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ABSTRACT In mobile communications network planning (and designing any radio system), coverage
prediction helps network operators optimize cellular networks to improve customer experience. Accordingly,
several path-loss models have been proposed that depend on many conditions, such as suitable selection of
the terrain for each model, the height of the receiver and transmitter above ground and the distance between
them, and the presence of obstacles. This may increase the prediction error between actual and estimated
values, which change according to the propagation model selected. To overcome these problems, we propose
a novel approach to mobile coverage prediction based on an extremely randomized trees regressor (ERTR)
algorithm. In addition, we construct a radio environment map (REM) over a Google Earth digital map to
improve visualization of the results and to easily detect coverage holes and traffic hotspots. For this purpose,
we utilize a dataset with real measurements collected from Victoria Island and Ikoyi in Lagos, Nigeria. For
performance evaluation, we use k-fold cross-validation based on four error metrics: relative error, root mean
squared error, mean absolute error, and R2 score. The proposed ERTR scheme achieves the best performance
in terms of accuracy and computational load in predicting the reference signal received power and the
received signal strength indicator value. We prove this with extensive simulation analysis and by comparing
the error metrics of the proposed ERTR approach with an existing method widely used to perform coverage
prediction, called ordinary kriging.We also compared sevenmachine learning regression algorithms, namely,
random forest, a bagging regressor, support vector regression, k-nearest neighbors, a deep neural network,
Gaussian process regression, and the decision tree.

INDEX TERMS Coverage prediction, radio environment map (REM), extremely randomized trees, machine
learning, reference signal received power.

I. INTRODUCTION
Currently, mobile communications (MC) provides a flexible
infrastructure subject to the challenges of increasing demand
for mobile data. For instance, fifth-generation (5G) tech-
nology is capable of accessing and sharing information in
scenarios with high data rates and extremely low latency,

The associate editor coordinating the review of this manuscript and

approving it for publication was Aasia Khanum .

in which the transmission environment effects increase the
vulnerabilities of the signal itself, especially in 5Gmillimeter
wave networks [1], [2]. As a result, more antennas must be
installed closer to user nodes, exceeding the number of anten-
nas needed [1], [3], [4], [5]. Accordingly, coverage prediction
plays a key role in the resource management of MC, which
entails better network planning, design, and implementation,
plus optimization improvements. In addition, a radio environ-
ment map (REM) is considered by regulatory agencies as a
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helpful tool for informed decision-making, and by network
operators to ease coverage hole detection and traffic hotspots.

Overall, several path-loss models have been proposed that
depend on many conditions, such as suitable terrain selection
for each model, the height of the receiver and transmitter
above the ground and the distance between them, the presence
of obstacles, and so on [6]. These factors may increase the
prediction error between actual and estimated values, which
varies depending on the propagation model selected [7].
For instance, in [8], the authors proposed a propagation
model called COST-231-Walfisch -Ikegami that utilized a
geographic information system tool for field strength pre-
diction in cellular mobile communications. Although the
authors highlighted the benefits of geographic information
system tools to deal with spatial databases analysis, and
generating essential spatial parameters for field strength pre-
diction, the proposed COST-231-Walfisch -Ikegami model
is mainly useful for isotropic antennas. In the literature on
REM construction, ordinary kriging (OK) has been widely
used as a spatial interpolation technique based on geostatis-
tics [1], [2], [9], [10]. OK estimates unknown data points
according to the spatial correlation between measured data
and the relative positional relationships between all sample
points [2]. For instance, in [1], the authors constructed a
REM for an indoor propagation environment based on inter-
polation methods. The results showed that OK outperformed
baseline schemes such as inverse distance weight [3] and
k-nearest neighbors (KNN) in terms of root mean squared
error (RMSE) and correlation coefficients. Although OK can
achieve high accuracy, its main disadvantage is computa-
tional cost, which rises exponentially with the number of
measurement points [3], [10]. Moreover, a heuristic-based
approach has been proposed in [11] for coverage prediction
for indoor environments based on the indoor dominant path
model. Since it still relies on a path loss model, its extension
for outdoor scenarios can be difficult to implement.

