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ABSTRACT Automatic modulation classification (AMC) is becoming a promising technique for future
adaptive wireless transceiver systems. The existing blind modulation classification (BMC) methods for
orthogonal frequency division multiplexing (OFDM) fail to achieve the required performance by using
statistical-basedmethods. Thus, the modulation classification research community is trying to adopt the deep
learning (DL) method to improve the modulation classification accuracy. However, most of the existing DL
methods for AMC of OFDM that involve the extraction of statistical features from the signal do not work for
adaptive transceiver systems where the signal parameters are changed dynamically. In this paper, we design
and implement AMC for adaptive OFDM systems by using a convolutional neural network (CNN) with
residual learning. The proposed AMC can identify the modulation format of the received OFDM signal with
different number of subcarriers, randomized carrier frequency offset (CFO), symbol timing offset (STO),
phase offset, and unknown channel state information. We use residual learning to mitigate the effect of
varying CFO, STO, and AWGN noise on the received OFDM signal. A larger pool of modulation schemes
such as binary phase-shift keying (BPSK), quadrature PSK (QPSK), offset QPSK, π /4-QPSK, minimum
shift keying, 8-PSK, 16-quadrature amplitude modulation (QAM), and 64-QAM are being considered for
the proposed AMC for OFDM system in a dynamic environment. The performance and complexity of the
proposed AMC are compared with the existing statistical feature-based and DL-based approaches. The
proposed AMC for the OFDM system is also verified on the real-time data set generated from the universal
software radio peripheral testbed setup.

INDEX TERMS Automatic modulation classification, CNN, deep learning, OFDM, residual learning.

I. INTRODUCTION
Future generation of communication systems are expected to
operate in a variety of environments serving varying require-
ments in terms of data rate, coverage, number of connected
devices, etc. This requires the next-generation communica-
tion systems to have added intelligence to interact with their
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environment and adapt their parameters for delivering opti-
mal performance even in the physical layer [1], [2]. However,
synchronization of these parameters across the transceiver
is a highly challenging task for an adaptive or automated
communication system which will be a key player for beyond
fifth-generation (5G) wireless communication [3]. Explicit
knowledge of these parameters between a transmitter and a
receiver often results in inefficient use of available resources.
For example, a transmitter that adapts its modulation scheme
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and data rate needs to convey this information to the receiver.
However, explicitly transmitting the information by using
training sequence or pilot symbols reduces the spectral and
power efficiency of the transmission and also increases the
latency due to added computational overhead. Moreover,
in severe channel conditions, training sequences may lose
their property and may not be able to retrieve the parameter
accurately. Hence, for the optimal use of resources and to
improve spectrum efficiency, power efficiency, and latency,
the receiver is expected to have some kind of intelligence
built into it to detect these changing parameters. Automatic
modulation classification (AMC) plays a prominent role in
the development of such adaptive or intelligent transceiver
systems [4]. It enables the receiver to identify the modulation
format of the received signal without the aid of any explicit
information of the transmitted signal parameters such as
symbol rate, carrier frequency offset (CFO), symbol timing
offset (STO), phase offset, and channel state information
(CSI). The AMC has various applications in civilian and mil-
itary communication systems and is becoming a promising
automated physical layer solution in sixth-generation (6G)
communication [5]. Thus, AMC has drawn the attention of
many researchers in recent years. However, there is very less
research work available for AMC of orthogonal frequency
division (OFDM) system, which can provide better perfor-
mance in a fully dynamic environment.

Many statistical methods have been proposed for the
AMC of single-carrier, OFDM, and multiple input multiple
output (MIMO) systems. They can be broadly classified
into two main categories, i.e., likelihood-based (LB) and
feature-based (FB) [4]. The LB classifiers are based on
maximizing the likelihood function of the received signal
with respect to the unknown modulation classes. Though
LB classifiers are optimal in the Bayesian sense, their
high computational complexity and analytical difficulties in
modeling the unknown parameters result in sub-optimal solu-
tion [6] that affects the overall system performance. The
FB classifiers use the features extracted from the received
signal to identify its modulation format. Some of these
features include instantaneous values of the signal [7], cumu-
lants [8], [9], [10], [11], cyclic statistics [12], [13], [14],
and wavelet transforms [15], [16], [17]. However, there are
several problems with these FB approaches. The features
extracted involve complex signal processing techniques and
are tailored for a particular class of modulation formats.
Hence, they fail to generalize well for a wide variety of
modulation formats for the OFDM system. These features are
mainly designed for the classifier based on some assumptions
of the system parameters, such as the distribution of added
noise, the number of subcarriers, null subcarrier, symbol
duration, cyclic prefix (CP) length, etc. However, the mod-
ulation classification fails under the conditions when these
assumptions are not satisfied. Also, when the transmitted sig-
nal gets affected by channel impairments, such as frequency
offset or timing offset, the existing modulation classifier for

