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ABSTRACT The application of SiC-based strain-relaxed buffers (SRB) technology in gate-all-around
(GAA) pMOS nanosheet transistors (NS-FETs) fabrication has been systematically investigated. TCAD
simulation results show that SiC SRB can effectively enhance the p-channel stress, up to 3.8Gpa has
been achieved without S/D parasitic RC degradation. Furthermore, introducing a wide-bandgap SiC layer
underneath NS-FET can help suppress the bottom parasitic transistor. The SiC SRB technology presents a
integrated and streamlined approach for addressing the major performance bottlenecks of NS-FETs and is a
potential solution for developing future NS-FET based high-performance and low-power logic applications.

INDEX TERMS Gate-all-around (GAA), nanosheet (NS-FET), S/D stressor, stress enhancement, strain
relaxed buffer.

I. INTRODUCTION
With the continuous scaling of CMOS technology, the gate
length of transistors is approaching sub-15nm region for the
3nm node and beyond. At this size, even FinFET technology
struggles to provide adequate gate control to minimize short-
channel effects [1]. In order to meet the ever increasing
demand of modern high-performance and low-power SoCs,
stacked nanosheet GAA FETs (NS-FETs) have emerged as
the most promising alternative to replace FinFETs, owing
to their superior electrostatics control and relatively smooth
transition from existing FinFET technologies [2]. Being a rev-
olutionary device structure, NS-FET inevitably introduces its
unique challenges. First, the primary surface orientation for
NS-FET has switched to (100), which leads to decreased hole
mobility when compared to FinFET counterparts. To com-
pensate for the performance degradation of pFET, much
higher stress needs to be introduced to the channel using SiGe
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source/drain (S/D) stressors. However, the epitaxial quality
of these stressors is already challenged by the discontinuous
initial interface. Second, the area efficiency of NS-FET is
often considered advantageous since it can theoretically be
improved by adding more stacked nanosheets. In practice,
the benefit is severely limited by bulky S/D stressors, as the
low-lying nanosheets are hampered by high access resistance
[3]. Third, there is a parasitic fin transistor at the bottom
of the NS-FET structure which, if left untreated, becomes a
significant leakage path and increases parasitic RC [4]. A lot
of work has been carried out to address these shortcomings to
bringNS-FETs intomass production.While potential process
solutions, such as bottom dielectric isolation (BDI), have
been proposed [5]. Implementing a separate solution for each
challenge increases the complexity of process integration and
manufacturing cost. Therefore, a more integrated solution is
preferred.

Stress can also be introduced through the epitaxial growth
of Si channels on a strain-relaxed buffer (SRB) virtual sub-
strate. Unlike other common stress techniques utilized in
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FIGURE 1. (a)Detailed integration flow of proposed SiC SRB-based
NS-FET. (b)Target device parameters and simulated device structure.

CMOS technologies, the stress introduced by SRB does not
decrease as transistor size shrinks [6]. The lattice spacing
of substitutional carbon based SRB (SiC) is smaller than
that of silicon. Therefore, using an epitaxially grown SiC
layer as a SRB offers an alternative approach to introduce
highly desirable compressive stress in the nanosheet pFET.
In addition, the use of a SiC layer as an SRB can provide an
additional isolation benefit due to the larger band offset of
SiC [7]. Although SiC SRB has been proposed for FinFET
applications, the effect of the SiC SRB on NS-FETs has not
been systematically investigated [8].

In this work, the effect of SiC SRB layers as a virtual
substrate for NS-FET application has been systematically
investigated using TCAD simulations. The proposed inte-
gration scheme utilizes a strain buffer layer to alleviate
the conflicting needs between high-stress and bottom sheet
access resistance. In addition, the carbon element in the para-
sitic fin structure can suppress parasitic transistor leakage by
reducing the junction depth and introducing a larger barrier
for isolation.

II. SiC SRB FOR NS-FET INTEGRATION
A. INTEGRATION FLOW
Channel stress engineering through SRB is typically achieved
by epitaxial growth of the channel material directly over the
SRB virtual substrate. The fabrication of the SRB virtual sub-
strate can be done directly on the Si substrate or by replacing
the existing fin after the STI [6], [9]. Implanting SRB into
NS-FETs is more complicated as the stacking Si nanosheet
channels are not in direct contact with the substrate. With the
replacement fin scheme, the epitaxial quality of the superlat-
tice structure is a concern, therefore, it is preferred that SRB
epitaxy is grown directly on the Si substrate. The proposed
SRB NS-FET flow is illustrated in Figure 1(a), where a fully
relaxed SiC layer was epitaxially grown on the Si substrate.
The upper limit of carbon concentration in SRB is set to 4%
to take into consideration the capability of current fabrication
techniques [10]. After SRB formation step, NS-FET was fab-
ricated following the generic NS-FETs process steps reported
by previous works [2], [11].

