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ABSTRACT Invertible color-to-gray algorithms are good alternatives for protecting color images in storage,
transmission, or limited-access environments. These approaches hide color information in a gray-scale
version of an image. Thus, illegal recovery of the original color becomes a challenging task, and only
authorized users can restore the colorized image. However, although the color is protected, the original
structure of the image remains vulnerable to illegal usage. In this paper, we present a reversible distortion
of the protected gray-scale image to make illegal reconstruction more difficult. In addition, we preserve
the general visibility of the original content. Furthermore, a visible imperceptible watermark is embedded
to protect ownership of the colorized image in public access. The watermark remains imperceptible in the
colorized image and reveals the logo of the owner when the image is protected. We propose different levels
of distortions obtaining mean PSNR qualities between 14.74 dB and 32.92 dB with respect to a reference
gray-scale image. Furthermore, the mean PSNR quality of the colorized images remains between 38.87 dB
and 41.55 dB.

INDEX TERMS Colorization, contrast enhancement, image distribution, image protection, invertible color-
to-gray, reversible data hiding, visible-imperceptible watermark.

I. INTRODUCTION

The widespread use of image capture devices, social media,
and online multimedia services has increased the generation,
transmission, and publication of color images. One of the
main concerns regarding stolen or published images is the
unauthorized use of their content such that security systems
may be required. In this regard, some solutions are proposed
by invertible color-to-gray algorithms. These approaches pro-
tect a color image by converting it into a gray-scale version
that contains the color information hidden. Thus, only autho-
rized users can extract the color information and obtain a
colorized version of the image. In this manner, the owner can
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share a gray-scale preview of the image content, and users
can decide to ask for the authorized key to completely recon-
struct the image. The objective is that the illegal attempt to
recover the original color from the protected image becomes
extremely challenging.

Invertible color-to-gray methods can be divided into
three main categories: subband embedding (SE)-based
methods [1], [2], [3], [4], [5], vector quantization (VQ)
schemes [6], [7], [8], [9], [10], [11], [12], [13], [14], and
convolutional neural network (CNN)/deep learning (DL)
approaches [15], [16], [17], [18]. However, some new
algorithms [19] may not fit the previous classifications.
SE schemes [1], [2], [3], [4] hide a down-sampled version
of the chromas in a subband transform of the luminance.
The frequencies of the subband to hide the color are selected
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to avoid reducing the quality of the luminance. However,
the loss of some high-frequencies and the reduction of the
chromaticity lead to blurring of the color and the lumi-
nance planes. VQ schemes [6], [7], [8], [9], [10], [11], [12],
[13], [15], [16], [17], [18] offer a different approach by
generating a color palette and an index image. The former
is also a gray-scale version image, and its indexes point
to the color of the palette that corresponds to each region.
Therefore, the colorization is a table look-up process, which
is highly efficient. However, the hiding process consists of
embedding the color palette into the index image, that may
cause index information loss and a distorted colorization.
Finally, CNN/DL approaches [15], [16], [17], [18] uses a
big dataset to train a CNN. The network learns to generate
a gray-scale image with the color information both encoded
and hidden. Most of the CNN schemes generates a visual
encoding of the color, perceived as some pattern distortions
into the output image. However, some schemes such as [17]
have reduced considerable the visual distortions.

Invertible color-to-gray algorithms seek the highest possi-
ble qualities for the gray-scale and colorized images, simul-
taneously. The gray-scale image protection consists of the
difficulty of the illegal color extraction and colorization.
However, although color is not available, the structural infor-
mation is vulnerable to illegal usage since it is visible in the
protected image. In this regard, cryptography may be used
to eliminate the visual structure. Cryptography is one of the
most extreme schemes for content protection because it can
generate useless images with no visual meaning. However,
many applications require the protected image to partially
show the content of the original information.

Therefore, we propose a new invertible color-to-gray
method that yields distorted, but recognizable gray-scale
images. The key idea is to increase security and offer inter-
mediate protection between cryptography and the previous
invertible color-to-gray approaches. Thus, illegal restoration
becomes more difficult because it is necessary to recover both
color and structure. Therefore, we propose two modes based
on the desired security level. The balanced mode increases
the contrast of the gray-scale image using a reversible data
hiding with contrast enhancement (RDH-CE) algorithm [20].
This makes it more difficult to recover the original luminance
illegally because the contrast of the protected image is mod-
ified. The distorted mode further alters the structural qual-
ity of the protected image, with uneven contrast luminance
and block effects. This is achieved by increasing the hidden
load in image blocks. Finally, an optimization process [21]
adjusts the algorithm parameters to obtain balanced and dis-
torted results. The decolorization-colorization algorithm is an
improvement of the proposed scheme in [22]. Additionally,
to protect the ownership of the color image, we applied a visi-
ble imperceptible watermark. A watermarked image contains
the logo of the owner, which is embedded in the original lumi-
nance of the image. The watermark is embedded with weak
strength, so the logo is not visible at first sight in the colorized
image. The logo is then visually revealed with the contrast
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increment when hiding the color information. Namely, the

imperceptible logo remains when the color image has public

access, and the owner can be identified anytime the contrast
is incremented.

The contributions of this paper are summarized as follows:
1. We propose a new invertible color-to-gray method that

distorts a protected gray-scale image to hinder the illegal

reconstruction of the original image structure.

2. The present study offers two levels of distortion that can
be selected according to the application.

3. We achieve to integrate a visible-imperceptible water-
mark for authentication with the invertible color-to-gray
protection.

4. Image distortion increases image security in storage,
transmission, and limited access, and the watermark pro-
tects ownership in public access.

The remainder of this paper is organized as follows. A sum-
mary of the main related works are presented in section II.
The expected results, general descriptions, and detailed tech-
niques are presented in section III. Section IV presents and
discusses the results. A discussion is presented in Section V.
Finally, the conclusions and future work are presented in
Section VI.

Il. RELATED WORKS

A. INVERTIBLE COLOR-TO-GRAY COLORIZATION
Decolorization-colorization and reversible data hiding are the
two main processes of invertible color-to-gray algorithms.
Firstly, decolorization separates both luminance and color
information of a color image. Then, the color may be coded
or compressed to be subsequently hidden into the luminance.
The result is a grey-scale image which is the protected ver-
sion of the content. Finally, in colorization stage the color
is extracted, decoded, and restored to obtain a colorized
image. The main objective of previous approaches is to obtain
the best quality possible for both gray-scale and colorized
images.

1) SE-BASED METHODS

SE-based methods substitute subband coefficients in the
wavelet transform of the luminance by down-sampled chro-
maticity. In [1], due to the high frequency alteration in the
wavelet transform, some interference pattern appears in gray-
scale image. However, this pattern makes the color recov-
ering robust to print-scan attacks. On the other hand, the
colorized image suffers from pattern visualization and low
color saturation, even without attack. Therefore, some post-
processing helps to reduce the high undesirable frequencies
and lack of saturation. Reference [2] describes a redundant
embedding process based on noise analysis to increase the
quality of the protected image. The proposal in [5] selects
the subbands with the least energy. Therefore, it achieves
a better gray-scale image quality. The results show a less
noticeable pattern in the protected image, and a better color
saturation in the colorized image. In [3], the limits of the
color values are hidden and used to recover the original
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color range. Therefore, the saturation improves considerably.
The embedding in [4] selectively scatters the color informa-
tion in non-consecutive subband coefficients. This way, the
gray-scale and color quality increases. Additionally, a ran-
dom generator key for distributing the information provides
additional security against illegal extraction.

One of the main characteristics of SE-based approaches is
the pattern interference in the gray-scale image. Most of the
pattern is then transferred to the colorized image, decreasing
its quality. Additionally, the down-sample process in the chro-
maticity causes a lack of saturation. Although most recent
works improve pattern and saturation, the achieved quality
may not be enough for more demanding applications.

2) VQ-BASED METHODS

VQ-based approaches generate a color palette and an index
image. The palette contains a reduced number of colors that
best represent the original colors. On the other hand, each
index in the image is the location of the palette with the
most adequate color for the corresponding pixel. Therefore,
the efficient colorization process comprises a simple table
search. The algorithm makes the index image being a gray-
scale version by ordering the color palette such that each
index keeps the same visual proportion to the luminance
values. Additionally, since the palette is necessary in coloriza-
tion, its color information is hidden in the protected image.
Proposal in [14] calculates a palette with 256 colors using
fuzzy c-mean approach. The palette is then hidden using LSB
substitution. The results show a gray-scale image with higher
contrast than the luminance plane. Authors in [8] improves
qualities of protected and colorized images by using a fast
quantization approach with K-means classifier for palette
generation, obtaining better quality in the colorized image.
Then, the color information is compressed to increase the
quality of the gray-scale image after LSB hiding. However,
the high contrast effect in the protected image remains. Sub-
sequent schemes take this contrast as an undesirable effect
and propose solutions to increase the similarity between the
gray-scale versions of the image and the luminance. Authors
in [7], proposes an energy function to generate a palette that
disappears the contrast effect in the luminance at a cost of
some false edges in the colorized image. Authors in [6],
reduces the false edges in [7] with a k-means clustering
with lightness constrains. The scheme in [9] substantially
improves colorized image quality by increasing the palette
colors to 512. Since the hiding payload increases, they replace
the LSB substitution by a RDH approach. RDH scheme
recovers the original index image reducing the possible incor-
rect indexing and increasing the color quality. In [11], error
diffusion method distributes color in a halftoning effect.
Therefore, the false borders caused by the limited color rep-
resentation is replaced by points pattern, which may be more
visually pleasing. Most schemes do not include an additional
security method, however, authors in [12] propose to embed a
fragile watermark for tamper detection. The watermark pro-
cess is capable of colorize the parts of the gray-scale image
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that were illegally altered. The scheme without watermark
improves the quality of previous schemes, and the watermark-
based approach does not affect considerably de quality of the
resulting images. Then, proposal [13] improves the results
in [12] by using a RDH method to hide the color information,
instead of the conventional LSB approach. Unlike [9], the
RDH algorithm is applied directly to the original luminance
instead to in the index image. This method increases the
quality of the colorized image since the original luminance
and the exact indexes are recovered.