the OFDM system cannot cope up with such a randomized
environment. The cognitive radio is such adaptive technology
where the parameters of the system get changed randomly
from time to time. The presence of CFO in the OFDM signal
destroys the orthogonality between the subcarriers leading to
the loss of information contained in the signal, thereby affect-
ing the modulation classification performance. Similarly, the
presence of STO decreases the modulation classification
rate in the OFDM system. Hence, the designed features for
the modulation classification of the OFDM system must be
resilient to these impairments and changes, and it is often a
highly challenging task to design such features for OFDM
systems.

Recent advancements in the field of machine learning
(ML) and data science have led to its widespread applica-
tion in several areas. Advanced ML techniques such as deep
learning (DL) have shown a great improvement in state-
of-the-art results in the fields of computer vision, speech
recognition, drug discovery, and genomics [18]. The success
of DL in these fields has drawn the attention of researchers
to apply DL techniques to the physical layer of communica-
tions [19], [20], [21]. The work by O’Shea et al. discusses
various applications of DL for the physical layer communi-
cations (PLC) [22]. Several methods have been proposed to
solve the problem of AMC for single carrier systems using
DL [23], [24], [25], [26], [27], [28], [29], [30], [31]. O’Shea et
al. proposed the use of convolutional neural networks (CNN)
for classifying various analog and digital modulation schemes
for the single carrier system from the in-phase and quadrature
(IQ) samples [23]. The idea was further extended to a larger
class of modulation formats in [24] and was shown that the
model can generalize well for a large pool of modulation
classes. However, only single carrier system was considered
in this work. The idea of using IQ samples and constellation
diagrams as inputs to deep neural network (DNN) for the
task of modulation classification for the single carrier system
was discussed in [25]. However, in this DNN model, the
construction of constellation diagram requires knowledge of
the parameters of the transmitted signal, and thus, the method
cannot be used for the AMC when such information is not
available. In [26], the authors propose the use of spectral
correlation function (SCF) and deep belief network (DBN)
model for the AMC of single carrier system. Generation
of the SCF requires pre-processing of the received signal,
which increases the overall computational complexity of the
AMC. The use of long short-term memory (LSTM) models
for the modulation classification of single carrier systems for
distributed wireless sensor networks was presented in [27].
In [28], the authors convert the raw signals into images with
grid-like topology and use CNNs to identify the modulation
format for single carrier system.

There are some works available for AMC of OFDM
system. The work presented in [32] and [33] discusses
DL-based modulation classification for OFDM systems with
the knowledge of the number of subcarriers and for particular
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channel environments. If any parameters such as number of
subcarriers, number of null subcarriers, STO, CFO, phase
offset, and CP length change, these AMC do not provide
accuracy of more than 50% for adaptive OFDM systems.
Zhang et al. [34] present CNN-based AMC for OFDM sys-
tem. It considers only PSK modulation classes and does
not present the effect of varying signal parameters on the
classification performance. To the best of the authors’ knowl-
edge, there is no DL-based AMC work available for adaptive
OFDM systems with a larger pool of modulations, i.e., binary
phase-shift keying (BPSK), quadrature PSK (QPSK), offset
QPSK (OQPSK), π /4-QPSK, minimum shift keying (MSK),
8-PSK, 16-quadrature amplitude modulation (QAM), and 64-
QAM, with the varying number of subcarriers in the presence
of randomized CFO, STO, phase offset, and without the
requirement of channel statistics.

In this work, we propose an AMC for an adaptive OFDM
system by usingCNNwith residual learning, which is capable
of classifying the modulation format from the baseband IQ
samples. Residual learning helps to overcome the degrada-
tion problem encountered in training deep networks [35].
Residual learning is also shown to be effective for the task
of blind denoising of the images corrupted with unknown
levels of Gaussian noise [36]. Thus, residual connections help
to reduce the effect of added noise on the received OFDM
signal. The main contributions of this paper are as follows

• We propose the AMC for adaptive OFDM signals for
a large pool of modulation classes, i.e., BPSK, QPSK,
OQPSK, π /4-QPSK, MSK, 8-PSK, 16-QAM, and 64-
QAM.

