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ABSTRACT This paper presents robust localization techniques that calculate location using distance obser-
vations. In enclosed and heavily populated urban environments, the positive measurement bias introduced
by a non-line-of-sight signal can have a considerable adverse impact on estimation performance. Therefore,
to mitigate the detrimental effects of the multipath effect caused by the non-line-of-sight signal, robust
localization techniques are considered. In particular, the k-nearest neighbor (KNN)-based and orthogonal
series (OSERIES)-based localization approaches are proposed. The difference from conventional probability
density estimation (PDF) estimation methods is that the proposed methods use the first-peak information
of the estimated PDF to obtain the actual distance information, not just the PDF shape estimation. More
specifically, the proposed methods use the mean calculated from observations selected by statistical testing
because themean estimate generally outperforms themode estimate. In addition, the Rao test in the context of
the two-mode Gaussian mixture model (GMM) is demonstrated to be uniformly most powerful (UMP) test.
Furthermore, the conditional variance of the range measurement is derived. Also, the proposed techniques
outperforms that of competing algorithms in terms of localization accuracy.

INDEX TERMS First peak, Gaussian mixture model, k-nearest neighbor, localization, non-line-of-sight,
orthogonal series, probability density function, weighted least squares.

I. INTRODUCTION
In sensor node positioning, the time difference of arrival
(TDOA), time of arrival (TOA), received signal strength
(RSS), and angle of arrival (AOA) are measurements uti-
lized to determine the position of the target node. Numerous
research fields, including mobile communications, telecom-
munications, and the Internet of Things, depend on location
awareness. In instances involving line-of-sight (LOS), there
is no blocking or impediment. However, non-LOS (NLOS)
effects are unavoidable in practical situations. Data that con-
siderably deviate from the majority of grouped observations
are referred to as outliers (NLOS contaminated observations).
When an outlier is present, the performance of a non-robust
positioning algorithm can be seriously degraded because the
time delay may be significantly bigger than the actual time
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delay. Therefore, we focus on providing a method to deter-
mine the position of the target node accurately against the
NLOS noise.

Significant research has been conducted on localization
problems in LOS circumstances [1], [2], [3], [4], [5], [6].
Nevertheless, recent studies on location in NLOS contexts
are still limited. For instance, 1) mathematical optimization
[7], [8], [9], [10], [11], 2) robust statistics [12], [13], [14],
[15], [16], [17], [18], 3) LOS and NLOS sensor identification
[19], [20], [21], and 4) robust filter [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31] have all been studied for location
estimation under NLOS conditions. Themaximum likelihood
estimator (MLE) is known to asymptotically attain efficiency.
Although the NLOS noise distribution is accessible, the
statistics of NLOS noise are typically time-variant. There-
fore, estimating the parameters of the LOS/NLOS mixed
model using the MLE may not be pratical. As an outlier-
resistant method, the maximal correntropy criterion (MCC)
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has recently drawn significant attention [26], [27], [28].
Under mixed LOS/NLOS circumstances, robust Kalman fil-
ters outperform the traditional and unscented Kalman filters
[26], [27], [28]. However, theMCC-based technique is known
to be unstable and may diverge with the use of a small kernel
bandwidth. The ranging problem is proposed in a Bayesian
manner [32]. For differential received signal intensity local-
ization, model uncertainties for transmit power and path loss
exponent are considered [33]. Additionally, the Euclidean
distance matrix is used to locate multiple sources [34]. Fur-
ther, a robust localization method based on the probability
density function (PDF) estimation, where the support for the
first peak is used to estimate the LOS distance, is proposed.
The central concept of this approach is that the LOS dis-
tance measurement from the direct path is always shorter
than the NLOS distance measurement from the indirect
NLOS path. For this algorithm, the kernel density estima-
tion (KDE) method has been employed and this algorithm
outperforms the other state-of-the-art methods [35]. The
pedestrian dead reckoning and received signal strength index
approaches are fused employing the sensor combination. For
this, the weight-based optimization is devised to enhance
the accuracy and stability of localization [36]. An indoor
localization method using support vector regression using
the particle swarm optimization [37]. A deep-learning-based
anomaly detector is designed to keep the lifelong stability
[38]. Furthermore, the k-nearest neighbor (KNN)-based and
orthogonal series (OSERIES)-based algorithms can be used
for estimating the PDF. The KDE-based robust localization
has the limitation that the LOS distance estimate is just deter-
mined as the support for the first peak (mode) of the noise
distribution. In general, the mean outperforms the mode in
terms of the estimation accuracy. In particular, the mode is
not desirable when the sample size is small or when the PDF
estimate is highly wiggly. Therefore, the improved method
is proposed to overcome the weakness of the mode estimate.
The proposed methods find the support for the first peak of
the noise PDF and inlier candidates using statistical testing.
Subsequently, the mean of these LOS distance candidates
is calculated. Specifically, the proposed algorithm has the
advantage of using multiple samples to estimate the LOS
distance, as opposed to a single sample. Furthermore, the
Nadaraya-Watson estimate (conditional mean) is obtained to
enhance the accuracy of this LOS distance estimate. Then, the
variance for this conditional mean is calculated and then the
two-step weighted least squares (WLS) method is employed
using this information.

The two-mode Gaussian mixture model (GMM) has been
widely used and is essential for localization and tracking;
however, it is difficult to model the NLOS error distribution
accurately. Consequently, the two-mode GMM may con-
tain modeling errors associated with the NLOS distribution.
We use simulation to confirm that the proposed techniques
still work for various NLOS models, such as heavy-tailed
skew-t [39], [40], [41], [42], Gaussian-uniform mixture [43],

[44] and Gaussian-exponential mixture distributions [45].
The proposed robust localization methods do not require any
prior information for NLOS errors and only postulate the
measurement noise variance is known a priori. Also, the pro-
posed robust localization algorithms use TOA observations,
but can be employed even when TDOA, RSS or AOA are
utilized.