The last VQ-based algorithms have achieved good quan-
titative qualities for the gray-scale and colorized images.
However, the decrease of the number of colors to 256 or 512 is
always a limitation resulting in false borders or halftoning
patterns. Despite these limitations, VQ-based algorithms con-
tinue improving and we consider three important contribu-
tions that may not have been sufficiently exploited. Firstly,
the high contrast of the gray-scale image achieved in [8] and
[14] are not considered a benefit. However, this may be an
additional security approach since the illegal reconstruction
of the image becomes more difficult. Secondly, we believe
that additional security approaches as the proposed in [12] are
necessary to cover security loopholes. The implementation of
such approaches may not be easy since they should not affect
considerable the quality of the images. Finally, we consider
that the RDH implementation in [9] and [13] has been a
right choice to recover the original information and improve
colorization. In the present proposal, we take into consid-
eration previous three benefits of VQ-based approaches: a
contrast increment, an extra security approach for ownership
authentication, and the implementation of an RDH algorithm.

3) CNN-BASED METHODS

In CNN-based schemes, a color image feeds the trained net-
work. The CNN generates a gray-scale image that contains
the encoded color information. Authors in [15] implemented
an encoder and decoder based on a vanilla U-net. The encoder
yields a gray-scale image with the encoded color displayed in
the form of subtle patterns. Then, the decoder converts those
patterns into color. The loss function comprises terms that
contributes to invertibility, gray-scale conformity and quan-
tization values of the color. In [16], a dual features ensemble
network is proposed. Additionally, different loss functions
are tested to know the contribution of each term. However,
we can see that the loss function can prioritize one of both, the
colorized or the gray-scale images. Therefore, incrementing
the quality of one decreases the quality of the other. How-
ever, the most equilibrated option is selected, and further
analysis is not achieved. Reference [17] trains a reversible
network using the wavelet domain. The approach consider-
able reduces the codification lattice which become visually
negligible in most of the gray-scale image. Additionally, the
quality of the colorized images is considerably improved.
Authors in [18] propose a generative adversarial network to
make the colorization process robust to JPEG compression.
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CNN approaches have shown a promising solution to
invertible color-to-gray problems. However, some patterns
may be found, and color blurriness are generated in some
details, such as edges. Since coding and hiding are included
in a unique step forward process of the network, the training
attempts to find the best equilibrium between decolorization
and colorization. Improvements are achieved by adjusting the
network structure, the conditions in the loss function, and the
training database. However, we believe that a modular struc-
ture such as VQ-based and SE-based approaches in which
colorizing and hiding have separate processes, may facilitate
the predictability of the results according to adjustments.

4) ADDITIONAL APPROACH

Some proposals may not fall within previous classification,
but they can yield good results. One of these approaches is
proposed in [19]. Firstly, the luminance and chrominance are
separated. Then, the chrominance planes are compressed by
JPEG2000 algorithm and hidden into the luminance. Two
hiding methods are tested, one RDH and the conventional
LSB substitution. RDH degrades more the gray-scale image,
but reversibility recovers the original luminance and yields
a better colorized image. However, RDH method is partially
discarded since does not have enough capacity to hide the
color information in all cases. Therefore, LSB substitution is
then recommended to hide the color information, obtaining
better qualities than previous approaches.

B. COLORIZATION

In general, colorization algorithms are used in three
main applications: image compression, image restoration,
and invertible color-to-gray protection. Image compression
approaches compress the color and the luminance separately
to generate a lower file size. Then, the color is decompressed,
and the luminance colorized. Colorization for image restora-
tion is used to edit a color image or to colorize an old image
with no color. Some algorithms automatically select the
palette and colorize the image. In other schemes, the desired
colors are defined in some representative pixels (RPs), and
the color is then expanded according with some conditions.
However, we consider that colorization schemes used in
invertible color-to-gray approaches have been designed sep-
arately without considering the colorization approaches for
compression and restoration.

In image compression and restoration, we can identify
two general groups of colorization schemes [23]. Some col-
orization schemes are primarily based on classical image
processing approaches, whereas others are based on CNNs.
CNN methods have become dominant since 2015 but because
they require large datasets, classical approaches are still of
interest.

The first non-CNN colorization method using predefined
colors in RPs was proposed in [24], for restoration. The
colorization stage comprises an optimization that propa-
gates each RP color with the support of luminance values.
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The proposal in [24] have been modified for compression
applications [25], [26]. However, some characteristics of
RP-based methods may hinder colorization. First, one RP
chrominance value may not adequately represent the origi-
nal values of all surrounding pixels. Second, one luminance
value may correspond to more than one color, causing a
mismatched colorization. Finally, propagation may cause low
color adherence to image borders. The optimization compen-
sates previous problems to obtain good quality with the least
possible color information. However, we consider that the
method described in [22] has not been fully explored and
can avoid the problems of methods based on RPs. Instead
of recovering a propagated color, the proposed method [22]
recovers a color signal that is similar to the original one
at each superpixel [27] segment. Owing to segment-based
processing, this approach exhibits good adherence to super-
pixel borders. Therefore, the proposed colorization scheme
was based on this approach. To improve the tradeoff between
color adherence and compression, we designed an improved
segmentation method. The proposed segmentation generates
large segments for redundant and small segments for further
detail.

Ill. PROPOSED SCHEME

The general purpose of the proposed algorithm is to hide the
color information of image / in its luminance channel. The
output is a gray-scale image Yc whose contrast is increased
with respect to the original luminance. Subsequently, in the
colorization process, the color information can be extracted
from the modified luminance, and the original information
can be recovered. Finally, the luminance is colorized using
the extracted information to obtain a colorized image I’ that
is visually similar to the original image. Fig. 1 shows an
example of this proposal. If we repeat the hiding process
with I’ as the input and apply the colorizing process to the
contrasted luminance Yc¢, we can recover the same colorized
image I’. Therefore, we can switch between the colorized
image I’ and the contrasted luminance Yc in a completely
reversible manner.

Color extraction ;56‘
and colorizing 1

—_
| 3 T |
Color hiding 1

PSNR =34.7 dB

FIGURE 1. Reversibility process between Yc and 1’ . The color image is
taken from COCO dataset [28].

In other words, a gray-scale version of the color image
can contain all the information required for colorizing itself.
This luminance is one channel in size and can be stored in
a local device or cloud service for subsequent sharing. If the
security of the storage medium is compromised and the image
is illegally extracted, it cannot be used normally because it
does not contain color.
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To increase the level of protection, we propose two addi-
tional methods that mainly affect the contrasted luminance.
These additional approaches give four security options,
as shown in Fig. 2. The first approach decreases the struc-
tural quality of the contrasted luminance when hiding the
color information, making unauthorized reconstruction more
difficult. This technique can be achieved by defining the
objective function of an optimization method, such that the
luminance quality decreases. This function defines the trade-
off between the quality of the colorized image and contrasted
luminance. In the distorted mode, we define the function
such that the colorized image has the best possible quality,
whereas the contrasted luminance is distorted. In the balanced
mode, the qualities of the colorized and contrasted images
increase simultaneously. In the second approach, visible-
imperceptible watermarks with the owner logo are embedded
into the color image. The watermark in the colorized image
is not visible at first sight and is visually revealed in the
contrasted luminance, when the color information is hidden.
Thus, the owner logo toggles between hidden and revealed
when the image toggles between colorized and gray-scale,
respectively. Thus, the copyright of the colorized image can
be detected outside the storage device in case of unauthorized
usage. Fig. 2. shows examples of the contrasted luminance for
each possible solution of the proposed method. We can see in
the second column the distortion effect, and a magnification
is achieved in the second row to see that the watermark is
reveled. On the other hand, Fig. 3 shows the colorized images
corresponding to the four security options of Fig. 2. The
objective is that four colorized images are qualitative and
visually similar, with high quality. Therefore, it is important
to notice that the visual and PSNR qualities of the colorized
images are not considerably affected no matter the security
mode. Furthermore, the watermark is hidden at first sight
even with magnification.

