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ABSTRACT Compact and low-power CMOS-compatible hardware can be used for on-chip optical
neural networks (ONNs), enabling affordable and portable image classification solutions for applications
like autonomous vehicles, healthcare, and optical communication. In this work, we propose a novel
one-dimensional Optical Convolutional Neural Network (OCNN) architecture that significantly reduces
the number of learnable parameters required for an ONN. Our OCNN achieves an impressive accuracy
of over 96% as a pattern classifier, utilizing only 90 learnable parameters, leading to a simpler structure
compared to existing on-chip ONNs. Additionally, our OCNN demonstrates scalability and robustness, with
an accuracy exceeding 89% in handwritten digit classification. The OCNN’s convolutional layer employs a
lenslet 4f system for convolving desired kernels on input images, while an on-chip lens facilitates the desired
Fourier Transform effortlessly. The subsequent layer consists of a single metaline layer, implementing a fully
connected layer. By parallelizing pre-trained OCNNs, an on-chip deep convolutional neural network (CNN)
can be realized, where each OCNN functions as a separate kernel within a conventional CNN.

INDEX TERMS Photonic integrated circuits, silicon photonics, optical neural network, optical convolutional
neural network, silicon metaline.

I. INTRODUCTION
The rapid development of deep learning [1] based on Convo-
lutional Neural Networks has brought significant advances in
a wide range of artificial intelligence applications, including
image recognition [2], object classification [3], document
analysis [4], autonomous driving [5], and more. Although
2D CNNs are widely used for analyzing grid-like 2D data,
they have limitations that have led to the emergence of
one-dimensional (1D) CNNs as a promising alternative in
recent years [6], [7]. As demonstrated in a recent study [8],
1D convolution offers several advantages over 2D convolu-
tion. For one, 1D CNNs have significantly lower computa-
tional complexity than their 2D counterparts. Additionally,
most 1D CNN applications use compact setups with only
1-2 buried CNN layers and networks containing less than
10,000 parameters. In contrast, nearly all 2D CNN applica-
tions employ ‘‘deep’’ architectures with over 1 million para-
meters, making them more difficult to train and implement.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

Furthermore, compact 1D CNNs are well-suited for real-time
and low-cost applications, particularly on mobile or handheld
devices, due to their minimal processing needs.

To address the energy consumption bottleneck of CMOS
electronics in machine learning [9], researchers are inves-
tigating optical computing as a potential alternative archi-
tecture for building neural networks. Optical parallelism has
been used in ONN [10], [11], [12], [13] and Opto-Electronic
Neural network implementations [14], [15], [16], [17], [18]
to speed up computing, while optical passivity has been
utilized to reduce energy costs and minimize latency. Sev-
eral studies have reported the successful implementation of
ONN designs utilizing multi-layer metasurfaces [10], [11],
[12], [19]. These subwavelength structures are suitable for
shaping the phase front of incident electromagnetic waves,
allowing for a powerful optical analog signal processing
system to be implemented with designed dispersion and
diffraction [20], [21].

While being passive and operating at the speed of light,
the realization of fully passive all-optical convolutional neu-
ral networks has seen limited progress. However, attempts
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FIGURE 1. Illustration of the network architecture. The network comprises four metaline layers, where the first
three layers function as a convolutional layer and the last layer acts as a fully connected layer. (a) depicts the
inputs represented as optical pulse amplitudes propagating through the metalines. (b) showcases a 4f system
implemented with two metalenses, enabling the optical implementation of the convolution operation. (c)
illustrates the metaline associated with the desired phase mask of the convolution layer, applying the desired
aperture transfer function (ATF) on the propagating optical wave. (d ) displays the implemented optical fully
connected layer. (e) showcases a phase shifter consisting of three meta-atoms. Finally, (f ) presents three output
regions, each connected to a detector with a tapered waveguide.

