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ABSTRACT This paper examines an importance rank learning method of objects in urban scenes for
assisting visually impaired people. Object detection methods have been used to assist visually impaired
people in identifying obstacles in urban scenes, such as cars and trees. However, these existing methods
are not dedicated to predicting which obstacle is important. Thus, we propose a method that estimates
the importance of objects and warns them to users in order of importance ranking. We introduce a neural
network-based ranking estimation method to predict the importance ranking of objects. In particular, our
method uses optical flow from the previous frame and region data of detected objects as input. It helps to
consider states of moving objects (e.g., cars, motorbikes, people) in a scene. Experimental results show that
our model outperforms three other baselines qualitatively and quantitatively. Furthermore, our method was
highly evaluated than the baseline methods by qualified caregivers of the visually impaired people.

INDEX TERMS Visually impaired people, object detection, learning-to-rank, differentiable sorting.

I. INTRODUCTION
This paper proposes a method for estimating the impor-
tance ranking of the objects in a scene to assist visually
impaired/blind (VIB) people. Urban development for VIB
individuals has been actively promoted [1], [2]. However,
there are still many obstacles (e.g., utility poles, trees, etc.) in
the city, requiring VIB people to be assisted by a white cane,
a guide dog, or a guide helper when they walk. To overcome
this issue, various navigation systems to assist VIB people
have been proposed [3], [4], [5], [6]. In particular, advances
in computer vision and machine learning techniques have
contributed to accurate obstacle detection [7], [8], [9].

Although these existing methods can detect obstacles and
landmarks in front of the users, due to the lack of a way
to perceive spatial information via vision, VIB people have
difficulty understanding the detection results in a short time.
Figure 1 shows an example of detection results. This figure
indicates obstacles in a city scene detected by an object
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FIGURE 1. Object detection results in a city scene.

detection algorithm [10]. While sighted people can perceive
the presence of the obstacles as the detection results quickly,
VIB people need a method to make the obstacle information
accessible in consideration of safety-critical objects in some
efficient way other than visual information.

Therefore, in this study, we propose a method that esti-
mates the importance ranking of objects in a scene. These
inference results help us to transmit necessary information to
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VIB individuals within a limited time. The order of impor-
tance is estimated by a neural network that inputs objects’
information, such as the region and class, which are detected
from a first-person RGB image and outputs the importance
of the object. The proposed framework introduces an impor-
tance ranking network with relaxed permutation matrices
calculated by NeuralSort [11]. In addition to the object infor-
mation, the optical flow from the previous frame is added as
an input. Optical flow features are used as a clue for obtaining
objects’ distance and velocity. To evaluate the performance
of our method, we constructed a dataset with some sets of an
image and the importance ranking of objects in a scene. Using
this dataset, we conducted experiments to compare the impor-
tance ranking estimated by our method with baselines that
determine the ordering based on the area of detected objects,
detection confidence, and the distance between the objects
and the user. Experimental results showed that the estimated
importance order with our method was more appropriate than
the other methods. These results show our method’s efficacy
in warning important objects for VIB users.

To summarize, our contributions are as follows:

• We are the first to propose an importance ranking esti-
mation framework of obstacles for VIB individuals,
which contributes to building an effective navigation
system for them. This framework is expected to provide
a new point of view on walking assistance tasks for VIB
individuals.

• We propose a novel framework using optical flow.
This framework is intended to estimate the importance
ranking of moving objects based on their direction of
movement and state. Our simple approach made it pos-
sible to understand the priority of warning even if more
than two objects are in the same class.

• We describe a neural network-based ranking estimation
module to optimize the model toward learning impor-
tance order ranking in a scene.

• We provide extensive experiments and show that our
method outperforms other baseline methods in ranking
estimation and warning audio satisfaction.

II. RELATED WORK
A. WALKING ASSISTANCE FOR VIB PERSON
The important factors for the VIBs in walking are mobility
and orientation [12], [13].Mobility refers to rhythmical walk-
ing without stumbling over steps on the ground. Orientation
is finding a space that opens in the direction the VIBs should
go and move on. VIB individuals use a white cane to acquire
mobility and their other remaining senses, such as hearing and
haptic perception, to acquire orientation. Guide dogs satisfy
both of these perspectives simultaneously. However, the num-
ber of guide dogs is limited since training them requires much
work. Therefore, Tachi et al. proposed robotic reproductions
of a guide dog that can fulfill both aspects [14].