In the following subsections, we first present a general
description of our proposed algorithm. Then, we describe in
detail the image segmentation, correction of segmentation,
colorization process, proposed RDH-CE method, and opti-
mization scheme implementation. Finally, a visible impercep-
tible watermark is described.

A. GENERAL DESCRIPTION

The basic decolorization and colorization processes are
shown in Fig. 4(a) and Fig. 4(b), respectively. As shown in
Fig. 4(a), the color image I in RGB color space is converted
into the YCoCg color space as follows:

111
Y i1 72 4 R
_| 1 1
Co|l=| 1 0-1 G|, (1)
Ce 11 _1| LB
i7 71

The luminance Y is divided into segments Segs =
{Seg, Seg,, ..., Segy using a specific segmentation algo-
rithm. Then, four coefficients per segment, two for Co and
two for Cg, are calculated to approximate the chrominances
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Balanced Distorted

Without
imperceptible
watermark

ik
XA
PSNR = 16.04 dB

psss o~

With
imperceptible
watermark

FIGURE 2. Contrasted luminance with color information hidden for the
four security solutions.

Balanced Distorted

Without
imperceptible
watermark

With
imperceptible
watermark

PSNR =36.26 dB PSNR = 37.37 dB

FIGURE 3. Colorized images for the four security solutions.

Co and Cg using the luminance Y. The sets of coeffi-
cients are defined as Ao = {Aoi,Ao0y,...,Aon},Bo =
{Bo1, Bos,...,Boy for the Co channel and Ag =
{Agl,Agz, .. .,AgN} ,Bg = {Bg,,Bg,, ..., Bgy for the Cg
channel, where each element in the set corresponds to each
segment in Segs. Fig. 4(b) shows the colorizing process,
where the luminance Y and the coefficients in Ao, Bo, Ag and
Bg are used to obtain the approximated chrominances Co” and
Cg’, and obtain the colorized image I’.

The basic processes shown in Fig. 4 are used for the com-
plete colorization in Fig. 5. As shown in Fig. 5(a), the color
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RGB to
YCoCg

Color
approximation

R

Coefficients of

. R [— YCoCg to

approximation RGB

e E5 =

= i
(a) (b)

FIGURE 4. Basic (a) decolorization and (b) colorization processes.

image I is transformed into the color space YCoCg. Second,
the luminance component Y is segmented in LSC superpix-
els [29] § = {S1, 52, ..., SN}, and the number of segments
is then reduced in cluster regions C = {Cy, Ca, ..., Cy},
where M < N, using the approach described in Section III.B.
In our proposed colorizing method, we assume a high corre-
lation between luminance and color. Nevertheless, this may
not always occur; therefore, if we colorize each segment of
luminance Y, the colors of some areas will not be recov-
ered properly. To address this problem, an evaluation process
is performed to find and correct faulty segmentation using
color image / and the segments in S and C. The correction
method decolorizes and colorizes the image according to the
procedure shown in Fig. 4. First, colorization is achieved
using cluster C segmentation, the colorized image is eval-
uated, and a new segmentation is proposed. The second
evaluated segmentation includes the clusters together with
the faulty superpixel areas, and the result returns superpix-
els that improved and superpixels that did not. The latter
superpixels are then divided into two segments to create the
final segmentation Segs. In addition, the correction algorithm
returns three data points to recover the final segmentation
without any evaluation. That is, the superpixel indexes Séd“‘
that are faulty and improved in colorization, the indexes S ’Cd"
of the superpixels that are segmented into two parts, and the
segmented pixels SZXIS of the segmentation applied to the set
of superpixels indicated in S?x . A detailed description of
segmentation correction is provided in Section III.C. Once
we obtain the final segmentation Segs, we calculate the coef-
ficients Ao, Bo, Ag and Bg according to the colorizing method
described in Section III.D. The coefficients are hidden in
luminance Y together with S gjx ,S gjx and S ’Cd" using the RDH-
CE embedding method described in Section IIL.E, obtaining
the contrasted luminance Yc.

On the other hand, Fig. 5(b) shows a block diagram of the
colorizing process. First, we applied the RDH-CE extraction
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Superpixels
and clusters

=]

Correction of
segmentation

[ Co | Cg ] [ Segs ] [ sﬁ*,s‘g“,s‘g" ]

—> y
Coefficients of

approximation

»  RDH-CE hiding  [¢—

(@)

RDH-CE extraction

Implementation
of corrected ~ [¢
segmentation

Color
approximation

Cg’ | Co’

YCoCg to
RGB

(b)
FIGURE 5. (a) Color hiding method. (b) Color extraction and colorizing.
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algorithm to the luminance image Yc, recovering the original
luminance Y, the superpixel information S édx, S éfb‘ and SgXl,
and the sets of coefficients Ao, Bo, Ag, and Bg. Second, the
image Y is segmented to obtain the same superpixels S and
clusters C obtained in the hiding stage. With the recovering
information Sic‘ix, Sfjdx and Séf’x we can generate the final
segmentation Segs. For each segment in Segs of luminance
Y, the recovered channels Co’ and Cg’ were calculated using
the coefficients in Ao, Bo, Ag, and Bg. Finally, the luminance
Y and chrominance Co’ and Cg’ are transformed into the
color space RGB to obtain the colorized image I’, with the
following equation:

R 11 -1 Y
Gl=|1011]-|Co], 2)
B 1 —1-1 Cg

The proposed scheme is based on some previous algo-
rithms. In the protection stage, we separate the color infor-
mation from the luminance based on the linear approximation
reported in [22]. Then, the color information is hidden in the
luminance using the RDH-CE approach described in [20].
During the hiding process, the luminance contrast is altered
to hinder the illegal recovery of the original color image.
Finally, the parameters of the previous schemes are opti-
mized using the GWO algorithm proposed in [21] to vary
the protected image distortion. To protect the copyright of the
image, the user can embed into the original luminance some
visible-imperceptible watermarks [30] that contain the logo
of the owner. The watermark was revealed using the RDH-
CE hiding process. All previous protection stages are reversed
by extracting the hidden color information, recovering the
original luminance contrast, and obtaining a colorized ver-
sion of the original image. Again, the watermark is visually
imperceptible in the recovered colorized image.

Although our proposal is based on previous algorithms,
they were modified to improve results. Fig. 6 shows the
algorithms that were adapted or modified (marked with an
asterisk *) with respect to the original versions. Firstly, the
objective function of GWO method is defined such that the
quality of the protected image is modified. Additionally,
there are some differences between the proposed colorizing
scheme shown in Fig. 1 and the method described in [22].
The color space selected is YCoCg instead of the personal-
ized YC1C; defined in [22]. Then, the segmentation in [22]
comprises a bilateral filter, followed by the SLIC superpixel
scheme [27]. In contrast, our segmentation stage comprises
a total variation [31] and Laplacian filter, followed by an
LSC superpixel method [29]. In addition, the segmentation
process is improved by including a clustering approach and
a method that detects and corrects faulty colorized segments.
Then, the color information was binarized using a precision-
based scheme instead of the Huffman coding used in [22].
Finally, although RDH and watermarking algorithms are not
modified individually, we solved some problems to make
them coexist. Specifically, the watermark approach must not
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Invertible color-to-gray
GWO optimization for distortion*

— Decolorization-colorization
Color space*
Filtering*
Segmentation*
Color binarization*

— RDH

*

—— Visible-imperceptible watermarking

FIGURE 6. Algorithms used and improved (*).

alter the capacity of the RDH algorithm so the color can fit in
the luminance.

B. SUPERPIXEL AND CLUSTERING SEGMENTATION

To further improve the segmentation adherence to the bor-
ders, we implement a preprocessing to the image before
superpixel segmentation. Preprocessing consists of two fil-
ters. First, the total variation method [31] filters the luminance
image by removing high frequencies with low degradation
at the borders. This helps obtain smoother superpixel shapes
in high-texture areas. Two parameters must be defined: the
number of iterations 7i and the amount of denoising A,
which is commonly in the range [0.01, 10] and is more
aggressive with fewer values. Second, the local Laplacian
filter method [32], [33] increases the local contrast and helps
emphasize borders in low-contrast areas. The filter has three
parameters: o € [0, 1] controls the amplitude of edges, «
typically in [0.01, 1] adjusts the contrast, and 8 € [0, 1] con-
trols the dynamic range. Both preprocessing algorithms were
selected because of their good border preservation.

In the present proposal, we segmented the luminance chan-
nel of the image into superpixels using the LSC method [29].
The LSC is a clustering-based superpixel algorithm that gen-
erally exhibits good boundary adherence and pixel regularity.
In LSC, the desired number Ns of superpixels can be selected,
and the algorithm adjusts the boundary adherence with a
defined parameter r in the common range [0.05, 0.3].

In the hiding process, it is important to have fewer
segments to reduce the quantity of the color information.
Therefore, a clustering method is proposed to connect the
superpixels and reduce the number of segments. To initialize
the clustering, the first cluster is equal to the first superpixel
area. The cluster is grown by including adjacent superpixels
that are similar to the current cluster. In other words, if the
difference between the means of the superpixel and cluster is
less than the similarity threshold th, the superpixel is included
in the cluster. The current cluster continued to grow until no
more similar superpixels are found. The next cluster is the
next superpixel that does not belong to a cluster and grows
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according to the previous description. The iterative process is
completed when all the superpixels belong to a cluster.