have been made to implement optical convolutional neural
networks. Some existing implementations, such as [15]
and [22], utilize a 2D 4f system for optical convolution.
Nevertheless, these networks face challenges associated with
misalignment errors, which hinder their integration into prac-
tical optical circuits and limit the utilization of the parallel
processing power of optics. In contrast, other implementa-
tions of optical convolutional neural networks rely on optical
delay lines. For example, a notable design utilizes a sin-
gle convolution layer with repatching logic, employing 3dB
splitters and variable-length delay lines [23]. While this net-
work achieves high throughput of millions of inferences per
second, it requires significant power consumption of 2mJ
per inference, comparable to ASIC systems [24]. Moreover,
recent advancements in optical neural networks have show-
cased the potential of utilizing broad optical bandwidths for
accelerated computing. One noteworthy study demonstrated
an impressive performance with a universal optical vector
convolutional accelerator operating at over ten TOPS and
achieving high accuracy in recognizing handwritten digit
images [25]. However, the reliance on complex hardware,
including a soliton crystal microcomb source, raises practical
concerns for widespread adoption, particularly in common
portable devices.

Our work presents the first demonstration of an all-optical
integrated on-chip 1D convolutional neural network (OCNN)
using metasurfaces. This innovative design improves energy

efficiency by using passive optical elements, eliminating the
need for additional power-consuming components. The inte-
gration of our proposed OCNN is facilitated by utilizing
1.55µm silicon-compatible technology, enabling seamless
connectivity to existing CMOS-compatible technology. Our
OCNN achieves remarkable accuracy, with a performance
of 96% on a binary letter image classification task using
only 90 learnable parameters. This represents an impressive
80% reduction compared to the state-of-the-art ONN [10].
We also evaluated the scalability of our OCNN through
tests on handwritten digit classification, where it achieved
an accuracy exceeding 89%, demonstrating its robustness
and adaptability. The compact CMOS-compatible structure
enables seamless integration and parallelization, making our
OCNN well-suited for low-cost and real-time applications,
especially on portable devices. Furthermore, our OCNN
leverages simple diffractive physics to achieve comparable
accuracies in classification tasks without relying on complex
hardware implementations like soliton crystal microcomb
sources [25]. This eliminates the complexity associated with
advanced sources, making our OCNN more efficient and
compact. Importantly, our proposed OCNN exhibits signifi-
cant advantages in mitigating misalignment errors compared
to 2D optical CNNs [13], [26] that rely on 2D layered meta-
surfaces in a free space setup. Previous studies have demon-
strated the superior alignment stability and performance of
our OCNN architecture, further emphasizing its practical
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viability [10], [27]. In summary, our all-optical integrated
on-chip 1D convolutional neural network (OCNN) using
metasurfaces offers improved energy efficiency, impressive
accuracy, scalability, and compatibility with existing CMOS
technology. These advantageous features position our OCNN
as a promising solution for efficient and high-performance
neural network applications. Looking towards the future, the
integration of phase change materials [28], [29] holds great
potential for realizing active optical neural networks on our
platform, leveraging the low number of learnable parameters
in our OCNN design to meet the energy demands of such
networks.

II. OCNN ARCHITECTURE
The architecture of conventional 1D CNNs comprises 1D
convolutional layers followed by a fully-connected network.
In this work, we present a 4f architecture to implement the
convolutional layer of our OCNN. Fig.1 shows the proposed
design, where the input is first preprocessed and transformed
into a 1-dimensional vector, which is then converted into opti-
cal pulse amplitudes and passes through the OCNN layers.

The optical architecture employed in this study utilizes
1D high-contrast transmit array metasurfaces [21], called
‘‘metalines,’’ which are composed of 1D etched rectangle slot
arrays in a silicon-on-insulator (SOI) substrate, as shown
in Fig. 1. Each rectangle slot is a meta-atom, with the sil-
icon layer and SiO2 insulator layer having thicknesses of
250nm and 2µm, respectively. The meta-atom geometrical
parameters include the lattice constant of the metalines (a),
length (L), and width (w) of the rectangular slots [12].
The operational frequency is 1.55µm, with the lattice con-
stant of the metalines being 500nm which is approximately
one-third of the operating wavelength, making the structure
subwavelength.