• The another major contribution is that the proposed
AMC can work in the presence of any number of sub-
carriers, randomized STO, CFO, and phase offsets under
unknown frequency-selective fading channel conditions.

• The performance of the proposed AMC is compared
with the existing methods and validated over a real-time
dataset generated in an indoor environment by using
National Instruments (NI) universal software radio
peripheral (USRP). The complexity of the proposed
AMC is derived and compared with the existing model.

The rest of the paper is organized as follows. The system
model, along with the OFDM model and the mathematical
framework of DL, is described in Section II. In Section III,
we provide the details of the architecture of the neu-
ral network considered in this work. The details of the
data generation process, simulation, experimental results,
and computational complexity are presented in Section IV.
Finally, we draw conclusions from our various experiments
in Section V.

Notations
Throughout this article, lowercase bold letters denote vectors,
and uppercase bold letters denote matrices. (.)T denotes the
transpose of a vector or matrix. (.)(i) represents the ith exam-
ple or instance.

II. SYSTEM MODEL
The system model of AMC for adaptive OFDM system is
shown in Fig. 1. It consists of an adaptive OFDM trans-
mitter, receiver, and CNN-based AMC. The transmitter is
capable of adjusting its baseband modulation format and
number of subcarriers as per the requirement of data rate
and available CSI. The transmitted signal then passes through
the frequency-selective fading channel. This channel subjects
the transmitted signal to all kinds of impairments, such as
timing, frequency, and phase offsets. The receiver consists of
anAMC system comprised of a CNN. TheCNN is pre-trained
with the help of a standard learning algorithm using training
data. The training data consists of signals with IQ samples
of the received OFDM symbols along with the labels that
indicate the modulation class of each OFDM signal. The
trained model is then used to predict the modulation class
of the received OFDM signal. In the following subsections,
we provide the mathematical framework of DL for the task of
AMC and describe the considered OFDM model.

A. OFDM SYSTEM MODEL
The discrete baseband OFDM samples vm[n] of mth OFDM
symbol, generated by N -point inverse discrete Fourier trans-
form (IDFT), can be written as [11]

vm[n] =

N−1∑
k=0

Vm[k]ej2πkn/N , 0 ≤ n ≤ N − 1 (1)

where N = ρs × Nd , ρs is the oversampling factor, Nd is the
number of data subcarriers, Vm[k] is the baseband modulated
oversampled data obtained by zero-padding the baseband
modulated information V̂m[k]. Thus, Vm[k] is given by

Vm[k] =


V̂m[k] 0 ≤ k ≤ Nd/2 − 1
Ẑ0 Nd/2 ≤ k ≤ Nd (ρs − 1/2) − 1
V̂m[k] Nd (ρs − 1/2) ≤ k ≤ N − 1,

(2)

where Ẑ0 is a vector of zeros of length Nd (ρs − 1). To com-
bat the effect of inter-symbol interference (ISI), CP of Ncp
samples from the end of the OFDM symbol is added at the
beginning of the OFDM symbol before the transmission. The
transmitted baseband OFDM symbol v̄m[n] of lengthN+Ncp,
with CP is then given by

v̄m[n] =

{
vm[n+ N ] −Ncp ≤ n ≤ −1
vm[n] 0 ≤ n ≤ N − 1.

(3)

After passing through a frequency-selective fading channel
with impulse response, g[l] of length L, the received baseband
OFDM samples of the mth OFDM symbol are given by

xm[n] = e(j2πϵn/N+φ)
L−1∑
l=0

g[l]v̄m[n− l − τ ] + ω[n],

0 ≤ n ≤ Ns − 1 (4)

where ϵ is the normalized frequency offset, φ is the phase
offset, τ is the timing offset, Ns is the length of the OFDM
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FIGURE 1. System model of the proposed DL-based AMC system for adaptive OFDM systems. The transmitter can adapt the modulation scheme
or the number of subcarriers for the best end-to-end performance. The neural network is made up of CNN layers with residual connections.

symbol with CP, Ns = N +Ncp and Ncp ≥ L, and ω[n] is the
additive white Gaussian noise (AWGN) with zero mean and
variance σ 2

ω.
Collection of samples of xm[n] are denoted by xn for

n = 1, 2,. . . ,M and received in serial, and samples from
multiple such OFDM symbols are concatenated to obtain an
ith instance (block) of input signal to the neural network. This
is given by

x(i) = [x1, x2, . . . , xM ]T , (5)

whereM is the total number of samples or length of the input
signal. The receiver has no knowledge of the OFDM symbol
length, and the value of M is chosen independently of the
length of the OFDM symbol Ns.

