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ABSTRACT This paper is concerned with the joint state and input estimation problem for linear discrete
time-varying systems over peer-to-peer sensor networks, in which deception attacks are taken into account.
By resorting to singular value decomposition, a local estimator structure is proposed to jointly estimate
the system states and unknown inputs. Then, a distributed state estimator is constructed by fusing local
estimates and covariance matrices. In addition, a sufficient condition is provided to ensure the uniformly
bounded estimation error (in mean square) in each node. Finally, a numerical example is provided to show
the effectiveness of the proposed estimation algorithm.

INDEX TERMS Distributed estimation, sensor networks, unknown inputs, deception attacks.

I. INTRODUCTION
For several decades, the problems of distributed state esti-
mation/filtering have received great research attention due
primarily to the widespread application of various sensors.
In general, the distributed state estimation (DSE) over a sen-
sor network refers to estimate the states of a dynamical system
by utilizing measurements acquired by all sensors. Up to
now, many elaborated DSE strategies have been reported,
including distributed Kalman filtering [1], [2], distributed
H∞ filtering [3], [4], distributed set-membership estima-
tion [5], [6], distributed moving-horizon estimation [7], [8]
and so on.

In the context of DSE, significant developments have been
made by designing distributed estimation algorithms under
minimal requirements, such as consensus-on-measurement
estimator [9], [10], [11], consensus-on-information (CI)
estimator [12], [13] and information weighted consensus esti-
mator [14]. The interested reader is referred to the above-cited
papers and references therein for the related developments.
In particular, the CI estimator performs a consensus on the
information matrices and the information vectors such that
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the estimation algorithm is convergent even if only one con-
sensus step per iteration is performed [12].

Inmany practical systems, the statistical properties of some
external disturbances are generally unknown and cannot be
approximated to Gaussian distributions. In this case, such
disturbances, which can be regarded as exogenous inputs, are
likely to result in unreliable estimates when Kalman filter
and its extended versions are enforced. As for the state esti-
mation with unknown inputs, an optimal minimum-variance
unbiased (MVU) filter has been originally developed in [15],
only taking into account the unknown inputs appearing in the
state equation. In [16], a simultaneous state-input estimation
scheme has been proposed to design the MVU estimator
for linear systems with direct feedthrough. In [18], the sin-
gular value decomposition technique has been exploited to
construct the MVU estimator with a milder requirement on
the direct feedthrough matrix than that in [16]. Based on
the results in [16] and [18], an optimal three-step recursive
filter has been proposed for time-varying systems with direct
feedthrough [19].

On the other hand, the security problems are inevitable
for a sensor network duet to its complex application envi-
ronment [20], [21]. To withstand and mitigate the impacts of
certain types of attacks on system performance, an efficient
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remedy is to formulate distributed secure state estimation
schemes. In this case, the distributed secure state estimators
are designed by modeling attack signals as disturbances with
known bounds [22], [23] or well-defined statistical proper-
ties [24]. Nevertheless, it is intractable to obtain a priori
knowledge on the attack signal, in the presence of intel-
ligent attackers which inject false data into measurement
channels without following specific statistics [25]. In this
sense, a computational efficient recursive state estimator
has been developed in [26] to deal with the distributed
secure estimation problem with unknown deception attacks,
using innovation analysis and the projection technique in
Krein space. In [27], a state-input secure estimator has been
designed for the unknown attacks appearing simultaneously
in controller-actuator channel and sensor-controller channel.
To the best of authors’ knowledge, there have been very
few results in the literature on the distributed state and input
estimation under deception attacks, which constitutes one of
the motivations of our current investigation.

Motivated by the above discussions, in this paper, we con-
sider the joint state and input estimation subject to deception
attacks. Following [16] and [19], a joint estimator structure
is developed to simultaneously estimate the system states
and unknown inputs by using singular value decomposition.
Then, the DSE algorithm is designed by combining local
estimates and covariancematrices from neighbors in a convex
manner. The main contributions of this paper are summarized
as follows:

1) Based on singular value decomposition, a novel dis-
tributed state estimator is developed against unknown
inputs and deception attacks.

2) A sufficient condition is provided by showing that the
estimation error in each node is uniformly bounded in
mean square.

Notations: R denotes the set of real numbers. Given a
matrixP ∈ Rm×n,PT ,P†, and rank(P) represent its transpose,
Moore–Penrose pseudoinverse and rank, respectively. Given
a square matrix P ∈ Rn×n, P−1 and tr(P) are its inverse and
trace, respectively. Let ∥·∥ denote the induced matrix 2-norm
or the Euclidean vector norm. Given a vector x ∈ Rn and a
positive definite matrix � ∈ Rn×n, ∥x∥� =

√
xT�x is the

�-norm of x. [x1; . . . ; xn] stands for the vertical concatena-
tion of vectors x1, . . . , xn, and for a random variable a, E{a}
stands for its expectation. Finally, I and 0 represent the iden-
tity matrix and the zero matrix with appropriate dimensions.

