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ABSTRACT This article presents a high-performance, low-power analog convolutional neural network
(CNN) circuit integrated into a CMOS image sensor (CIS) for face detection applications. The main block of
the proposed in-column analog CNN circuits is an analog multiplication-and-accumulation (MAC) circuit
consisting of an operational transconductance amplifier-based switched capacitor circuit enabling the pro-
grammable weight function. With the proposed MAC, a 3-layer analog CNN processor is implemented into
the column-parallel readout circuit in conventional CIS. Furthermore, for low-power CNNoperations, we use
a low-resolution analog-to-digital converter with the proposed nonlinear quantization method resulting in an
increase in the accuracy of face detection from 92.8% to 98.75% at 120 frame rates with 2.8 V/1.5 V supply
voltage. A prototype sensor with 160× 120 effective image resolution was fabricated using a 110 nmCMOS
image sensor process. Themeasurement results showed that the maximum power consumption was 0.57mW
and 4.02 mW at 1 and 120 frame rates, respectively.

INDEX TERMS CMOS image sensor, convolutional neural networks, face detection, multiplication-and-
accumulation, nonlinear quantization.

I. INTRODUCTION
Recently, with the advancement of machine learning, various
deep neural network (DNN)-based applications have been
widely used in the Internet of Things (IoT) applications [1].
The system architecture of conventional DNN converts image
information from external high-performance CMOS image
sensors (CIS) into digital output to perform DNN tasks on
neural processing units (NPUs) [2]. Operating two chips
requires a large memory area to transmit extensive image
data to the external NPU chip, resulting in decreased oper-
ation speed and increased power consumption. To overcome
such issues from two-chip solutions, simple image proces-
sors adjacent to image sensors with switched-current-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Nappi .

multiplication-and-accumulation (MAC) and in-column con-
volutional neural network (CNN) processors in CIS have
been proposed [3], [4], [5]. The switched-current-based
MAC converts the voltage scale of the pixel into a current
and performs a convolution operation. However, since the
error in the current mirror circuit can lead to variations
in the weight values, a high-performance current mirror is
required. In addition, frame per second (FPS) operation is
low (=1 FPS in [3]). The in-column CNN processor in
CIS showed a fast data-processing time (120 FPS in [4]).
However, a the switched-capacitor-based AMAC consisting
of passive devices without an operational transconductance
amplifier (OTA) was used, the weights could not be changed,
resulting in low face detection accuracy due to a fixed
weight. Furthermore, the functions of the algorithms are
limited [4], [5].
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FIGURE 1. Conventional CIS with CNN system and the proposed CIS system.

FIGURE 2. Accuracy of the proposed CIS by ADC resolution.

Therefore, we present an in-column CNN processor in
a CIS capable of weight update and high-speed operation
(=120 FPS) with the proposed switched-capacitor-based ana-
log MAC with an OTA. In addition, for low-power operation
within a limited area, a nonlinear quantization technique
was proposed for a low-resolution analog-to-digital converter
(ADC) to improve the accuracy of face detection. Fig. 1
shows a conventional CIS with a CNN system and the pro-
posed CIS system. The conventional system performs CNN
algorithms in the digital domain after converting analog
voltages representing extensive image data from the pixel
array to digital code with a high-performance ADC. On the
other hand, the proposed CIS has an in-column CNN pro-
cessor structure with two integrated convolution layers for
low-power operation and high face detection accuracy. The
proposed CIS consists of an analogMAC circuit and memory
block to perform a convolution operation. The algorithm of
the proposed analog CNN processor consists of a 2×2 convo-
lution layer (stride = 1) and a 2×2 pooling layer (stride = 2).
Fig. 2 shows the trend of face-detection accuracy with differ-
ent ADC resolutions of the proposed CIS. The feature maps
were quantized with different ADC resolutions ranging from
one to eight bits. After performing classification, the accuracy
tendency according to the different quantized ADC bits can
be calculated. From the results, we found that ADCswith four
or more bits had similar image classification accuracies of

approximately 96%. We think the reason why the accuracy
is saturated at ADC resolution above a certain level is that
in the case of face detection, classification is performed by
learning key elements such as eyes and nose from a human
face. Therefore, unlike CNN systems using conventional CIS
that require a high-resolution ADC (≥12 bits), the ADC
resolution for quantizing feature map images in the proposed
in-column CNN can be lowered (ADC resolution: 5 bits in
this paper).