Although the MC wireless transmission environment is
complex, conventional mobile network planning techniques
based on propagation models are inflexible and are subject
to specifications such as antenna height, frequency, and envi-
ronmental conditions [6]. Therefore, in recent breakthroughs,
machine learning (ML)-based schemes have emerged as
innovative prediction techniques capable of dealing with
mobile network operational complexities, and they can pro-
vide high accuracy [12], [13]. For instance, in [14], the
authors made path loss predictions in an urban environment
in Beijing, China, by applying an artificial neural network
(ANN), support vector regression (SVR), and random forest
(RF) models. The performance evaluated in terms of RMSE
achieved results between 4 dB and 5 dB. Similarly, in [15],
the authors utilized SVR and RF to predict the path loss of
a 5G network in Lisbon, Portugal. RMSE was evaluated
using 10-fold cross-validation, and the obtained results var-
ied between 6 dB and 7 dB. Moreover, an ANN and
Gaussian process regression (GPR) were applied in sub-
urban environments in South Korea, giving RMSE values

between 8 dB and 9dB [16]. On the other hand, ML models
based on an ANN, RF, and SVR were applied in rural envi-
ronments in Greece to make path-loss-based predictions for
an RMSE average of 4.2 dB [17]. In [18], the authors com-
pared the coverage prediction performance between ANN
schemes, multi-layer perceptron (MLP) with two hidden lay-
ers, and KNN for cellular networks based on the signal to
interference ratio metric. The results showed that ANN with
Gaussian kernels and the MLP technique obtained the best
performance. To the best of our knowledge, none of the
research described above considered an extremely random-
ized trees regressor (ERTR) for coverage prediction or REM
construction.

In recent research, reference signal received power (RSRP)
was considered the target label in MC since the RSRP param-
eter represents the network signal level at the user node
location [19] in fourth-generation (4G) Long Term Evolu-
tion (LTE) and 5G New Radio (NR) networks. In [20], the
authors applied an RF model to predict RSRP in multiple
environments located in China. The results obtained 6.11 dB
of RMSE by applying 10-fold cross-validation. Meanwhile,
in [21], the authors analyzed several ML models as linear
regression (LR), the ANN, SVR, GPR, regression trees (RT),
and RF. The authors stated that according to 10-fold cross-
validation, GPR achieved the best performance at 5.64 dB,
followed by RF at 6.18 dB. For this purpose, the authors
used 18,048 samples from 4G LTE collected in Putrajaya,
Malaysia.

Motivated by the benefits provided by the ensemble learn-
ing techniques to obtain high accuracy for indoor [22] and
outdoor [7], [21] environments regardless of propagation
models. In this paper, we propose a novel ML regression
approach based on an ensemble learning algorithm (namely
ERTR) to perform coverage prediction and design the REM
for MC. Our goal is to predict RSRP and the received sig-
nal strength indicator (RSSI) values in an urban dense area
located on Victoria Island, Lagos, Nigeria [23]. In addition,
we utilized 5-fold cross-validation to evaluate the perfor-
mance of the proposed ERTR approach, the baseline ML
models, and OK, by comparing different error metrics. This
paper opens the door to constructing ERTR-based REM
designs for MC environments that can be extended for cov-
erage analysis in various outdoor and indoor propagation
scenarios. It is worth highlighting that this is the first work
that investigates ERTR for coverage prediction inMC accord-
ing to RSRP and RSSI values. The main contributions of this
paper can be summarized as follows.

• First, a novel, ensemble learning approach is proposed,
called ERTR, for coverage prediction of MC systems
by utilizing RSSI values, RSRP, and global positioning
system (GPS) coordinates. For this purpose, we utilize a
dataset of actual measurements collected from Victoria
Island and Ikoyi in Lagos, Nigeria [23].

• Second, we construct the REM by using MATLAB to
improve the visualization of coverage prediction. For
this purpose, we created a 100 × 100 grid of data
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geographic points in the area of interest to plot the results
over a 2D map and a Google Earth digital map.