II. PROBLEM FORMULATION
The sensor network considered in this paper is described by
an undirected graph G = (N , E, 5), where N = {1, . . . ,N }

is a vertex set, E ⊂ N×N is an edge set and5 = [πij]N×N is
a weight matrix. The elements πij are nonnegative and satisfy
that πij > 0 if (i, j) ∈ E and πij = 0 otherwise. The edge
(i, j) ∈ E from node j to node i means that node i can receive
the information from node j. For each node i ∈ N , denote
its in-neighbor set as Ni ≜ {j : (i, j) ∈ E}. Let D(G) define

the diameter of graph G (i.e., the maximum distance between
any two vertices in N ). In the sequel, it is always assumed
that the network does not contain self-loop (i.e., i /∈ Ni) and
the graph G is connected throughout the paper.
Consider a class of linear discrete time-varying systems

described by {
xk+1 = Akxk + Gkdk + ωk ,

yik = C i
kxk + νik , i ∈ N ,

(1)

where xk ∈ Rnx is the system state to be estimated, dk ∈ Rnd

is the unknown input term, yik ∈ Rnyi is the measurement
output of node i, ωk ∈ Rnx and νik ∈ Rnyi are uncorrelated
zero-mean Gaussian noises with covariances Qk > 0 and
Rik > 0, respectively, Ak , Gk and C i

k are real-valued time-
varying matrices with appropriate dimensions. Then, let us
take into account the situation in which an adversary is capa-
ble to corrupt the measurements transmitted from the sensor
to the estimator. In this sense, the attacked measurement
ya,ik ∈ Rnyi can be described by

ya,ik = yik + H i
kak , i ∈ N , (2)

where ak ∈ Rna is the unknown deception attack signal
and H i

k is a real-valued time-varying matrix with appropriate
dimension. In this work, we assume that both dk and ak are
uniformly bounded for any k ≥ 0 and no information is
available for them.
Remark 1: In this paper, the attacker is assumed to be

capable of injecting deception attacks into all nodes in the
whole sensor network. For the sake of simplicity, the injected
deception attack in each node i ∈ N is dependent on the
unknown signal ak in (2), and such an attack model can
be found in [26]. In addition, the results in this paper can
be easily extended to the case in which measurements of
different sensors are corrupted by different attack signals,
by replacing ak with aik .

By integrating the unknown input term dk and the decep-
tion attack signal ak into a new vector uk (i.e., uk :=

[dk ; ak ] ∈ Rnd+na ), the attacked system is described by{
xk+1 = Akxk + Ḡkuk + ωk ,

ya,ik = C i
kxk + H̄ i

kuk + νik , i ∈ N ,
(3)

where Ḡk = [Gk 0] ∈ Rnx×nu , H̄ i
k = [0 H i

k ] ∈ Rnyi×nu , and
nu = nd+na. Without loss of generality, it is assumed that the
condition nyi ≥ nu holds for any i ∈ N , which means that the
number of channels for ya,ik is equal to or larger than that of
channels for uk .

III. DISTRIBUTED STATE AND INPUT ESTIMATION UNDER
DECEPTION ATTACKS
A. MEASUREMENT EQUATION TRANSFORMATION
Inspired by [18], [19], we transform the measurement equa-
tion in (3) into a new form, which can be divided into two
components: one with an unknown input term and the other
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without unknown input. To this end, define pi,k := rank(H̄ i
k )

and apply singular value decomposition to H̄ i
k

H̄ i
k = U i

k

[
6i
k 0
0 0

]
V i,T
k =

[
U i
1,k U

i
2,k

][ 6i
k 0
0 0

][
V i,T
1,k
V i,T
2,k

]
,

where U i
1,k ∈ Rnyi×pi,k , U i

2,k ∈ Rnyi×(nyi−pi,k ), V i
1,k =

Rnu×pi,k , V i
2,k = Rnu×(nu−pi,k ), both U i

k and V i
k are unitary

matrices, 6i
k ∈ Rpi,k×pi,k is a diagonal matrix of full rank.

Further, let us define two orthogonal components of uk as

ui1,k = V i,T
1,k uk , u

i
2,k = V i,T

2,k uk .

Following the fact that V i
kV

i,T
k = I , we obtain uk =

V i
1,ku

i
1,k + V i

2,ku
i
2,k . Then, system (3) is rewritten as{

xk+1 = Akxk + Ḡi1,ku
i
1,k + Ḡi2,ku

i
2,k + ωk ,

ya,ik = C i
kxk + H̄ i

1,ku
i
1,k + νik , i ∈ N ,

(4)

where Ḡi1,k = ḠkV i
1,k , Ḡ

i
2,k = ḠkV i

2,k and H̄1,k = H̄kV i
1,k =

U i
1,k6

i
k . Using a nonsingular matrix T ik = [T i1,k ;T

i
2,k ],

we decouple the measurement ya,ik into two components
zi1,k ∈ Rpi,k and zi2,k ∈ Rnyi−pi,k , i.e.,[

zi1,k
zi2,k

]
=

[
T i1,k
T i2,k

]
ya,ik =

[
T i1,ky

a,i
k

T i2,ky
a,i
k

]
with

T ik =

[
Ipi,k − U i,T

1,kR
i
kU

i
2,k (U

i,T
2,kR

i
kU

i
2,k )

−1

0 I(nyi−pi,k )

][
U i,T
1,k

U i,T
2,k

]
.

Then, the transformed zi1,k and z
i
2,k are

zi1,k = C i
1,kxk + 6i

ku
i
1,k + νi1,k , (5)

zi2,k = C i
2,kxk + νi2,k , (6)

where C i
1,k = T i1,kC

i
k , C

i
2,k = T i2,kC

i
k = U i,T

2,kC
i
k , νi1,k =

T i1,kν
i
k and νi2,k = T i2,kν

i
k = U i,T

2,k ν
i
k .