Furthermore, with the proposed analog MAC with an
OTA-based switched capacitor circuit, a weight update was
possible, resulting in an approximately 2.62% improvement
in the face detection accuracy from 92.8% to 95.42%. In addi-
tion, the proposed nonlinear quantization technique has a
face-detection accuracy of 97.50% and power consumption
of 4.02 mW at 120 FPS, 5b-resolution ADC.

This article is organized as follows. Section II describes the
operation of the proposed analog MAC and nonlinear quan-
tization. Section III presents the measurement results with a
prototype sensor. Finally, Section IV presents the conclusions
of this paper.

II. THE PROPOSED ANALOG CNN PROCESSOR
IN CIS SYSTEM
A. OVERALL SYSTEM ARCHITECTURE
Fig. 3 shows the proposed analog CNN processor architec-
ture; it receives 160×120 image data as input and consists of
2×2 convolutional layers (numerical = 1) and 2×2 pooling
layers (numerical = 2). The outputted 5-bit 40×30 feature
map data is a fully connected layer processed by the software.
Fig. 4 shows the proposed CIS architecture integrated with
an in-column analog CNN processor. The CIS consists of
a 160×120 pixel array and a source follower and uses a
rolling-shutter reading method. For analog CNN processing,
there were three layers using the proposed analog MAC cir-
cuit and a nonlinear single-slope analog-to-digital (SSADC)
in each column. Fig. 5 shows the two operation modes of
the proposed CIS: CIS and CNN modes. For example, the
proposed CIS may operate in either CIS mode or CNN
mode, depending on the operation of an analog convolution
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FIGURE 3. The proposed analog convolutional neural network algorithm.

FIGURE 4. The proposed CIS system architecture.

FIGURE 5. Operation mode of the proposed CIS.

processor. In this model, two convolutional layers were
implemented with three analog layers. In CIS mode, a pixel
voltage of 160×120 is input to the analog convolution proces-
sor, and the first layer (Layer-1) performs and stores a pixel’s
correlated double sampling (CDS). After that, Layer-1 and
the final layer (Layer-F) convert the pixel voltage data of the

final 160×120 into a 5-bit CIS image through SSADC using
the read and storage process. In CNN mode, a pixel voltage
of 160×120 is input into the analog convolution processor
as in CIS mode. Layer-1 performs CDS and first convo-
lutional weight (with 2×2 convolutional mask) operations.
Then, the second layer (Layer-2) accumulates the output of
Layer-1 in analog memories and applies average-pooling and
the second convolutional weight (with 2×2 convolutional
mask) operations. After pooling, 80×60 feature map data
were stored in Layer-2, and the 2×2 convolution 2-layer
weight was calculated and stored. Polarity and pooling are
performed in the same process as in Layer-2, and the final
input data of 160×120 pixels are compressed and output as
40×30 feature map data. Finally, in Layer-F, Layer-2 values
are accumulated in analog memories, and the second average
pooling is performed. The 40×30 feature map converted a
5-bit CNN image into a nonlinear lamp signal at the SSADC.
The proposed CIS can retrain the algorithmmodels by obtain-
ing noisy images from the CISmode output data. Based on the
retraining results, weight updates were performed to improve
the model accuracy by 2.62%, from 92.8% to 95.42%.

B. THE PROPOSED ANALOG MAC CIRCUIT
Fig. 6 shows the proposed analog MAC circuit and its timing
diagram for the CDS and convolution weight operations. The
proposed analog MAC circuit with an auto-zeroing operation
was implemented in a column pitch (12.8 µm in this paper)
with an amplitude of approximately 50 dB. OTA operates
the Reset and Redistribution phases using auto-zeroing (AZ)
signals. In the reset phase, AZ is logic ‘Low’, and the input
transistors M1 and M6 are connected to the drain nodes of
the current source (M2 and M5) to sample the OTA logical
current bias (auto-zeroing voltage) to the CAZ at negative
feedback. In the redistribution phase, the OTA operates with
an AZ high signal. M1 and M6 use the bias sampled from
the CAZ, and the AZb switch is connected to become the
OTA of the cascode inverter structure. M3 and M4 are used
to set the bias voltages VG1 and VG6 when a static current
with VSG3 and VGS4 flows during the reset phase (called the
floating current source [6]). After resetting, M3 and M4 are
bypassed. OTA uses a negative feedback structure to allow
programmable weight values to be used during analog MAC
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FIGURE 6. The proposed analog MAC circuit & timing diagram.