• Third, in addition to the proposed scheme, we assess
the performance of sevenML regression algorithms: RF,
a bagging regressor, SVR, KNN, a deep neural network
(DNN), GPR, and the decision tree (DT). Additionally,
we include a widely used benchmark algorithm called
OK for coverage prediction. To compare the proposed
ERTR algorithm with the baseline schemes, a 5-fold
cross-validation technique is employed, measuring the
relative error, mean absolute error (MAE), root mean
square error (RMSE), and coefficient of determination
(R2 score). Through extensive simulations, we vali-
date that the proposed ERTR algorithm outperforms the
baseline schemes, offering the highest accuracy while
maintaining a low computational load.

• Fourth, to validate the superiority of the proposed
ERTR in terms of complexity, we provide a com-
putational complexity analysis between the proposed
ERTR, and the baseline algorithms: RF, Bagging,
and OK.

The rest of the paper is structured as follows. The dataset is
described in Section II. In Section III, we present the cover-
age prediction methodology, including an overview, a model
evaluation, and the ERTR scheme. In Section IV, we provide
the numerical results, the computational complexity analysis,
and the graphical results. Finally, conclusions are described
in Section V.

II. DATASET DESCRIPTION
In this paper, we utilize the publicly available dataset
described in [23] composed of key performance indicator
parameters such as RSRP, RSSI, logging time, and GPS
coordinates. The dataset contained 42,498 instances of each
parameter. The measurement campaign was carried out in
dense urban environments around Victoria Island and Ikoyi
in Lagos, Nigeria, as shown in Figure 1. The dataset was
collected with a 4G LTE test modem mounted on a computer
housed in a test vehicle driving at 30 km/h. Note that user
equipment periodically measures RSRP to perform cell selec-
tion/reselection and handover processes in 4G LTE, as well as
in 5G NR networks [21]. Therefore, the proposed segmental-
approach-based prediction model can easily be adapted to 5G
NR network parameters in the future. Formally, we denote
the features and labels of the dataset with D = (mi, ri) where
mi ∈ R2, i ∈ {1, 2, . . . ,M} , in which M is the number
of instances, and mi is longitude and latitude coordinates.
Meanwhile, ri ∈ R represents the target label given by the
RSRP value, expressed in decibel milliwatts. In this paper,
we also consider the analysis of the RSSI as a target value.
Similar to RSRP, RSSI is the signal strength received by the
user equipment, but RSSI measurements include the main
signals, co-channel non-serving signals, adjacent-channel
interference, and thermal noise on the specified frequency
band [24]. Therefore, the features of the dataset correspond to
the longitude and latitude coordinates, and the target values

are the RSRP and RSSI values. By measuring the RSRP
and RSSI in several positions determined by longitude and
latitude coordinates, it is possible to estimate the signal
strength and gain insights into the signal’s propagation char-
acteristics. REMs are constructed by measuring the RSRP
and RSSI at various points in a given area, which is then used
as a dataset to build the proposed ERTR model. This model
can estimate the RSRP and RSSI at any location within the
coverage area.

III. COVERAGE PREDICTION METHODOLOGY
A. OVERVIEW
Our objective is to construct an ML regression framework to
predict the outdoor propagation coverage of MC networks by
entering data measurement points. First, to design the deploy-
ment model, we start by developing the training stage, which
is programming in Python software. In this sense, the input
dataset is divided into two subsets: the training dataset and
the validation (or testing) dataset for hyperparameter tuning
of the model. Hence, we adjusted the parameters according
to the best results obtained in the evaluation procedure based
on 5-fold cross-validation of relative error, MAE, RMSE, and
R2 score metrics. Accordingly, the trained model was ready
to be used in the deployment stage. Next, we meshed the
target area by creating a grid 100 × 100 points based on
the minimum and maximum geographic coordinates of the
dataset so that the grid covered the entire area of interest.
After that, we performed feature normalization based on
Z-score and then defined the ML regression-based method to
be applied to the prediction task. Consequently, the coverage
prediction given by the ri values was obtained for each of the
points on the grid by utilizing the model previously trained
with the points of the dataset. Afterward, the predicted values
of the ML-based framework, along with the longitude and
latitude coordinate points of the grid, were exported to a
MATLAB file. Then, we loaded that file into MATLAB to
build the coverage map. For this purpose, we converted the
GPS location measurements into the Universal Transverse
Mercator (UTM) coordinate system to build a mesh where
the new points were predicted. As a result, the REM with
the predicted data points was obtained as a pseudocolor
plot, which is drawn as a 2D map by applying the pcolor
function. To further improve the visualization, the REM
was plotted over a map from Google Earth by using the
ge_imagesc function. Finally, we included a bar graph to
identify the relationship between our data and the colors dis-
played in every chart. Figure 2 illustrates the aforementioned
procedure.

