneel.

B. SURVIVABILITY TRADESPACE
Using the expanded label set, the survivability tradespace
metrics were calculated: exposure time, the number of enemy
shots fired, and susceptibility to enemy action. For the cur-
rent investigation, the exposure time for each movement
was calculated with the assumption that while the partic-
ipant was on the ground (i.e., kneel, prone, crawl, KTP,
PTK), they were considered to be not exposed. For all other
movements, participants were considered exposed to enemy
action.

Due to the nature of the protocol (especially during the
indoor collections), participants stood at the starting and
finish line for a variable amount of time. Therefore, all
laboratory-based movement trials were cropped to exclude
the standing portion at the start or end of the movement (i.e.,
calculations started at the first movement following a stand
and ended at the last movement before a stand). Using the
same rationale, the section attack data were cropped between
the first descend into a kneel/prone after the initial patrol
and the last ascend before the simulated assault. For the
indoor movements, the exposure time was calculated for each
movement and averaged within each load condition. For the
section attack, the exposure time was individually calculated
at each instance of exposure between two periods when the
participant was unexposed (i.e., one instance of exposure can
be represented as the series KTR, run, RTK, and kneel, for
example).

The calculated exposure time for each movement was used
to determine the number of enemy shots that could be fired
at the participant using Equation 1 [17], [39]:

Shots = (Exposure Time− Reaction Time)

∗ Shooting Cadence (1)

where reaction time was set to one second and shooting
cadence was set to 1.3 shots per second [17], [39]. Given the
number of shots fired, susceptibility was calculated with a
shooting accuracy of 10% (Equation 2 [17], [39]):

Susceptibility =

(
1 − (1 − Accuracy)Shots

)
∗ 100 (2)

where susceptibility is represented as a percentage chance of
being hit by the number of shots calculated in Equation 1.

VI. RESULTS
Model performance results represent the whole time series,
while the tradespace metrics represent the cropped labels as
described in section V-B. Model performance was evaluated
using the windowed true labels described above, while the
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FIGURE 3. Deep convolutional long short-term memory neural network architecture. The nine features were the x, y, and z components of
the accelerometer, gyroscope, and magnetometer signals from the inertial measurement unit. The sliding window size, the number of
convolutional feature maps (i.e., number of filters), the kernel sizes, and the number of long short-term memory (LSTM) cells in each
recurrent layer were tuned during hyperparameter optimization. Conv = convolutional layer; ReLU = rectified linear unit; tanh =

hyperbolic tan function.

TABLE 4. Human activity recognition performance for all architectures
across all approaches.

TABLE 5. Training and test set prediction times on the general dataset for
all three deep neural network architectures.

original true labels were used for tradespace calculations
(i.e., the true labels manually identified by the research team
before windowing).

A. DEEP NEURAL NETWORK PERFORMANCE
The performance of the DNNs for activity recognition is pre-
sented for the original label set only. Across all approaches,
the DeepConvLSTM architecture had less loss, greater accu-
racy, and greater weighted average F1-score compared to the
CNN and FC models when evaluated using the test subsets
(Table 4). The training and prediction time on the general
dataset (i.e., indoor and section attack data combined) were

TABLE 6. Accuracy and weighted average F1-scores across load
conditions.

longest for the DeepConvLSTM (15.74 minutes), followed
by the FC (9.81 minutes) and CNN (1.23 minutes) models
(Table 5). For the general dataset, the logical algorithms
took 9.54 seconds to process 165,150 frames of data. The
remainder of the results are computed using the output from
the DeepConvLSTM models.

B. LOGICAL ALGORITHM
Once the predictions were analyzed through the logical
algorithm, on average, across all three model approaches,
accuracy and weighted F1-scores were 90.0% and 90.3%,
respectively (Table 4). This represents an average increase
in accuracy and weighted F1-scores of 3.75% and 3.72%,
respectively. The General model had a slightly lower over-
all accuracy (87.7%) compared to the Indoor (91.7%) and
Section Attack (90.6%) models. Load condition did not
appear to greatly influence the performance of the models
(Table 6).

The worst classified load condition was the General model
classifying the Slick condition (accuracy: 82.3%; F1: 82.9%),
while the Pocket condition classified by the General model
was the best (accuracy: 93.1%; F1: 93.8%).