To facilitate adjacency detection, we propose generating
a graph of superpixels represented by an adjacency matrix.
Each element of the adjacency matrix a in position (i, j) is
calculated as follows:
. 1, if superpixels i and j adjacents, and i # j
a. ) = 0 otherwise

3

If we want to know which superpixels are adjacent to
superpixel i, we find each position j in the adjacent matrix,
where a(i, j) = 1. Algorithm 1 presents the pseudocode of
the clustering process.

Algorithm 1 Superpixel Clustering

Inputs: Luminance Y, superpixels S and threshold th
Outputs: Clusters C
Create the adjacency matrix a of superpixels
For each superpixel
If the superpixel is not assigned to any cluster
Create a new cluster equal to the current superpixel
continue := True
While continue = True
Use the adjacency matrix to identify the adjacent superpixels
to the cluster
For each adjacent superpixel
Calculate the mean intensity of the adjacent superpixel
Calculate the mean intensity of the current cluster
Calculate the difference d between the mean intensities of
the superpixel and current cluster.
Add to the cluster area the superpixel area if complies with
ld| < th
end For
If nonadjacent superpixel complied with |d| < th, then
continue = False
end While
end If
end For

Total Laplacian
Variation Filter

Superpixel
Segmentation

Superpixel
Clustering

FIGURE 7. Luminance segmentation.

Fig. 7 shows the general process for image superpixels
and clustering segmentations. It is important to note that
preprocessing obtains segmentations C and §,and must not
affect the original luminance Y where the color information
is hidden.

C. FAULTY SEGMENTS DETECTION AND CORRECTION

The colorization process can be performed using superpixels
or clusters. However, the recovered colorized image may
contain artifacts or visual effects that do not correspond to the
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original image. The reason for this is explained by the images
shown in Fig. 8. Figs. 8(a) and (b) show images of the COCO
database [28] and a zoomed area, respectively. In addition,
Fig. 8(c) shows the luminance of the zoomed area, where
we can see how different colors may yield similar luminance
values. Because segmentation is applied to luminance, the
two colors may not be distinguished properly, and some
segments may be inadequate for colorization.

(©) (©

FIGURE 8. (a) Color image. (b) Zoomed area. (c) The luminance of the
zoomed area.

Figs. 9(a)—(c) show the superpixel, clustering, and
final segmentation, respectively. The final segmentation
is obtained using the proposed correction algorithm.
Figs. 9(d)—(f) show the colorization of the three previous
segmentations. Finally, Figs. 9(g)—(i) show the completely
colorized images with the PSNR quality metric.

(b)

PSNR =31.03 dB PSNR =26.74 dB

(® () )

PSNR = 34.40 dB

FIGURE 9. (a-c) Segmentation, (d-f) colorized region, and (g-i) colorized
image by using superpixels, clusters, and improved segments,
respectively.

To obtain the final segmentation, we proposed using both
superpixels and clusters in a two-step process. First, the
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luminance is colorized using the basic scheme shown in Fig. 4
with cluster segmentation. The areas of the superpixels that
were not properly colorized are detected and included in clus-
ter segmentation. Second, superpixels that cannot improve
after colorization when included are detected and segmented
into two parts. This is because these superpixels do not
improve because they contain the image borders.

Fig. 10(a) shows the process used to obtain the final seg-
mentation. The inputs of the process are color image /, super-
pixels S, and cluster C. The output includes the indexes Sédx

of the faulty superpixels Sp to be included, the indexes Sic‘ix
of the faulty superpixels S¢ to be segmented, and the binary
segmentation S‘ZXZ of the superpixels S¢ to obtain the Sp
segmentation.

We find the faulty superpixels using the following steps.
First, we achieve the color approximation and colorizing
schemes shown in Fig. 4 by using cluster C for colorizing
segmentation. Then, the colors of all superpixels S in col-
orized image I’ are compared with the colors of original
image /. The comparison consists of calculating the mean
square error (MSE) MSEo between the chrominance Co val-
ues in / and I’ in the superpixel regions and the MSE MSEg
between the chrominance Cg values in 7 and I’. A superpixel
is considered faulty or non-well colorized if any of the errors
MSEo and MSEg are greater than the normalized thresholds
tho and thg, respectively, defined as follows:

tho = (thy + thy) - (maxo — mino) + mino,
thg = (thy + thy) - (maxg — ming) + ming, “4)

where maxo and mino are the maximum and minimum values
MSEo for all superpixels, respectively. Similarly, maxg and
ming correspond to values MSEg. Values th; and thy control
the thoroughness of the evaluation. For the first superpixel
evaluation, th; # 0 and thy= 0.

Subsequently, the areas of the detected faulty superpixels
S4 are removed from the areas of cluster C, resulting in cluster
Cy4. The new coefficients approximation and the colorizing
process are achieved with the new segmentation formed by
the intersection S4 U Ca. The resulting colorized image I’ is
evaluated in the areas of each faulty superpixel in S4. The
superpixels in S4 are then separated into two sets: Sp and Sc.
Sp contains superpixels that improve the quality according
to the thresholds in (1), and S¢ contains superpixels that do
not improve. The thresholds in (1) must be incremented to
make this second evaluation stricter; therefore, th; 7% 0 and
thy = 0. Finally, superpixels in Sc are segmented into two
parts to obtain the set of segments, Sp. Segments Cy, Sp,
Sc and Sp are represented in cyan, yellow, red, and white,
respectively, in the block diagram of Fig. 10(a) and in the
color image of Fig. 10(b). The information Sp and S¢ of the
segments are necessary for the final segmentation recovery
and must be hidden in the luminance using the RDH-CE
process. To reduce the amount of information, we assign the
number (index) of superpixels in S4 that belong to Sp and Sc,
to the vectors Sédx and S gix, respectively. Both vectors were
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Removing S,
superpixels
from C
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Colorizing
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Detecting faulty
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Indexes of Pixels in
Sp and S¢ segmented Sc

E],

(b)
FIGURE 10. (a) The process to obtain the final segmentation in the color

hiding stage. (b) Final segmentation with different colors for C4 (cyan),
Sg (yellow), S¢ (red) and Sy (white).

then binarized and concatenated to the information hidden
in the luminance. In addition, a binary vector S’éxz contains
pixels that belong to the first and second segments of the
segmented superpixel Sp.

Fig. 11 shows the process for recovering the final seg-
mentation Segs. Clusters C and superpixels S were obtained
from luminance. The superpixels S4, Sp and S¢ are identified
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POHE

Generating faulty
superpixels

GICIG

A N
Removing S,
from C

| Final segmentation C,US,US, |

FIGURE 11. The process to obtain the final segmentation in the colorizing
stage.

Segmenting S¢

using the indexes S g‘lx and § glx . Then, the superpixel S4 areas
are removed from cluster C to obtain the segment C4. The
superpixels in Sc are segmented into two parts using the
binary information in S?d. Finally, the final segmentation
Segs is defined as the union of the sets Cy4, Sp and Sp.

Segmentation of the superpixels S¢ was achieved using
the k-means algorithm. In a superpixel, the vector [co, cg]
for each pixel contains two elements corresponding to its Co
and Cg channel values. We then define two initial k-mean
centroids: [40, 40] and [0, 0]. Finally, the k-means algorithm
assigned each pixel vector to one of the k-means segments.
We do not use threshold-based segmentation because we
would require calculating Co and Cg thresholds separately
and implementing post-processing to find one threshold.
In addition, a superpixel may contain a few pixels, which may
hinder the threshold calculation. Therefore, we selected the
well-known k-means solution, which separates pixels using
Co and Cg values together.

Superpixels information

Included superpixels | Segmented superpixels

|
bS>xnS; bits | 4 bits 24 bits

bSs | nss | S

4 bits 24 bits

1
|
[
bS;xnS; bits |

bSc | nsc | s | s

FIGURE 12. Binary string that contains the superpixel information.

The information to be hidden is organized as shown in
Fig. 12. bSp is the necessary number of bits to represent each
superpixel index in § gdx, nSp is the number of elements in
S l";dx, bSc is the necessary number of bits to represent each
superpixel in S, and nS ¢ is the number of elements in S éd".
Slgd is a binary vector whose elements are the segmentation
Sp of the superpixel Sc. The number of bits in S‘éxz belonging
to each superpixel is given by the number of pixels in the
superpixel.
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The numbers of necessary bits are calculated as follows:

bSp = [log, (maxSp)]| .
bS. = (logz (maxSC)—l , 5)

where maxS p and maxS ¢ are the maximum superpixel index
inS gd" and S szx , respectively. [-] is the nearest integer greater
than or equal to the argument,

D. COLORIZING SCHEME

The color information of each segment is extracted and com-
pressed as follows: Considering n pixels in a segment, the
n x 1 column vector Y contains all luminance values, and the
vectors C, and C, contain the corresponding chrominance
values. The objective is to find two scalar values, A and B
that approximate the chrominance values from luminance ¥
as follows:

¥ =A+BY, (6)

where C,’ can be any chrominance approximation vector C,’
or Cy'.