In order to simultaneously acquire mobility and orientation
in forms other than guide dogs, walking assistance systems

for VIB individuals have been developed. In addition, exist-
ing research in recent years has considered using machine
learning and computer vision to get highly accurate informa-
tion. Mahendran et al. [15] proposed a method to estimate
traffic conditions and detect moving obstacles with a mobile
computing platform. They used smart depth sensors (i.e.,
OpenCV AI Kit-Depth) to accelerate computations for their
tasks. Khan et al. [16] developed an eyeglass-type device with
Raspberry Pi equipped with a camera module and ultrasonic
sensors. Their proposed device is wearable, and VIB users
can use the system with free hands. Sound of Vision [17]
proposed a system to assist a VIB person in perception and
mobility by presenting three-dimensional information about
the surrounding environment through auditory and tactile
senses. A tactile device attached to the user’s abdomen pre-
sented the distance to surrounding objects. Zeng et al. [4]
detected obstacles using ambient information collected from
a smart white cane. It showed that the path selection with
their method outperformed that of a typical white cane in
navigation tasks.

These systems above are capable of acquiring ambient
information. However, the systems do not consider the pri-
ority of warning, such as which detected object should be
warned to the user first. We tackle this problem by estimating
the importance ranking of objects in a scene. We are the first
to focus on the importance ranking of warnings of warning
objects on assisting the blind and visually impaired. Our
method impacts applications for walking assistance for visu-
ally impaired people, especially those aiming at orientation
acquisition.

B. IMPORTANCE RANK LEARNING
Importance order estimation for events and environmental
information has been considered in the previous works [18],
[19]. Such sequential learning has also been used in accessi-
bility research, where Chang et al. proposed a path selection
framework for a robot wheelchair with shared autonomy [18].
If the suggested route from this system has high confidence,
it selects that route without asking the user for confirmation.
On the other hand, if the route is less trusted, the route
selection is left to the user. Those kinds of research regarding
ranking used Learning-to-Rank (LTR) models.

LTR models learn information rankings according to pref-
erence criteria [20]. Common listwise-approach LTR models
(e.g., ListNet [21]) map the importance or ranking of each
piece of information to a real-valued score and define a
loss function that acts directly on this score. These methods
need to map like this because it is generally known that the
sorting and ranking operations are not differentiable over
a large part of the parameter space, making it challenging
to learn the rankings in their original form. SoftRank [22]
defined scores based on a Gaussian distribution, representing
a pseudo-ranking. Yue et al. [23] proposed an LTR method
with Support Vector Machine (SVM) to search efficiently
for a global optimum. Adarank [24] created weak rankers
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FIGURE 2. Overview of our ranking estimation method using first-person images. The network extracts time-series features from an
optical flow image. Importance ranking scores of objects are estimated with the optical flow features and the information of objects
detected from an object detector. This method also estimates the importance score of the warning threshold for each scene. On training,
relaxed permutation matrices from NeuralSort were used.

to improve the performance of ranking prediction. In these
methods, Normalized Discounted Cumulative Gain (NDCG)
[25], [26], the popular metric to evaluate rankings, is often
used to define a loss function. However, this metric is not
dedicated to clarifying the relationships of each ranking.
RankNet [25] can effectively learn the relationships between
pairs of information. LambdaRank [27] extended RankNet by
introducing NDCG into the loss function, prioritizing the top
objects. However, these two methods are pairwise-approach
methods, and there are limitations when considering rankings
in the complete list.

Therefore, differentiable sorting methods have been pro-
posed to train the model with the ranking directly on a
listwise-approach [11], [28], [29], [30], [31]. These methods
can train networks with the original ranking form. Training
rankings in their original form make converging to the opti-
mal solution easier. The methods have been used in top-k
classification [32] or auction analysis [33]. However, it has
not been used in accessibility research. Our method shows
that these sorting operators can be effective for the importance
ranking estimation of objects in a scene.

