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ABSTRACT In order to improve the classification accuracy of loudspeaker abnormal sounds, this paper
proposes a method based on time-varying specific loudness weighted by energy entropy and principal
component analysis. This method simulates human auditory perception mechanism to process loudspeaker
sound response signal to obtain more effective features. The human hearing system can be divided into
many parallel and functionally independent conduction pathways according to frequency. The energy of
the acoustic signal in each pathway can be discerned. Therefore, the time-varying specific loudness is
calculated firstly to build the quantitative correlation of loudspeaker’s acoustic response signals and human
hearing sensations. Each sub band loudness is weighted by energy entropy to highlight the acoustic strength
variation with time and frequency. Then, important features are extracted by two dimensional-principal com-
ponent analysis (2D-PCA). Finally, the whale optimization algorithm-least squares support vector machine
(WOA-LSSVM) is adopted for classification. Visual analysis of the extracted features shows that this method
can extract loudspeaker response signal features with better discriminability. Classification experimental
results show that the average accuracy of this method reached 98.4%, which is higher than the classification
method based on traditional time-frequency domain statistical features. The loudspeaker abnormal sound
classification method in this paper simulates human auditory perception to extract features and is able to
improve classification accuracy and automation effectively.

INDEX TERMS Loudspeaker abnormal sound classification, time-varying specific loudness, energy
entropy, two dimensional-principal component analysis (2D-PCA), whale optimization algorithm-least
squares support vector machine (WOA-LSSVM).

I. INTRODUCTION
The loudspeaker, as an important electro-acoustic converter,
is widely used in human-computer interaction technolo-
gies such as augmented reality (AR), virtual reality (VR),
and mixed reality (MR). At the same time, the quality of
loudspeakers has also received attention. However, due to
mistakes in the production process, the loudspeaker will
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produce abnormal sound in the process of using. It is
important to carry out quality inspection and fault classifi-
cation in the production process to guarantee loudspeaker
quality. Traditional loudspeaker abnormal sound classifi-
cation methods rely on professional workers to listen to
the sound on the production line. However, the results of
workers’ listening are affected by many subjective per-
sonal factors; it is difficult to further improve the accuracy
and stability of loudspeaker detection. Compared with arti-
ficial inspection, reliable classification algorithms are a
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better choice in industrial production to improve loudspeaker
quality.

Currently, researchers in the industry often use loud-
speakers’ electrical response signals, vibration signals, and
acoustic response signals for loudspeaker fault detection.
Illana analyzed the current signal flowing through the loud-
speaker by means of Zhao-Atlas-Marks distribution (ZAMD)
and proposed a failure extractor based on relevant ZAMD
frequency regions segmentation and Mahalanobis distance to
detect the rub defect [1]. Serban et al. designed an experi-
mental system used for fault detection of the direct radiator
loudspeaker based on phase characterization of consumed
current and the applied voltage [2]. The system is only used
to distinguish between qualified and faulty products. Izzo
et al. used radar micro Doppler approach to analyze the
vibration signal of a loudspeaker in order to detect irregular
defects affecting the motion of the voice coil [3]. Peulraja et
al. proposed a method for detecting loudspeaker abnormal
sound based on harmonic distortion, which uses an excita-
tion signal from 20 Hz to 20 kHz to make a sound from
a loudspeaker. The spectrum was obtained by performing a
fast Fourier transform on the response signal, and then the
top six frequency bands and their corresponding total energy
were computed and chosen for further analysis. Finally,
they were used as features for training the neural network
for automatic detection of loudspeaker faults. However, the
neural network was not able to give an efficiency of more
than 90% [4]. Klippel and Werner proposed a method
based on asynchronous demodulation and envelope averaging
between the higher-order acoustic harmonics to improve the
sensitivity of dust cap leaking fault detection [5].Wenhua and
Yuming converted the response acoustic signal of frequency
sweep into two-dimension time-frequency image signal and
designed a feature extraction method for images. The fault
identification accuracy rate can reach 95%based on the image
features [6]. However, the image processingmethod increases
the feature extraction complexity of acoustic response signal.

Although the above methods can have a good effect on
the recognition and classification of loudspeaker abnormal
sound, they don’t pay attention to the human auditory charac-
teristics and only continue to follow the conventional signals
processing method. They generally extract features from the
time domain, frequency domain and time-frequency domain
of the loudspeaker response signal. There are errors between
test results and the results of manual listening.