The set of all such training instances can be denoted by
a matrix X , in which the ith row x(i), corresponds to one
example consisting of IQ samples of the received OFDM
signal. Therefore, the set of all training examples is given by

X = [x(1), x(2), . . . , x(K )]T , (6)

where K is the total number of rows in X , which is equal to
the total number of training examples.

If the set of all modulation classes is denoted by � =

{�1, �2, . . . , �C }, where C is the total number of modu-
lation formats considered, then any given instance of the
captured data, the signal belongs to one of these classes.
This information about the modulation format of the given
instance x(i) is stored in the vector y(i) = [y1, y2, . . . , yC ],
using one-hot encoding. Thus, if the given instance x(i)

belongs to a particular modulation format �c, where c =

1, 2, . . . ,C , using one-hot encoding, we have

yq =

{
1 �q = �c

0 �q ̸= �c
�q ∈ �. (7)

The modulation formats of all K instances are stored in a
matrix Y , which is used during the training stage. Thus,

Y = [y(1), y(2), . . . , y(K )]T , (8)

where y(i) represents the one-hot encoding of the modulation
format of the signal x(i).

After getting the K number of training examples and cor-
responding one-hot encoded modulation class, the dataset D
is formed as

D =

{
x(i), y(i)

}K
i=1

(9)

B. DL MATHEMATICAL FRAMEWORK
A DL model can be mathematically modeled as a composite
non-linear mapping function

ŷ(i) = F(x(i); 2), (10)

where x(i) is the input signal to the model, and 2 is the
set of parameters of the model that consists of weights and
biases. DL uses computational models that consist of multiple
processing layers to learn the representation of the input
data with multiple levels of abstraction [37]. These multi-
ple levels of abstraction are obtained by the composition of
simple non-linear transformations at each layer. The process-
ing layers are built with the interconnection of fundamental
computational units called neurons. Multiple layers of the
network are formed by the interconnection of neurons with
the help of weights from one layer to another layer. These
intermediate layers are also known as hidden layers. Such a
multilayered network of neurons is commonly known as a
deep neural network (DNN).

For a network with L layers, the composite mapping func-
tion F can be written as

F(x(i); 2) = fL(. . . (f2(f1(x(i); θ1)); θ2) . . . ; θL), (11)

where fl and θ l represents the non-linear transformation and
parameters of lth hidden layer, respectively. For a convolution
layer l with input hl , the transformation fl can be written in
general as

fl(hl, θ l) = σ (hl ⊗W l + bl), θ l = [Wl, bl], (12)

where ⊗ denotes the convolution operation, hl is the output
of layer l − 1, σ is a non-linear mapping function commonly
known as activation function, and Wl and bl are parameters
known as weights and bias, respectively.

The objective of DL is to learn the set of parameters2 that
results in the best representation of input observation x(i), for
predicting the given output y(i). The difference between the
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predicted output ŷ(i) and the actual output y(i) is usually mea-
sured by an empirical loss function L(.). Thus, the objective
is to train the model to learn the optimal set of parameters2∗

that minimizes the loss function over the whole set of training
examples X , given by

2∗
= argmin

2

L(F(X; 2),Y ). (13)

For a multi-class classification withC different classes, the
output of the model is a C dimensional vector where each
element, ŷc, represents p(�c|x(i); 2), i.e., the probability that
the given input x(i) belongs to a particular class�c. Therefore,
F(x(i); 2) ∈ RC and can be written as

ŷ(i) =
[
ŷ1, ŷ2, . . . , ŷC

]T
=

[
p(�1|x(i); 2), p(�2|x(i); 2), . . . , p(�C |x(i); 2)

]T
.

(14)

Assuming that the set of all the received signals given
by (6) are independent and identically distributed, the joint
likelihood function is given by

λ(Y |X; 2) =

K∏
i=1

C∏
q=1

(
p(�q|x(i); 2)

)y(i)q
. (15)

Using (7), this can be further simplified as

λ(Y |X; 2) =

K∏
i=1

(
p(�c|x(i); 2)

)y(i)c
. (16)

For large values ofK , computation of the above expression
might lead to underflow problems, and to avoid this, the
logarithm of the likelihood function is usually considered.
Taking the logarithm of (16), the log-likelihood is given by

3(Y |X; 2) =

K∑
i=1

y(i)c log p(�c|x(i); 2). (17)

The optimal set of parameters 2∗, can now be obtained by
maximizing the log-likelihood function given by (17) as

2∗
= argmax

2

3(Y |X; 2). (18)