B. SIMULATION METHODOLOGY
Sentaurus Process was selected to perform the 3D pro-
cess simulation using the aforementioned integration flow.
Figure 1(b) shows the geometry parameter and schematic
view of the final structure of a three-layer Si GAA NS-FET
with SiC SRB generated by process simulation. The target
structure dimension was based on the ITRS road map for the
3nm node. The gate length of 14 nm, NS width of 33 nm,
NS thickness of 6 nm, and gate pitch of 42 nm was assumed.
To accurately simulate the epitaxial growth process on com-
plex 3D structures, Lattice Kinetic Monte Carlo (LKMC)
model was employed in key epitaxial steps, including SRB
layer growth, SiGe/Si multi-layer growth, and the Si0.6Ge0.4
S/D stressor growth(pFETs). Stress equilibrium calculations
were also performed after each step for the accurate evalua-
tion of stress relaxation effects.

After process simulation, Sentaurus Device was used for
device performance evaluation. The accuracy of the TCAD
simulation depends on the appropriate physical model selec-
tion and physical parameters calibration. In this study, the
drift-diffusion transport (DD)model was used in combination
with the Poisson equation and quantum correction models to
perform self-consistent computation. The selection of mobil-
ity model in DD module includes low-field ballistic mobility,
auto-orientation inversion and accumulation layer mobility
(IALMob), and high field saturation velocity. The recom-
bination effect was accounted for by utilizing the Dynamic
Nonlocal Path Band-to-Band (BTBT), Shockley-Read-Hall
(SRH), and Anger recombination models. The strain impact
on devices was calculated using the multi-valley electron
and hole mobility model that considers the mass anisotropy
and valley/band energy change with orientation and stress.
A variety of physical parameters, such as doping profile,
ballistic coefficient, and surface roughness scattering factor,
were carefully calibrated to match reported NS-FET experi-
mental results [2].

III. RESULTS AND DISCUSSION
A. STRESS ENHANCEMENT PRINCIPLE
In NS-FETs, Si nanosheet channels are formed by selectively
removing the SiGe sacrificial layers from epitaxially grown
SiGe/Si multi-layer heterostructure. As the thickness of each
layer is within the range of a few nanometers, less than the
corresponding critical thickness, the lattice spacing of both
Si channel layers and SiGe sacrificial layers matches that of
the substrate, resulting in a strained multi-layer heterostruc-
ture [12]. Figure 2(a) shows the initial longitudinal stress
(SZZ) distribution of the resulting multi-layer heterostructure.
When a silicon substrate was used, there is no stress in the Si
channel layer due to the same lattice parameters, and only the
SiGe sacrificial layer is compressed. However, if the SiGe/Si
superlattice was epitaxially grown on a fully relaxed SiC
SRB, both Si and SiGe layers are now compressed as they
conform to the smaller lattice spacing of the underlying SiC
alloy. The stress of the top three Si layers has reached 2GPa
with a 3% SiC SRB.
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FIGURE 2. (a)Longitudinal Stress distribution of superlattice
cross-section, Si layer is pre-stressed to 2GPa with 3% SiC Sub (b)The
average channel stress evolution between process stages, the initial
stress obtained from SiC SRB was lost after S/D etch but regained after
S/D SiGe EPI.

FIGURE 3. During S/D SiGe epitaxy process, the bottom seed surface
grown out of the SiC SRB layer has a smaller lattice spacing than one on
the Si sub, thus providing a stress boost to the nanosheet channels.

Figure 2(b) shows stage-to-stage channel stress evolution
extracted during NS-FET fabrication, both with and without
SiC SRB. It can be observed that both conditions exhibit
tensile stress after the S/D trench etch process due to the
fragmentation of the fin structure and the emergence of the
free surface. At this point, the nanosheets and sacrificial
layers can extend elastically along the channel direction.
Due to the short gate length of NS-FET, the majority of the
residual stress introduced by the SRB is lost, which shows
good agreement with X-ray nano diffraction measurement
results reported in literature [13].