1) MODEL EVALUATION
Figure 3 explains one iteration of the 5-fold cross-
validation [25] used to evaluate the ML-based model. The
dataset was divided into 80% for training and 20% for testing.
The values predicted by the model were compared with real
values from the test data to calculate the relative error, MAE,
RMSE, and R2 score, as defined in Section IV.
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FIGURE 1. Area of interest with the location of the measured points.

FIGURE 2. Diagram representing the process to build the REM.

B. ERTR-BASED FRAMEWORK FOR COVERAGE
PREDICTION AND REM CONSTRUCTION
In this paper, we investigate an ERTR scheme to predict the
coverage of outdoor propagation for 4G MC given by the

FIGURE 3. Diagram of the model evaluation method based on 5-fold
cross validation.

FIGURE 4. The decision tree scheme.

numerical values of ri. The ERTR algorithm is a supervised
ensemble learning model [12] that combines the prediction of
various individual trees, in which the whole training dataset is
used to create each DT. Figure 4 illustrates the structure of a
DT where new instances perform top-down learning to make
predictions. For example, every new instance begins in the
root node, moves along the branches, and goes through child
nodes until it reaches a leaf node [26]. Two rules differentiate
this ERTR algorithm from similar ensemble techniques like
RF. First, ERTR chooses a random subset of features for each
tree from all available features. Second, the split procedure
of ERTR relies on a random selection of a splitting value for
each of the selected features.

In detail, given the features of the training dataset, M =

{m1,m2, . . . ,mM } , where M is the number of instances in
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the training dataset; the samples, mi = {x1, x2, . . . , xN }, con-
stitute an N -dimensional vector, and xj denotes the feature,
in which j ∈ {1, 2, . . . ,N } . In each DT created by the ERTR
algorithm, Sc represents the subset of instances in the training
dataset at child node c. Therefore, at each node c, the best
split is based on Sc and a random subgroup of features from
Algorithm 1. Next, Sc at c is divided into two subsets: Srightc
includes samples that satisfy the two rules of the extra-tree
algorithm, and S leftc includes the rest of the training instances.
Furthermore, we use mean square error (MSE) [7] to evaluate
the quality of a split, i.e., the best division is selected in
accordance with the lowest MSE. The process is repeated
in each child node until reaching the minimum number of
samples for the split, vmin. On the other hand, during the
testing procedure, a test sample goes through each DT and
traverses each child node. During the process, the test sample
uses the best split to go to the right or left child node until
reaching a leaf node. The prediction for the test sample is
given by the leaf node for each DT, and the final prediction
of the ERTR algorithm is defined as the average of the
F decision trees.

Algorithm 1 Splitting Algorithm of the ERTR-Based
Framework
1: inputs: Training subset Sc =

{
c1, c2, . . . , cQs

}
, where

the sample ci = {x1, x2, . . . , xN } is a N -dimensional
vector. R is the number of randomly selected features,
and the minimum number of samples required to split a
node, vmin.

2: If Qs < vmin
3: Stop splitting and set the node as leaf node.
4: else
5: Choose a random subgroup of R features

{x1, x2, . . . , xR} among the initial N features.
6: For each feature r in the subgroup do:
7: Calculate the maximum value, xmax

r , and the
minimum value, xmin

r , of the feature r in the
subset Sc.