III. PROPOSED METHOD
Figure 2 shows our framework to estimate the importance
ranking of objects and determine the objects to be warned.
This framework outputs the importance ranks and warning
thresholds of the objects in the image. First, we input two
first-person view images into this framework. One is the
current frame image, and the other is the previous one.
In addition, we introduce the NeuralSort module that oper-
ates a relaxed permutation matrix to train this model using
rankings directly.

A. RANKING MODULE
The ranking module outputs an importance score for each
object and a threshold of the importance score for warning in
the scene, given the detected objects information and optical
flow features. Sec. III-B explains optical flow features in

detail. Specifically, we input the following object information
into the ranking module:

• The coordinates and the area of the bounding box
• The class of the object
• Confidence score based on the object detection model

The coordinates and the area of the objects’ bounding boxes
help to consider their distances from the user. The importance
of objects closer to the user will be higher than those further
away. Moreover, the class of object affects the importance
score. For example, objects such as bicycles and cars would
be more important than people. From another point of view,
since we should not present erroneous detection results to the
user, we added the detection confidence score to the input.

We estimate the importance ranking score of the i-th object
(si) by considering the information of all detected objects in
the scene. The same object information may have different
importance depending on what other objects are in the scene.
For example, the importance of an object in front of the user
may differ if either the left or right side in front of the user
is open or both are crowded. Therefore, before estimating the
importance score of each object, we obtained the distribution
information of objects in the scene from the information of
all objects. The MLP layer receives all detection informa-
tion as input and outputs 100-dimensional object distribution
information.

B. FEATURE EXTRACTOR
We used the optical flow image as an input to estimate the
importance depending on the state of the moving objects.
First, a dense optical flow method (e.g., Farneback method
[34]) is performed to generate the optical flow image. Since
the flow is calculated for each pixel, the method allows us
to obtain the relative velocity of the dynamic objects to the
static things such as walls and the ground. The pixel-wise
optical flow helps to recognize objects’ importance in urban
scenes. For example, it is assumed that moving objects (e.g.,
cars, bicycles) approaching users are more dangerous than
those going away. On the other hand, the parked car is less
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important than that on the road, even if the directions of those
cars are the same. In contrast, sparse optical flow methods,
such as the Lucas-Kanade algorithm [35], compute flow
about detected corners and do not account for relative velocity
to static objects. Then a CNN layer aggregates the optical
flow image into a feature with 64 dimensions and inputs it
to the ranking module.

C. NeuralSort MODULE
We propose to introduce the NeuralSort module to repre-
sent the ranking by relaxed permutation matrices. By using
these matrices, we can train models by rankings directly. The
calculation of relaxed permutation matrices is described in
Appendix A. As mentioned in Sec. II-B, listwise ranking
learning methods such as ListNet [21] and SoftRank [22]
assign arbitrary ranking scores to each rank. It causes the
relationship between ranks to be unclear. In this research,
we assume that we know the order of importance for each
scene, but we do not have prior information about how much
ranking score each object has. Therefore, the ranks should be
treated directly using a differentiable sorting method such as
NeuralSort.

Although it is assumed to learn rankings with unique
indices in NeuralSort, our method requires learning rankings
with duplicate indices. For practical use, there is an environ-
ment in which several objects are equally important. Because
of that, training models without considering outputs with
the same rankings is not appropriate. We train models with
duplicated rankings according to the properties of Eq. 11.
If the i-th and j-th objects’ rankings are the same, the values
in those rows of the matrix are divided equally. For example,
if the importance ranking score vector s = [7, 3, 3]T , then
Psort(s) is given by:

Psort(s) =

 1 0 0
0 0.5 0.5
0 0.5 0.5

 , (1)

since the ranking scores at the 2nd and the 3rd index are the
same.

1) LOSS FUNCTION
The model was optimized with the following two loss
functions:
1. Permutation Loss (LPERM) : The loss function to train

rankings given by:

LPERM = −

∑
t∈T

P̂zt logPzt , (2)

where P̂zt and Pzt are the ground-truth permutation matrix
and the estimated permutation matrix, respectively.