C. TRADESPACE METRICS
For the four unique test participants, all models identified an
increase in exposure time with an increase in body-borne
load. On average, across all trials/instances of exposure,
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FIGURE 4. Tradespace results for four unique test participants across all approaches. S = Slick, F = Full Fighting Order (FFO), B = Backpack, P
= Pockets, General SA = the General model’s results on the section attack data, General Indoor = the General model’s results of the indoor
data, N = the number of test participants included in each comparison. Error bars represent standard deviation of the mean for each trial
performed indoors or each instance of exposure during the section attack.

compared to the true labels, the predicted labels had an
absolute difference in exposure time of 0.17 s, 0.13 s, and
0.16 s for the Indoor, Section Attack, and General models,
respectively. This difference in exposure time between true
and predicted labels across all trials/instances of exposure led
to an average absolute difference in the number of shots fired
of 0.17, 0.16, and 0.21 for the Indoor, Section Attack, and
General models, respectively. Ultimately, these differences
between the predicted and true labels led to an average
absolute difference in susceptibility of 1.25%, 1.20%, and
1.09% for the Indoor, Section Attack, and General models,
respectively, across all trials/instances of exposure. Differ-
ences in tradespace metrics between the true and predicted
labels can be visualized in Fig 4.

VII. DISCUSSION
To further our knowledge into how survivability tradespace
metrics are impacted by soldier burden, methods are needed
to collect soldiers’ movement patterns in their operational
environment. These methods need to use technology that is
simple (i.e., does not need extensive expertise to operate),
cost-effective (i.e., so multiple soldiers can be collected at
once), highly transportable (i.e., can be deployed anywhere),
and provide meaningful information that can be disseminated
to military leaders. Current methods of calculating soldier
survivability metrics include timing gates [10], and GPS +

accelerometer values on pre-setup courses [17], [18]. While
these studies have helped establish foundational knowledge,
these methods are suitable for targeted data collections rather
than in-the-wild soldier monitoring. In the current work,

we have shown how we can address the needs of the military
and build on previous work by using a single IMU that is
placed on the upper back combined with a DNN to perform
HAR.

Our investigation found that the DeepConvLSTM archi-
tecture was best at predicting our eleven movement classes.
This was likely influenced by the data type (i.e., time
series) and the node architecture allowing LSTM nodes to
retain memory from previous data windows [23], whereas
the CNN and FC models interpret data windows as unique
inputs. A benefit of employing models with less complex
architectures (i.e., CNN and FC) is shorter training and pre-
diction times. However, considering the intended use cases
for this analytical framework, model performance is valued
over training time, and the DeepConvLSTM prediction time
(i.e., ∼2 s) is still suitable for field-based processing. Thus,
the remainder of this discussion will focus on results from
the DeepConvLSTM models. Through this investigation,
we used three approaches to model development: Indoor-
specific, Section Attack-specific, and General. Although not
substantial, the Indoor and Section Attack-specific models
were more accurate than the General model (90.9% and
90.2% vs. 87.9%, respectively) for classifying the move-
ments. Since data distribution can have adverse effects on
a DNN’s accuracy [40], the reduced performance in the
General model may be caused by the distribution of the
Indoor and Section Attack data within the General model’s
training set (62% Section Attack, 38% Indoor) and that the
data collection and preparation methods between Indoor
and Section Attack were different (i.e., a structured protocol
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cropped into individual movements compared to a continuous
movement protocol).

To ensure that our prediction adhered to real-world move-
ment constraints, we processed the original predictions
through a two-step logical algorithm, which, on average,
increased our models’ accuracies by 3.45% for the original
labels (i.e., 86.4% vs. 89.8%). When expanding the original
labels to the expanded label set (i.e., all 19 labels to give
meaning to ascend and descend), accuracy dropped slightly
to 87.0% on average, which still represents a small accuracy
improvement of 0.6% from the original DNN predictions,
with the additional contextual benefit of eight labels. With
this additional context, combinedwith the time dependencies,
we could produce digital reconstructions of the movement
patterns (e.g., [16]), which can be imported into battle sim-
ulators, animation software, and musculoskeletal models.

Soldiers can be tasked to carry a variety of body-borne
loads; therefore, to increase generalizability, we trained
our models on three common body-borne load conditions
(Slick, FFO, Backpack) and one hypothetical load condition
(Pockets). All approaches were sensitive enough to iden-
tify an increase in exposure time due to body-borne load,
a well-established phenomenon [41]. Across all approaches,
there were no meaningful performance differences between
load conditions; however, across all approaches, the Pocket
(93.1%) and FFO (91.5%) conditions tended to have higher
accuracies than the Slick (86.3%) and Backpack (88.8%)
conditions. Given that the IMUwas placed on the upper back,
the differences seen could possibly be due to the movement
patterns in the FFO and Pockets condition being in a ‘‘sweet
spot’’ between an upright posture in the Slick and a more
flexed posture in the Backpack condition.