8: Get a random split value, xcr , uniformly taken
in the range

[
xmin
r , xmax

r
]
.

9: Choose
[
xr < xcr

]
as a candidate split.

10: End for
11: Obtain a split

[
x∗ < xc∗

]
such that

MSE(xc∗) = min
r=1,...,R

MSE(xcR)

12: Output: best split rule
[
x∗ < xc∗

]
at the child node c.

IV. NUMERICAL RESULTS
In this section, we present simulation results from MC cov-
erage prediction based on RSRP and RSSI, as well as REM
construction over dense urban environments around Victoria
Island and Ikoyi in Lagos, Nigeria [23]. First, we present the
performance evaluation from 5-fold cross-validation of the
proposed ERTR algorithm and the additional baseline ML
algorithms: RF [7], the bagging regressor [27], [28], [29],

KNN, the DNN, GPR [28], the DT, and SVR with a
radial basis function (RBF) kernel [30]. Moreover, in our
comparative approaches, we include OK, an interpolation
technique for cellular coverage prediction [2], [31]. For the
OK algorithm, we used the module previously developed in
Python, named PyKrige [32]. Second, we present graphic
results from REM construction on a 2D map and the Google
Earth digital map.

A. EVALUATION WITH 5-FOLD CROSS VALIDATION
In this subsection, we assess the performance of the
ML regression schemes and OK by applying 5-fold cross-
validation [25] to obtain the following error metrics: relative
error, MAE, RMSE, and the R2 score. This procedure was
described in Section III-A, and the results are the average of
several repetitions of 5-fold cross-validation.

Specifically, the relative error is the absolute error between
the predicted value r̂i and the real measure, ri, divided by the
real measure. Therefore, it provides insight into how well the
model performs across a range of values, and a lower relative
error indicates better performance. Regarding MAE, it mea-
sures the average absolute difference between the predicted
and actual values, indicating how close the predictions are
to the actual values [33]. Meanwhile, RMSE is the square
root of the average of the squares of the differences between
the actual value and the estimated value. The equations for
relative error, MAE, and RMSE, are expressed in (1), (2),
and (3), respectively:

ErRelative =
|̂ri − ri|
ri

, (1)

ErMAE =

m∑
i=1

|ri − r̂i|

m
, (2)

where m is the number of samples.

ErRMSE =

√√√√√ m∑
i=1

(ri − r̂i)2

m
. (3)

Note that the lower the value of the aforementioned met-
rics, the better the performance, unlike R2 score where a
higher value is better. The upper bound is 1, which indicates
a perfectly accurate prediction. R2 score can be expressed as
follows:

ErR2 = 1 −

m∑
i=1

(ri − r̂i)2

m∑
i=1

(ri − ri)2
, (4)

where the numerator of the second term is the mean error
given by the summation of squares of the residual prediction
errors, while the denominator represents the variance, where
ri is the average target value [34], [35]. The main idea of the
R2 score is to measure the proportion of the variance in the
dependent variable (i.e., the target variable being predicted)
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that is predictable from the independent variables (i.e., the
features used for prediction) in a regression model. The score
has an upper bound of 1 which represents a perfectly accurate
prediction, but there is no lower bound, implying that predic-
tions can be extremely inaccurate. If the score is around 0,
it can be considered as good as randomly guessing around
the mean, r̄i.
In summary, the MAE measures the average absolute

difference between predicted and actual values, while the
relative error measures the error as a percentage of the actual
value. Thus, MAE is scale-dependent, while relative error
provides a scale-independent measure of accuracy. Regarding
theR2 score, it measures the amount of variability in the target
variable that is explained by the model. Including all these
metrics in the analysis provides a more comprehensive eval-
uation of the model’s performance, as each metric captures
different aspects of the model’s accuracy and fits the data.