Figs. 2(a) and 2(b) demonstrate the transmission ampli-
tude and phase of the metalines for TE-polarized guided
waves as the length and width of meta-atoms are swept. The
width of the slots is fixed at 140nm. The proposed design
parameters allow for adjustment of the propagation phase
within the range of −π to π by varying the length of the
slots from 0.05µm to 2.5µm while maintaining transmission
amplitudes greater than 0.96 for all phases, as shown in
Figs. 2(a) and 2(b). The results presented in Fig. 2
are obtained using the commercial software package
Lumerical FDTD.

According to the approach described in [12], each
meta-atom in the proposed structure can be modeled
as a complex transmission coefficient represented by(
T l = t l exp (jφl)

)
. Due to the near-unitary transmission

amplitudes of the meta-atoms, the transmission loss is neg-
ligible, allowing for the modeling of the meta-atoms as phase
shifters applying the transmission function

(
T l = exp (jφl)

)
to the input wave propagating through each metaline.
To achieve the desired phase profile, appropriate slot lengths
must be selected at various positions for meta-atoms in each
metaline layer. The transmission function is computed under

FIGURE 2. shows the phase (a) and transmission (b) amplitude of a
meta-atom for TE-polarized guided wave at an operational wavelength of
(1.55µm) versus slot length and width. The white dashed line in both (a)
and (b) shows the phase and transmission amplitude of the slots with a
fixed width of 140nm.

the assumption that the wave’s phase front is affected by a
periodic array of meta-atoms, with every three slots (meta-
atoms) assumed to act as a phase shifter to improve the
accuracy of the locally periodic approximation [10].

III. OPTICAL CONVOLUTIONAL LAYER USING
METASURFACE-BASED LENS
An interesting method to create an optical convolutional layer
is using optical lenses that can freely perform a Fourier trans-
form. Metasurface-based lens designs have been proposed in
several works [20], [30], [31] that are useful in implement-
ing the convolutional function. In our work, we control the
wavefront on-chip using a metaline. The metaline along the
y direction imposes a space-dependent phase shift on the inci-
dent wave (TE polarized) along the x direction. For achieving
on-chip wave focusing, the phase shift of the transmitted
wave is defined in the following equation [21]:

φ (y) =
2π
λd

neff

(
f −

√
f 2 + y2

)
(1)

where λd is the design wavelength in free space, neff is the
effective refractive index of the guided light confined in the
silicon slab, and f is the focal length.
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A. OPTICAL FOURIER TRANSFORM
According to [32], the output function of a two-dimensional
metalens at its focal length, when the input is placed at a
distance d from it, is given by:

g (x, y) = c′ exp

[
jπ

(
x2 + y2

)
(f − d)

λf 2

]
F
(
x
λf

,
y
λf

)
(2)

where F stands for Fourier transform of the input signal,
λ is the wavelength in the slab waveguide, f is the focal length
of the lens, d is the distance between the input plane and the
lens, j is the imaginary unit, (x, y) are the coordinates on the
focal line, and c′ is a constant. For one dimensional lens, Eq. 2
can be simplified as:

g (y) = c′ exp
[
jπ
y2 (f − d)

λf 2

]
F
(
y
λf

)
(3)

According to Eq. 3, when the object is placed at the focal
length (i.e., d = f ), the Fourier transform of the input appears
in the output, and Eq. 3 simplifies to:

g (y) = c′F
(
y
λf

)
(4)

Fig. 3 displays the electric field distribution in the z-y plane of
an on-chip lens, which was obtained through finite-difference
time-domain (FDTD) simulations. By utilizing the phase
mask described in Eq. 1, the lengths of each slot can be
determined using the method outlined in Section II.

FIGURE 3. The in-plane distribution of
∣∣Ey

∣∣ in the middle of the silicon
slab for the on-chip metalens based on the SOI platform, designed using
Eq. 1 and the structure described in Sec. II to achieve a focal length
of 50µm. The incident light is parallel to the optical axis of the lens.

IV. OPTICAL CONVOLUTIONAL LAYER
Convolutional neural networks usually contain multiple con-
volutional layers, where each layer performs pattern match-
ing using various visual filters and must be trained during
a learning process. The output of each convolutional layer
in these networks is obtained by convolving input data with
convolution kernels, as shown in Fig. 4(a). To perform the
convolution operation optically, a 4f system is employed,
as shown in Fig. 4(c).