Psychoacoustics describes the connection between sound
stimulation and human perception. At present, psychoacous-
tics is widely used in the design and manufacturing process
of products to improve the acoustic performance and com-
petitive advantage of products [7], [8], [9], [10], [11]. Under
the same excitation signal, the acoustic response signals of
the qualified loudspeaker and the faulty loudspeaker have
different energy values in different frequency bands. Human
listeners are able to distinguish this difference based on pre-
vious experience. Temme proposed a simplified perceptual
model based on the masking threshold of human auditory and

a cepstrum loudness enhancement algorithm for the detec-
tion of Rub & Buzz distortion [12], [13]. Finally, additional
psychoacoustic variables are added and an artificial neural
network approach is used to measure harmonic distortion
audibility [14]. Those methods are based on the Perceptual
Evaluation of Audio Quality (PEAQ) standard. The PEAQ
requires no time lag between the test signal and the reference
signal, which is difficult to guarantee in loudspeaker field
tests.

In this paper, we propose a method for loudspeaker
abnormal sound classification based on auditory perception,
drawing on the judgment of good listeners on loudspeaker
abnormal sounds. To establish a quantitative correlation
between loudspeaker acoustic response signals and human
hearing sensations, we first calculate the time-varying spe-
cific loudness. Next, we use entropy to enhance the charac-
teristics of the time-varying specific loudness. Among the
different kinds of entropy, energy entropy, fractional order
fuzzy dispersion entropy [15], and simplified coded disper-
sion entropy [16] are considered. Energy entropy is chosen
because the energy of different frequency bands is one of the
important factors for humans to identify the sound character.
Then, we use two-dimensional principal component analy-
sis (2D-PCA) to perform feature dimensionality reduction,
which can extract the most important features and improve
the classification processing speed. Finally, the whale opti-
mization algorithm-least squares support vector machine
(WOA-LSSVM) is adopted for classification. The proposed
method can reach high accuracy and meet the requirements
of loudspeakers abnormal sound classification online.

We analyze 200 loudspeakers; 50 of each kind (normal,
slight sound, voice coil rubbing, and dust cap leaking).
In total, 1000 response acoustic signals are obtained with
5 measurements per loudspeaker. Slight sound refers to
the low loudness of the loudspeaker due to the high rated
impedance; voice coil rubbing refers to the collision between
the voice coil and the permanent magnet; dust cap leaking
refers to the air leakage of the dust cap. Section II presents the
proposed psychoacoustic approach to signal processing and
describes the classification algorithm in detail. In Section III,
the identification results are depicted.We discuss our findings
in section IV and provide conclusions in section V.

II. ABNORMAL SOUND CLASSIFICATION BASED ON
ENTROPY-WEIGHTED TIME-VARYING SPECIFIC
LOUDNESS AND 2D-PCA
The experimental platform shown in Figure 1 is set up to
acquire loudspeaker’s acoustic response signal. The plat-
form mainly includes a computer, a power amplifier module,
a B&K 4096 microphone, and the B&K input module
(Type 3057-B-030). The excitation signal generated by the
computer will be amplified by the power amplifier module to
drive the loudspeaker. At the same time, the acoustic response
signal will be collected by the microphone and acquired by
the B&K input module.
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FIGURE 1. Test system composition diagram.

The loudspeaker under test is used in the headphone, and its
diameter is 40 mm, the rated power is 0.5 W, the impedance
is 8 �. In the experiment, the continuous logarithmic sweep
signal is used for the excitation signal, its duration is 1s, the
frequency range is 20 Hz∼20 kHz and the root mean square
value is 0.9 V. The acquired acoustic response signal is saved
in computer for the subsequent analysis.

To implement abnormal sound classification, we first
extract features of the acoustic response based on auditory
perception. The time-varying specific loudness is calculated
to describe the acoustic strength variation with the time
and frequency. The time-varying specific loudness result is
weighted by energy entropy to enhance this variation. Then
2D-PCA is used to remove redundant features and enhance
the effect of classification. Finally, the WOA-LSSVM model
is employing as a classifier. The proposed abnormal sound
classification using auditory perception weighted by energy
entropy is shown in Figure 2.