The proposed localization method is a centralized method,
but may be implemented with the existing distributed local-
ization method. However, there would be problems such
as high energy consumption, increased complexity and
error propagation compared to the centralized method. Fur-
thermore, the proposed method may be designed in the
cooperative manner [46], [47] to improve localization accu-
racy and robustness to challenging environments and increase
the scalability and coverage. Sensor nodes can exchange
information and measurements among the participating enti-
ties to improve the accuracy and reliability of individual
localization estimates. The critical issue is to develop an
individual localization algorithm with improved efficiency
and accuracy. In this work, the localization algorithm to
improve the accuracy of the individual localization method
is studied. In general, the better is the performance of the
individual localization method, the better is the performance
of the cooperative localization method. In addition, the factor
graph method is exploited in the sensor network localization
[48]. The NLOS problem may trigger problems such as inac-
curate measurements and convergence issue; therefore, the
outlier must be effectively discerned and removed therein.
Outlier rejection methods or sensor fusion can be applied
to identify and discard outlier measurements before they are
incorporated into the factor graph. The important point is
whether the development of the criterion with which the inlier
and outlier are distinguished is possible. The threshold for
outlier detection must be set in an optimal manner, which is
not an easy task. The generalized likelihood ratio test (GLRT)
or Rao-test can be used, but it requires the MLE. The outlier
testing should be performed sample by sample to obtain more
inlier samples to enhance the localization accuracy. However,
the theoretical backgrounds for single observation-based test-
ing are uncommon compared to the asymptotic theory for
large sample-based testing.

The key contributions of this study are summarized as
follows:

• Using multiple observations and a two-mode GMM,
we design the robust KNN-based and OSERIES-based
WLS localization algorithms, where the LOS distance
is estimated using the KNN- or OSERIES-based PDF
estimation method.

• The statistical testing using the Rao criterion to deter-
mine the inlier and outlier in the context of LOS/NLOS
mixed localization is proven to be the uniformly most
powerful (UMP) testing based on the monotone likeli-
hood ratio property [49]. Although this testing has been
widely used to discern the inliers and outliers, the proof
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that this testing is the UMP testing in the context of
the two-mode GMM has not yet been reported to the
authors’ knowledge.

• The proposed approaches established in the two-mode
GMM use the mean that is calculated from measure-
ments obtained from the statistical testing not the mode.
The proposed localization methods outperform the con-
ventional method in terms of accuracy because the mean
is generally better than the mode [50].

• The conditional variance of the range measurement is
shown to be approximately 2σ 2

1 , where σ 2
1 is the LOS

measurement variance. The conditional variance is then
utilized to calculate the weight in the two-step WLS
method.

The remainder of this paper is structured as follows. The
mixed LOS/NLOS location estimation problem is stated in
Section II. Existing techniques are briefly introduced in
Section III. The proposed KNN-based and OSERIES-based
WLS localization methods are introduced in Section IV.
Further, a theoretical examination of the mean square error
(MSE) of the proposed estimators is presented in Section V.
Based on the results of the simulation, Section VI assesses the
root mean square error (RMSE) performance. Experiments
conducted using real data and computational complexity
analysis are described in Sections VII and VIII, respec-
tively. Finally, conclusions and future works are presented in
Section IX.

II. PROBLEM STATEMENT
The goal of the emitter localization approach is to find the
solution with which the objective function is minimized.
In the case of source location under mixed LOS/NLOS sit-
uations, the measurement equation is given as

ri,j = di + ni,j

=

√
(x− xi)2 + (y− yi)2 + ni,j, (1)

where ni,j is a two-mode Gaussian mixture random vari-
able defined as (1 − νi)N (0, σ 2

1 ) + νiN (µ2, σ
2
2 ), i =

1, 2, . . . ,M, j = 1, 2, . . . ,P with M and P denoting the
number of sensors and observations in each sensor, respec-
tively. The inliers follow N (0, σ 2

1 ) and the outliers follow
N (µ2, σ

2
2 ), whereN (µl, σ

2
l ) indicates a Gaussian PDF with

mean µl and variance σ 2
l (l = 1, 2). The contamination ratio,

which in this case is νi ∈ [0, 1], is usually lower than 0.5
[12] except for heavily NLOS contaminated situations. The
GMM with two modes has been widely used for modeling
mixed LOS/NLOS scenarios [17], [18], [19], [20], [21], [22],
[23], [24], [25]. Other NLOS error distributions have been
identified as the heavy-tailed skew-t, the Gaussian-uniform
mixture and the Gaussian-exponential mixture distributions
[39], [40], [41], [42], [43], [44], [45]. It may be impossible
to acquire the information such as statistical moments of the
NLOS noise distribution in practical scenarios. To confirm
the robustness against modeling errors through computer
simulation, the proposed robust localization algorithms are

compared with the state-of-the-art techniques under various
NLOS error models. Furthermore, [xi yi]

T symbolizes the
known Cartesian coordinates of the ith sensor, whereas [x y]T

indicates the unknown target node position. Moreover, ri,j is
the range observation from the target node to the ith sensor
at the jth time instance and di is the actual distance. Squaring
both sides of (1) and rearranging the equation results in the
following.

xix+ yiy− 0.5R+ mi,j = 0.5(xi2 + yi
2
− r2i,j),

i = 1, 2, . . . ,M, j = 1, 2, . . . ,P (2)

where R = x2+y2,mi,j = −dini,j− 1
2n

2
i,j.Also, the following

expression is obtained by representing (2) in a matrix form

Ax + mj = bj, j = 1, · · · ,P (3)

where mj = [m1,j, · · · ,mM,j]T, x = [x y R ]T,

A =

 x1 y1 −0.5
...