This is equivalent to minimizing the negative of the log-
likelihood function. Therefore, (18) can be re-written as

2∗
= argmin

2

−3(Y |X; 2). (19)

Comparing (19) with (13), we have

L(F(X; 2),Y ) = −3(Y |X; 2). (20)

Substituting (17) in (20), the loss function is thus given by

L(F(X; 2),Y ) = −

K∑
i=1

y(i)c log p(�c|x(i); 2). (21)

Equation (21) is commonly known as categorical cross-
entropy loss. The network is first initialized with parameters

20 using any standard initialization procedure, and the opti-
mal parameters 2∗ are then computed iteratively using an
optimization algorithm. By back-propagating the loss gradi-
ents across each layer of the network, the parameters 2 are
updated in each iteration until convergence.

2n+1 = 2n − α
∂L (F(X; 2n),Y)

∂2n
, (22)

where α is a hyperparameter known as learning rate, which is
used to control the rate of convergence.

III. NEURAL NETWORK ARCHITECTURE
For the task of AMC of OFDM signals, we use a special
type of neural network called CNN, along with residual
learning [35]. In the following subsections, we provide a
brief description of CNNs and residual learning. The detailed
architecture of the CNNused for the AMCof adaptive OFDM
signals is discussed at the end of this section.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNNs are made up of a special type of layers that use con-
volution operations to extract useful representations from the
input data. The non-linear mapping function of a CNN layer
is given by (12). DL libraries make use of cross-correlation,
a function similar to convolution. For a 1D input signal S, the
cross-correlation function Cor(i) is given by

Cor(i) = (Q⊗ S)(i) =

∑
j

Q(j)S(i+ j), (23)

where Q is the convolution filter (also known as the ker-
nel). The advantages of using CNN are sparse connectivity,
parameter sharing, and equivariance to translation [38]. The
equivariance property helps the network to be resilient to
the translations in the time and frequency domain caused
by the STO and CFO effects present in the received OFDM
signal. Thus, CNNs help to overcome the impact of these
impairments on classification performance. Sparse connec-
tivity and parameter sharing result in less number of network
parameters and hence reduces the storage requirement of the
model. Sparse connectivity also results in fewer computations
because of less number of connections, making it more feasi-
ble for the network to be deployed for real-time applications.

B. RESIDUAL LEARNING
It is often difficult to learn the underlying mapping func-
tion from input to output, especially when the training data
consists of large variations. Such variations are common
in the OFDM signal because of the non-linearity intro-
duced by the hardware, impairments introduced from a
frequency-selective fading channel that is time-varying, and
different signal parameters introduced at the transmitters.
With the residual learning approach, the network is trained to
learn the residual mapping instead of the underlying mapping
from input to output. This is realized by adding shortcut (also
known as skip) connections from the input of a stacked layer
to the output, as shown in Fig 2.
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FIGURE 2. Residual block with stacked layers and shortcut connection.

Let us assume that a certain stacked layer l with input
hl learns a residual mapping function R(hl) = F(hl) − hl ,
where F(hl) denotes the desired underlying non-linear map-
ping function. The output of the stacked layer after the skip
connection is then given byR(hl)+hl . Thus, the stacked layer,
along with skip connection, effectively learns the underlying
non-linear mapping function F(hl) = R(hl)+hl . This is illus-
trated in Fig 2. Residual connections are widely used for the
application of denoising the images [36]. Similarly, by using
the residual connections, the effect of random parameters
such as CFO, STO, phase offset, and AWGN on the feature
maps can be reduced. This leads to a better modulation clas-
sification performance.

C. NETWORK ARCHITECTURE
The CNN used for the AMC of OFDM signals in this work
is designed based on the principles developed in [35], i.e.,
if the output feature map size remains the same, then the
number of filters in the following layer also remains same.
If the output feature map size is halved, then the number of
filters in the following layer is doubled. Shortcut connections
are then added to this network to form the final residual
network used for the AMC of OFDM signals. The overall
architecture of the network is shown in Fig. 3. The necessary
hyperparameters to build the proposed architecture, as shown
in Fig. 3, are tuned by using Bayesian optimization. The input
to the network is a real two-dimensional signal containing
IQ samples, obtained by separating the real and imaginary
components of the complex baseband received OFDM signal.
1D convolutions are used in each layer, followed by batch
normalization (BN). BN helps to reduce internal covariance
shift and speeds up the training process [39]. Rectified linear
unit (ReLU) is used as a non-linear activation function to
introduce the non-linearity, thereby enabling the network to
learn the complex relationship between the input and output.
The output of the ReLU is given by