Accordingly, Figure 5 and Figure 6 show the number
of RSRP training samples versus relative error and RMSE,
respectively. From Figure 5 and Figure 6, we observe that as
the number of training samples increased, the performance
of the investigated algorithms improved. Therefore, we used
36,000 samples for the training procedure of the models.
Moreover, we observe that worse performance was obtained
from the DNN, SVR, and GPR. On the other hand, we can
see that lower relative error values and lower RMSE were
achieved by the ERTR ensemble learning algorithm, followed
by RF and the bagging regressor. Therefore, in Figure 7
and Figure 8, we analyze the performance of these ensemble
learning algorithms in terms of training time and RMSE,
respectively, when varying the number of trees. In addition,
from Figure 5 and Figure 6, we can see that OK achieved
performance close to RF and the bagging regressor. Thus, the
proposed ERTR performed best compared to the benchmark
schemes. This is because ERTR improves the reduction of
bias and variance by utilizing two main strategies. First,
it samples the entire dataset and randomizes the selection of
the node split, which differs from RF, which uses Bootstrap
with replicas and selects the optimum split. The bagging
regressor trains each regressor model on random subsets
with the replacement of the original training set and then
aggregates the individual predictions by averaging them to
give a final prediction. Note that the values in the parameters
of each algorithm in the simulation results are set based on
the best results through hyperparameter tuning and several
experiments. For instance, with the OK algorithm, we used
the number of points closest to 2, and we selected power,
loop, and bool as the variogram model, backend, and mask,
respectively.

For the DT, we set the maximum depth to 50 and the mini-
mum samples split parameter to 2. To set the hyperparameters
for the DNN model, we evaluated the suitable number of
neurons, hidden layers, and learning rate through extensive
simulation results and hyperparameter tuning performed on
the training data. In this sense, utilizing too many neurons
and hidden layers can lead to overfitting, where the network

FIGURE 5. Number of RSRP training samples versus percentage of
relative error.

FIGURE 6. Number of RSRP training samples versus RMSE.

becomes overly specialized to the training data and performs
poorly on new, unseen data. On the other hand, using too
few neurons and hidden layers may result in underfitting,
where the network fails to capture remarkable patterns in
the data. Similarly, the learning rate determines the step
size at which the network adjusts its weights during the
training process. A larger learning rate allows for faster con-
vergence but can lead to overshooting the optimal weights
and potentially unstable training. By contrast, a smaller learn-
ing rate can improve stability but might result in slower
convergence behavior or getting trapped in local optimal.
Therefore, we selected an appropriate learning rate through
experimentation to find a balance between convergence speed
and stability. Accordingly, for the DNN, we used four hidden
layers. The number of neurons per hidden layer was 100, 50,
100, and 50.We used the ReLU activation function and Adam
as the solver, with the learning rate set to 0.0001 and the
maximum number of iterations at 300. To establish the best
values for the ERTR, RF, and bagging regressor parameters,
we analyzed the results obtained by these algorithms with
different numbers of regressor trees, samples, and required
training times. In this sense, Figure 7 and Figure 8 show the

VOLUME 11, 2023 65175



C. E. García, I. Koo: ERTR Scheme for Mobile Network Coverage Prediction and REM Construction

FIGURE 7. Number of trees versus training time.

performance of these algorithms in terms of training time and
RMSE based on the number of regressor trees. Specifically,
Figure 7 shows the number of trees utilized by ERTR, RF,
and the bagging regressor versus the training time to obtain
the two target values (RSRP and RSSI). Here, we appreciate
that the training time increases by using more regressor trees.
By contrast, Figure 8 shows that from 180 regressor trees,
the RMSE for both RSRP and RSSI did not vary remarkably.
Therefore, for our purposes, we utilized 200 regressor trees
for ERTR, RF, and the bagging regressor. Moreover, we set
the maximum tree depth for ERTR and RF equal to 50.
In addition, from Figure 7 and Figure 8, it is noteworthy
that ERTR outperformed RF and the bagging regressor in
both training time and RMSE. These results validate the
efficiency of the proposed ERTR algorithm, which achieved
the lowest error with less computational time. Figure 9
shows the training time versus the number of RSRP samples.
In Figure 9, we include the performance by ERTR, RF, the
bagging regressor, and OK. It is worth noting that the OK
algorithm has been widely utilized for coverage prediction in
MC environments [2], [14]. Overall, from Figure 9, we can
see that as the number of samples increased, the training time
increased. However, we can also see from Figure 9 that the
ensemble learning methods required less computational time,
whereas OK required the longest training time. Consequently,
from Figure 7 and Figure 9, we verify that ERTR needed the
shortest training time, which results in a computational load
reduction. We used a PC with an AMD Ryzed 9 5900X CPU
and 48GB of main memory.