B. JOINT STATE AND INPUT ESTIMATION UNDER
DECEPTION ATTACKS
In this subsection, a recursive estimator structure is presented
to deal with the joint state and input estimation in node i ∈ N

ûi1,k = M i
1,k (z

i
1,k − C i

1,k x̂
i
k )

ûi2,k−1 = M i
2,k (z

i
2,k − C i

2,k x̂
i
k|k−1)

x̂ ik|k−1 = Ak−1x̂ ik−1 + Ḡi1,k−1û
i
1,k−1

x̂∗i
k = x̂ ik|k−1 + Ḡi2,k−1û

i
2,k−1

x̂ i,ik = x̂∗i
k + K i

k (y
i
k − C i

k x̂
∗i
k ),

(7)

where ûi1,k and ûi2,k−1 are the estimates of ui1,k and ui2,k−1,
respectively, x̂∗i

k and x̂ i,ik are the propagated and updated
estimates of xk , respectively, x̂ ik is the fused estimate of
xk (see (21) in the fusion step below), M i

1,k ∈ Rpi,k×pi,k ,
M i

2,k ∈ R(nu−pi,k )×(nyi−pi,k ) and K i
k ∈ Rnx×nyi are estimator

gain matrices to be designed.

In addition, to facilitate the subsequent estimator design,
we define x̃∗i

k := xk − x̂∗i
k , x̃

i,i
k := xk − x̂ i,ik , x̃ ik := xk − x̂ ik ,

P∗i
k := E{x̃∗i

k x̃
∗i,T
k }, Pi,ik := E{x̃ i,ik x̃

i,i,T
k }, Pik := E{x̃ ik x̃

i,T
k },

ũi1,k := ui1,k − ûi1,k and ũi2,k := ui2,k − ûi2,k . In the sequel,
we obtain that from (7)

ûi1,k = M i
1,k

(
C i
1,k x̃

i
k + 6i

ku
i
1,k + νi1,k

)
, (8)

ûi2,k−1 = M i
2,k

(
C i
2,kAk−1x̃ ik−1 + C i

2,k Ḡ
i
1,k−1ũ

i
1,k−1

+ C i
2,k Ḡ

i
2,k−1u

i
2,k−1 + C i

2,kωk−1 + νi2,k
)
. (9)

To ensure the unbiasedness of ûi1,k and û
i
2,k−1, it is required

that

M i
1,k6

i
k = I , M i

2,kC
i
2,k Ḡ

i
2,k−1 = I . (10)

Next, defining z̃i1,k := zi1,k − C i
1,k x̂

i
k and z̃i2,k := zi2,k −

C i
2,k x̂

i
k|k−1, we have

z̃i1,k = 6i
ku

i
1,k + ei1,k ,

z̃i2,k = C i
2,k Ḡ

i
2,k−1u

i
2,k−1 + ei2,k ,

where ei1,k = C i
1,k x̃

i
k + νi1,k and ei2,k = C i

2,k (Ak−1x̃ ik−1 +

Ḡi1,k−1ũ
i
1,k−1 + ωk−1) + νi2,k . Based on the unbiasedness of

state estimates, we have E{ei1,k} = 0 and E{ei2,k} = 0, and
the corresponding covariances are

4i
1,k := E{ei1,ke

i,T
1,k} = C i

1,kP
i
kC

i,T
1,k + Ri1,k ,

4i
2,k := E{ei2,ke

i,T
2,k} = C i

2,kP
i
k|k−1C

i,T
2,k + Ri2,k ,

where Ri1,k := E{νi1,kν
i,T
1,k } = T i1,kR

i
kT

i,T
1,k , R

i
2,k :=

E{νi2,kν
i,T
2,k } = T i2,kR

i
kT

i,T
2,k = U i,T

2,kR
i
kU

i
2,k ,

Pik|k−1 = Âik−1P
i
k−1Â

i,T
k−1 + Q̂ik−1,

Âik−1 = Ak−1 − Ḡi1,k−1M
i
1,k−1C

i
1,k−1,

Q̂ik−1 = Qk−1 + Ḡi1,k−1M
i
1,k−1R

i
1,k−1M

i,T
1,k−1Ḡ

i,T
1,k−1.

Furthermore, by applying the well known generalized least
squares estimate [17], the gain matricesM i

1,k andM
i
2,k in (7)

are determined by

M i
1,k =

[
6i
k (4

i
1,k )

−16i
k
]−1

6i
k (4

i
1,k )

−1
= (6i

k )
−1, (11)

M i
2,k = Gi2,k−1Ḡ

i,T
2,k−1C

i,T
2,k (4

i
2,k )

−1, (12)

where Gi2,k−1 = [Ḡi,T2,k−1C
i,T
2,k (4

i
2,k )

−1C i
2,k Ḡ

i
2,k−1]

−1. In
(12), it is intractable to calculate the explicit expression of
Pik−1 because the cross correlations between different sensors
are unknown in this paper. Hence, the gain matrix M i

2,k is
substituted with M̄ i

2,k given by

M̄ i
2,k = Ḡi2,k−1Ḡ

i,T
2,k−1C

i,T
2,k (4̄

i
2,k )

−1, (13)

where

Ḡi2,k−1 =
[
Ḡi,T2,k−1C

i,T
2,k (4̄

i
2,k )

−1C i
2,k Ḡ

i
2,k−1

]−1
,

4̄i
2,k = U i,T

2,k 4̄
i
kU

i
2,k , 4̄i

k = C i
k P̄

i
k|k−1C

i,T
k + Rik ,

P̄ik|k−1 = Âik−1P̄
i
k−1Â

i,T
k−1 + Q̂ik−1.
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Then, the recursive estimator structure in (7) is rearranged as

ûi1,k = M i
1,k (z

i
1,k − C i

1,k x̂
i
k )

ûi2,k−1 = M̄ i
2,k (z

i
2,k − C i

2,k x̂
i
k|k−1)

x̂ ik|k−1 = Ak−1x̂ ik−1 + Ḡi1,k−1û
i
1,k−1

x̂∗i
k = x̂ ik|k−1 + Ḡi2,k−1û

i
2,k−1

x̂ i,ik = x̂∗i
k + K i

k (y
i
k − C i

k x̂
∗i
k ),

(14)

and the condition in (10) is converted into M i
1,k6

i
k = I and

M̄ i
2,kC

i
2,k Ḡ

i
2,k−1 = I . From (14), we have ũi1,k = −M i

1,ke
i
1,k

and ũi2,k−1 = −M̄ i
2,ke

i
2,k .