A. TIME-VARYING SPECIFIC LOUDNESS MODEL
WEIGHTED BY ENERGY ENTROPY
Loudness is a psychoacoustic parameter that reflects the
human subjective perception of sound intensity and is related
to both the frequency and amplitude of the sound signal.
The computational procedure for calculating loudness con-
siders both auditory frequency decomposition and auditory
masking effects. The loudness is assigned to 24 critical bands
and specific loudness is calculated for each band. In this
paper, we use time-varying specific loudness, which repre-
sents changes in specific loudness over time, to represent
differences in the loudspeaker’s acoustic response signal in
different states.

To get a better human hearing system’s sensation, the
method of time-varying specific loudness weighted by energy
entropy is proposed in the paper. Firstly, the time-varying
specific loudness of the loudspeaker’s acoustic response sig-
nal is calculated by the DIN 45631/A1 standard. Then the
weight coefficients are obtained through the energy entropy
of each critical band. Finally, multiply the weight coefficient
and corresponding critical band’s specific loudness together
and the weighted time-varying specific loudness is gotten.
Thus, the quantitative correlation of loudspeaker’s acoustic
response signals and human hearing sensations is built by the
weighted time-varying specific loudness in this paper. And
the detailed steps are as follows in Figure 3:

1) Calculate the time-varying specific loudness v (n, zi) of
the acquired acoustic response signal by the standard DIN
45631/A1, n is the number of points obtained by 2ms step for
the duration of 1s, n = 0, 1, 2, · · · , 500; zi is the frequency
scale of the critical bands; the 24 critical bands are divided
into 240 sub-bands by 0.1 step, i = 1, 2, · · · , 240.

2) Calculate each sub-band energy E(zi) of v (n, zi) accord-
ing to the following formula:

E(zi) =

∑⌊
T

0.002

⌋
n=0

|v(n, zi)|2 (1)

3) Calculate the energy entropy weighting factor g(zi) for
each sub-band as follows.

P(zi) =
E(zi)∑240
i=1 E(zi)

(2)

g(zi) = −P(zi)logP(zi) (3)

4) The s(n, zi) is obtained by multiplying each sub-band
specific loudness with its corresponding weighting factor,
as shown in the following equation.

s(n, zi) = v(n, zi)gT (zi) (4)

By weighting the time-varying specific loudness, it can
make its features more obvious. However, redundant infor-
mation still exists. This redundant information may cause
the classifier to become more complex. Principal component
analysis (PCA) can be considered to remove the redun-
dant information. Traditional principal component analysis
suffers from the problems of complex covariance matrix
calculation and time-consuming determination of the cor-
responding feature vectors, and 2D-PCA methods are pro-
posed to overcome these problems [17]. In this paper, the
2D-PCA method is used to extract the main information
of the weighted time-varying specific loudness and obtain
the reduced-dimensional feature matrix of the loudspeaker
acoustic response signal. Four kinds of the loudspeakers were
tested, and the corresponding feature set Yi was obtained
for each acoustic response signal by the above mentioned
processing.

B. CLASSIFICATION METHODS
The support vector machine (SVM) is a supervised learn-
ing algorithm that can be used for classification, clustering,
prediction, and regression analysis. SVM model has gained
popularity due to several attractive features such as stabil-
ity, robustness [18]. Least squares support vector machine
(LSSVM) is selected as the classifier in this paper. LSSVM is
an improvement of SVM, it not only reduces the classification
complexity but also improves the operation speed and conver-
gence accuracy of the classification process, at the same time
it has good noise immunity [18]. In order to improve the clas-
sification performance of loudspeaker abnormal sound, this
paper uses whale optimization algorithm (WOA) to optimize
the parameters of LSSVM,where the number of search agents
is set to 20, and the maximum number of iterations is set
to 50. In this paper, accuracy is used as fitness function, and
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FIGURE 2. A psychoacoustical based system for classifying loudspeaker abnormal sounds.

FIGURE 3. Algorithm diagram.

the fitness curve of a training is randomly selected, as shown
in Figure 4. It can be seen from Figure 4 that the parameter
settings have met the optimization requirements.

A detailed description of the WOA algorithm for LSSVM
optimization is given in the literature [19]. The recognition
accuracy of WOA-LSSVM is:

Acc =
(NPass)(

NTotal test samples
) (5)

where Acc is the acoustic signal recognition accuracy for the
selected category, NPass is the number of correct sound signal
files tested and NTotal test samples is the number of all sound
signal files tested for the selected category.