The simple linear regression problem in (6) can be solved
by minimizing the sum of the squares of the differences
between the values in any original chrominance vector C and
linear function Cy’. The solution is commonly found by the
ordinary least squares (OLS) method [34] using the following
matrix operation:

[2} = (ngz)_l Ylc,. %)

where Yo is an n x 2 column vector, the first column is a
vector of ones, and the second column contains the luminance
values Y.

The A and B coefficients of each segment for Co channel
are included in the sets Ao and Bo, respectively. Similarly, the
coefficients for Cg channel are included in the sets Ag and Bg.
The coefficient information is then binarized and hidden in
the luminance. Therefore, we must binarize the coefficients
such that the amount of data fits the luminance. However,
we must maintain the precision of the coefficients sufficiently
to obtain good color quality in the colorized image. There-
fore, the precision step is a parameter that controls the size of
color information.

For clarity, the example in the following description is
referred to as coefficient A, note that the process can be
applied to any coefficient B. The precision of a set of values
A is defined by the step value P4, which is the difference
between a set of rounded values. The objective is to reassign
each coefficient A to the nearest value in the rounding set. Itis
important to note that the rounding values were organized to
include zero. Thatis, if P4 = 0.2 then the rounding values are
in the set { ... —-04, —-0.2,0, 02,04, --- } For example,
if A = 2.345 and P = 0.1, the recovered value A’ is rounded
toA’ = 2.3, and if P4 = 0.02, then A’ = 2.34.

The steps to transform a coefficient A to a binary value are
the following:
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1. The value A is divided by P4 and the result is rounded to
the nearest integer, as shown in (8). This step transforms
value A into integer A;.

A = d A 8
| = roun (P—), (8)

A

2. Obtain the minimum minA; among all A; values and sub-
tract it from each A; value, as shown in (9). This operation
shifts all integers A; to remove negatives. Therefore, Ap

values are in the range {0, 1,2, ..., maxA,} with maxAp
as the maximum of all Ap values.
Ap = Ar — minAj )

3. Thus, integer binarization is applied to each integer Ap
using L number of bits defined as follows:

L= (logz (maxAp)—| , (10)

where [-] is the nearest integer greater than or equal to the

argument.

Fig. 13 shows a numerical example of the binarization and
recovery of coefficients Ao.

Stage (Eq.) Example

Precision Step P=02

Coefficients Ao= 113 -0.8 05]

Integers (8) Ao=1[7 -4 3], mind;=-4
Positives (9) Aop=[11 0 7], max4,=11
Binary length (10) L=4

Binary representation 1011 0000 O111

Positives recovered Ao,’=[11 0 71

Coefficients recovered (11) Ado’=[1.4 -0.8 0.6]

FIGURE 13. Binary string with the color coefficients information.

The binarization process is applied to each element in the
sets Ao and Ag, separately, with the step value P4. Similarly,
the elements of sets Bo and Bg are binarized using a different
step value, Pp. All the information is concatenated, as shown
in Fig. 14. The final binary string is a part of the information
hidden in the luminance.

Binary color information

Crominance channel Co | Crominance channel Cg

Information Information

|

|

1 |

! 67 bits LxN bits 67 bits LxN bits | 67 bits LxN bits 67 bits LxN bits !

Side 6 Side Bo | Side | Ag | Side | Bg

f
I

I S

| B

I N

! 24bits 12bits_ 16bits 15 bits

| N l L | minA, l maxAp I

FIGURE 14. Binary string with the color coefficients information.

The information required to recover the approximated
coefficients in Ao and Ag is the number of segments N, maxi-
mum length L, step P4, minimum value minA; and maximum
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value maxAp. The recovery process consists of extracting
binary information from the luminance, calculating L from
(10), and extracting N values of length L from the string. Each
binary substring is then transformed into a recovered decimal
integer A,. Finally, each recovered coefficient A" is calculated
as follows:

A" = (Ap' + minA;) - Pa, (11)

Similarly, the recovery of the coefficients in Bo and Bg is
achieved by using their corresponding number of segments N,
maximum length L, step Pp, minimum value minB; and
maximum value maxBp.

E. REVERSIBLE DATA HIDING WITH CONTRAST
ENHANCEMENT (RDH-CE)

To the best of our knowledge, the first method to achieve
RDH-CE has been reported in [35]. One of the last approach
reported in [20] has a good preprocessing technique, which
decreases the size of the side information for removal, reduces
distortions to the image, and requires only one parameter H.
The binary information is hidden in the image by shifting H
times to the bins of the image histogram. The color infor-
mation and segmentation data are hidden by using RDH-CE
reported in [20] however, the information is hidden irregu-
larly in the image according to the three hiding stages shown
in Fig. 15(a). The first part of the information is hidden in
areas with visible imperceptible watermarks when they exist.
This is because we can increase the watermark visibility in
the luminance by concentrating the hidden payload in these
block areas. To increase the contrast effect, the RDH-CE [20]
algorithm is applied many times until the capacity of the
watermark block is reached. Second, the next part of the
information is hidden in the entire image. Finally, the image
is divided into F' x F non-overlapping blocks, and the rest of
the information is hidden in each block. In [36], it is shown
that the capacity and quality of the marked image can be
increased by applying RDH embedding in blocks instead of
in a complete image. If the information is not completely
hidden in all blocks, block division and hiding are iteratively
repeated until all data are hidden. By contrast, Fig. 15(b)
shows the inverse process. As expected, we must extract the
hidden information backward from the image blocks, the
entire image, and the watermark blocks, respectively.

Some information is required for reversibility, the water-
mark block positions, the number of iterations in watermark
blocks, the total number of hiding processes in image blocks,
and the length of the hidden binary information. This infor-
mation can be hidden with colorization and segmentation
information, or as part of an external key for recovery. The
second option was used to obtain the results.

One characteristic of embedding in image blocks is that
block artifacts may appear and increase at each embedding
iteration, resulting in a marked image, as shown in Fig. 16(a).
To diminish these artifacts, we propose an approach described
in [37]. First, we select a small number H of histogram
shifts to hide the information in the blocks. Second, we shift
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FIGURE 15. (a) Proposed data hiding to increase capacity and quality.

(b) Proposed data extraction.
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(b)

(b)

FIGURE 16. Enhanced luminance with color hidden (a) without block
shifting and (b) with block shifting.

the block positions at each embedding iteration to create an
embedding in a different block. For example, for the first
hiding iteration, we do not shift the positions of the blocks.
Then, for the second iteration, the block positions are shifted
vertically and horizontally to 1/2 their vertical and horizon-
tal sizes, respectively. The third hiding iteration is achieved
on the blocks shifted by 1/4 of their size, and so on. The
shifting ratios for the blocks change at each iteration with the
sequences 0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16,
7/16, . ... This approach ensures that the block mesh is always
different, and the borders of the blocks do not overlap and
sharpen. Fig. 16(a) shows the result of RDH embedding when
using H= 62, F= 4 and without the block-shifting method.
Fig. 16(b) shows the result of RDH embedding with H= 3,
F= 4, and with the block-shifting approach, we can see that
block artifacts are considerably reduced. Using this approach,
we can vary the quality of the contrasted luminance.

F. GREY WOLF OPTIMIZER (GWO) FOR

PARAMETERS OPTIMIZATION

The GWO algorithm was first described in a previous
study [21]. This optimization method is inspired by the hunt-
ing behavior of wolfs, which follows the members with the
highest hierarchy when chasing prey. The optimization pro-
cess tunes the parameter values of the algorithm at each iter-
ation to obtain better results. The parameters of the optimizer
are the number of agents, number of iterations, values to be
tuned, range of these values, and the objective function. The
number of agents selected for the GWO optimization is 35.
Additionally, the number of iterations is initially defined as
100; however, the results show that fewer iterations may
be acceptable according to the application. Table 1 lists the
parameters of all the processes that achieve color hiding.
The tunable parameters contain the optimization range, and
the nontunable parameters are indicated. The proposed ranges
were estimated experimentally over some images and applied
to the full test dataset. To demonstrate the effectiveness of the
values, Table 1 reports the ranges obtained in the experimen-
tal results of Section IV for all test images. The results were
obtained for both optimization modes and 100 iterations.
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TABLE 1. Tunable and non-tunable parameters.