However, after the subsequent S/D SiGe EPI step, the
SRB condition was 0.35GPa higher than the baseline. The
stress difference between the two conditions widened after
the channel release and was maintained throughout the rest of
the processes. resulting in a significant increase of 1.41 GPa.
A closer examination of the S/D SiGe EPI step reveals a
considerable difference between the two conditions. Epitax-
ial growth of S/D on NS-FET is known for its challenge
of discrete initial seed surface. The situation is even more
complex in structures with the SRB layer, as there are two
different materials for SiGe epitaxy seed: the silicon in the
nanosheet channels and the SiC in the parasitic Fin. The
SiC SRB has a smaller lattice spacing (γ ) than the Si layer
(α), and the epitaxy of the SiGe material on top of the SiC

FIGURE 4. (a)Stress-capacitance comparison between SiC SRB carbon
concentration modulation method and conventional S/D SiGe EPI volume
enlarging method.(b)Comparison of IdVg curve with Si Sub SiC SRB. The
effect of SiC SRB carbon concentration on Ion/Ioff is summarized in the
insert.

results in a larger lattice mismatch and higher compressive
stress, as shown in Figure 3. When the highly stressed bot-
tom seed begins to merge with the seed grown out of the
nanosheets during epitaxial growth, the extrusion from the
highly stressed bottom seed is transmitted through the less
stressed channel seed, increasing the stress in nanosheets.

B. PERFORMANCE BOOSTER WITHOUT RC PENALTIES
One advantage of SRB technology is that the stress effect
can be modified by adjusting the composition of the SRB
layer. Simulations were performed for different SRB carbon
doping concentrations using a fixed S/D SiGe EPI condi-
tion. The effect of S/D stressor volume on stress was also
simulated on conventional Si substrates for comparison. The
results are plotted in Figure 4(a), which shows the extracted
final channel stresses versus the total device capacitance.
The data indicate that increasing carbon concentration is
an effective method for boosting final stress. Up to 3.8GPa
final stress is achieved when 4% SiC SRB is combined with
‘‘Small’’ sized S/D SiGe EPI while maintaining the total
capacitance. In contrast, with conventional Si substrates, the
stress-boosting method of enlarging S/D SiGe EPI stressor
volume (‘‘Middle’’ and ‘‘Large’’) comes with a heavy capac-
itance penalty. With enhanced channel stresses, the overall
device performance gain of SiC SRB technology is present
in Figure 4(b). Compared to conventional Si substrates, SiC
SRB offers up to 35% increase in transistor driving current
while maintaining nearly the same Ioff level. Such electrical
benefits are similar to those of the previous FinFET study
[8]. This suggests that SiC SRB technology can be effec-
tively adapted to NS-FETs, despite the structural differences
between the two device architectures.

C. PARASITIC CHANNEL LEAKAGE CONTROL
In FinFET technology, a Punch-through stop (PTS) layer is
typically introduced at the bottom of the fin structure through
angled implantation to suppress the parasitic transistor. How-
ever, its effectiveness in NS-FET has yet to be established,
as the shadowing effect of theNS-FET structure is expected to
be much worse than that of the FinFET structure [14]. In this
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FIGURE 5. (a) Comparing the boron distribution in the bottom parasitic
transistor (highlighted), the boron diffusion into the parasitic fin structure
is significantly reduced when using SiC SRB. (b) Comparison of band
alignment of parasitic FinFET transistor at off-state with (blue) and
without (Red) SiC SRB. The valence band offset in SiC SRB is larger than
Si, resulting higher hole barrier.

regard, the incorporation of SiC SRBs brings two additional
benefits. Firstly, The addition of carbon to silicon is known
to reduce transient diffusion (TED) [15]. Consequently, there
is less boron diffusing out of the source-drain region into the
underlying parasitic fin structure, as shown in Figure 5(a).
The shorter S/D extension leads to an increase in the equiv-
alent gate length of the parasitic FinFET transistor, resulting
in better gate control during off-state. Secondly, by replacing
Si with SiC alloy in the parasitic fin structure, the valence
band offset in the parasitic FinFET transistor is broadened,
as shown in Figure 5(b) [16]. This further suppresses the
tunneling effect and reduces leakage. While some of the
leakage benefits gained from the parasitic channel are offset
by increased leakage in the NS channel due to excessive
bandgap narrowing caused by high NS channel stress, the
overall leakage control is much better than that of Si-based
devices, as shown by the electrical results [8].

IV. CONCLUSION
By implementing a SiC strain-relaxed Buffer into nanosheet
pFET fabrication, the stress effect of SiGe S/D stressors can
be significantly enhanced. Up to 3.8Gpa channel stress can
be achieved without increasing S/D epitaxy volume. More-
over, SiC SRB brings additional benefits in terms of bottom
parasitic channel control and enables a new flexible method
of channel stress adjustment without parasitic RC penalties,
which may be a crucial performance enhancer for future NS-
FETs.
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