FIGURE 4. Fitness function curve.

The overall recognition accuracy is defined as follows

TAcc =
Acca + Accb + Accc + Accd

4
(6)

where TAcc is the total loudspeaker recognition accuracy,
Acca is the accuracy of recognizing normal loudspeakers,
Accb is the accuracy of recognizing voice coil rubbing loud-
speakers, Accc is the accuracy of recognizing dust cap leaking
loudspeakers and Accd is the accuracy of recognizing slight
sounding loudspeakers.

Macro-F1 is also used to evaluate classification perfor-
mance in multi classification. The calculation formula for
macro-F1 in this paper is as follows

Macro-F1

=
F1-scorea+F1-scoreb+F1-scorec+F1-scored

4
(7)

where F1-scorea is the F1-score of normal loudspeakers,
F1-scoreb is the F1-score of voice coil rubbing loudspeakers,
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FIGURE 5. Time-varying specific loudness of a loudspeaker in different states (a) normal (b) voice coil rubbing (c) dust cap leaking (d) slight sound.

F1-scorec is the F1-score of dust cap leaking loudspeakers
and F1-scored is the F1-score of slight sound loudspeakers.
The calculation formula for F1-score is as follows

F1-score =
2 × TP

2 × TP+ FP+ FN
(8)

TP refers to True Positive, which means that a positive
class is determined as a positive class; FP refers to False
Positive, which means that negative classes are judged as
positive classes; FN refers to False Negative, which means
that a positive class is judged as a negative class.

III. RESULTS ANALYSIS
A. THE RESULTS OF TIME-VARYING SPECIFIC LOUDNESS
BASED ON ENTROPY WEIGHTING
After pre-processing the loudspeaker response signal data
collected from 1000 sets of valid data, the proposed method
was used to analyze the loudspeaker response signals. Firstly,
the time-varying specific loudness information of every loud-
speaker response signal was obtained. Figure 5 depicts the
time-varying specific loudness results of the loudspeaker

acoustic response signal in four states. In order to collect
the complete response signal, we started the collection 0.1s
before playing the excitation signal and waited 0.1s after
playing to finish the collection. As a result, the acoustic
response signal is within the time range of 0.1s to 1s.
Figure 5(a) shows the results of a normal loudspeaker and
it can be seen that the energy of each critical band changes
approximately logarithmically over time. The corresponding
energy of the low and high critical band is smaller than
the energy of the mid critical band part, which is consis-
tent with the auditory response characteristics to different
frequencies. Figure 5(b) shows the time-varying specific
loudness of the voice coil rubbing state response signal.
Compared with Figure 5(a), there are two differences: the
energy from 4 to 12 critical band is smaller than that in
Figure 5(a), and many harmonic components are generated
between 0.2s and 0.6s. This is due to the collision between the
voice coil and the permanent magnet during the loudspeaker’s
sound production. Figure 5(c) shows the time-varying spe-
cific loudness of the dust cap leaking state response signal.
It can be observed that the energy of the signal on all bands is
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FIGURE 6. Weighted time-varying specific loudness of loudspeakers in different states (a) normal (b) voice coil rubbing (c) dust cap leaking (d) slight
sound.

smaller than that in Figure 5(a), and there are many anomalies
between 0.2s and 0.4s, which may be due to the decrease
in electroacoustic conversion performance caused by dust
cap leaking. Figure 5 (d) shows the time-varying specific
loudness of the loudspeaker response in slight sound state.
It can be seen that the signal energy on all bands is smaller
than normal, and there are no harmonic components or
other abnormalities compared to Figure 5(b) and Figure 5(c).
Through the comparison in Figure 5, it can be found that there
are significant differences in the time-varying specific loud-
ness of the four situations. It proves that auditory perception
is very effective to analyze the loudspeaker acoustic response
signal.

In order to increase the difference of the time-varying
specific loudness results in different states, the time-varying
specific loudness is weighted by the energy entropy, results
are shown in Figure 6. It is found that in the time-varying
specific loudness graph under the energy entropy weighting,
the different frequency bands of the loudspeaker in different
states are enhanced, the time-varying specific loudness of

the loudspeaker response signal in different faulty states has
obvious difference characteristics.