Experimental range

Process Symbol Description Range
Distorted Balanced
A Amount of denoising in total variation [0, 3] [0.57,2.82] [0.42,2.93]
Ti Iterations (non-tunable) 100
Filtering Edge amplitudes of local laplacian filter [0, 1] [0,0.50] [0.01,0.94]
Contrast of local laplacian filter [0, 3] [0.08,2.60] [0.05,1.99]
B Dynamic range of local laplacian filter [0, 3] [0,2.78] [0.02,2.40]
s el Ns Ratio between number of superpixels and total of pixels [0.004, 0.05] [0.01,0.04] [0.01,0.04]
uperpixe
T Superpixel adherence [0.01, 1] [0.02,0.99] [0.05, 0.99]
Clustering th Similarity threshold to join segments [1,30] [1,7] [1,14]
c : thy Factor of color error for the first superpixel evaluation [0.01, 0.5] [0.01,0.14] [0.01,0.5]
orrection
th, Factor of color error for the second superpixel evaluation [0,0.5] [0,0.11] [0,0.37]
. P, Precision step for coefficients A (non-tunable) 0.10r0.5
Colorizing .. .
Py Precision step for coefficients B (non-tunable) 0.001 or 0.005
H Number of histogram shiftings [1,30] [16,30] [1,30]
RDH-CE . .
F Blocks per image side [1, 10] [5,10] [1,5]

We can see that most of the resulting ranges are within the
desired values.

Finally, the objective function f is defined according to one
of two modes: distorted or balanced. First, we define a nor-
malized quality metric Q¢ based on the PSNR value PSNRc
between the colorized image and original image, as shown
in (12). Additionally, we define a normalized quality value
Qy as a function of the SSIM quality SSIMy between the
contrasted luminance obtained by the proposed RDH-CE
process and an equalized image obtained by conventional
histogram equalization [38], as shown in (13). Thus, the
objective function is defined as shown in (14) for the distorted
mode, and (15) for the balanced mode. Equation (14) depends
only on the value Q¢ related to the colorized image, and (15)
depends on the weighted sum of Q¢ and the value Qy of the
contrasted luminance.

_ | PSNRe "
0c=1- "0, (12)
Oy =1-SSIMy, (13)
f=0c. (14)
f=%%¥3, (15)

G. VISIBLE-IMPERCEPTIBLE WATERMARK

The areas to be embedded in the visible imperceptible
watermark were selected by the user. The watermark was
embedded in the original luminance and then revealed by
the contrast increment of the RDH-CE algorithm. RDH-CE
may emphasize noise and image structures that can interfere
with watermark revealing. Thus, we recommend that the user
select dark or bright blocks in the planar regions. In addition,
before watermark embedding, a total variation filter [31] was
applied to the selected block. The recommended number of
iterations and amount of denoising were 7i = 100 and A = 1,
respectively. Filtering a small region of the image may cause
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the average value to move with respect to the original region,
resulting in a visible block effect. To match the block with
the surroundings, a mapping method is applied after the total
variation filter, considering the filtering yield values in the
range [0,1]. The three methods were tested by multiplying
the total variation output in the range [0,1] per 255, mapping
the minimum and maximum values in the range [0,255], and
a linear approximation, as shown in Fig. 17.

(2 (b) (©) (d)

FIGURE 17. Each image contains the grayscale image and a Sobel edge
detector. (a) Original image. Image with filtered block (b) multiplied by
255, (c) mapped in the range [0, 255], and (d) mapped by a linear
approximation.

As shown in Fig. 17(d), the linear approximation consider-
ably reduced the edge effect of the selected block. Therefore,
the pixels in the filtered block are recalculated as follows:

F=a+bxT, (16)

where F and T are blocks with filtered and total variation
values, respectively. Scalars a and b are calculated using the

OLS operation.
—1
[Z} = (TTT) T7B, (17)
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where the first column of F is a column vector of ones and
the second column contains the total variation values. B is a
column vector containing the values of the original block.

Finally, a visible imperceptible watermark was embedded
in the filtered blocks. To the best of our knowledge, the first
method that reveals visible-imperceptible watermarks using
RDH-CE was reported in [30]. However, we modified the
embedding equation using composition (18), first proposed
in [39]. B is the filtered block, W is the resized watermark,
o is the embedding strength, and By is the watermarked
block. The watermark strength « is defined in the range
[0, 255], which avoids overflows and maintains a balanced
contribution from both images.

By =1 —-—a)B+aW, (18)

We recommend calculating the strength « for bright and
dark blocks as follows:

_ [0.018, if mean block value > 128 ’ (19)

0.016, otherwise

IV. RESULTS AND ANALYSIS

In this section, the experimental results are presented in
six sections. First, we evaluate the optimization process
and analyze how the images quality change with different
iterations. Then, we describe the integration of the visible
imperceptible watermark and study its effectiveness. Once
the different security schemes are defined, we test them over
different images. We show that the modifications over the lin-
ear approximation colorization in [22] overcomes its results.
To show that our scheme reaches good quality for colorized
images, we compare the proposed colorizing method with
other state-of-the-art invertible colorization schemes. Finally,
a color security test is accomplished by colorizing the pro-
tected images with deep colorization [40]. 29 images were
used to obtain the reported results: the first 24 images belong
to the Kodak Lossless True Color Image Suite [41]. Each
image is either 768 x 512 or 512 x 768 in size. Additionally,
we used five images from the USC-SIPI dataset [42] of size
512 x 512, shown in Fig. 18.

FIGURE 18. Images in USC-SIPI for testing.

A. OPTIMIZATION EFFECTIVENESS

In the optimization process, the user selects objective function
(14) or (15) according to the security mode. GWO opti-
mization adjusts the tunable parameters in Table 1 to reduce
the function value and change the qualities of the colorized
and contrasted images. Fig. 19 shows the numerical metrics
for different iterations. Each point on the curve is the mean
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FIGURE 19. Mean quality improvement of the optimization process for
the 29 images. (a) PSNR, (c) SSIM, and (e) NCD qualities for colorized
images. (b) PSNR, (d) SSIM, and (f) RCE metrics, for contrasted images
with respect to the reference luminance.

value obtained by applying the protection algorithm to all
images. The green and gray curves correspond to distorted
and balanced modes, respectively. Figs. 19(a)—(c) show the
PSNR, SSIM, and NCD values, respectively, for the colorized
images. As expected, the quality of the colorized image
increases at each optimization step. The differences between
the green and gray curves are approximately 1.5, 0.002, and
0.005 for the PSNR, SSIM, and NCD, respectively. This
implies that the quality of the colorized images does not
significantly decrease in the balanced mode. On the other
hand, Figs. 19(d)-(e) show the PSNR and SSIM, respectively,
of contrasted images with respect to the equalized image as
reference. As expected, the image quality decreases in the
distorted mode and increases in the balanced mode. To mea-
sure the contrast increment at different iterations, we show the
RCE metric [43] in Fig. 19(f). RCE values above 0.5 reflect
a contrast increment. The blue dashed line represents the
ideal contrast value because it corresponds to the the RCE
value of the reference luminance with respect to the original
luminance.
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FIGURE 20. Images in USC-SIPI for testing.

The hiding rate (HR) is shown in Fig. 20. The distorted
mode requires a greater hiding capacity to increase the quality
of the colorized image without considering the quality of the
contrasted image. In contrast, the balanced mode maintains a
lower hiding rate to maintain the contrast luminance quality.

B. VISIBLE-IMPERCEPTIBLE WATERMARK

After optimization, the user selects the watermark areas
and the algorithm embeds visible imperceptible watermarks
in the original luminance. The decolorization process then
protects the color image using the optimized parameters.
Consequently, the watermark is revealed in the resulting
contrast luminance. The optimization process runs with no
predefined visible-imperceptible watermark, so the final user
can subsequently select the logo and areas. However, water-
mark areas reduce the luminance regions where the informa-
tion is hidden. Therefore, the hiding capacity may decrease,
and the color information obtained by the tuned parameters
may no longer fit in the luminance. To address this prob-
lem, we change the precision of the colorizing coefficients
from P, = 0.1 and Pg = 0.001 with no watermark, to
P4 = 0.5 and Pg = 0.005 with user watermarks. Increas-
ing P4 and Pp values by 5 times, reduces the length of
the color information and increases the maximum area to
embed watermarks. In this section, we report the maximum
approximated area that the user can select for watermarking
using the recommended coefficient precision. Additionally,
we demonstrate that this approach does not considerably
decrease the quality of the colorized image.

To find the maximum area, we divided the luminance
into non-overlapping blocks and then applied an iterative
process. Each iteration consists of selecting subsequent num-
ber of blocks and embed a watermark in each. Then, the
hiding process is achieved in all the image. Each iteration
increases the number of blocks, and the process stops when
the color data does not fit the luminance. The watermark in
Fig. 21(a) and (b) are embedded in dark and white areas,
respectively, according with the criterion in (17). Finally,
the maximum area is the total area of the selected blocks
in the last successful iteration. The area of each block is
approximately 0.5% of the image area in a square shape, and
the block selection is in raster order, as shown in Fig. 21(c).

Table 2 lists the percentages of the maximum reached areas
for 20, 30, and 50 optimization iterations of the distorted
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FIGURE 21. (a), (b) 200 x 200 watermark images. (c) Order of blocks to
find the maximum area.

mode. We compared the maximum areas for both the original
and modified precisions, P4, Pp. Table 2 lists the mean of
the maximum values used to demonstrate the area incre-
ment. In addition, the minimum of the maximum reached
values indicates that a sufficient area is guaranteed for all
test images. Similarly, Table 3 lists the percentages of the
maximum areas for the balanced mode.