...
...

xM yM −0.5

 (4)

and bj = [b1,j · · · bM ,j]T =
1
2

 x21 + y21 − r21,j
...

x2M + y2M − r2M,j

 .

(5)

It is expected to estimate the unknown location parameter
x by optimally combining the transformed distance obser-
vations, [b1, · · · , bP]. Owing to its simplicity, the two-step
WLS method has been often utilized. In this study, an upper-
case and lowercase boldface letter are used to denote a matrix
and vector, respectively. The transpose is represented by the
operator [·]T .

III. BACKGROUND
In this section, the Rao detector and UMP testing are
introduced. This hypothesis testing approach is used for iden-
tification of outliers in the robust localization. In addition, the
KNN-based and OSERIES-based PDF estimation methods
are presented. These PDF estimation approaches are utilized
for finding the support for the first peak (mode) of the
distance distribution. There are two approaches of the PDF
estimation. The one is the parametric PDF estimation and the
other is the non-parametric PDF estimation. The parametric
density estimation assumes that the underlying PDF belongs
to a specific PDF, such as the Gaussian distribution. This
estimation method estimates the parameters of the assumed
distribution from the available data. When the underly-
ing distribution is estimated accurately, the parametric PDF
estimation can be more efficient than non-parametric PDF
estimation. However, the parametric PDF estimation cannot
capture the actual distribution in many real-world situations
because the assumption of a specific parameter estimation
may be too restrictive. In cases where the distribution is com-
plex or multi-modal, finding an appropriate parametric form
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can be challenging. On the other hand, the non-parametric
PDF estimation makes no assumption about the specific form
of the underlying distribution. Instead, it estimates the PDF
directly from the data itself, without any prior assumptions.
It can handle complex and multi-modal distributions more
effectively, as it does not postulate any specific form on the
data. Non-parametric methods are generally more robust to
outliers or deviations from assumed parametric forms. How-
ever, it may require a larger sample size to obtain accurate
density estimates than that of parametric methods.

A. THE RAO DETECTOR [51]
In composite hypothesis testing, GLRT has been widely used
for discerning the hypotheses [51]. The Rao detector can also
be used instead of GLRT. The Rao detector has the advantage
that the testing statistic may be easier to compute compared
to GLRT andWald testing and it does not require the determi-
nation of the MLE under the alternative hypothesis. The Rao
detector decides the alternative hypothesis (H1) if

TR(ri,j) = I−1(θ = θ0)
(

∂ln p(ri,j; θ)
∂θ

∣∣∣∣
θ=θ0

)2

> γ (6)

where H0 : θ = θ0, H1 : θ = θ1, I (·) is the Fisher infor-
mation and γ is the threshold. Otherwise, the Rao detector
determines the null hypothesis, H0.

B. UMP TESTING [49]
Likelihood ratio testing (LRT) is known to be themost power-
ful testing when all the parameters of the PDFs are accurately
known. Namely, LRT is the optimal test under the simple
hypothesis. However, the parameters of PDF are difficult to
accurately capture in practical scenarios, that is, LRT may
not be optimal under the composite hypothesis. Accordingly,
optimal testing for the entire set of unknown parameters is
required, which is referred to as UMP testing. A test is defined
as a UMP test of size (false alarm probability) α if its power
(detection probability) is uniformly greater than the power
of any other test whose size is less than or equal to α. The
Karlin-Rubin theorem can be applied to confirm whether a
test is a UMP test, but it cannot be applied when the PDF is
parameterized by multiple unknown parameters. In this case,
the monotone likelihood ratio (MLR) property can be used
to check whether any test is a UMP test (for more details,
see [49]). For two-sided tests, the UMP test usually does not
exist. In this case, GLRT or maximally invariant tests can be
used.

C. KNN-BASED PDF ESTIMATION
The KNN-based PDF estimation method adapts the amount
of smoothing according to the local density of observations.
The degree of smoothing is controlled using an integer K ,
typically chosen as K = ⌈

√
P⌉ [52], where ⌈x⌉ denotes the

ceiling function that returns the least integer greater than or
equal to x. Then, the KNN-based PDF estimate is defined as

follows [52]:

p̂(t) =
K

2PdK (t)
(7)

where d1(t) ≤ d2(t) ≤ · · · ≤ dP(t) denote the dis-
tances arranged in ascending order, from t to the points of
the sample. Generally, the PDF estimate obtained by the
KNN method is wigglier than that using the KDE method.
Therefore, the first mode of the density estimate may not be
consistent with the actual first mode of the PDF. The solution
to this problem will be presented in the next section.

D. OSERIES-BASED PDF ESTIMATION
The PDF estimate by OSERIES is calculated as the sum of
orthogonal bases, which are multiplied by the weights as
follows [53]:

p̂(t) =

L̂∑
l=1

β̂lql(t) (8)

where β̂l =
1
P

∑P
j=1 ql(ri,j), ql(t) denotes the l

th orthogonal
basis, L̂ = minL R̂(L) for 1 ≤ L ≤ s = ⌈

√
P⌉, R̂(L) =∑L

l=1
σ̂ 2
l
P +

∑s
l=L+1(β̂

2
l −

σ̂ 2
l
P )+, a+ = max(a, 0), and σ̂ 2

l =

1
P−1

∑P
j=1(ql(ri,j) − β̂l)2. β̂l is known to be an unbiased

estimator of βl . Also, L is a smoothing parameter. When L
is large, the bias is small and vice versa.