Figure 10 and Figure 11 show the number of RSSI train-
ing samples versus relative error and RMSE, respectively.
Similar to Figure 5 and Figure 6, from Figure 10 and
Figure 11, we can observe that as the number of training sam-
ples increased, the performance of the investigated algorithms
was enhanced. Moreover, the DNN, SVR, and GPR schemes
had a higher relative error and RMSE than the OK method
and the ensemble learning algorithms (RF, bagging regressor,
and ERTR). However, it is remarkable from Figure 10 and
Figure 11 that the proposed ERTR outperformed the baseline

FIGURE 8. Number of trees versus RMSE.

FIGURE 9. Computation time versus the number of RSRP samples.

FIGURE 10. Number of RSSI training samples versus relative error.

schemes by achieving the lowest relative error and RMSE,
respectively.

Table 1 and Table 2 compare regression performance using
RMSE, MAE, and R2 score for RF, the bagging regressor,
SVR, KNN, GPR, the DNN, DT, ERTR, and OK. Recall that
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FIGURE 11. Number of RSSI training samples versus RMSE.

TABLE 1. Comparison of RSRP target values from the ERTR algorithm and
the benchmark schemes.

TABLE 2. Performance comparison between the proposed ERTR
algorithm and benchmark schemes according to RSSI target values.

the parameters of each algorithm in the simulation results
are set according to the best results through hyperparameter
tuning and several experiments. The results in Table 1 are
based on RSRP target values, whereas those in Table 2 are
from RSSI target values. From Table 1 and Table 2, we can
see that ERTR obtained the lowest error measurements. Thus,
we can appreciate that ERTR outperformed the other ML
techniques and OK. Moreover, it is remarkable that SVR
and GPR presented worse error measurement percentages,
followed by DNN.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, we analyze the computational complexity
of the proposed ERTR method and the comparative schemes:
RF, Bagging, and OK. Accordingly, the computational com-
plexity of the proposed ERTR depends on the number of
regression trees, the number of features, the number of
samples, and the maximum depth of trees. Specifically, the
computational complexity of ERTR can be approximated by
O (F · N ·M · td ), where F is the number of trees, N is the
number of features,M is the number of training samples, and
td is the maximum tree depth. In our simulations, we set the
maximum tree depth to td = 50 and included all available
features when selecting the best split, i.e., R = N = 2.
As shown in Fig. 7, the training time exhibits linear growth
since the computational complexity is directly proportional
to the number of trees, F , while the number of samples, M ,
and the number of features, N , remain fixed.
Similarly, in the case of RF, the computational complexity

is given byO (F · N ·M · td ) [36]. However, ERTR achieves
lower computational time compared to RF because it makes
use of a random threshold to split the data at each node,
without searching for the best possible threshold like in RF.
In the case of Bagging, the computational complexity is
given by O (EB · LB) [36], where EB is the number of base
regressors, and LB is the computational complexity of training
a single base regressor. In our simulations, we use the decision
tree regressor as the base estimator, which has a complexity
of LB = O (N ·M · td ). On the other hand, the computational
complexity of training for OK is given byO

(
M3

)
[37], which

leads to the cubic growth of the training time as observed
in Figure 9.