FIGURE 7. Convolution MASK of the proposed CIS & Convolution
operation.

operations. The analog MAC operations are discussed in
more detail in the next section.

C. ANALOG CONVOLUTION LAYER
Fig. 7 shows the operation process of the convolution mask
and the convolution layer of the proposed CIS. The proposed
CIS uses a 2×2 convolution mask (stride = 1) structure to
improve the image classification accuracy and reduce data
loss. Fig. 8 shows the operation process and convolution
weight of the proposed conv1 layer. Equation (1) shows the
process of performing pixel voltage (1VPIX = Vrst − Vsig)
CDS for the proposed analog MAC. The capacitances of the
analog MAC are CS = CH = 400 fF and CD = 200 fF. The
initial charge follows QR1 in (1).When the signal voltage Vsig
of the pixel is input, the analog MAC operates in the signal
phase. The changed charge follows the QW1 in (1). The CDS
voltage follows Vout of (1) and is input to the conv2 layer as
the read phase.

QR1 = CS
(
Vrst − Vref

)
+ 2CH

(
Vref − Vref

)
QW1 = CS

(
Vsig − Vref

)
+ 2CH

(
Vout − Vref

)
Vout = VH1,2 =

Cs
2CH

(
Vrst − Vsig

)
+ Vref . (1)

After the CDS operation, the voltage is stored in CH1 and
CH2 as the virtual ground (VAZ) of the analogMAC. The con-
volution weight is implemented with the stored voltage and
divide phase, as shown in Fig. 8. The process of implementing
the convolution weight by the charge distribution follows (2).

Vout = VH2 =
CH

CH + CD
× (

1
2
1VPIX ) (2)

The convolution weight was implemented in the divide
phase of the analog MAC. The CD 1/3 voltage was stored by
the charge distribution. The Rst of the analog MAC is a reset
switch that connects the node of the CD to Vref. The voltage
was calculated by repeating the weight implementation pro-
cess, as given in (3).

Vout = VH2 =

(
CH

CH + CD

)n

×

(
1
2
1VPIX

)
= αn ×

(
1
2
1VPIX

)
(3)

The convolution weight is programmable and can be
defined as αn depending on the number of iterations, n in
the divide and rst phases (n = 0, 1, 2, 3 and the total num-
ber of weights is nine). The proposed analog MAC circuit
uses the charge redistribution characteristics of the capacitors
for programmable weights. Therefore, since the number of
capacitors that can be integrated into one column pitch is
limited, the accuracy is also more limited than when arbitrary
weights are used. Therefore, in this paper, we proposed a
method to improve accuracy through a nonlinear ADC while
using a 3-bit weight. Nonlinear ADC operations are discussed
in more detail in Section II-D.

The conv1 layer only implements the convolution weight
operation size. Polarity operations and data accumulation
were performed in the conv2 layer. Fig. 9 shows the polar
operating process with the three phases of the conv2 layer.
The polar operating output voltage of the conv2 layer follows
(4). First, the reset phase of the conv2 layer is reset to the CS
and CH, and the charge follows QR2 in (4). Second, in the
write phase, the voltage (VFM) is input into the conv1 layer,
and the charge is changed to QW2. Voltage (VH1,2) is stored
as the inversion polarity of the VFM.

QR2 = CS
(
Vref − Vref

)
+ 2CH

(
Vref − Vref

)
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FIGURE 8. The proposed analog MAC convolution weight operations.

QW2 = CS
(
VFM + Vref − Vref

)
+ 2CH

(
Vout − Vref

)
Vout = VH1,2 = −

Cs
2CH

(VFM ) + Vref (4)

The non-inverted sampling of the proposed analog MAC
follows (5). First, when the VFM is input, the initial charging
in the write phase of the analog MAC and reset phase of the
OTA follow QWR2. Second, the polarity phase of the analog
MAC reset the CS and changes the charge to QRL2. Finally,
the output voltage, Vout was sampled using the non-inverted
VFM.