In these linear optical systems, the output data is commonly
modeled as a spatially invariant convolution of the input data
with the point spread function (PSF) of the system.

The PSF can be described as:

PSF (y) =

A∑
a=1

Wa (y) ⊛ δ (y− a1y) (5)

where ⊛ signifies a 1D convolution, Wa corresponds to a’th
convolutional kernel, and1y is a shift to ensure these outputs
are non-overlapping. As a result, the output formation is
described as follows:

Eout (y) = [Ein ⊛ PSF] (y)

= Ein (y) ⊛
A∑
a=1

Wa (y) ⊛ δ (y− a1y)

=

A∑
a=1

[Ein ⊛Wa] (y) ⊛ δ (y− a1y) (6)

In order to define PSF correctly, we calculate it using the
following formula based on the lens functionality:

PSF (y) = F{ATF
(
ky
)
} (7)

where Fsignifies 1D Fourier transfer, ky =
y
λf denotes

spatial frequency, λ is the wavelength of light, and f is the
focal length of lenses. The aperture transfer function (ATF)
is a complex function that is decomposed into amplitude and
phase as:

ATF
(
ky
)

= A
(
ky
)
. exp{j1φ(ky)} (8)

In this study, ATF is calculated directly, in contrast to previous
hybrid networks [15], [18] in which PSF is first calculated,
then ATF optimally is obtained. The metalines proposed in
Section II are used to implement the ATF, and the amplitude
of the ATF is considered approximately one. By utilizing
available learning algorithms, it is possible to directly learn
the phase mask of the ATF and the corresponding lengths of
its slots.

V. MODELING
In this section, we adopt a similar approach to the elec-
tromagnetic modeling of the OCNN presented in [10]. The
input images are first pixelated, and each pixelated image,
comprising N × M pixels, is converted into a vector and
then encoded into the amplitude of the input electric field to
the OCNN. Thus, the input electric field (E in) is a (N ∗M )×
1-dimensional vector. The input line is positioned at a
distance of 1y from the first layer of the multi-layered
metalines.

The electric field propagation from layer l with k neurons
(meta-atoms) to the next layer with n neurons is similar to
vector-matrix multiplication:

[ml+1(1), . . . ,ml+1(n)]

= [ml(1) ∗ t l(1), . . . ,ml(k) ∗ t l(k)] ·W (9)
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FIGURE 4. Illustration of the Convolution Layer and Optical Implementation using Fourier Transform and 4f System.
The Convolution Layer involves convolving input data with a point spread function (PSF) that includes multiple kernels
(Wa), as shown in (a). Optical implementation of convolution can be achieved by utilizing Fourier transform through
lenses, as demonstrated in (b) where the ATF is the Fourier transform of the PSF and placed in the focal length of a
lens. A 4f system structure can be used to perform the convolution operation in the spatial domain, as shown in (c).

In this equation, t l(p) = a ∗ exp
(
φl(p)

)
represents the

transmission coefficient of the p-th neuron in the l-th layer,
where the amplitude a is close to 1 for a slot width of 140 nm,
and the phase shift φl(p) is proportional to the slot length. The
amplitudes of the input electric field towards the p-th neuron
in the l-th layer and the q-th neuron in the (l+ 1)-th layer are
denoted as ml(p) and ml+1(q), respectively. The inter-layer
connectivitymatrixW is a k×n transfermatrix that represents
wave propagation in the SOI slab waveguide, as given by the
Rayleigh-Sommerfeld diffraction equation [33]. The (p, q)-th
element ofW is given by:

W (p, q) =
1y
r2

(
1

2πr
+

1
jλ

)
exp

(
j2πr

λ

)
(10)

In the proposed neural network model, the distance
between the p-th neuron in layer l and the q-th neuron in layer
l + 1 is denoted by r and 1y represents the distance between
these two layers. The effective wavelength in the planar
waveguide is represented by λ. It has been observed in pre-
vious works [10], [11] that the angle-dependent transmission
needs to be considered in each layer’s output. As shown in
Fig. 5(a), the transmission curve can be approximated using
a simple exponential function, exp

(
θ2

σ

)
, which can be fitted

to the original curve. The angle can be calculated using 1y
and r , as depicted in Fig. 5(b), and the value of σ depends on
the meta-atom dimensions, which can be obtained by fitting
the exponential function to the original transmission curve.
As shown in Fig. 5(a), phase shifts do not vary substantially
with angle, so they are not considered in this study.