C. GRAPHICAL RESULTS OF REM CONSTRUCTION
In this subsection, we present a grid of 100×100 points cov-
ering the area of interest from the dataset [23] with RSSI and
RSRP predicted values from the trained regressor algorithm
processed as described in Section III-A. The threshold values
for RSSI are defined as follows: values higher than −70 dBm
are considered excellent signal strength reception; values
from −70 dBm to −85 dBm are considered good reception;
−90 dBm to −100 dBm is considered fair reception, and less
than −100 dBm is poor. Meanwhile, the threshold values for
RSRP are defined as follows: values higher than−80 dBm are
considered excellent signal strength reception; values from
−80 dBm to −90 dBm are considered good reception; −90
dBm to −100 dBm is considered fair reception, and values
less than −100 dBm are poor.
Figure 12 and Figure 13, respectively, show the MC cov-

erage map predictions for RSRP and RSSI target values on a
2D map by applying the proposed ERTR algorithm and the
RF and bagging regressor baseline schemes. From Figure 12
and Figure 13, we observe that RF and the bagging regressor
presented abrupt changes of color on the 2D map, which
makes it difficult to identify critical points where the signal
is decreasing. This makes coverage prediction unreliable.
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FIGURE 12. REM visualization on 2D maps for RSRP target values from
(a) the bagging regressor, (b) RF, and (c) ERTR.

By contrast, the 2D coverage maps obtained by ERTR tend
to better generalize the prediction points, since we can appre-
ciate how the signal strength is degrading without abrupt
changes. In this sense, ERTR can better detect the quality of
signal reception, where we can see areas with good reception
and those with shadow areas. Note that the quality of REMs

FIGURE 13. REM visualization on 2D maps for RSSI target values from
(a) the bagging regressor, (b) RF, and (c) ERTR.

constructed using machine learning techniques depends on
several factors, including the quality and quantity of the data
used for training, the chosen algorithm for constructing the
maps, and the complexity of the environment being mapped.
As a result, it is essential to carefully collect and preprocess
data, as well as thoroughly test and validate the radio maps to
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FIGURE 14. ERTR-based REM construction on a Google Earth map for
(a) RSRP and (b) RSSI.

ensure their quality and reliability. In this regard, the quality
of the REMs for ensemble methods based on decision tree
regressors primarily depends on how the algorithm selects
the split rule in each child node. In the case of RF, the set
of possible split points at the child node c is chosen from
the feature values of the samples in the subset of the training
dataset, Sc. Consequently, only specific values are available
for choosing the threshold of the best-split rule at each node.
Conversely, in the case of ERTR, the split value is randomly
selected within a range based on the subset of the training
dataset at node c, as described in lines 7 to 9 of Algorithm 1.
This randomness leads to a smoother representation of the
final REMs.

Figure 14 shows graphical results for RSSI and RSRP
values on a Google Earth map after following the procedure
described in Section III-A by applying the ERTR algorithm.
From Figure 14, we can identify coverage predictions accord-
ing to the geographic coordinates that allow us to improve
the signal quality reception by installing relay nodes in those
points where quality is poor or by adjusting transmission
parameters such as antenna height and tilt angle [21]. This
mechanism may help operators to improve network planning
in MC systems or any radio system.

V. CONCLUSION
In this paper, we proposed a novel MC coverage prediction
approach based on a supervised ML regression algorithm.
In particular, we designed an ERTR-based scheme to predict
coverage through RSRP and RSSI values in an outdoor-to-
outdoor propagation environment. For this purpose, we used
real measurements carried out using the 4G LTE frequency
band in dense urban environments around Victoria Island

and Ikoyi in Lagos, Nigeria. Furthermore, we investigated
the performance of the OK method, which has been uti-
lized for coverage prediction tasks. In addition, the following
ML regression techniques were considered as comparative
approaches: RF, the bagging regressor, SVR, KNN, a DNN,
GPR, and the DT. It is noteworthy that the ensemble learning
techniques (ERTR, RF, and the bagging regressor) achieved
higher performance than the other ML schemes. Moreover,
it is worth highlighting that OK obtained error metrics closer
to RF and the bagging regressor. However, OK incurs high
computational costs that tend to get worse when increas-
ing the number of samples. Through numerical results,
we showed that the proposed ERTR outperformed the bench-
mark schemes in terms of computational cost, relative error,
RMSE, MAE, and R2 score. Furthermore, we constructed a
REM 2D map on a Google Earth map that provided better
visualization of signal quality according to the geographic
coordinates, which can help network operators to improve the
planning of an MC network.
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