IV. PROPOSED ROBUST LOCALIZATION APPROACHES
In this section, the proposed KNN and OSERIES-based posi-
tioning methods are presented. First, the outlier identification
testing using the Rao-detection is derived. Furthermore,
the robust localization methods based on the KNN and
OSERIES-based PDF estimation are presented.

A. DERIVATION OF OUTLIER DETECTION METHOD BASED
ON THE RAO TEST
The Rao-test statistic in the robust localization context is
derived from definition (6) as follows:

TR(ri,j) = I−1(µ2 = 0)
(

∂ln p(ri,j; µ2)
∂µ2

∣∣∣∣
µ2=0

)2

(9)

=
(ri,j − di)2

σ 2
1

(10)

where p(ri,j; µ2) =
1

√
2πσ1

exp(− (ri,j−di−µ2)2

2σ 2
1

).

The Rao-test decides that the corresponding sample is an
outlier if

TR(ri,j) =
(ri,j − di)2

σ 2
1

> γ. (11)

That is, the Rao-test decides the LOS state if the null hypothe-
sis (H0) that the measurement bias (µ2) is zero is not rejected.
On the other hand, the Rao-test decides the NLOS state if the
alternative hypothesis (H1) that the measurement bias is the
positive value is accepted. In general, the inlier observation
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variance, σ 2
1 , is assumed to be known in the localization

context and di is estimated using the PDF estimation method,
which will be presented in Section IV. The testing threshold
(γ ) is determined by the Neyman-Pearson rule (NP-rule)
[51]. That is, γ = Q−1

χ2
1
(PFA), where Q−1(·) is the inverse Q

function, χ2
1 is the chi-square distribution with one degree-of-

freedom and PFA is the false alarm probability. The proposed
testing method is proven to be the UMP test in Appendix A.

B. KNN-BASED WLS METHOD
The KNN-based PDF estimation method was introduced in
the Section III. The KNN-based WLS method is presented in
this section. The LOS distance observation is always smaller
than the NLOS distance measurement due to the positive
multipath bias. The LOS distance (d̂i) is estimated in advance
by capturing the range PDF and searching for the support for
the first peak of the PDF of the distance observation. The
support for the first peak is determined by finding the smallest
support whose frequency (height) is greater than the frequen-
cies of two nearby (adjacent) interpolated grids. However,
the PDF estimate by the KNN-based method is significantly
wiggly; thus, the support for the first peak may not be enough
to be regarded as the accurate inlier estimate. Further, the
mean estimate is generally better than the mode estimate with
respect to the estimation accuracy [50]. Therefore, we employ
the robust testing developed in Section IV. A to identify inlier
candidates. Namely, the inlier candidates are selected based
on observations satisfying the following:

(ri,j − d̂i)2

σ 2
1

< γ (12)

where the testing threshold (γ ) is determined by the NP-rule.
Then, the average of these inlier candidates is calculated as

d̂
m
i =

∑
j∈L ri,j
P− Q

(13)

where L is the LOS set composed of the LOS samples
predicted using the proposed statistical testing, Q is the
number of samples that belong to Lc and Lc is the comple-
mentary set of L (NLOS set). Furthermore, L and Lc are
disjoint sets. This distance estimate is improved using the
non-parametric conditional mean, namely the non-parametric
regression (Nadaraya-Watson estimator) [52]. That is, the
improved distance estimate (m̂(d̂

m
i )) is obtained as follows:

m̂(d̂
m
i ) = Ê[ri|d̂

m
i ] =

∑P
j=1 ri,jK ( d̂

m
i −ri,j
h )∑P

j=1 K ( d̂
m
i −ri,j
h )

(14)

where K (u) =
1

√
2π

exp(− u2
2 ) when the Gaussian kernel is

employed. Without loss of generality, the kernel bandwidth
(h) is set to σ 2

1 . Subsequently, Var[ri|d̂
m
i ] is calculated as

follows (the derivation is provided in Appendix B):

Var[ri|d̂
m
i ] ≃ 2σ 2

1 . (15)

In addition, the variance of the estimate for the conditional
mean can be calculated as follows [52]:

Var[m̂(d̂
m
i )] =

1
Ph

Var[ri|d̂
m
i ]

p(d̂
m
i )

∫
(K (u))2du (16)

where p(d̂
m
i ) is approximately found using the KDE method

and
∫
(K (u))2du =

1
2
√

π
when the Gaussian kernel is used

[52]. The first-step WLS estimate by the KNN-based PDF
estimation is calculated as follows:

x̂ = (ATC−1
µb,1

A)−1ATC−1
µb,1

µb,1 (17)

where µb,1 = [µb1,1, · · · , µbM ,1]T , µbi,1 =
x2i +y

2
i −(m̂(d̂

m
i ))

2

2 ,
Cµb,1 = (diag[σ 2

µb1,1
, · · · , σ 2

µbM ,1
]), σ 2

µbi,1
≃ (m̂i(d̂

m
i ))

2
×

Var(m̂i(d̂
m
i )). Further, the second-step estimate can be

expressed as follows:

x̂s = (HTC−1
ĥ
H )−1HTC−1

ĥ
ĥ (18)

where the subscript s denotes the second-step estimate,

ĥ =

[
[x̂]21 [x̂]

2
2 [x̂]3

]T
, (19)

H =

 1 0
0 1
1 1

 , (20)

Cĥ = diag[2x 2y 1](ATC−1
µb,1

A)−1diag[2x 2y 1]

≃ diag[2[x̂]1 2[x̂]2 1](ATC−1
µb,1

A)−1diag[2[x̂]1 2[x̂]2 1],
(21)

and [x̂]i (i= 1,2,3) is the ith component of x̂. The final emitter
position estimate can be expressed as follows:

x̂f =

[
sgn([x̂]1)

√
[x̂s]1 sgn([x̂]2)

√
[x̂s]2

]T
(22)

where sgn(·) indicates the sign function and [x̂s]i (i = 1,2) is
the ith component of the second-step position estimate.
Remark: The variance of m̂(d̂

m
i ) can also be calculated

from (14) by considering the K (·) as a fixed value. It has the
advantage that the Var[ri|d̂

m
i ] is not required, but the RMSE

performance using (14) was slightly degraded compared to
the method using (16) in the performance testing.