A. AN ALTERNATIVE APPROACH FOR MODELING
FORWARD PROPAGATION
In previous studies [12], [34], a discretized version of the
angular spectrum wave propagator from [33] was utilized as
a forward propagation model. This involves decomposing the
sampled electric field at the output of each metaline plane
into a superposition of plane wave components using the dis-
crete Fourier transform. Each plane wave component is then

FIGURE 5. (a) Amplitude (red line) and phase (blue line) of the complex
transmission coefficient versus the incident angle (θ indicated in (b)) with
the slot width of 140 nm and length of 2 µm. The dashed line is an
approximation of the amplitude using an exponential function.
(b) Schematic of two sequential metaline layers.

multiplied by a proper phase factor to account for the accu-
mulated phase as the wave propagates through the optical
system. The resulting electric field is determined by an
inverse Fourier transform operation. The vector wm denotes
the length of the slots in the m-th metaline plane, which
determines a line of spatially-varying phase shifts experi-
enced by the incident electric field at each metasurface plane.
The output electric field Eout at the output line of the sys-
tem is a function of the parameters w1,w2, . . . ,wM of the
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M metalines, and can be calculated using a series of
matrix-vector multiplications as follows:

Eout =

(
M∏
m=1

F+PmF8wm
)
E in (11)

here, F and F+ denote the discrete Fourier transform and
its inverse, respectively. Pm is a diagonal matrix that takes
into account the plane wave propagation from one metaline
layer to the next (see [34]), and 8wm is a diagonal matrix
containing complex exponentials associated with the phase
shifts induced by the meta-atoms on the m-th layer. The
diagonal matrix 8wm can be expressed as 8wm

= exp(jφw
m
),

with φw
m
being another diagonal matrix containing the phase

shifts related to wm.
For the purpose of comparing the mentioned model with

the model proposed in Sec. V, we use a 4f system imple-
mented by metalines. Fig. 6(a) shows two different electric
field inputs imposed on the 4F system. Its outputs, created
with 3D FDTD simulation and also with the two mathemati-
cal models, are compared as shown in Fig. 6(b) and Fig. 6(c).
As is evident in Fig. 6, the first mathematical model follows
the simulation more closely than the second.

VI. RESULTS
A. DESIGN OF OCNN FOR PATTERN CLASSIFICATION
In this study, the effectiveness of an OCNN for pattern
recognition tasks is demonstrated. The network is trained
to recognize letter patterns of ‘X’, ‘Y’, and ‘Z’ using a
simple architecture consisting of one convolutional layer and
one fully connected layer. The convolutional layer comprises
two metalenses and one adjustable metaline, each of which
has 135 phase shifters. To account for the pseudo-periodic
assumption and improve the mathematical model’s accuracy,
every threemeta-atoms are considered as a single cell of equal
length [11]. Each layer has 45 learnable parameters, and the
inter-mataline distances are set to 100µm.

To evaluate the performance of the OCNN, a dataset of
binary letter images with amplitude flipping in random pixels
is used. The two learnable metalines are pre-trained using
24,000 such matrices, and then the OCNN is trained using
the TensorFlow framework. The network’s testing accuracy is
evaluated using an additional 3,000 datasets, and it is found
that the letter classifications are predicted with an accuracy
of over 99%. The network achieves this level of accuracy in
only two epochs, as shown in Fig.7(a).