2. L1 Loss (L1) : The loss function to optimize the threshold
for determining the warning targets. We trained the model
to output the importance score threshold of which objects
to be warned. The threshold is estimated for each scene.
This loss is given by:

L1 = |v̂− v|1, (3)

where v̂ and v are the ground-truth threshold value and
the estimated threshold value, respectively. As mentioned
above, we only have the importance ranking of each object
as ground-truth data, and the specific importance scores
are unknown in the training phase. Therefore, we opti-
mized the model using the minimum ranking scores of
the ground-truth warning objects for each iteration. The
warning threshold is expected to be updated according to
the changing of objects’ ranking scores for each scene.

IV. IMPLEMENTATION DETAILS
As the object detector, we use the pre-trained YOLOv5 [36],
known as one of the state-of-the-art methods. In addition,
YOLOv5 is structured as a Feature Pyramid Network [37],
which extracts features at different scales and resolutions,
enabling the network to detect several sizes of objects in
the input image. For each detected bounding box, YOLOv5
indicates a detection confidence score from 0 to 1. The object
information is highly reliable if the score is close to 1. In this
paper, we defined detected objects as those with a detection
confidence score of 0.25 or higher.

There exists a dataset for obstacle detection for VIB indi-
viduals [38]. However, due to the lack of annotation of
the objects (e.g., braille blocks, pedestrian crosswalks) that
might be needed for VIB assistance in urban scenes, we pre-
pared an original dataset. Specifically, we trained YOLOv5
by annotating the following classes (person, bicycle, car,
motorbike, bus, truck, braille_block, guardrail, crosswalk,
signal_red, signal_blue, stairs, tree, bollard, pole, signboard,
safety_cone, escalator, grass).

TheAdam [39] optimizer was employed at the learning rate
of 1e−3. The training typically converges after 200 iterations.
While computing the relaxation permutation matrices, we use
the temperature parameter τ = 1.

V. EXPERIMENTS
We conducted two experiments to evaluate the performance
of our method in importance ranking estimation. First,
we evaluated the accuracy of the ranking estimation through a
quantitative experiment. Second, we conducted a qualitative
experiment to evaluate the effectiveness of assisting VIB
users.

A. DATASET
To conduct the experiments, we created an original dataset
which is consisted of 272 sets of first-person video frames
and the order of importance of the objects in the frames.
The objects in each frame were detected by the pre-trained
YOLOv5, which are mentioned in Sec. IV. The importance
rankings were annotated on frames in 12 videos from Ego4D
[40] and five videos from YouTube. The URLs of YouTube
videos used for this dataset are described in Appendix B.
Those videos are first-person videos showing urban scenes.
Table 3 shows the number of frames used. As shown in
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TABLE 1. First-person videos used to build the importance ranking
dataset.

FIGURE 3. Web-based tool to annotate Importance Ranking.

Figure 3, we implemented Web-based annotation tool with
FastAPI1 and JQuery.2

During the annotation process, we asked the annotators to
rank objects with images highlighted with colored borders
(see Figure 3). We instructed the annotators to rank objects
that could be important to VIB individuals, assuming they
visited the scene in the image for the first time. Detected
objects in target scenes were listed by the detection confi-
dence scores of YOLOv5. The listed objects were draggable
and ranked by dropping them into a pre-defined box that
indicated the rank. In cases there were more than two objects
the annotators wanted to rank as the same, the objects were
ranked in duplicate by placing multiple highlighted images in
the same rank box. The annotators ranked only the important
objects and omitted unnecessary ones. The warning threshold
was optimized to be equal to the importance ranking score of
the lowest-ranked object by the annotators.

The objects were ranked by annotators with qualifications
related to the care of the visually impaired. Four annotators
(two men and two women) ranked objects for 75 images
each, resulting in a collection of 300 annotated data in total.
With their informed consent, the annotators were recruited on
CrowdWorks,3 a Japanese cloud-sourcing website.

B. QUANTITATIVE EXPERIMENT
We quantitatively evaluated the accuracy of the importance
ranking estimation. We evaluated three baselines and our
methods with four metrics.