ReLU (W lhl + bl) = max{0,W lhl + bl}. (24)

Two types of shortcut connections are used for the residual
blocks.When the dimension of the output of the stacked layer

FIGURE 3. Deep neural network architecture used in the proposed work.
The numbers in the brackets represent the number of filters, kernel size,
and stride value, respectively.

is the same as its input, identity shortcut connections are used.
The output from the lth residual block, in this case, is given
by

hl+1 = R(hl, θ l) + hl . (25)

When the dimension of the input is changed because of
the increased number of filters and convolutions with a stride
value of 2, shortcut connection with linear projections Wl
is used to match the dimensions. The linear projection is
obtained by using a convolution layer with a filter size of 1.
The output of such residual block can be written as

hl+1 = R(hl, θ l) + hl ⊗Wl . (26)

The output layer of the network is made up of dense
connections with C neurons, where C is the number of mod-
ulation classes. Each neuron in the output layer represents a
modulation format from the considered modulation classes,
and the output of each neuron represents the probability that
the given OFDM signal belongs to a particular modulation
class. The one with the maximum probability value is chosen
as the modulation format of the received OFDM signal. Since
the output of this layer represents the probability distribution
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as given by (14), the softmax activation function is used. If zi
represents the output of linear transformation from a neuron
in the output layer, then the output ŷi obtained after applying
softmax activation is given by

ŷi = softmax(zi) =
exp zi∑C
j=1 exp zj

. (27)

The network parameters are initialized using the method
proposed in [40], and Adam optimizer is used to train the
model. The Adam optimizer combines the advantages of
other optimization methods, such as AdaGrad and RMSProp
and is found to perform well with noisy and sparse gradi-
ents [41]. Dropout [42] and L2 regularizer [43] are used in
each layer as regularization techniques to prevent overfitting.

IV. EXPERIMENT AND RESULTS
We use Python framework with Keras [44] library using
TensorFlow backend to build and train the neural network.
MATLAB 2019a is used to generate the train and test dataset
used for simulation. For the real-time experimental setup,
we use NI USRP-2943R with GNU Radio platform. The
model was trained using NVIDIA Quadro K1200 GPU.

A. DATASET GENERATION
The simulation data consists of IQ samples of the received
baseband OFDM signal along with the modulation class
label. The modulation classes considered are BPSK, QPSK,
OQPSK, π /4-QPSK, MSK, 8-PSK, 16-QAM, and 64-QAM.
For each of the modulations, examples were generated for a
varying number of data subcarriers with Nd = 16, 32, 64,
and 128 and with SNR values in the range of -10 dB to
20 dB in steps of 5 dB. Each modulation class consists of
256 examples for each of the subcarrier and SNR values. The
data is split into 70% for training and 30% for validation.
The test set consists of 256 examples per subcarrier and SNR
value considered for each of the modulation classes. We use
an oversampling factor of ρs = 4 and the cyclic-prefix of
length Ncp = 16 samples. In order to create a more realistic
scenario, we have generated Rayleigh and Rician channel
coefficients using the standardized ITU-R [45] power delay
profile, and specifically, it has been designed for outdoor-to-
indoor and pedestrian test channel B. The distribution of STO,
CFO, and phase offset are considered as shown in Table 1.
In the proposed work, the context of time-varying channel is
varied among the training examples along with varying the
STO, CFO, and phase offsets uniformly between the values
mentioned in Table 1.
The real-time data is generated in an indoor propagation

environment using the NI-USRP setup, as shown in Fig.4.
The setup contains a line-of-sight (LOS) path and hence
can be considered to follow the Rician channel propagation.
A sampling frequency of 2 MHz with a carrier frequency
of 2.8 GHz was used for data transmission. The received
downconverted baseband signal is stored as a long sequence
of IQ samples in a data file for each modulation class. These
long sequences are then sliced at random intervals to obtain

FIGURE 4. Real-time experimental laboratory setup using NI-USRP.

TABLE 1. Values of various parameters considered for simulation.

the training and test data with the required number of samples.
These data are then used to train and test the performance of
the proposed network.