To sum up, the propagated and updated estimation errors
are given by

x̃∗i
k = Ak−1x̃ ik−1 + Ḡi1,k−1ũ

i
1,k−1 + Ḡi2,k−1ũ

i
2,k−1 + ωk−1

= (I − Ḡi2,k−1M̄
i
2,kC

i
2,k )(Â

i
k−1x̃

i
k−1 + ω̂i

k−1)

− Ḡi2,k−1M̄
i
2,kν

i
2,k , (15)

x̃ i,ik = (I − K i
kC

i
k )x̃

∗i
k − K i

kU
i
1,k6

i
ku

i
1,k − K i

kν
i
k , (16)

where ω̂i
k−1 = ωk−1 − Ḡi1,k−1M

i
1,k−1ν

i
1,k−1. According to

(11), we have

Ḡi1,kM
i
1,kT

i
1,k = [Gk 0]([0 H i

k ])
†

× [I − RikU
i
2,k (U

i,T
2,kR

i
kU

i
2,k )

−1U i,T
2,k ] = 0,

which implies that ω̂i
k = ωk , Âik = Ak and Q̂ik = Qk . Without

loss of generality, we assume K i
kU

i
1,k = 0 such that the local

estimate x̂ i,ik is unbiased. Then, the propagated and updated
error covariances are derived by

P∗i
k = (I − Ḡi2,k−1M̄

i
2,kC

i
2,k )P

i
k|k−1(I − Ḡi2,k−1M̄

i
2,k

× C i
2,k )

T
+ Ḡi2,k−1M̄

i
2,kR

i
2,kM̄

i,T
2,k Ḡ

i,T
2,k−1, (17)

Pi,ik = (I − K i
kC

i
k )P

∗i
k (I − K i

kC
i
k )
T

+ K i
kR

i
kK

i,T
k

+ (I − K i
kC

i
k )Ḡ

i
2,k−1M̄

i
2,kU

i,T
2,kR

i
kK

i,T
k

+ K i
kR

i
kU

i
2,kM̄

i,T
2,k Ḡ

i,T
2,k−1(I − K i

kC
i
k )
T . (18)

C. DISTRIBUTED STATE ESTIMATION
First, let us define P̄i,ik as an upper bound onPi,ik for any i ∈ N .
Then, the fused estimate and covariance are computed in a
distributed manner:

P̄ik =

[
πi,i(P̄

i,i
k )

−1
+

∑
j∈Ni

πi,j(P̄
j,j
k )

−1
]−1

, (19)

W i,j
k = πi,jP̄ik (P̄

j,j
k )

−1, j ∈ Ni ∪ {i}, (20)

x̂ ik = W i,i
k x̂

i,i
k +

∑
j∈Ni

W i,j
k x̂

j,j
k , (21)

where W i,j
k , j ∈ Ni ∪ {i} is the fusion weight matrix.

To present the convergence property of the proposed
DSE algorithm, the following consistency definition is intro-
duced [12].
Definition 1: For a random vector x, let x̂ be an unbiased

estimate of x and P be an estimate of the corresponding error

covariance. Then, the pair (x̂,P) is consistent if

E{(x − x̂)(x − x̂)T } ≤ P. (22)

Now the consistency of the pair (x̂ ik , P̄
i
k ) is shown by check-

ing whether the condition Pik ≤ P̄ik holds.
Theorem 1: Considering the estimator structure in (14)

and the fusion scheme in (19)-(21), the pair (x̂ ik , P̄
i
k ) is con-

sistent, provided by

P̄ik|k−1 = Ak−1P̄ik−1A
T
k−1 + Qk−1, (23)

P̄∗i
k = (I − Ḡi2,k−1M̄

i
2,kC

i
2,k )P̄

i
k|k−1(I − Ḡi2,k−1M̄

i
2,k

× C i
2,k )

T
+ Ḡi2,k−1M̄

i
2,kR

i
2,kM̄

i,T
2,k Ḡ

i,T
2,k−1, (24)

P̄i,ik = (I − K i
kC

i
k )P̄

∗i
k (I − K i

kC
i
k )
T

+ K i
kR

i
kK

i,T
k

+ (I − K i
kC

i
k )Ḡ

i
2,k−1M̄

i
2,kU

i,T
2,kR

i
kK

i,T
k

+ K i
kR

i
kU

i
2,kM̄

i,T
2,k Ḡ

i,T
2,k−1(I − K i

kC
i
k )
T . (25)

Proof of Theorem 1: From (19)-(21), the fused estima-
tion error is given by

x̃ ik = x ik − P̄ik

[
πi,i(P̄

i,i
k )

−1x̂ i,ik +

∑
j∈Ni

πi,j(P̄
j,j
k )

−1x̂ j,jk

]

= P̄ik

[
πi,i(P̄

i,i
k )

−1x̃ i,ik +

∑
j∈Ni

πi,j(P̄
j,j
k )

−1x̃ j,jk

]
.