1) BASELINE METHODS
1. area : Amethod of sorting objects in descending order of

the bounding boxes’ area. The area of the bounding boxes
indicates the distance to the user and the size of the objects.

1Fastapi, https://github.com/tiangolo/fastapi, 20 Nov 2022
2Jquery, https://jquery.com/, 20 Nov 2022
3CrowdWorks, https://crowdworks.jp/, 20 Nov 2022

For example, if a car and a person are equally distant from
the user, the car would likely be higher ranking to the
difference in their cubic volume.

2. confidence : A method of sorting objects in descending
order of detection confidence scores. Detection confi-
dence scores generally depend on the distribution of
objects in the object detection training data. In particular,
the detection confidence scores for objects such as people
tend to be higher than those for other objects if the images
were taken while walking in the city.

3. closeness : A method of sorting objects in order of prox-
imity to the user and the object. We defined the proximity
by the distance from the lower center of the image to the
center of the bounding box.

2) EVALUATION METRICS
We use the following metrics:

1. Top-N Accuracy : Ametric that measures the probability
of the inference result of the 1st-rank object being included
up to the N-th rank. We use it to evaluate whether the most
important object in the scene was not estimated as low
rank. We calculated this metric for the cases N = 1 and
2. This metric is defined as:

At =

{
1 if r jt ≤ r̂ jt
0 otherwise.

(4)

A =
1
T

∑
t∈T

At , (5)

where r jt and r̂
j
t are the estimated ranking of the j-th object

and annotated ranking of the object, respectively.
2. Top-N Accuracy (Completely) : A metric that measures

the probability that the rank of objects from 1st to Nth is
precisely equal to ground-truth order. We use it for evalu-
ating the accuracy of the entire permutation.We calculated
this metric for the cases N= 1 and 2. Thismetric is defined
as:

ACOMP
j
t =

{
1 if r jt = r̂ jt
0 otherwise.

(6)

ACOMP =
1
T

∑
t∈T

∏
1≤j≤N

ACOMP
j
t . (7)

3. Normalized Discounted Cumulative Gain
(NDCG@5) : A ranking metric proposed by Burges et al.
[25] that measures the proximity of the estimation rank-
ings to the ideal ones. It is the normalized version of the
discounted cumulative gain (DCG@5). Specifically, This
metric is defined as:

DCG@5 =

5∑
i=1

2r
i
− 1

log2(1 + i)
(8)

NDCG@5 =
DCG@5pred
DCG@5true

, (9)
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TABLE 2. Quantitative results of importance ranking estimation.

where DCG@5pred and DCG@5true are DCG@5 of the
estimated ranking and the ground-truth ranking, respec-
tively. The output becomes a low value if the top rankings
are incorrect since the high-ranked information is strongly
weighted in the calculation of this metric.

C. RESULTS OF QUANTITATIVE EXPERIMENT
As shown in Table 2, our method reported higher estimation
accuracy for all evaluation metrics than all baseline methods.
For example, in NDCG@5, our method improved accuracy
by 8.8% for area, 11.5% for confidence, and 20.7% for close-
ness. There was a significant improvement compared to the
ranking estimation accuracy of the two methods (confidence
and closeness). Although the ranking accuracy by area was
higher than the other baselines, it was still lower than our
method. The accuracy of NDCG@5 indicated that the esti-
mated rankings from our method were more accurate overall
than those from baselines. Furthermore, the results of Top-N
Accuracy showed that ourmethodwasmore likely to estimate
a higher priority for the 1st-rank object than the baselines.
Finally, from the results of Top-N Accuracy (Completely),
our method estimated more accurately ranks the objects, not
just the 1st-rank one.