After the phase masks for the two metalines have been
learned, the length of each meta-atom is determined using
the approach described in Sec. II. The performance of the
network is then evaluated by detecting the output signal after
it exits the final metaline and propagates a distance of 100µm
until it reaches the output line of the network, which consists
of three detector regions arranged in a linear configuration.
Each detector is assigned to a specific letter, and the length of
each detector is set to 15µm. Our experimental results demon-
strate the effectiveness of our OCNN for pattern recognition

FIGURE 6. The figure depicts a comparison between two mathematical
models based on metasurfaces. In panel (a), the input of a 4f optical
system with a (100µm) focal length created by metalines based on SOI.
In panel (b), the output of this system is calculated using the
mathematical model presented in Sec. V and also compared with the
results obtained from 3D FDTD simulations. Similarly, panel (c) shows the
system’s output calculated using the model presented in Sec. V-A and
compared it with the output obtained from 3D FDTD simulations.

tasks, and our approach shows promise for developing more
advanced optical computing technologies in the future.

B. DESIGN VERIFICATION
We used numerical simulation with the Lumerical Mode
Solution 2.5D variational FDTD solver to validate the elec-
tromagnetic model of the OCNN. The key characteristics of
the OCNN structure are summarized in Table 1, and Fig. 9b
shows three examples of the optical field intensity distri-
bution generated by the implemented network. The output
plane, located 100µm away from the last metaline, is divided
into three regions corresponding to the three channels of
classification results, namely up, middle, and down, which
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FIGURE 7. (a), the blue line represents the mean squared error (MSE) loss
on the training set, while the red line represents the accuracy of the
optical convolutional neural network (OCNN) at each epoch during the
learning process for a pattern recognition task. (b) shows the confusion
matrices obtained from finite-difference time-domain (FDTD) simulations
for the pattern classification system.

TABLE 1. Characteristics of OCNN for pattern classification task.

correspond to the input letter patterns of ‘X’, ‘Y’, and ‘Z’,
respectively. When an input image of the letter ‘X’ is used,
the light intensity is highest near the spatial position of the
upper channel on the output plane. A detailed illustration of
the light intensity distribution along the output plane can be
found in Fig. 9c.

We evaluated the performance of the proposed OCNN
through numerical simulation, and the resulting confusion
matrix is presented in Fig. 7(b). The classification accuracy
was found to be 96%, which demonstrates the effectiveness
of the proposed design and its potential for various pattern
classification applications.

C. METASYSTEM SCALABILITY AND ACCURACY
The scalability of the design algorithm is examined using
a more complex system consisting of a modified National
Institute of Standards and Technology (MNIST) handwritten
digit database with 196-pixel inputs (original datasets are
784-pixel images). For this purpose, we numerically explored
the 1D metasystem’s computing capability by designing one,

FIGURE 8. (a), the blue line represents the mean squared error (MSE) loss
on the training set, while the red line represents the accuracy of the
optical convolutional neural network (OCNN) at each epoch during the
learning process for image classification on MNIST dataset. (b) shows the
confusion matrices obtained from mathematical Python simulations for
the handwritten digits classification system.

and Python simulations were used to assess the accuracy of
the output. To classify MNIST inputs, we train OCNN with
one convolution layer and two fully connected layers, each
with 300 learnable parameters, achieving an accuracy of over
89%. Figure 8(a) shows the cost values for the training set and
the accuracy values for the test set for each epoch throughout
the learning procedure, while Figure 8(b) demonstrates the
truth table for the MNIST classification task.

According to [35], the system’s accuracy dramatically
improves with the depth of the system (the number of
diffraction layers). In order to determine the sensitivity
of system accuracy to the number of layers, we train
OCNN with one fully connected layer and three ones,
while the one convolution layer remains fixed. As a result,
they achieve over 84% and 90% accuracy, respectively.
As anticipated, OCNN requires fewer learning parameters
compared with the current state-of-the-art metasurface-based
optical neural network to achieve approximately the same
accuracy. Table 2 provides a useful comparison between
the OCCN and previously reported optical neural network
schemes.

61734 VOLUME 11, 2023



O. Poordashtban et al.: Integrated Photonic Convolutional Neural Network Based on Silicon Metalines

FIGURE 9. (a) Not exact ‘‘x’’, ‘‘Y’’, and ‘‘Z’’ in high resolution. To provide OCNN with test and train data, these letters are down-sampled to
15-pixel images. (b) shows the input images used by the designed OCNN to calculate its performance. (c) displays the x − y electric field
distribution of the simulated OCNN, based on 2.5D variational FDTD simulations for the input letter shown in (b). (d) shows the output field
intensity obtained through electromagnetic modeling described in Section V. The red solid lines represent the output field intensity obtained
through electromagnetic modeling, while the blue lines represent the output field intensity obtained through Lumerical Mode Solution. Both are
shown at x = xoutput .