Further, the fused error covariance is obtained that

Pik = P̄ikE
{[

πi,i(P̄
i,i
k )

−1x̃ i,ik +

∑
j∈Ni

πi,j(P̄
j,j
k )

−1x̃ j,jk

]

×

[
πi,i(P̄

i,i
k )

−1x̃ i,ik +

∑
j∈Ni

πi,j(P̄
j,j
k )

−1x̃ j,jk

]T}
P̄ik

≤
1
2
P̄ik

{ ∑
j∈N

∑
ℓ∈N

πi,jπi,ℓ
[
(P̄j,jk )

−1E{x̃ j,jk x̃
j,j,T
k }(P̄j,jk )

−1

+ (P̄ℓ,ℓ
k )−1E{x̃ℓ,ℓ

k x̃ℓ,ℓ,T
k }(P̄ℓ,ℓ

k )−1]}P̄ik
= P̄ik

[ ∑
j∈N

πi,j(P̄
j,j
k )

−1E{x̃ j,jk x̃
j,j,T
k }(P̄j,jk )

−1
]
P̄ik .

Since E{x̃ j,jk x̃
j,j,T
k } ≤ P̄j,jk for any j ∈ N , we have

Pik ≤ P̄ik

[ ∑
j∈N

πi,j(P̄
j,j
k )

−1
]
P̄ik = P̄ik .

This completes the proof. ■

D. ESTIMATOR GAIN DESIGN
Now we are in a position to provide the filter gain K i

k by
minimizing the trace of P̄i,ik . We rearrange (25) as

P̄i,ik = P̄ik|k−1 + K i
k4̃

i
kK

i,T
k − K i

kS
i,T
k − S ikK

i,T
k , (26)

where

4̃i
k = (I − C i

k Ḡ
i
2,k−1M̄

i
2,kU

i,T
2,k )4̄

i
k (I − C i

k Ḡ
i
2,k−1M̄

i
2,kU

i,T
2,k ),
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S ik = P̄∗i
k C

i,T
k − Ḡi2,k−1M̄

i
2,kU

i,T
2,kR

i
k ,

and 4̄i
k is defined in (13). It can be seen that 4̃i

k is singular
since I − C i

kGk−1M̄ i
kU

i,T
2,k is rank deficient, and the optimal

filter gain K i
k is in general not unique. In this case, the gain

K i
k is rewritten as a new form [17]

K i
k = K̃ i

k0
i
k ,

where 0i
k ∈ Rh̄i,k×nyi is an arbitrary matrix ensur-

ing that 0i
k4̃

i
k0

i,T
k is nonsingular and h̄i,k = rank(I −

C i
kG2,k−1M̄ i

kU
i,T
2,k ).

Lemma 1: Under the condition K i
kU

i
1,k = 0, the optimal

filter gain K i
k is derived by

K i
k = S ik2

i
k (I − 9 i

k2
i
k ) = S ik (I − 2i

k9
i
k )2

i
k , (27)

such that the trace of P̄i,ik is minimized for any i ∈ N , where

2i
k = 0

i,T
k (0i

k4̃
i
k0

i,T
k )−10i

k ,

9 i
k = U i

1,k (U
i,T
1,k2

i
kU

i
1,k )

−1U i,T
1,k .

Proof of Lemma 1: To minimize the trace of P̄i,ik subject
to the constraint K i

kU
i
1,k = 0, a Lagrange multiplier 3i

k ∈

Rnx×pi,k is exploited. In view of (26) and K i
k = K̃ i

k0
i
k , the

Lagrangian is constructed as

tr
{
P̄ik|k−1 + K̃ i

k0
i
k4̃

i
k0

i,T
k K̃ i,T

k − K̃ i
k0

i
kS

i,T
k

− S ik0
i,T
k K̃ i,T

k − 2K̃ i
k0

i
kU

i
1,k3

i,T
k

}
.

Then, take the partial derivative of it with respect to K̃ i
k and

let the derivative be zero

K̃ i
k0

i
k4̃

i
k0

i,T
k − S ik0

i,T
k − 3i

kU
i,T
1,k0

i,T
k = 0.

Further, the following linear equation is obtained that[
0i
k4̃

i
k0

i,T
k − 0i

kU
i
1,k

U i,T
1,k0

i,T
k 0

][
K̃ i,T
k

3
i,T
k

]
=

[
0i
kS

i,T
k
0

]
.

Multiplying left- and right-hand sides of above equation
by the inverse of the coefficient matrix, the gain K i

k is
derived. ■
Lemma 2: Given 0i

k = [0 Ih̄i,k ]Ū
i,T
k (4̄i

k )
−

1
2 , the gain K i

k
in (27) reduces to

K i
k = S ik4̃

i
k
[
I − U i

1,k (U
i,T
1,k 4̃

i
kU

i
1,k )

−1U i,T
1,k 4̃

i
k
]
, (28)

and the corresponding bound on error covariance is

P̄i,ik = P̄∗i
k − K i

kS
i,T
k , (29)

where Ū i
k is an orthogonal matrix obtained by using the sin-

gular value decomposition of (4̄i
k )

−
1
2C i

k Ḡ
i
2,k−1 = Ū i

k6̄
i
k V̄

i,T
k

and 4̃i
k is defined in (26).
Proof of Lemma 2: Based on the given 0i

k , we have

0i
k4̆

i
k0

i,T
k

=
[
0 Ih̄i,k

]
Ū i,T
k (4̄i

k )
−

1
2 (Inyi − C i

kG2,k−1M̄ i
kU

i,T
2,k )4̄

i
k

× (Inyi − C i
kG2,k−1M̄ i

kU
i,T
2,k )

T (4̄i
k )

−
1
2 Ū i

k
[
0 Ih̄i,k

]T

=
[
0 Ih̄i,k

]
Ū i,T
k

(
Inyi − (4̄i

k )
−

1
2C i

k Ḡ
i
2,k−1

×

[
(4̄i

k )
−

1
2C i

k Ḡ
i
2,k−1

]† )
Ū i
k
[
0 Ih̄i,k

]T
=

[
0 Ih̄i,k

]
Ū i,T
k

(
Inyi − Ū i

k

[
I(nyi−h̄i,k ) 0

0 0

]
Ū i,T
k

)
× Ū i

k
[
0 Ih̄i,k

]T
= Ih̄i,k .