D. QUALITATIVE EXPERIMENT
We conducted a qualitative evaluation by qualified caregivers
who assist daily activities of VIB people. Four types of warn-
ing audio generated by the three baseline methods and our
method were displayed and played for each image. The warn-
ing audio is augmented with information about the location
of each object with the user. We asked four caregivers (three
men and a woman) to give their subjective scores for 50 cases,
in total we collected 200 responses. All the caregivers had
a qualified status of a guide helper to support VIB people.
The input image is divided horizontally into three sections,
and the objects’ position are defined as left, front, and right.
For each object, the positional relationship was determined
by which partition the center of the bounding box belonged.
The participants were asked about the satisfaction of each
audio using a slide bar. We instructed participants to rate
the level of agreement with each audio based on whether
the audio could prioritize warning of dangerous or critical
objects during support for VIBs’ walking. These were asked
on a scale of 1 to 7, where 1 = strongly disagree and 7 =

strongly agree. Each participant answered these Likert scale
questions for 50 images. This experiment was conducted on
a Web-based tool (Figure 4).

FIGURE 4. Web-based tool for the qualitative evaluation.

FIGURE 5. Result of the qualitative experiment (*: significant effect).

E. RESULTS OF QUALITATIVE EXPERIMENT
Figure 5 illustrates the result of the qualitative experiment.
A Friedman test indicated a significant difference in the level
of agreement of these methods(χ2

=53.03, p<.05). Then we
conducted post hoc analysis using Wilcoxon Signed Rank
tests with Bonferroni correction (alpha=0.00167). There
were significant differences(p<.0001) in all the tests related to
our method. The results suggested that the participants highly
preferred the warning audio with our method to all other
baselines. It shows that the warning audio with our method
could be agreeable for qualified caregivers of the VIBs.

VI. DISCUSSION
A. DISCUSSION OF EXPERIMENTAL RESULTS
In the quantitative experiment, especially in Top-N Accuracy,
there were slight differences between area and our method.
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FIGURE 6. Case examples of how warning audio navigates the category name of important objects. Ground-truth denotes the annotated
objects’ rankings. The objects ranked 1st, 2nd, and 3rd in ground-truth are shown in red, blue, and green, respectively. The warning audio
from the three baselines has all the information on detected objects since they have not considered the warning threshold. The length of
warning audio from baselines was 24 seconds and 23 seconds, respectively. In contrast, the audio from our method has only the
information on the important objects. It took 6 seconds and 5 seconds, respectively, to warn with the audio from our method.

Therefore, we compared the ranking estimation results for
those two methods. We found that area fails to estimate
rankings of important objects with small areas (e.g., bollards,
safety_cones). In addition, area ranked cars highly even if
they were parked and they did not disturb users to walk.
In contrast, our method ranked the important small objects at
the top rankings and ranked low for movable objects in stop-
ping. However, neither area nor our method could estimate
the rank accurately in scenes where all objects were far from
the user.

In the qualitative experiment, the participants answered
strongly agreeable in scenes where the object in front of the
user was correctly estimated. In addition, even if rankings
from multiple methods are similar, our method was evaluated
well if our method was achieved to reduce warning objects
significantly. On the other hand, the participants disagreed
with our method in scenes where warning objects were
excessively removed. In particular, the participants disagreed
strongly in all scenes in which no objects were warned.

B. CASE EXAMPLES
Figure 6 shows two case examples of howwarning audio nav-
igates the category names of important objects. The objects
ranked 1st, 2nd, and 3rd in ground-truth are shown in red,
blue, and green, respectively. The method presented only the
necessary information in the proper order, similar to ground-
truth. Our method made much reduction of warning time by
extracting important objects. The reduction in warning time
helps to alleviate the effects of changes in the surrounding
environment as the user walks.

In case example 1, our method estimated three of the
17 objects in the scene to be warning targets. These three
objects included all objects that the annotator had identified
as important. As a result, our method presented the presence
of the highly important objects in six seconds, while it took
24 seconds to warn all detected objects. Since cars are large
and have a high degree of danger when approaching, their
warning orders generally tend to be high. However, in this
scene, it is located far from the car user and is moving in
the direction away from the user. Our method recognized the
situation and ranked a bicycle higher than a car, unlike rank-
ings by area or confidence. In area, a method that arranges
the objects in order of area, the top ranking was a pole that
was not ranked in the ground-truth. Therefore, the warnings
of two important objects were delayed. In addition, unlike
in our method, the ranking of cars is higher than that of
bicycles. In confidence, which orders YOLOv5’s detection
confidence scores in descending order, objects to be warned
were appropriately predicted to be higher. On the other hand,
the rankings of person objects were higher than other objects.
Especially in this scene, it was unclear which person was
especially important because of the number of person objects.
In closeness, which warns the users from nearby objects, the
objects to be warned were estimated to be in the 3rd and 16th,
respectively. As with confidence, it could not clarify which
person was being warned.