VII. DISCUSSION
As shown in Table 2, in contrast to the proposed
OCNN, which was implemented entirely optically, previous
optoelectronic works implemented the convolution layer
optically and the remaining parts of the designed networks
electronically. In these networks, electronically implemented
fully-connected layers with more degrees of freedom and
nonlinear activation functions play a significant role in the

accuracy of the networks; however, OCNN achieves reason-
able precision without these advantages.

Even though our structure is based on linearmaterials with-
out the equivalent of a nonlinear activation function within
the optical network, hybrid integration of active materials
can incorporate reconfigurability and nonlinear activation
functions into the metasystem platform. For instance, phase
change materials with a high refractive index contrast can
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TABLE 2. Comparison of neuron networks-based image classifiers.

fill those slots and offer sufficient phase tenability [36] for
a fully programmable metasystem. Some active materials
demonstrate highly nonlinear responses (like two-photon
absorption-related free carrier absorption or absorption sat-
uration) and are transparent at telecommunication wave-
length ranges; these materials can be utilized as nano-scale
activation functions in diffractive networks with solution
processing [37], [38].

Even when using linear optical materials to create a
diffractive deep neural network (D2NN), the optical net-
work designed by deep learning exhibits a ‘‘depth’’ benefit,
meaning a single diffractive layer lacks the degrees of free-
dom required for the same classification accuracy, power
efficiency, and signal contrast at the output plane that mul-
tiple diffractive layers can in tandem achieve for the task at
hand. For a linear diffractive optical network, the entire wave
propagation and diffraction phenomena happening between
the input and output planes can be compressed into a sin-
gle matrix operation; however, this arbitrary mathematical
operation defined by a number of learnable diffractive lay-
ers is unable to be carried out by just one diffractive layer
placed between the same input and output planes. Therefore,
multiple diffractive layers forming a D2NN demonstrate the
depth advantage, statistically perform better than a single
diffractive layer trained for the same classification task and
achieve greater accuracy, as also discussed in the supplemen-
tary materials of [13].

In the mathematical model used in this study, there are
some simplifications affecting accuracy. The assumption of
the periodicity of slots in each metaline is the first and
most significant factor that led to the model’s results not
matching simulation results. As described in Section I, phase
shifts of meta-atoms are measured where they are periodic,
whereas the lengths of slots along a metaline vary in OCNN.
In addition, transmission is presumed to be close to one,
and the back reflection of incident waves on metalines is
disregarded. In addition, the mathematical model neglects
the effect of the edges in each mtaline. In addition to the
primary factor affecting the accuracy of the mathematical
model, the approximation of the impact of the incident angle
of an input wave on each metaline with an exponential trans-
mission curve while its phase shift is ignored also has a minor
effect.

VIII. CONCLUSION
In conclusion, our work presents a novel passive all-optical
architecture for implementing a 1D OCNN using multi-
layer metasurfaces. This design offers several advantages,
including lower structural complexity and reduced imple-
mentation costs, enhancing its practicality for real-world
applications. With a compact size and small footprint, our
OCNN achieves an impressive accuracy of 96% on a similar
image classification task while utilizing significantly fewer
learnable parameters compared to state-of-the-art integrated
photonic metasystems. Furthermore, our proposed OCNN
exhibits scalability and robustness, demonstrated by its
accuracy exceeding 89% in handwritten digit classification.
The utilization of 1.55µm silicon-compatible technology
in our OCNN is particularly notable. This technology is
well-developed and widely used in various optical devices,
providing a mature platform for seamless integration with
other optical components and facilitating the implementation
of optical CNN kernels. This capability opens up exciting
possibilities for developing more complex all-optical systems
with applications in object recognition, natural language pro-
cessing, and portable devices.
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