Then, substituting the above equation into 2i
k and rear-

ranging, the following holds

2i
k = (4̄i

k )
−

1
2 Ū i

k

[
0 0
0 I

]
Ū i,T
k (4̄i

k )
−

1
2

= (4̄i
k )

−
1
2

(
I − Ū i

k

[
I 0
0 0

]
Ū i,T
k

)
(4̄i

k )
−

1
2

= (4̄i
k )

−1(I − C i
kG2,k−1M̄ i

kU
i,T
2,k ). (30)

Following 2i
k4̃

i
k2

i
k = 2i

k and 9 i
k2

i
k9

i
k = 9 i

k , we have

P̄i,ik = P̄∗i
k − K i

kS
i,T
k − S ik (I − 9 i

k2
i
k )
T2

i,T
k S i,Tk

+ S ik2
i
k (I − 9 i

k2
i
k )4̆

i
k (I − 9 i

k2
i
k )
T2

i,T
k S i,Tk

= P̄∗i
k − K i

kS
i,T
k + S ik

[
− 2i

k + 2i
k9

i
k2

i
k

+ 2i
k4̆

i
k2

i
k − 2i

k9
i
k2

i
k4̆

i
k2

i
k − 2i

k4̆
i
k2

i
k9

i
k2

i
k

+ 2i
k9

i
k2

i
k4̆

i
k2

i
k9

i
k2

i
k
]
S i,Tk

= P̄∗i
k − K i

kS
i,T
k .

This completes the proof. ■
The DSE algorithm with unknown inputs and deception

attacks is given in Algorithm 1.

IV. STABILITY ANALYSIS
Now, let us take into account the stability of the proposed
distributed estimator. Define the collectively fused estimation
error as x̃k = [x̃1k ; . . . ; x̃Nk ] and construct the quadratic
function as V(x̃k ) =

∑
i∈N ∥x̃ ik∥

2
(P̄ik )

−1 .
Before proceeding further, we need to introduce the fol-

lowing preliminary assumptions.
Assumption 1: The system matrix Ak is invertible.
Assumption 2: The pair (Ak ,C2,k ) is observable, where

C2,k ≜ [C1
2,k ; . . . ;CN

2,k ].
Assumption 3: The noise sequences ωk and νik are

bounded in mean square for any k ≥ 0 and i ∈ N .
Lemma 3: Under Assumptions 1-3, let P̄ik be calculated

via Algorithm 1 with the initial condition P̄i0 > 0. Then, there
exist positive real numbers p and p̄ such that 0 < pI ≤ P̄ik ≤

p̄I for any i ∈ N .
Proof of Lemma 3: In view of Theorem 1, it is obtained

that P̄ik ≥ Pik > 0, and thus a uniform lower bound pI on P̄ik
can be readily obtained.

In the sequel, the existence of an upper bound on P̄ik
remains to be proved. From (19), we can write

(P̄ik )
−1

= πi,i(P̄
i,i
k )

−1
+

∑
j∈Ni

πi,j(P̄
j,j
k )

−1.
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Algorithm 1 Distributed Simultaneous State-Input Estima-
tion
1: Initialize: For any i ∈ N , x̂ i0 = x̂0, P̄i0 = P0 and ûi1,0 =

(6i
0)

−1(zi1,0 − C i
1,0x̂

i
0);

2: for k=1 to K do
▷ Estimation of ui2,k−1

3: P̄ik|k−1 = Ak−1P̄ik−1A
T
k−1 + Qk−1;

4: 4̄i
2,k = C i

2,k P̄
i
k|k−1C

i,T
2,k + Ri2,k ;

5: Ḡi2,k−1 = [Ḡi,T2,k−1C
i,T
2,k (4̄

i
2,k )

−1C i
2,k Ḡ

i
2,k−1]

−1;
6: M̄ i

2,k = Ḡi2,k−1Ḡ
i,T
2,k−1C

i,T
2,k (4̄

i
2,k )

−1;
7: x̂ ik|k−1 = Ak−1x̂ ik−1 + Ḡ1,k−1ûi1,k−1;
8: ûi2,k−1 = M̄ i

2,k (z
i
2,k − C i

2,k x̂
i
k|k−1);

▷ Time and measurement update
9: x̂∗i

k = x̂ ik|k−1 + Ḡ2,k−1ûi2,k−1;
10: P̄∗i

k = (I − Ḡi2,k−1M̄
i
2,kC

i
2,k )P̄

i
k|k−1(I − Ḡi2,k−1

×M̄ i
2,kC

i
2,k )

T
+ Ḡi2,k−1M̄

i
2,kR

i
2,kM̄

i,T
2,k Ḡ

i,T
2,k−1;

11: S ik = P̄∗i
k C

i,T
k − Ḡi2,k−1M̄

i
2,kU

i,T
2,kR

i
k ;

12: 4̄i
k = C i

k P̄
i
k|k−1C

i,T
k + Rik ;

13: 4̃i
k = (4̄i

k )
−1(I − C i

k Ḡ
i
2,k−1M̄

i
2,kU

i,T
2,k );

14: K i
k = S ik4̃

i
k [I − U i

1,k (U
i,T
1,k 4̃

i
kU

i
1,k )

−1U i,T
1,k 4̃

i
k ];