In case example 2, Our method warned three of 16 objects
in the scene. The warning time of our method was five
seconds, whereas it needed 23 seconds to warn all detected
objects. Although the order of the 1st and 2nd places was
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reversed, top-rank objects were well ranked. However in
this scene, our method failed to warn 4th-rank and 5th-
rank objects. Area was similar to our method regarding the
warning order. In particular, the top-ranking objects were
perfectly consistent with ground-truth. However, since the
three baselines are supposed to warn all detected objects, the
warning time was much longer than our method. In confi-
dence, ‘‘person’’ objects are preferentially alerted as in case
example 1. As we mentioned in Sec. V-B1, it was easier
for YOLOv5 to detect person objects with higher confidence
scores than other objects in urban scenes. In contrast, the top
three objects in ground-truth were ranked low by this method
(ranked 4th, 7th, and 13th, respectively). In closeness, the
pole was not preferentially ranked even though it was just
in front of the users. This pole indeed existed in front of the
user. However, since the height of this pole is big, the distance
between the center of the bounding box and the user was
bigger than those of other objects. The overall ranking also
significantly deviated from the ground-truth. Especially the
Left pole, which was annotated in 3rd place in ground-truth,
was ranked 16th in closeness.

There was a gap between the ground-truth and our method
regarding the warning threshold for warning. In case exam-
ple 1, the left pole, predicted as the 3rd rank, was not
considered important in the ground-truth. In case example 2,
our method should have warned twomore objects. The results
showed that the accuracy of the warning threshold needed
to be higher. In particular, we need to improve the accuracy
of the warning threshold in scenes as in case example 2,
since an excessive reduction of warning objects may lead
to the user overlooking the impending danger. However, our
method outperforms the three baseline methods in signifi-
cantly reducing the warning time with the high accuracy of
ranking estimation. Our method gives us another chance to
warn about impending dangerous objects.

VII. LIMITATIONS
We proposed a importance ranking estimation framework to
provide walking assistance to the VIBs. The experiments
showed that our ranking estimationmethod outperforms other
baselines. However, several issues need to be resolved regard-
ing the practical use of this method in the real world.

A. RANKING ESTIMATION IN VIDEOS
To use our method in the real world, we need to consider the
transition of users’ walking state. To accomplish this, it is
necessary to detect and rank objects with videos. We need
to map objects in each frame to the frames before and after
it. In other words, we must keep track of the detected objects.
We can achieve this requirement by tracking each detected
object using models for multi-object tracking [41], [42], [43].

B. COLLECTING DATA FROM VIB INDIVIDUALS
There is a difficulty of collecting data from VIB individuals.
Since VIB individuals cannot obtain visual information about
their surroundings, it is difficult to ask them how dangerous

each object is. Furthermore, asking them how often to be
warned is equally difficult. We also need to consider continu-
ous changes around the user. As mentioned above, the dataset
used in this paper was annotated by a qualified caregiver
for the visually impaired. We believe annotators who can
use visual information in this way can generate alternative
datasets. For example, we can collect a dataset that satisfies
our purpose by synchronously capturing the caregiver’s voice
and the VIBs’ first-person video.

C. FURTHER DETECTION OF IMPORTANT ELEMENTS OF
THE ROAD
When assisting VIB individuals, detecting additional types
of objects on the road might be helpful for effective navi-
gation. For example, detecting objects under the VIB users’
feet (E.g., steps, puddles, white lines) might be useful for
assessing the safety of walking. In fact, several partici-
pants suggested this point during the quantitative experiment.
In particular, some participants stated that the information
about the white line should be included in the object warning
system like this research. Since no step is on the white line,
it is very difficult for VIBs to know themselves on the road
or the sidewalk.