C. OSERIES-BASED WLS METHOD
The OSERIES-based PDF estimation method was presented
in Section III. The robust localization algorithm based on the
OSERIES-based PDF estimator is investigated in this section.
The OSERIES-based robust localization differs from the
KNN-based positioning method in that it uses the orthogonal
basis to estimate the PDF of distance measurements. In this
study, the cosine basis is used, defined as φ0(x) = 1 and
φj(x) =

√
2cos(jπx) for j ≥ 1. The remainders are the

same as the robust localization method using the KNN-based
PDF estimation algorithm. Moreover, the PDF estimate may
have a negative value, but this property is not a problem for
determining the peaks of the PDF estimate.
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FIGURE 1. Flow chart of the KNN PDF estimation-based WLS algorithm.

We summarize the KNN and OSERIES-based WLS algo-
rithms in Algorithm 1 and 2, respectively. In addition, the
flowchart of the KNN-based WLS method is given in Fig. 1.

Algorithm 1 KNN-Based WLS Algorithm
Step 1. KNN PDF estimation is performed.
Step 2. Find the support corresponding to the first peak of the
PDF that is estimated by KNN method (d̂i).
Step 3. d̂

m
i is calculated using (13).

Step 4. m̂(d̂
m
i ) is calculated using (14).

Step 5. Var[ri|d̂
m
i ] is obtained using (15).

Step 6. Var[m̂(d̂
m
i )] is calculated using (16).

Step 7. The transformed distance estimate is calculated:

b̂i =
x2i +y

2
i −(m̂(d̂

m
i ))

2

2 .
Step 8. The variance of the transformed distance estimate is
calculated as: Var[b̂i] ≃ (m̂(d̂

m
i ))

2Var[m̂(d̂
m
i )].

Step 9. Determine the source coordinates using the two-step
WLS method.

Algorithm 2 OSERIES-Based WLS Algorithm
Step 1. Orthogonal series PDF estimation is performed.
Step 2. Find the support corresponding to the first peak of the
PDF that is estimated by OSERIES-based method (d̂i).
Step 3−Step 9. Identical with that of Algorithm 1.

V. MSE PERFORMANCE ANALYSIS
In this section, the MSE performance of the proposed robust
algorithms is analyzed. First, the estimation bias is derived

as follows:

Bias[x̂f ]

= [E{sgn([x̂]1)
√
[x̂s]1 − x} E{sgn([x̂]2)

√
[x̂s]2 − y}]T

(23)

≃ [sgn(x)E{(
√
[x̂s]1 − |x|)} sgn(y)E{(

√
[x̂s]2 − |y|)}]T

(24)

≃

[
sgn(x)E

{
([x̂s]1 − x2)

2|x|

}
sgn(y)E

{
([x̂s]2 − y2)

2|y|

}]T
(25)

=

[
1
2x
E{([x̂s]1 − x2)}

1
2y
E{([x̂s]2 − y2)}

]T
(26)

= D−1
2 (HTC−1

ĥ
H )−1HTC−1

ĥ
(E [̂h] − Hxs) (27)

≃ D−1
2 (HTC−1

ĥ
H )−1HTC−1

ĥ
D1(E [̂x] − x) (28)

= D−1
2 (HTC−1

ĥ
H )−1HTC−1

ĥ
D1

× (ATC−1
µb,1

A)−1ATC−1
µb,1

(E[µb,1] − Ax) (29)

where xs = [x2 y2]T , D1 = diag[2x 2y 1] and D2 =

diag[2x 2y]. In the derivation of (24), the high signal-
to-noise ratio (SNR) condition is assumed. Furthermore,
the Taylor-series approximation is utilized in the derivation
of (25). Generally, E[µb,1] is difficult to calculate. Therefore,
the estimation bias is obtained by the Monte-Carlo approach
(for more details, refer to [15]). Next, the estimation error
variance is derived as follows (for more details, refer to [15]):

Cov[1x̂f] = G(ATC−1
µb,1

A)−1GT (30)

where G = D−1
2 (HTC−1

ĥ
H )−1HTC−1

ĥ
D1. Finally, the MSE

is obtained as follows:

MSE(x̂f ) = tr(Cov[1x̂f]) + ||Bias(x̂f )||22 (31)

where tr(·) is the abbreviation of trace operator and
|| · ||2 denotes the 2-norm.

VI. SIMULATION RESULTS
In this section, the accuracies of the KNN and OSERIES-
basedWLS methods were compared with that of the adaptive
MCC (AMCC) EKF [27], statistical similarity measure
(SSM)-based Kalman filter [31], KDE-basedWLS algorithm
[35] and skipped filter WLS method [54] in this section.

A. SIMULATION PARAMETERS
The localization accuracy is evaluated in relation to RMSE
and is defined as (33):

RMSE =

√∑10
i=1

∑300
k=1[(̂x

k(i) − x(i))2 + (̂yk(i) − y(i))2]
10 × 300

(32)

where [̂xk(i), ŷk(i)]T is Cartesian coordinates of the point
target node in the ith position set and kth iteration. Addition-
ally, x(i) and y(i) indicate the real position coordinates of the
emitter at the ith position. The placement of the sources and
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FIGURE 2. Sensor and source deployment, with white circles for sensors
and asterisks for sources.

sensors is shown in Fig. 2 as circles and asterisks, respec-
tively. The sensor deployment of Fig. 2 is chosen because it
makes the geometric dilution of precision be low (the larger
the area formed by the sensors and source, the better (lower)
the value of the GDOP and vice versa). In addition, the
proposed algorithms can be used for the other sensor network
deployment unless the deployment shape is the specific form
such as a linear array.