15: x̂ i,ik = x̂∗i
k + K i

k (y
a,i
k − C i

k x̂
∗i
k );

16: P̄i,ik = P̄∗i
k − K i

kS
i,T
k ;

▷ Distributed fusion estimation

17: P̄ik =

[
πi,i(P̄

i,i
k )

−1
+

∑
j∈Ni

πi,j(P̄
j,j
k )

−1
]−1

;

18: W i,j
k = πi,jP̄ik (P̄

j,j
k )

−1, j ∈ Ni ∪ {i};
19: x̂ ik = W i,i

k x̂
i,i
k +

∑
j∈Ni

W i,j
k x̂

j,j
k ;

▷ Estimation of ui1,k
20: M i

1,k = (6i
k )

−1;
21: ûi1,k = M i

1,k (z
i
1,k − C i

1,k x̂
i
k );

22: end for

Following the facts that P̄i,ik ≤ P̄∗i
k and P̄ik is bounded by

a uniform lower bound, there exist positive real numbers
τ i, µi > 0 such that

P̄∗i
k ≤ P̄ik|k−1 − τ iḠi2,k−1Ḡ

i
2,k−1(Ḡ

i
2,k−1)

−1Ḡi2,k−1Ḡ
i,T
2,k−1

≤ P̄ik|k−1 − P̄ik|k−1C
i,T
2,k (C

i
2,k P̄

i
k|k−1C

i,T
2,k + µiRi2,k )

−1

× C i
2,k P̄

i
k|k−1. (31)

Taking the inverse on (31) and applying the matrix inversion
lemma yields

(P̄∗i
k )

−1
≥ (P̄ik|k−1)

−1
+ (µi)−1C i,T

2,k (R
i
2,k )

−1C i
2,k .

From (23), the following holds

P̄ik|k−1 = Ak−1
(
P̄ik−1 + A−1

k−1Qk−1A
−T
k−1

)
ATk−1.

Since Qk is bounded, there exists a positive real number ηi

such that A−1
k−1Qk−1A

−T
k−1 ≤ ηiP̄ik−1. Then, we have P̄

i
k|k−1 ≤

(1+ηi)Ak−1P̄ik−1A
T
k−1. As a consequence, applying the above

inequalities yields

(P̄ik )
−1 > ε

∑
j∈N

πi,jA
−T
k−1(P̄

j
k−1)

−1A−1
k−1

+ ε
∑
j∈N

πi,jC
j,T
2,k (R

j
2,k )

−1C j
2,k , (32)

where ε = min
{ 1
1+ηj

, 1
µj

}
for any j ∈ N and k ≥ 0. For

sufficiently large k , by recursively applying inequality (32) L
times, we have

(P̄ik )
−1

≥ εL
∑
j∈N

5L
[i,j]A

−T
k−1,k−L(P̄

j
k−1)

−1A−1
k−1,k−L

+

k∑
ℓ=k−L+1

εk−ℓA−T
k−1,ℓ

×

( ∑
j∈N

5k−ℓ+1
[i,j] C j,T

2,ℓ (R
j
2,ℓ)

−1C j
2,ℓ

)
A−1
k−1,ℓ,

where Ak−1,s = Ak−1Ak−2 · · ·As if s ≤ k − 1 or Ak−1,s = I
otherwise, and 5m

[i,j] denotes the (i, j)th element of the matrix
5m. When L > D(G)+nx , there exists a positive real number
ϕ such that

(P̄ik )
−1

≥ ϕ

k∑
ℓ=k−L+1

A−T
k−1,ℓ

( ∑
j∈N

C j,T
2,ℓ (R

j
2,ℓ)

−1C j
2,ℓ

)
A−1
k−1,ℓ.

It is seen that under Assumption 2, the right-hand side of the
above inequality is positive definite. As a result, there exists
a uniform upper bound p̄I such that P̄ik ≤ p̄I for sufficiently
large k . ■
We now derive an upper bound on ∥x̃ ik+1∥

2
(P̄ik+1)

−1 for any

i ∈ N . To begin with, recalling (19) and (21), we can write

∥x̃ ik+1∥
2
(P̄ik+1)

−1 =

∥∥∥∥ ∑
j∈N

πi,j(P̄
j,j
k+1)

−1x̃ j,jk+1

∥∥∥∥2
P̄ik+1

≤

∑
j∈N

πi,j
∥∥x̃ j,jk+1

∥∥2
(P̄j,jk+1)

−1

=

∑
j∈N

πi,j
∥∥Ājk x̃ jk + κ

j
k

∥∥2
(P̄j,jk+1)

−1 ,

where the inequality follows the Lemma 2 in [12], and Ājk as
well as κ

j
k are

Ājk = (I − K j
k+1C

j
k+1)(I − Ḡj2,kM̄

j
2,k+1C

j
2,k+1)Ak ,

κ
j
k = (I − K j

k+1C
j
k+1)

[
(I − Ḡj2,kM̄

j
2,k+1C

j
2,k+1)ωk

− Ḡj2,kM̄
j
2,k+1ν

j
2,k+1

]
− K j

k+1ν
j
k+1.