B. TRAINING
To achieve faster convergence, the training is performed in
two stages. In the first stage, the model is trained with only
data samples of SNR value 20 dB for 150 epochs. Adam
optimizer is used with an initial learning rate of 0.001 for the
first 40 epochs, and the learning rate is reduced to 0.0001 for
the rest of the epochs. In the second stage, the model is
initialized with the parameters learned in the first stage, and
the training is continued further for 100 more epochs with
the data samples of all SNR values. The value of batch size
is set to 128, and a dropout value of 0.3 is used between the
convolution layers. As the model’s structure is independent of
the number of samples contained in the input signal, the net-
work is trained with signals of lengthM = 4096 samples and
a various number of subcarriers. It is then tested for signals
with various sample lengths of M = 4096, 2048, 1024, 512,
and 256 samples. For the experimental setup, the model is
trained with the input signals of length M = 1024 samples
and then tested for the set of signals with the various number
of samples considered.

C. SIMULATION RESULTS AND COMPARISON
The classification performance of the proposed AMC for the
various number of samples per example (or signal length) is
shown in Fig. 5. From the figure, it is evident that the clas-
sification accuracy improves with the increase in the number
of samples of the received signal. This can be attributed to
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FIGURE 5. Classification accuracy vs. SNR for varying number of samples
(M) per example.

FIGURE 6. Classification performance comparison with the feature-based
approach and other DL methods (M = 4096).

the larger number of OFDM symbols being present in the
signals with more samples. Maximum classification accuracy
of about 92% is obtained at a higher SNR value for signals
with M = 4096 samples.

Fig. 6 presents the classification performance of the pro-
posed CNN-based AMC, as compared to that of DL-signal
modulation identification (DL-SMI) [32], triple-skip residual
neural network (TRNN) [34], the feature-based approach [11]
and ResNet [24] where DL-SMI, TRNN, and feature-based
approach are for the AMC for OFDM systems and ResNet
was proposed for the AMC of single carrier system. The
proposed CNN-based AMC for OFDM is compared with a
statistical approach that consists of features extracted using
DFT and fourth-order cumulants presented in [11]. From the
plot, it is evident that the proposed method outperforms the
existing DL and statistical techniques. In the proposed model,
the network has filters with a larger size in the initial layers,
and this helps to capture the information present in the longer
range of samples. The features presented in [11] fail to gen-
eralize well with added modulation classes, and hence, they

FIGURE 7. Classification accuracy vs. SNR for individual modulations
considered (M=4096, N=64).

exhibit poor classification performance for the considered set
of modulation classes. The DL-SMI [32] method also fails to
generalize with added modulations and under time-varying
channel conditions. The TRNN [34] based method is limited
in scope as it only looks at a specific subset of modulation
techniques, i.e., BPSK, QPSK, and 8-PSK, and does not take
into account how variations in signal parameters may impact
the classification results.

The classification accuracies for individual modulations
are shown in Fig. 7 for a subcarrier value of N = 64. All
modulation classes reach over 90% accuracy by 10 dB SNR
except 64-QAM. This is mainly due to the fact that the 16-
QAM’s constellation is a subset of the 64-QAM. Hence at
the lower SNR values, 64-QAM is mostly confused for 16-
QAMmodulation because of the added noise. Fig. 8 presents
the confusion matrix in terms of classification probabilities
for the signals withM = 4096 samples at 20 dB SNR for the
various number of subcarriers considered.

Fig. 9 shows the effect of the number of subcarriers on
the classification performance for the signals with M =

4096 samples. The classification accuracy reduces with
increasing number of subcarriers because as the number of
subcarriers increases, the chances of interference between
subcarriers also increases.

The effect of the propagation channel on the classification
performance is shown in Fig. 10. The model performs bet-
ter in the Rician channel in comparison with the Rayleigh
channel. This can be attributed to the fact that the Rayleigh
channel lacks a strong LoS component. Also, the model’s
performance is found to be slightly better with constant chan-
nel conditions having fixed CFO, STO, and phase offsets,
as compared to that of time-varying channel conditions. The
context of time-varying channel in the proposed work is that
we are varying channels among the training example along
with varying the STO, CFO, and phase offsets uniformly
between the values mentioned in Table 1.

Fig. 11 shows the effect of variation of CFO, STO, and
phase-offsets on the classification performance using the
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FIGURE 8. Confusion matrix for various number of subcarriers considered at the received SNR value of 20 dB.

simulation data with an SNR of 10 dB. As mentioned in the
figure, the value of CFO is varied from 0 to 0.4, while the
magnitude of phase offset is varied from 0 to π/2, and simi-
larly, STO is varied from 0 to 8 samples. To assess the effect
of one impairment on the classification accuracy, the value of
the other impairments was set to zero. For example, while
assessing the model’s performance for different ranges of
variation of CFO, the values of STO and phase offset were set
to 0. Also, in each case, the model was trained for the extreme
value of impairment variation considered and then tested on
datasets having different ranges of variation as shown in the
plot. The maximum range of variation considered for each

impairment is same as shown in Table 1. Results show that for
a given impairment, the variation of classification accuracy
is well within ±2%. Also, for the dataset with only STO, the
model exhibits lower classification accuracy in comparison
to the datasets with CFO and phase offset.