B. GENERAL RESULTS
Figure 3 shows the localization accuracy for various standard
deviations of the NLOS error. Sensors 4, 5, 6 and 7 were
LOS/NLOS mixture sensors as shown in Fig. 3(a) and the
standard deviation (σ1) of LOS noise was 0.6 m. The mea-
surement bias (µ2) was set at 5 m. The standard deviation of
LOS measurement noise was set to a lower value than that
of NLOS noise (σ2). The RMSE of the KNNWLS technique
and the OSERIES-based WLS method was the lowest among
robust localization approaches, as illustrated in Figs. 3(a)-(c).
Additionally, the NLOS noise had little impact on the RMSE
of any approach.

The RMSEs with regard to the LOS noise standard devi-
ation for various mixture LOS/NLOS sensor numbers are
shown in Fig. 4. Sensors 5, 6 and 7 were considered as
LOS/NLOS mixture sensors, as indicated in Fig. 4(a). The
remaining sensors were LOS/NLOSmixture sensors. Further,
sensors 4, 5, 6 and 7 were LOS/NLOS mixture sensors in
Fig. 4(b), and sensors 3, 4, 5, 6 and 7 were LOS/NLOS
mixture sensors in Fig. 4(c). As the LOS noise standard
deviation increased, so did the RMSEs of all localization
techniques, as shown in Figs. 4(a)-(c). In low-noise settings,
the RMSEs of the proposed KNN WLS and OSERIES WLS
methods were close to the CRLB and outperformed the other
existing approaches as the noise level increased. In particular,

FIGURE 3. RMSEs of the robust localization algorithms for various
contamination ratios (ν) and various NLOS noise standard deviation
values when sensors 4, 5, 6 and 7 are LOS/NLOS mixture sensors
(σ1: 0.6 m, µ2: 5 m).

the OSERIESWLSmethod was slightly superior to the KNN
WLS method in large noise conditions. It should be noted
that although more than half of sensors are contaminated by
the NLOS noise, the robust localization performance was
maintained when the contamination ratio was less than 0.5.
This is the advantage of the multiple sample-based algorithm
compared to the one sample-based method.
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FIGURE 4. RMSEs of the robust localization techniques for various LOS
noise standard deviations for varying LOS/NLOS mixture sensor numbers.

Sensors 4-7 were taken for LOS/NLOS mixture sensors
in Figs. 5-8. The RMSEs with respect to the measurement
bias (µ2) were shown in Fig. 5. The RMSEs of the KNN
WLS and OSERIES WLS methods were not significantly

FIGURE 5. RMSEs of the robust location algorithms at various
measurement bias (σ2: 4 m, σ1: 0.6 m, ν = 0.4).

FIGURE 6. RMSEs of the robust positioning techniques at various
contamination ratio (ν) (σ2: 4 m, σ1: 0.6 m).

impacted by the measurement bias, as shown in Fig. 5. The
RMSEs of the proposed KNN WLS and OSERIES WLS
methods were lower than those of the other methods and
just slightly higher than the CRLB. In general, the RMSE
decreases when the measurement bias increases because the
LOS and NLOS samples can be more accurately discerned in
the outlier identification step.

The RMSEs were depicted in Fig. 6 as a function of
the contamination ratio. For a low contamination ratio
(below 0.5), the RMSEs of the KNN WLS and OSERIES
WLS techniques were comparable, but the RMSE of the
OSERIES WLS method was the lowest among the localiza-
tion algorithms for a high contamination ratio. Meanwhile,
as the contamination ratio exceeded 0.5, the RMSEs of
the SSM, AMCC EKF and skipped filter WLS techniques
increased gradually or significantly.

The RMSEs were shown as a function of sample size
in Fig. 7. The accuracies of the KNN WLS and OSERIES
WLS methods were greater than those of the other methods,
as shown in Fig. 7 and all the robust approaches performed
better. The RMSEs of the KNN WLS and OSERIES WLS
methods were closer to the CRLB with an increase in the
sample size. When the sample size increases, the variance of
the estimated PDF decreases and the estimate becomes more
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FIGURE 7. RMSEs of the robust localization approaches at various sample
size (σ2: 4 m, σ1: 0.6 m, ν = 0.4).

stable and less sensitive to individual data points or random
variations in the data. This leads to a more reliable estimation
of the underlying PDF.

The robustness of the proposed approaches against the
NLOS noise modeling error was then tested. Accurately
capturing the NLOS error distribution is challenging, even
though the proposed methods were developed in the formula-
tion of the two-modeGMM in this study. As a result, a model-
ing error may exist. Various noise models, such as the skew-t
distribution [39], [40], [41], [42], Gaussian-uniform mixture
distribution [43], [44] and Gaussian-exponential mixture dis-
tribution [45], are available. To determine whether the KNN
and OSERIES-basedWLS algorithms remain effective under
the various NLOS error distributions, we performed a simu-
lation. When the NLOS error follows the skew-t distribution
(degree-of-freedom: 3, skewness: 2), the Gaussian-uniform
mixture distribution, where random bias follows the uniform
distribution U[0 m, 5 m], and the Gaussian-exponential mix-
ture distribution whose rate parameter is set to 1

4 , simulation
results were shown in Figs. 8(a)-(c). The proposed KNN and
OSERIES-basedWLS approaches still showed lower RMSEs
than the conventional methods even for cases except for the
two-mode Gaussian mixture distribution. Again, in the large
noise settings, the RMSE performances of the KNNWLS and
OSERIES WLS techniques were the best and the accuracy
of the OSERIES-based WLS method was slightly better than
that of the KNN-based WLS method.