D. OPTIMIZING WARNING AUDIO
Another participant stated, ‘‘I could not understand what
was most dangerous just by reading it out loud with flat
intonation.’’ Stated differently, a strong tone of machine voice
may be necessary when danger is imminent. We also need
to consider a new type of warning audio. For example, it is
important to inform the user of not only the warning of white
lines but also the information on whether the user is on the
road or the sidewalk.

From a different perspective, our study adopted a cer-
tain reading speed and did not optimize the reading speed
of machine voices. People using machine speech since
childhood can cope with faster speech [44]. Therefore, opti-
mization of playback speed should be done for each user.

VIII. CONCLUSION
We proposed an object importance estimation method for
walking support for VIB people. Within this method, we pro-
posed a new frame for importance ranking estimation.
We used optical flow, including time series information,
which enabled us to estimate rankings based on the state of
the movable objects. Using the relaxed permutation matrices
with NeuralSort, the network was trained directly with the
order. The proposed method accurately estimated the rank-
ings compared to the three baseline methods. Additionally,
the people assisting the VIBs agreed on the warning audio
with our method. Our method is expected to be applied in
many applications related to walking assistance. In the future,
we will improve the detection object and warning method
based on the opinions given by caregivers in the quantitative
experiments. From a different point of view, we will develop
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a warning system for sequences, considering the transition of
users’ walking state.

APPENDIX A
NeuralSort
This appendix provides an overview of NeuralSort. Neural-
Sort is a differentiable sorting method that can train networks
with the original ranking form. As a premise, rankings are
expressed with permutation matrices in differentiable sorting
methods. Specifically, the permutation matrix Pz[i, j] is given
by:

Pz[i, j] =

{
1 if j = zi
0 otherwise,

(10)

where z = [z1, z2, . . . , zn]T is an n-dimensional permuta-
tion of a list of unique indices {1, 2, . . . , n}. These matrices
allowed us to directly train models with the ranking and not
consider the ranking scores’ distribution.

However, the permutation matrices like Eq. 10 are
non-differentiable since the argmax operator generates those
matrices. To train networks regarding rankings, relaxed per-
mutation matrices are used in NeuralSort. The i-th row of the
relaxed permutation matrices (̂Psort(s)[i, :](τ )) is given by:

P̂sort(s)[i, :](τ ) = softmax
[
(n+ 1 − 2i)s − As1

τ

]
, (11)

where s = [s1, s2, . . . , sn]T is the matrix of ranking scores.
In other words, si denotes the importance score of i-th infor-
mation or object. sort(s) is the sorting operation of s whose
indices are assigned in order. For example, if the ranking
score vector s = [3, 6, 2]T , sort(s) = [2, 1, 3], since the
top-ranking score is at the 2nd index, the 2nd-biggest ranking
score is at the 1st index, and so on. As[i, j] = |si − sj| denotes
the matrix of absolute pairwise differences between si and
sj. 1 denotes the column vector of all ones. τ is a tempera-
ture parameter that controls the degree of smoothness of the
relaxed permutation matrix P̂sort(s), and Psort(s) is consistent
with P̂sort(s) at τ → 0+. We calculated this equation with
τ = 1. The proof of Eq. 11 is given in COROLLARY 3 of
NeuralSort. The relaxed permutation matrices are continuous
and differentiable since these matrices are calculated by the
softmax operator.

APPENDIX B
URLs OF YouTube VIDEOS
Here are the URLs of YouTube videos that we used to con-
struct the importance ranking dataset.

• https://www.youtube.com/watch?v=gH9Zf-AbykA. 20
Nov 2022

• https://www.youtube.com/watch?v=E31MMNBpw_g.
20 Nov 2022

• https://www.youtube.com/watch?v=jxrCF8uN79M. 20
Nov 2022

• https://www.youtube.com/watch?v=w-3p-OOhGx4. 20
Nov 2022

• https://www.youtube.com/watch?v=kDZpAWmn2J8. 20
Nov 2022

APPENDIX C
LIST OF ACRONYMS
Following acronyms were used in this paper.

TABLE 3. List of acronyms.
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