However, the dimensionality of the time-varying specific
loudness spectrum after the energy entropy weighting is too
high. If the classifier’s input dimensionality is too high, the
classification efficiency will be affected and the classification
time can increase significantly. Therefore, the main informa-
tion quantity of the time-varying specific loudness spectrum
is extracted by 2D-PCA method, and the redundant informa-
tion is eliminated to obtain the reduced dimensional feature
matrix as the classifier’s input.

B. RESULTS BASED ON ENTROPY-WEIGHTED
TIME-VARYING SPECIFIC LOUDNESS COMBINED
WITH 2D-PCA
In order to more vividly illustrate the feature extraction
effect of the algorithm, the t-distribution stochastic neighbor
embedding (t-sne) algorithm is used to visually analyze the
original acoustic response signal data and the feature data
extracted in this paper, and the results are shown in Figure 7.

VOLUME 11, 2023 66877



H. Su et al.: Loudspeaker Abnormal Sound Classification

FIGURE 7. (a) Raw data. (b) Two-dimensional visualization after the
output of the proposed method.

The t-sne plots show the trends and patterns in the data.
However, it cannot be used to directly find outliers in the
dataset as the data alignment does not directly represent
the distance between data clusters. The analysis of Figure 7
shows that most of the fault types in the original acoustic
response signal data overlap and it’s difficult to distinguish
from each other. In contrast, the feature data extracted in this
paper can distinguish well between the abnormal sound types.
In particular, the distribution of features between normal,
voice coil rubbing, and slight sound are almost completely
separated and they clustered in the corresponding area.

C. CLASSIFICATION RESULTS
In the loudspeaker abnormal sound classification exper-
iments, this paper refers to the 5-fold hierarchical
cross-validation method for the selection of training and
test sets. The method randomly divides the feature set of
the loudspeaker response signal into 5 parts according to
the proportion of the original data sample, with each part
containing the same proportion of each type of data as in
the original sample. One part is then used for testing while
the remaining four parts are used for training. The average

recognition rate from 5 experiments is used as the experi-
mental result. This avoids the situation that random division
may produce all one category in one copy, and reduces the
error caused by selecting different samples in the test set and
training set, and also reduces the influence of the randomness
of the WOA-LSSVM model in the process of population
initialization and optimization on the test results.

In order to better verify the accuracy of the algorithm in
classifying loudspeaker anomalies, the statistical features of
the loudspeaker response signal in the time-frequency domain
were extracted from the above-mentioned data sets respec-
tively, and then the data sets were normalized and input to the
WOA-LSSVMmodel for loudspeaker anomaly classification
discrimination.

The time and frequency domain characteristic parame-
ters include mean (x), standard deviation (σ ), root mean
square (xRMS ), skewness (xskew), kurtosis (xpeak ), mean square
frequency, frequency center, frequency variance, etc. are
commonly used. In the text, the time domain and frequency
domain characteristic parameters are used in combination,
and their calculation formulae are shown in Table 1.

TABLE 1. Partial time domain frequency domain statistical characteristics
parameters.

In this paper, a total of 1000 loudspeaker response sig-
nal samples were used as the dataset for the experiments,
and the number of each kind (normal, slight sound, voice
coil rubbing, and dust cap leaking) is 250. Afterward, the
proposed method and the traditional time-frequency domain
statistical feature method were used to extract features from
the response signals, and then the WOA-LSSVM was used
to classify them, and the classification results of the training
and test sets were calculated, as shown in Table 2. It can be
concluded that the recognition results of the method proposed
in this paper are superior to time-frequency domain statistical
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TABLE 2. Recognition rate of loudspeaker abnormal sound classification
by different methods.

features. Under the test set, the accuracy rate of our method
of the method proposed in this paper is 9.9% higher.

The hardware environment of this paper is inter(R)
Core(TM) i7-10870H CPU @2.20GHz 2.21GHz and 16GB
RAM, the software environment is Windows 10, and the
software version isMATLABR2020b. The total running time
of the method in this paper is 133.72s, while the total running
time of traditional time-frequency domain methods is 60.94s.
For 1000 samples, although this method consumes more time
than traditional time-frequency domain methods, the success
rate is also 9.9% higher, which is acceptable in industrial
production.

Tables 3 and 4 show the detailed classification results of
traditional time-frequency domain feature extractionmethods
and proposed methods. In the tables, the row represents real
values and the column represents predicted values.