In Fig. 9, the RMSEs of the localization algorithms were
compared for the sources located with the uniform interval
using the Gaussian mixture distribution. The arrangement
of sources and sensors was depicted in Fig. 9(a). Further,
Fig. 9(b) illustrates the RMSE with respect to the x-axis. The
standard deviation of the LOS noise was 1 m, the contam-
ination ratio was 0.4 and the standard deviation of NLOS
error was 2 m. Clearly, the RMSE of the proposed OSERIES
WLS method was lower than that of the existing methods for
all x coordinates. The RMSE was lower near the origin and
increased when the source was more distant from the origin.
The reason for the increase in the RMSE when distance
between the sensor and the object increases is that there is
often an increase in the area of the region of ambiguity with

FIGURE 8. RMSEs of the resilient localization techniques at various LOS
noise standard deviation values (a) skew-t and (b) Gaussian-uniform
mixture (c) Gaussian-exponential mixture distributions.

measurements when the emitter becomes distant from sensor.
It was almost symmetric with respect to the origin excluding
AMCC EKF.

VII. EXPERIMENT USING THE REAL DATA
In this section, the experimental results using the real data
are presented. The real data used in [55] were employed.
For details, refer to [55]. Eight sensors were used and their
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FIGURE 9. Comparison of the RMSEs of localization methods when the
emitters are located in the uniform interval under the Gaussian mixture
distribution (a) Deployment of tested sources and sensors (b) RMSE
versus x-axis coordinates.

positions were [8.47, 11.87, 0.93] m, [8.41, 7.85, 0.69] m,
[5.95, 7.45, 0.64] m, [5.45, 6.71, 1.3] m, [6.95, 0.05, 1.43]
m, [2.24, 0.05, 1.47] m, [3.06, 8.33, 1.42] m, [4.47, 11.21,
1.42] m. Further, the source location was [1.55, 3.49, 1.2] m.
Unlike the simulation part, the three-dimensional localization
was performed. Sensors 1, 2, 3 and 4 were NLOS sensors and
the others were LOS sensors and ultra-wideband sensors were
used. As seen from Table 1, the localization performances
of the proposed algorithms were superior to those of other
algorithms. Meanwhile, the closed-form skipped filter WLS
algorithm showedmoderate localization performance. On the
other hand, the performance of the robust Kalman filter-based
methods was inferior to those of other methods. Apparently,
Kalman filter-based algorithms are vulnerable to the multi-
modal distribution. The difference between the simulation

TABLE 1. RMSE using real data.

was that the density estimation-based WLS methods used
the optimal bandwidth by trial and error to obtain the best
performance.

VIII. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the Kalman filter-based
localizationmethodswas dominated by the covariance update
with the complexity of O(Md3), where M and d denote the
number of sensors and variables in the state, respectively.
Furthermore, the computational complexity of the corren-
tropy computation in the AMCC EKF was O(MP2), where
P is the size of the sample set. Meanwhile, the computational
complexity of the density estimation-basedWLS localization
wasO(MP2+MG+d3), whereG denotes the number of grids.
The computational complexity of the PDF estimation-based
WLS methods was higher than that of Kalman filter-based
methods because the number of grids is large (set to 1000 in
the proposed methods). However, when the number of grids
was not large, the computational complexity of the PDF
estimation-based WLS methods was similar to that of the
Kalman filter-based methods. The computational complex-
ity of the skipped filter WLS method mainly depended on
the matrix inversion, whose complexity was O(d3). Fur-
ther, the computational complexity of the skipped filter
WLS method was the lowest among the robust localiza-
tion methods, although it exhibited moderate localization
performance.
Discussion: Indeed, the proposed PDF estimation-based

localization methods can be used in the static object local-
ization or slow-moving object localization, but may not
be appropriate for dynamic object localization because its
computational complexity is relatively high and multiple
samples-based method.

IX. CONCLUSION
In this study, the two-mode GMM was used to develop the
KNN and OSERIES-basedWLS approaches. The support for
the first peak (mode) of the PDF estimate was determined and
then candidates for the LOS distancewere identified using the
proposed statistical testing. Subsequently, the mean for these
samples was calculated and this mean estimate was better
than the mode estimate with respect to the estimation accu-
racy. In addition, the conditional mean (Nadaraya-Watson
estimate) was employed to improve the accuracy of the
LOS distance estimate. After determining the variance for
this distance estimate, the two-step WLS method was used.
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Indeed, the proposed localization techniques were resistant
to noise model mismatch in simulation results. Moreover,
the Rao testing in the context of the two-mode GMM was
shown to be the UMP test. Furthermore, the conditional
variance of the range observationwas derived. The simulation
results demonstrated that, under a variety of conditions, the
RMSEs of the proposed approaches were superior to the
state-of-the-art robust localization methods. Future research
would concentrate on developing robust localization algo-
rithms using a single observation.