D. EXPERIMENTAL RESULTS
Fig. 12 presents the classification performance of the pro-
posed model, for various number of samples M , for the
real-time captured signals. The network is trained with cap-
tured signals of length M = 1024 samples and tested with
signals of various sample lengths. The system performs with
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FIGURE 9. Classification accuracy vs. SNR for various number of
subcarriers.

FIGURE 10. Classification accuracy vs. SNR plot for various channel
conditions. In the case of a time-varying channel, the channel was
considered to be varying from one example to another.

an accuracy value close to 100% for signals with M =

4096, 2048, 1024, and 512 samples at received SNR values
of over 10 dB. The accuracy dropped for signals with M =

256 samples.

E. MODEL COMPLEXITY
The proposed model consists of 27 1D-convolutional layers
and about 1.28M trainable parameters. The model is built,
trained, and tested on a system equipped with Intel Xeon E5
CPU and NVIDIA Quadro K1200 GPU. The training process
takes about 14 hours to converge. Once the model is trained,
it takes approximately 110 ms to predict the modulation class
of a given input signal with M = 4096 samples which is
lower than DL-SMI [32] and slightly higher than ResNet [24]
and TRNN [34], as shown in Table 2. Although the pro-
posed model is slightly more time complex than ResNet [24]
and TRNN [34], but outperforms in terms of classification
accuracy.

FIGURE 11. Variation of classification accuracy for different range of
values of channel impairments considered. X-axis represents the
magnitude of the maximum value of different impairments considered.
The value of the received SNR was set 10 dB.

FIGURE 12. Classification accuracy vs. SNR plot for the real-time captured
signals in lab environment for varying number of samples per example.

The computational complexity of existing and proposed
model is given in Table 2. where K1 denotes the size of
filter, n1 denotes the length of input, d1 denotes the depth
of input, F1 denotes the number of filters, cl1 × el1 is input
feature map at the lth dense layer, q denotes the number of
convolution layer and v is the number of hidden dense layers
in the proposed model. The notation with a subscript (2,3,4)
in the complexity term of the DL-SMI [32], ResNet [24], and
TRNN [34] methods has the same meaning as described for
the proposed method, respectively. As v2 > v1 and cl2 > cl1
hence DL-SMI [32] model is more computationally complex
than proposed model. ResNet [24] contain q3 = 32(> q1)
convolutional layers and 128, 128 hidden neurons in the 2
(v3 > v1) hidden layers which makes more computationally
complex than the proposed method. As in TRNN [34] q4 =

42(> q1) which makes it more computationally complex than
proposed method.
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TABLE 2. Comparison of Computational Complexity.

The number of trainable parameters of the proposed model
and existing DL-based AMC technique is given in Table 2.
The proposed method for modulation classification has been
shown to be effective in terms of classification accuracy.
Specifically, the method has improved accuracy by 28%
and 40%, respectively, compared to the ResNet [24] and
TRNN models [34], despite having a slightly larger num-
ber of parameters. Additionally, compared to the DL-SMI
model [32], the proposed method has reduced the number of
parameters by 1.34M while still improving accuracy by 56%.
These results demonstrate the effectiveness of the proposed
method in improving modulation classification performance.

V. CONCLUSION
In this paper, we have proposed an AMC technique for
adaptive OFDM systems using CNN with residual learning
from received baseband IQ samples. The main advantage
of the proposed method over the traditional and statistical
feature-based methods is that the proposed method is com-
pletely data-driven and assumes no prior knowledge about
the signal or channel statistics for a varying number of sub-
carriers. Compared to the existing DL method, the proposed
method can be used to classify signals in the presence of vary-
ing number of subcarrier, CFO, STO, and phase offset with
unknown channel conditions. Obtained results show that the
proposed method outperforms the traditional feature-based
approaches and is able to classify a broad range of modula-
tion classes, i.e., BPSK, QPSK, OQPSK, π /4-QPSK, MSK,
8-PSK, 16-QAM, and 64-QAM. The validity of the proposed
method is verified in real-time using the NI-USRP setup,
and the results obtained are in good agreement with the
simulation. The one limitation of DL-based AMC is that the
model needs to be trained if the new set of modulations adopts
in the system.
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