TABLE 3. Abnormal sound classification results based on traditional
time-frequency domain statistical features.

TABLE 4. Entropy weighted time-varying specific loudness combined
with 2DPCA for abnormal sound classification results.

TABLE 5 shows the F1 score of four states, from which
the macro-F1 can be calculated. By comparing Table 3
and Table 4, it can be seen that the method proposed in

TABLE 5. F1-score of loudspeaker abnormal sound classification by
different methods.

this paper has higher recognition rates for various types.
At the same time, it can be calculated that the macro-F1
value of the method proposed in this paper is 98.37%, which
is higher than 88.74% based on traditional time-frequency
domain statistical. This fully demonstrates the advantages
of features extracted based on psychoacoustic models in the
classification of loudspeaker abnormal sounds.

C. Zhang et al. has compared many classifiers such as rel-
evance vector machines (RVMs), SVM, etc. in experiments,
and also compared some optimization algorithms such as
particle swarm optimization (PSO), genetic algorithm (GA),
etc. [20], [21], [22]. In order to verify the reliability of WOA-
LSSVM, this paper also carried out comparative experiments.
In addition, we tried the multiclass multi-kernel relevance
vector machines (mRVMs) classifier, PSO and GA. The
mRVMs classifier uses the WOA algorithm to optimize the
parameters of the RBF kernel function, and their results are
shown in the following table. As can be seen from the table,
the accuracy of WOA-LSSVM in our experiment was 1.7%,
1.6% and 1.2% higher than that of WOA-mRVMs, PSO-
LSSVM and GA-LSSVM, respectively.

TABLE 6. Accuracy of several methods.

IV. DISCUSSION
Loudspeaker abnormal sound classification is an essential
task in the production of loudspeakers. The conventional
classification methods are mostly based on time-frequency
domain feature extraction, without paying attention to the
human auditory characteristics. This paper calculates the
time-varying specific loudness of loudspeaker abnormal
sound and extracts features, which is closer to human per-
ception and judgment mechanism. However, this method has
a relatively low recognition rate for loudspeakers in the state
of dust cap leaking. This is because the time-varying specific
loudness of the response signal in the high frequency part
decreases, which is similar to the response of the loudspeaker
in the slight sound. The auditory perception model may
not be sensitive to these small differences, which may be
due to human auditory masking effects. This also requires
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to improve auditory perception model to better distinguish
these differences. Also, LSSVM model used is very mature,
and more novel classification models will be designed and
observed to achieve more accuracy in the future. But the other
effects brought by these models should also be evaluated in
more detail.

As the acquisition of loudspeaker acoustic response signals
places high demands on the acquisition environment, this
study was conducted in a quiet experimental environment.
Therefore, when testing in a new environment, it is important
to ensure that there is no substantial noise interference before
experimenting. Afterwards, we will attempt to collect data
from the factory to make it closer to actual usage.

In addition, the loudspeaker anomalous sound classifica-
tion method proposed in this paper classifies a single fault
in a loudspeaker; we do not consider multiple faults in a
loudspeaker (e.g., having both a voice coil rubbing ring
fault and a slight sound fault), and if multiple faults in a
loudspeaker need to be detected, more dimensions of the
signal need to be acquired. For example, we can combine the
electrical response signal and the acoustic response signal of
the loudspeaker for fault detection.

V. CONCLUSION
This paper presents a psychoacoustics-based method for
loudspeaker abnormal sound classification. The main conclu-
sions are as follows.

1. This paper extracts psychoacoustics features which are
different from traditional time-frequency domain features for
loudspeaker abnormal sound classification. The weighted
time-varying specific loudness is proposed to build the quan-
titative correlation of loudspeaker’s acoustic response signals
and human hearing sensations. The 2D-PCA is used to extract
the main information of the weighted time-varying specific
loudness and obtain the reduced-dimensional feature matrix
of the loudspeaker acoustic response signal.

2. The experiment result shows that, compared with the
time-frequency domain statistical features, the weighted
time-varying specific loudness spectrum can more accurately
characterize features and has higher average recognition rate.
The proposed method in this paper simulates human auditory
perception to extract features, and is able to improve the
classification accuracy effectively. It has great theoretical
significance and practical value for Industrial production of
loudspeakers.
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