APPENDIX A
PROOF OF (12) TO BE THE UMP TEST
The likelihood ratio in the two-mode Gaussian distribution
case is obtained as follows:

L =

1
√
2πσ2

exp(− 1
2σ 2

2
(ri,j − di − µ2)2)

1
√
2πσ1

exp(− 1
2σ 2

1
(ri,j − di)2)

(33)

=

1
√
2πσ2

exp(− 1
2σ 2

1

σ 2
1

σ 2
2
(ri,j − di − µ2)2)

1
√
2πσ1

exp(− 1
2σ 2

1
(ri,j − di)2)

(34)

Then, the log-likelihood ratio is calculated as follows:

l = ln L

=
1
2
ln

σ 2
1

σ 2
2

−
σ 2
1

2σ 2
2

(
1

σ 2
1

(ri,j − di − µ2)2
)

+
1

2σ 2
1

(ri,j − di)2

(35)

=
1
2
ln

σ 2
1

σ 2
2

−
σ 2
1

2σ 2
2

(
1

σ 2
1

((ri,j − di)2 + µ2
2 − 2(ri,j − di)µ2)

)
+

1

2σ 2
1

(ri,j − di)2 (36)

=
1
2
ln

σ 2
1

σ 2
2

−
σ 2
1

2σ 2
2

(
T (ri,j) +

µ2
2

σ 2
1

−
2

σ 2
1

(ri,j − di)µ2

)
+

1
2
T (ri,j) (37)

=
1
2
ln

σ 2
1

σ 2
2

+
1
2
T (ri,j) −

σ 2
1

2σ 2
2

(
T (ri,j) +

µ2
2

σ 2
1

−
2µ2

σ 2
1

sgn(ri,j − di)|ri,j − di|
)

(38)

=
1
2
ln

σ 2
1

σ 2
2

+
1
2
T (ri,j) −

σ 2
1

2σ 2
2

(
T (ri,j) +

µ2
2

σ 2
1

−
2µ2

σ1
sgn(ri,j − di)

√
T (ri,j)

)
(39)

where T (ri,j) =
(ri,j−di)2

σ 2
1

. Furthermore, ∂l
∂T (ri,j)

can be divided

into two cases, namely, (ri,j − di) is positive or negative.
If ri,j − di > 0, ∂l

∂T (ri,j)
is calculated as follows:

∂l
∂T (ri,j)

= −
σ 2
1

2σ 2
2

+
µ2σ1

2σ 2
2

1√
T (ri,j)

+
1
2

(40)

Eq.(40) is always bigger than zero because σ 2
2 > σ 2

1 and
µ2 > 0 when the corresponding observation is the NLOS
sample. On the other hand, when ri,j − di < 0, ∂l

∂T (ri,j)
is

calculated as follows:

∂l
∂T (ri,j)

= −
σ 2
1

2σ 2
2

−
µ2σ1

2σ 2
2

1√
T (ri,j)

+
1
2
. (41)

The case that ri,j − di < 0 is feasible only in the LOS state.
Thus, ∂l

∂T (ri,j)
is always bigger than zero because µ2 = 0 and

σ 2
2 > σ 2

1 . Subsequently, the following threshold test is the
UMP test by the MLR property [49]:

T (ri,j)
H1

⋛
H0

γ (42)

where γ is determined by the NP-rule.

APPENDIX B
DERIVATION OF Var[ri |d̂ m

i ]
The Var[ri|d̂mi ] has been derived in [35] as follows:

Var[ri|d̂
m
i ]

=

∑P
j=1 Kh(d̂

m
i − ri,j)(ri,j − m̂(d̂

m
i ))

2∑P
j=1 Kh(d̂

m
i − ri,j)

+ h2 (43)

=

∑P
j=1 exp(−

(d̂mi −ri,j)2

2h2
)(ri,j − m̂(d̂mi ))

2∑P
j=1 exp(−

(d̂mi −ri,j)2

2h2
)

+ h2. (44)

Then, we can further simplify (44) as follows. If the obser-

vation ri,j is the inlier, exp
(

−
(d̂mi −ri,j)2

2h2

)
≃ 1 because

(d̂mi − ri,j)2 would be small. On the contrary, if ri,j is the

outlier, exp
(

−
(d̂mi −ri,j)2

2h2

)
≃ 0 because (d̂mi − ri,j)2 would

be large. Hence, Var[ri|d̂
m
i ] ≃

∑
j∈LOS(ri,j−m̂(d̂

m
i ))

2

P−Q + h2 ≃

σ 2
1 + σ 2

1 = 2σ 2
1 . Also, j ∈ LOS indicates the index which

belongs to the LOS measurement.
With respect tomore rigorousmathematical sense, (44) can

be simplified as follows. The approximation that d̂mi ≃

m̂(d̂mi ) is used in (44). Then, Var[ri|d̂mi ] can be derived as
follows:

Var[ri|d̂
m
i ]

=

∑P
j=1 exp(−

(d̂mi −ri,j)2

2h2
)(ri,j − m̂(d̂mi ))

2∑P
j=1 exp(−

(d̂mi −ri,j)2

2h2
)

+ h2 (45)

≃

∑P
j=1 exp(−

(m̂(d̂mi )−ri,j)
2

2h2
)(ri,j − m̂(d̂mi ))

2∑P
j=1 exp(−

(m̂(d̂mi )−ri,j)
2

2h2
)

+ h2 (46)

≃

1
√
2πh

∫
∞

−∞
exp(−

(m̂(d̂mi )−ri,j)
2

2h2
)(ri,j − m̂(d̂mi ))

2dri,j

1
√
2πh

∫
∞

−∞
exp(−

(m̂(d̂mi )−ri,j)
2

2h2
)dri,j

+ h2

(47)
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=

1
√
2π

∫
∞

−∞
exp(− t2

2 )(ht)
2dt

1
√
2π

∫
∞

−∞
exp(− t2

2 )dt
+ h2 (48)

= h2E[t2] + h2 (49)

= h2Var(t) + h2 (50)

= h2 + h2 (51)

= 2σ 2
1 . (52)

In the derivation of (47) and (48), the summation is replaced

by the integral,
m̂(d̂mi )−ri,j

h ≜ t and −dri,j
h ≜ dt , respectively.
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