Previous literature using HAR models for military move-
ments have reported higher overall accuracies than the
presented work. These investigations used a single IMU [29],
a single triaxial accelerometer and GPS data [20], and a
uniaxial accelerometer with a heart rate monitor [19]; the
authors collectively report overall accuracies ranging from
87.5% to 98.5%. The accuracy differences between previous
literature and the present work are primarily attributable to
the amount and types of movements studied (i.e., walking,
running, jumping, and loadedmarching), representing a small
subset of the movements that soldiers typically perform and
fewer than the number of movements included in the present
study. Wyss and Mäder (2010) included manual materials
handling tasks (lifting and lowering, carrying, and digging)
in their HAR model; however, their model only achieved
an average accuracy of 54% for these tasks. Across our
three approaches, the DeepConvLSTM architecture trained
on data from a single IMU produced movement-specific
accuracies of 89.1% for walking and 88.6% for running
following our two-step logical algorithm that are compara-
ble to previous literature. Aside from Null (66%), the least
accurate movement class was Descend at 81.2%, while the
most accurate label was Standing at 95.2%. This tight range
of accuracies between class labels highlights that by using a

DeepConvLSTM architecture, all of our movements are iden-
tifiable with a consistently high level of accuracy, building on
the large range of accuracies previously reported.

Although the presented results are promising, there are
several limitations to the current work. The sliding window
method was employed to create segments of 128 frames
to train the DNNs. This method reduced our resolution,
as movements that were performed in less than 65 frames
(i.e., the majority of 128-frame window) are not cap-
tured. This primarily affected descend movements during the
section attack, which negatively affected the model perfor-
mance metrics. That is, when the models correctly predicted
descend, they were evaluated as errors when the majority
of the windowed true label was not a descend. To over-
come this limitation, model predictions used to calculate the
tradespace metrics (computed after the logical algorithm)
were compared to the un-windowed true labels to ensure that
all movements were captured. The ‘‘null’’ class label was
used as a catch-all for all movements that did not fit into
other classes thus, there was a large amount of variability for
this label, which had a negative impact on performance (i.e.,
accuracy for this label was 66%). Future work should aim
to collect greater samples of these underrepresented move-
ments to avoid the need for a null label. In the present work,
we used a DNN approach; however, there are less compu-
tationally expensive approaches that have been deployed to
HAR.ADNNapproachwas used to avoid the need for feature
engineering to simplify the utilization of our methods for
future end users, who may not have the necessary expertise
in signal processing/domain knowledge.

The goal of the current work was to display the efficacy
of using a single IMU for recognizing tactical movement
patterns. As such, there is much more work to be done to
realize the full potential of this field of research. Future
work should aim to collect more movements as part of
realistic situations (i.e., collecting during drills/simulated
combat), diversify the movement patterns (e.g., manual mate-
rials handling, stair/ladder climbing, window vaulting, etc.),
diversify the type of soldier burden experienced by the soldier
(e.g., environmental conditions, equipment properties, etc.),
diversify the operational environment (e.g., terrain, weather,
proximity to operationally-relevant equipment), and diversify
the training population (i.e., sex, occupation, rank, experi-
ence, etc.). By diversifying the data collection and integrating
real-world tactical situations, it will make any developed
HAR algorithm more generalizable to the diverse soldier
population who operate in various environments around the
world. In order to provide defence scientists with recommen-
dations on the optimal number and location of IMUs to use
to perform HAR for military movements, future work should
focus on a sensitivity analysis using different combinations of
all sensors from the Xsens whole-body IMU suit, uncoupled
from a biomechanical model.

Presented is a HAR method for identifying military-based
movements during a variety of body-borne loads using a sin-
gle deployable IMU that is beingwidely used by the Canadian
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Armed Forces and allied nations. We used predictions from
DeepConvLSTM models to calculate tradespace metrics to
produce meaningful information with a high degree of accu-
racy. Defence scientists and military leaders can employ
our method to directly calculate tradespace metrics, use it
as a preprocessing tool to supplement other technologies
(e.g., heart rate monitor, temperature probes, motion capture),
perform workplace assessments (e.g., work-to-rest ratios),
identify how the same soldier burden is affecting different sol-
diers, or as amonitoring tool during deployment, among other
applications. The ability to collect meaningful information in
the field will accelerate our understanding of the survivability
tradespace (i.e., soldier burden factors and their influence on
soldier performance, vulnerability, and operational effective-
ness). Filling knowledge gaps in this tradespace will also
inform the development and employment of modular, scal-
able protection systems, and data-driven decision support
tools to aid military leaders with risk-based trade-off deci-
sions during mission planning.
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