Following the facts that P̄j,jk+1 = Ājk P̄
j
k Ā

j,T
k + E{κ

j
kκ

j,T
k+1} ≥

ηĀjk P̄
j
k Ā

j,T
k with η > 1 and (Ājk )

†Ājk is idempotent, we have

∥x̃ ik+1∥
2
(P̄ik+1)

−1 ≤
1
η

∑
j∈N

πi,j
∥∥x̃ jk + κ̃

j
k

∥∥2
(P̄jk )

−1 , (33)

where κ̃
j
k is the least-squares solution of Ā

j
k κ̃

j
k = κ

j
k , and such

a solution can be obtained by solving rank deficient linear
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FIGURE 1. The values of unknown input dk and deception attack ak .

least-squares problems [28], [29]. Under Assumption 3, it is
an easy matter to obtain that the quantities κ̃

j
k , j ∈ N are

bounded in mean square sinceωk and ν
j
k are bounded in mean

square. Hence, there exists a positive real number ρκ such that
E{∥κ̃

j
k∥

2
} ≤ ρ2

κ for any k ≥ 0 and j ∈ N .
Theorem 2: Let Assumptions 1-3 hold, then the fused esti-

mation error x̃ ik in each node i ∈ N is uniformly bounded in
mean square, in that

lim sup
k→∞

E{∥x̃ ik∥
2
} ≤

Np̄ρ2
κ

(
√

η − 1)2p
(34)

with η > 1.
Proof of Theorem 2: From (33), the function V(x̃k+1) is

bounded by

V(x̃k+1) ≤
1
η

∑
i∈N

∑
j∈N

πi,j
∥∥x̃ jk + κ̃

j
k

∥∥2
(P̄jk )

−1

=
1
η

∑
i∈N

∥∥x̃ ik + κ̃ ik

∥∥2
(P̄ik )

−1 .

In the sequel, by defining κ̃k = [κ̃1
k ; . . . ; κ̃Nk ], we have

V(x̃k+1) ≤
1
η
V(x̃k+κ̃k ). Applying the linearity of expectation

and the triangular inequality yields√
E{V(x̃k+1)} ≤

1
√

η

√
E{V(x̃k )} +

1
√

η

√
E{V(κ̃k )}.

Since 0 < 1
√

η
< 1, the above inequality implies that

lim sup
k→∞

√
E{V(x̃k )} ≤

√
Nρκ

(
√

η − 1)√p
.

In view of Lemma 3, the following holds

E{V(x̃k )} ≥
1
p̄

E
{ ∑
i∈N

∥x̃ ik∥
2
}
,

which implies that E{∥x̃ ik∥
2
} ≤ p̄E{V(x̃k )}. ■

FIGURE 2. Actual and estimated values of system states.

V. NUMERICAL EXAMPLE
In this section, a numerical example is exploited to ver-
ify the proposed distributed estimation algorithm subject to
unknown inputs and deception attacks. Let us consider a
linear time-varying system described as follows [30]:

xk+1 =

 a11,k a12,k a13,k
a21,k a22,k a23,k
a31,k a32,k a33,k

 xk +

 0.1
0.2
0.1

 dk + ωk ,

where

a11,k = exp[−h+ sin(kh) − sin(kh− h)],

a12,k = 0, a13,k = 0,

a21,k = 2 sinh(0.5h) exp[−1.5h+ sin(kh) − sin(kh− h)],

a22,k = exp[−2h+ sin(kh) − sin(kh− h)],

a23,k = 0, h = 0.1,

a31,k = 0, a32,k = 0,

a33,k = exp[−h+ sin(kh) − sin(kh− h)],

Qk = 10−4
× [1 0 0; 0 1 0; 0 0 1].

A sensor network with 4 nodes is used to measure the system
state vector, and the corresponding measurement equation of
each sensor is

ya,ik = C i
kxk + H i

kak + νik , i = 1, 2, 3, 4,

where

C1
k =

[
1 0 2
0 sin(kh) 0

]
, C2

k =

[
0 0 0
0 1 0

]
,
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C3
k =

[
0 0 1
0 0 0

]
, C4

k =

[
cos(kh) 1.5 0

0 0 0

]
,

H1
k = [0.1; 0.1], H2

k = [0.1; 0.2], H3
k = [0.2; 0.1],

H4
k = [0.2; 0.2], R1k = R2k =R3k =R4k =10−4

× [1 0; 0 1].

The weight is 5 =
[ 1
3

1
3 0 1

3 ;
1
3

1
3

1
3 0; 0 1

3
1
3

1
3 ;

1
3 0 1

3
1
3

]
.

The unknown input signal dk and deception attacks ak have
the forms plotted in Figure 1 (the black solid ones). The
initial state and covariance are set to x̂0 = [0; 0; 0] and
P0 = diag{0.01, 0.01, 0.01}, respectively.
The estimated values of unknown inputs and deception

attacks are plotted in Figure 1, and actual and estimated states
of sensor nodes i = 1, 2, 3, 4 are shown in Figure 2. It can be
seen that the estimated values can track the actual unknown
inputs, deception attacks and states well, which indicates
that the proposed distributed estimation algorithm possesses
satisfactory performance in state estimation.

In particular, it can be observed that nodes 2 and 3 own
insufficient capabilities to ensure the local observability of
system states, while the collective observability is guaran-
teed by the whole sensor network. In the case, the proposed
distributed estimation algorithm remains to be effective to
estimate the system states.

VI. CONCLUSION
In this work, we have addressed the distributed state estima-
tion problem for linear discrete time-varying systems in the
presence of unknown inputs and deception attacks. By uti-
lizing singular value decomposition, a joint estimator has
been designed to simultaneously estimate the system states
and unknown inputs. A distributed estimation algorithm
has been constructed by combing the local information
in a convex manner. Moreover, the stability analysis of
the distributed estimator has been carried out by showing
that the fused estimation error in each node is uniformly
bounded.

In the present distributed estimation framework, the num-
ber of channels for measurements in each node is equal to or
larger than that of channels for the sum of unknown inputs and
deception attacks. Nevertheless, it is intractable to ensure this
condition when the number of channels for measurements is
too small. As such, the consideration of relaxing this con-
dition is of important theoretical and practical significance,
which forms an interesting direction for our future work.
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