TABLE 2. Maximum possible area for the visible-imperceptible
watermark in the distorted scheme for the 29 images.

MEAN MINIMUM
ITERATIONS 20 30 50 20 30 50
P,=0.1,P5 =0.001 10.0% 73% 6.7% <0.5% <0.5% <0.5%
P,=0.5P;=0.005 158% 12.7% 11.3% 64% 7.4% 2.5%

TABLE 3. Maximum possible area for the visible-imperceptible
watermark in the balanced scheme for the 29 images.

MEAN MINIMUM
ITERATIONS 20 30 50 20 30 50
P,=0.1,Pp =0.001 685% 63.9% 56.1% 0.5% <0.5% <0.5%
P, =0.5P; =0.005 89.7% 86.9% 89.4% 1.5% 7.4% 2.5%

To provide a visual reference of the area percentage,
we show Figs. 22(a)—(c). The red borders in Figs. 22(a)—(c)
represent 1.5%, 2.5%, and 7.5% of selected areas, respec-
tively. In addition, the blocks contained visible imperceptible
watermarks. Figs. 22(d)-(f) show the revealed watermarks
in the contrasted luminances, with 30 iterations. To demon-
strate that the areas are sufficient for watermark revealing,
Figs. 22(g)—(i) show zoomed parts of the marked and revealed
areas. The results in Fig. 22 demonstrate that 1.5% of the area
is sufficient to hide and reveal the watermarks. To increase
watermark revealing, we recommend using a logo with a
black background, as shown in Fig. 21(a), in dark areas.
In contrast, we recommend inverting the logo as shown in
Fig. 21(b) to obtain better revealing in white areas.

C. EFFECTIVENESS OF THE PROPOSED SCHEME

Based on the quality values in Fig. 19, the selected num-
ber of iterations may depend on the quality requirements
of the application. However, the following results were
obtained with 30 iterations, where the quality values tended
to stabilize.
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FIGURE 22. Colorized image with (a) 1.5%, (b) 2.5%, and (c) 7.5% of image areas, respectively, for the imperceptible watermark.
(d), (e). (f) Contrasted images and (g), (h), (i) zoomed regions to demonstrate the imperceptibility and perceptibility of the watermark,

by using 1.5%, 2.5%, and 7.5% of the area, respectively.

Tables 4 and 5 show a comparison of the qualities of all
security options. Recall that the main objective is to obtain
high-quality colorized images, low-quality contrasted images
in distorted mode, and acceptable structural qualities for con-
trasted images in balanced modes. Table 4 shows the qualities
of the colorized and contrasted images for the distorted and
balanced modes when no visible imperceptible watermark
is embedded. Similarly, Table 5 shows the qualities when
visible-imperceptible watermarks are embedded in 5% of
the image area. Firstly, we analyze the results between both
modes: distorted and balanced. Thus, as we see in each table,
the quality of the colorized image is slightly less in balanced
mode than in distorted mode. On the other hand, the quality
of the contrasted image considerably decreases in the dis-
torted mode, as expected. Secondly, we analyze the effect of
visible imperceptible watermarking on quality values. Thus,
a comparison between Tables 4 and 5 shows that the quality
of the colorized images is slightly reduced with the visible-
imperceptible watermark.
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TABLE 4. Mean qualities of the proposed schemes with no
visible-imperceptible watermark (P4 = 0.1, Pg = 0.001).

Mode Colorized image Contrasted image
PSNR [dB] SSIM NCD PSNR [dB] SSIM RCE
Distorted  41.55  0.992 0.031 1474 0.626 0.600
Balanced ~ 40.09  0.990 0.036 3292  0.964 0.602

TABLE 5. Mean qualities of the proposed schemes with 5% of the area
for visible-imperceptible watermark (P4 = 0.5, Pg = 0.005).

Mode Colorized image Contrasted image
PSNR [dB] SSIM NCD PSNR [dB] SSIM RCE
Distorted  39.98  0.988 0.033 17.86  0.722 0.591
Balanced ~ 38.87  0.987 0.037 22.60  0.916 0.577

The results that deserve deeper analysis are the qualities
of contrasted image between non-watermark (Table 4) and
watermark (Table 5) schemes. For example, we can see that
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(b)

FIGURE 23. (a) Original image used for demonstration and the corresponding (b) reference
image.

PSNR =41.38 dB

SSIM = 0.992

NCD = 0.030
(a)

9.34dB
SSIM = 0.988
NCD =0.037
©

PSNR = 15.05 dB
SSIM = 0.727
RCE =0.584

8.55dB
SSIM = 0.975
RCE =0.583
(d)

FIGURE 24. Colorized (left) and contrasted (right) images without visible-imperceptible watermarks in

(a), (b) distorted and (c), (d) balanced modes.

the PSNR of the contrasted image increases from 14.74 dB
to 17.86 when using watermark in distorted mode. However,
the quality decreases from 32.92 dB to 22.60 dB in balanced
mode. To support explanation, we refer also to Fig. 2, where
we can see a visual example in which the PSNR value in
distorted mode increases, and in balanced mode decreases.
Thus, two factors contribute to this effect. Firstly, the visible-
imperceptible watermark tends to reduce contrasted image
quality. Secondly, the reduction of the color information
(given by P4 and Pp) when using watermark tend to increase
the contrasted image quality, since less information is hidden
in the luminance. However, in the distorted mode, the qual-
ity is already low, and the color information reduction can
increase considerably the quality, even with the watermark.
Therefore, the final effect is a quality increment. On the other
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hand, since the optimization in balanced mode yields the
highest quality possible, the reduction of color information
does not achieve to increase the quality considerably. Thus,
the final effect is quality decrease caused by the watermark.

To show some of the visual results, we used the color image
shown in Fig. 23. In addition, we demonstrate the equalized
luminance used as a reference in the optimization.

Figs. 24 shows the visual and quantitative results with-
out a visible imperceptible watermark for the distorted and
balanced modes. Additionally, Figs. 25 shows the results
with visible imperceptible watermarks for the distorted and
balanced modes. The watermark areas are zoomed in to
demonstrate the effectiveness of the imperceptibility. As we
can see, the numerical results for each example, coincide with
the mean values of Tables 4 and 5.
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PSNR = 40.48 dB
SSIM = 0.990
NCD = 0,031

(@)

PSNR = 38.75 dB

SSIM =0.903
SSIM = 0.986 RCE =0.549
NCD =0.038
@ ©

PSNR =17.50 dB
SSIM = 0.782
RCE =0.575

% ~ PSNR=21.07

(b)

FIGURE 25. Colorized (left), contrasted (center) and zoomed regions (right) images with visible-imperceptible watermarks in
(a). (b), (c) distorted and (d), (e), (f) balanced modes. The watermarks size is 5.5% of the image area.

HR =0.55

HR=0.53

PSNR =34.92 dB PSNR =36.31 dB
SSIM = 0.988 SSIM = 0.985
NCD = 0.047 NCD =0.051

FIGURE 26. (a), (d) Original image; (b), (e) Colorized image obtained with [22] and (c), (f) colorized image obtained with our proposal in

distorted mode.

D. COMPARISON WITH LINEAR

APPROXIMATION SCHEME

The proposed colorization algorithm is a modified version
of the scheme in [22]. Therefore, we demonstrate that the
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modification of the original colorization scheme improves
most of the qualitative and visual results. To achieve a fair
comparison, we decided to pair the hiding rate (HR) of the
previous scheme with the HR of the results in Fig. 19 for
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(b)

(d)

FIGURE 27. (a) Zoomed part of image in Kodak dataset. Colorized version obtained by (b) [19], (c) proposal in distorted mode and

(d) proposal in balanced mode.

30 iterations. Therefore, we modified the number of superpix-
els [22] from a small value until the desired HR was achieved.
Table 6 presents the results of this comparison.

TABLE 6. Mean qualities of the proposed schemes with no
visible-imperceptible watermark (P4 = 0.1, Pg = 0.001).

HR HR PSNR PSNR SSIM SSIM NCD NCD
[22] [22] [22] [22]

Distorted 1.56 1.55 36.44 41.548 0.959 0.992 0.057 0.031
Balanced 0.79 0.78 37.90 40.091 0.982 0.990 0.045 0.036

Mode

To demonstrate the effectiveness of the correction in the
segmentation, Figs. 26 shows an example of the colorization
for both schemes. The images include a comparison between
the colorized images of the previous scheme and those of our
scheme. We can see that our proposed method has better color
adherence to borders.

E. COMPARISON WITH OTHER INVERTIBLE
COLOR-TO-GRAY APPROACHES

We propose to modify the structure of the gray-scale image
to increase security. However, the main objective of previous
proposals is to maintain the structural quality of the gray-
scale version of the image. Therefore, we consider difficult
even meaningless to compare the quality of the protected
image. On the other hand, it may be valuable comparing the
quality of the colorized image independently of the nature of
the protected image. Table 7 shows the reported results in [19]
for 11 proposals and our scheme. Table 7 shows the PSNR
and FSIM [44] qualities for the colorized images, sorted in
ascending order for PSNR.
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TABLE 7. Comparison of mean qualities of the colorized images for
Kodak dataset.

Method PSNR [db] FSIM
[1] 27.58 0.9914
[3] 33.13 0.9954
[4] 29.53 0.9981
[6] 33.07 0.9872
[10] 37.79 0.9953
[11] 32.71 0.9951

[12] 38.37 0.9985
[13] 36.44 0.9965
[15] 37.40 0.9958
Balanced 40.99 0.9988
[17] 42.20 0.9994
Distorted 42.52 0.9991
[19] 45.66 0.9994

Even with the results of the methods in [17] and [19],
our scheme still shows good colorized image quality.
Additionally, it offers additional security achieved by the
gray-scale image distortion and the visible-imperceptible
watermark. Figs. 27-29 show a comparison with the results
of the scheme [19] in image parts with some difficult color
and shapes structures. We can see that the visual differences
may not be relevant since they are almost noticeable.

F. SECURITY TEST FOR COLORZIATION

In recent years, Deep Learning (DL) has provided diverse
solutions in the field of image colorization. Popular DL
approaches train a CNN by learning from a large dataset
of color images; therefore, the net is capable of colorizing
gray-scale images. Some of these schemes have two
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FIGURE 28. (a) Zoomed part of image in Kodak dataset. Colorized version obtained by (b) [19], (c) proposal in distorted mode and

(d) proposal in balanced mode.

(b) (©) (d)

FIGURE 29. (a) Zoomed part of image in Kodak dataset. Colorized version obtained by (b) [19], (c) proposal in distorted

mode and (d) proposal in balanced mode.

colorizing modes. First, DL algorithms can colorize images
with net knowledge, without any color information of the
original scene. Second, DL algorithms can use color refer-
ences provided by the user to obtain adequate colorization.
Therefore, CNN approaches may be a potential threat to ille-
gally colorizing gray-scale protected images. Furthermore,
if color information is illegally obtained, the CNN can use
these data to obtain better colorization. Therefore, in this
section, we demonstrate the difficulty of recovering the color
of a protected image using DL. Thus, we demonstrate that we
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obtain better colorized images than the DL approach, even
with color information.

The DL approach algorithm reported in [40] and [45]
was used for comparison. Because of the effectiveness of
the DL scheme, it has been included in Adobe Photoshop
Elements@ 2020 and the GIMP-ML suite [46] for the beta
version of GIMP 2.99.6 [47]. Colorization can be applied
with or without color reference. Fig. 30 shows two test images
and a color reference at different points. Each color point
is placed at the center of each segment generated by our
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(d)

FIGURE 30. (a), (b) Original images and (c), (d) their corresponding color samples.

Gl

~p

PSNR =19.55 dB
SSIM = 0.699
NCD =0.332

PSNR =21.61 dB
SSIM = 0.812
NCD = 0.302

PSNR =42.11dB
SSIM = 0.996
NCD =0.021

PSNR =23.93 dB
SSIM = 0.870
NCD =0.217

PSNR = 18.76 dB
SSIM = 0.540
NCD =0.470

(d)

PSNR =43.44 dB
SSIM = 0.996
NCD =0.023

®

FIGURE 31. Colorized images obtained by (a), (b) deep colorization [40], [45] with no reference; (c), (d) deep colorization [40] with reference; and

(e), (f) our proposal.

proposed algorithm, and its value is the mean of the color
of the segment.

Figs. 31(a) and (d) show the colorized images from
Figs. 30(a) and (c), respectively, using DL colorization with
no reference. As expected, we could not recover most of
the original colors because the color palette was selected
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according to the trained network. Then, Figs. 31(b) and (e)
show the colorized images obtained using the referenced col-
ors in Figs. 31(b) and (d), respectively. The colorized images
do not appear to be saturated and have low color adherence
to the borders. Finally, Figs. 31(c) and (f) show colorization
using the proposed scheme.
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TABLE 8. Mean qualities of colorized images obtained by proposal in [40] and our proposal in distorted mode.

PSNR [dB] SSIM NCD
Non-ref Ref Proposal Non-ref Ref Proposal Non-ref Ref Proposal
[40] [40] [40] [40] [40] [40]

Distorted 22.22 25.71 41.55

0.647 0.853 0.992

0.334 0.207 0.031

Balanced 2222 26.10 40.09

0.647 0.866 0.990

0.334 0.196 0.036

Table 8 shows the mean qualities obtained by the non-
referenced and referenced DL approaches compared with the
present proposal.

V. DISCUSSION

The present proposal toggles between a distorted gray-scale
image and a colorized image to protect the image structural
content. Additionally, we embedded a visible-imperceptible
watermark in the colorized image, which reveals the owner
logo in the protected image. Therefore, we tested the distor-
tion of the protected image and the quality of the colorized
image with the different scenarios. A summary can be seen
in Tables 4 and 5 for the recommended 30 iterations in
the optimization. Firstly, the mean RCE contrast values are
greater than 0.5, proving the contrast increment. Secondly, the
mean PSNR values between 14.74 dB and 32.92 dB show the
quantitative distortion of the protected image, which varies
according to both distorted or balanced modes. Additionally,
SSIM values between 0.626 and 0.964 indicate that the
general structure of luminance remains. Thirdly, the quality
of the colorized images is proved with the PSNR, SSIM
and NCD mean values in the ranges [38.87 dB,41.55 dB],
[0.987,0.990], and [0.031, 0.037], respectively. The nar-
row ranges show that the quality of the colorized images
tends to remain regardless of the level of distortion in the
gray-scale image or the usage of the visible-imperceptible
watermark. Finally, the integration of visible-imperceptible
watermarks became a problem because they hamper
color hiding. Therefore, with the strategy presented in
Section IV-B, we achieved to embed visible-imperceptible
watermarks in more than 7.4% of the total area, which is
sufficient to reveal the ownership of the content.

On the other hand, the colorization scheme was based
on a previous study [22] focused on image compression.
To achieve a fair comparison, we modified the number of
segments in the previous scheme to match the HR values
and compare the quality of the colorized images. This is
because the original colorization approach was designed for
compression and different applications have different assess-
ments. For example, restoration methods focus on improving
the quality of the colorized images. Compression approaches
include an assessment of the hiding rate, which should be
the minimum possible. Additionally, color-to-gray schemes
involve protected image quality, which reflects content visi-
bility and level of protection. Therefore, in future work, a uni-
fied assessment of isolated colorization algorithms can be
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proposed for fair comparison. A possible assessment criterion
is to measure the quality of the colorized image according to
the different amounts of color information. Despite the differ-
ences between the approaches, we compared our colorization
improvement with that of the scheme in [22]. Table 6 shows
that our strategy improved the quality of the colorized images.
For example, with an HR value of 1.55 bpp in the distorted
mode, we increased the PSNR, SSIM, and NCD qualities to
5 dB, 0.033, and 0.026, respectively. Furthermore, Fig. 26
shows a visual example of colorization improvement.

Additionally, the algorithm was compared with previous
invertible color-to-gray approaches. Table 7 show that our
approach reaches mean PSNR values above 40.99 dB, which
is a common acceptable value. Just both proposals [17]
and [19] obtain better colorized qualities in some cases, how-
ever, our proposal achieves the additional security obtained
by distorted protected image and the copyright protection of
the visible-imperceptible watermark. Additionally, the differ-
ences between quality values above 40 dB tend to yield neg-
ligible visual differences, as proved in Figs. 27 to 29 which
compares our colorized images and the obtained in [19].

Finally, the results of section IIL.F show how illegal color
recovery based on DL is not completely successful. Fig. 31
and Table 6 show that colorized images obtained by DL do
not obtain the same quality as legal recovery, even when the
original color information is available.

VI. CONCLUSION AND FUTURE WORK

The present proposal addresses the need to protect the color
and structural content of an image in storage, transmission,
or limited access environments achieved by the protected
image distortion. Additionally, the ownership of the colorized
image is protected by the visible-imperceptible watermark.
The results show that the qualities of the protected and col-
orized images are competitive.

The modular design of our algorithm facilitates the
improvement of general results by modifying isolated stages.
Therefore, we identify that different solutions for segmen-
tation, colorization, RDH-CE, and optimization may be
explored in future work to improve the results. First, since
the quality of the colorized image is closely related to seg-
mentation, future work can involve the improvement of super-
pixels and clustering algorithms. Second, colorization based
on linear approximation was selected as the first approach
owing to its simplicity. However, we encourage future work
to explore other colorization schemes to increase the color
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quality. Additionally, we suggest exploring other types of
distortions using different RDH or even robust watermark-
ing techniques according to different possible applications.
This will help hinder the illegal reconstruction of protected
images and provide users with more security options. Finally,
although the GWO method delivers successful results, some
optimization algorithms may work more efficiently in the
present application. Therefore, future work should explore
and compare different optimization solutions to obtain better
results. Finally, Table 1 shows a comparison between the
desired range of tunable parameters and the range obtained
in the experiments. Most of the desired ranges are adequate
because the experimental values fall within these ranges.
However, to improve efficiency, the limits of the ranges
may be adjusted with more experiments over larger image
datasets.
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