QWR2 = CS
(
VFM + Vref − Vref

)
QRL2 = CS

(
Vref − Vref

)
+ 2CH

(
Vout − Vref

)
Vout = VH1,2 = +

Cs
2CH

(VFM ) + Vref (5)

Fig. 10 shows the proposed analog CNN architecture. The
processes shown in Figs. 8 and 9 can implement the size
and polarity of the convolution mask. The masks for M and
M+1, as shown in Fig. 7, were implemented. The CNN of
the proposed CIS has a 2×2 mask (stride = 1) structure, and
receives data from one row at a time. Before reading the Pixel
N row data, the weight of mask N−1 row is implemented
with N−1 row data stored in the conv1 layer. The data of the
M and M+1 columns are received and accumulated by the
MUX. After performing the N−1 row of a mask, the conv1
layer performs the N row of the pixel with CDS and weight.
The calculated 2-row data (one row of the feature map) are
accumulated in the conv2 layer for the pooling operation.
If two rows of feature maps accumulate in the conv2 layer
by repeating the previous process, 2×2 pooling (stride = 2)
is operated by connecting the M+1 column with switches,
SML and SMR. The convolution and pooling processes of the
conv2 and convF layers are identical. Finally, the 4-row pixel

data were compressed into 1-row feature map data using the
analog CNN.

Furthermore, the proposed analog CNN operates with a
2×2 average pooling (stride= 2). First, the 2-row featuremap
data operating in the conv1 and conv2 layers were accumu-
lated in the conv2 and convF layers. Second, average pooling
is performed by connecting the M and M+1 columns using a
binning switch (SBin). The VFM stored in CH1,2 is distributed
as an average voltage. The average pooling operation process
of the proposed analog MAC follows (6).

QP,M = 2CH
(
VFM ,M

)
+ 2CH

(
VFM ,M+1

)
QP,M+1 = 4CH

(
Vout − Vref

)
Vout = VH1,2 =

1
2

(
VFM ,M + VFM ,M+1

)
+ Vref (6)

The 160×120 input data were compressed and output as
40×30 feature map data by operating with an average pooling
layer. One hundred and sixty columns of ADC are required
to perform CIS, and only 40 columns of ADC are required
to perform CNN. As a result, the power consumption of CIS
mode is 4.54 mW, while that of CNN mode is 4.02 mW, 11%
less power consumption at 120 FPS.

D. NONLINEAR QUANTIZATION TO IMPROVE ACCURACY
Fig. 11 shows the process and image of the SSADC depend-
ing on the mode of the proposed CIS. In the CIS mode, the
pixel voltage after performing CDS is input to the SSADC
comparator input node VLF and the ramp signal is input to
Vramp to output a 5b CIS image. The feature map (FM) cal-
culated by the analog CNN was input to the VLF in the CNN
mode. A 5-bit CNN image is output by applying the CNN
offset signal shown in Fig. 12, which is capable of negative
calculation. Based on the output 5-bit feature map data, face
detection achieved an accuracy of 92.8%. The random noise
generated when implemented in hardware was reduced by
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FIGURE 9. The proposed analog MAC convolution weight polarity operations.

FIGURE 10. The proposed analog CNN architecture.

FIGURE 11. Data conversion operations of the proposed CIS.

3.2% compared to the results of existing software models.
To compensate for the reduced accuracy, software retraining
was conducted with noise-containing data, and because of
the weight update and regularization of the fully connected
layers, the accuracy was improved by 95.42%.

Fig. 12 shows the weight and image classification accu-
racy change depending on the regularization lambda of the
fully connected layer. Normalization makes the low-critical

FIGURE 12. Image classification accuracy and weight changes according
to regularization lambda.

weight of the fully connected layer zero and allows only the
high-critical weight to perform the classification. As lambda
increased, the weight and accuracy decreased, but a critical
feature map could be identified. As a result, classification
accuracy improves for features such as eyes, nose, cheek-
bones, and hair. The feature map data to be calculated by
weight were 0–3 and 20–31 5-bit codes, which were the
minimum andmaximum data conversion values, respectively.
These are close to the minimum and maximum codes of the
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FIGURE 13. Comparison to the accuracy of face detection with linear and
nonlinear signals.

featuremap, and are the start and end of the CNN ramp signal,
respectively. Therefore, the importance of performing a CNN
is low because the other codes are weighted to zero.

Fig. 13 shows a comparison of the accuracies of the lin-
ear and nonlinear signals. The proposed CIS can apply a
double gain slope for highly critical values (= codes 0−1,
26−31 based on a normal 5-bit ramp), resulting in the same
effect as using a high-resolution ADC. In the ADC of the
proposed CIS, noise can be reduced compared with the con-
ventional SSADC because the ADC quantization noise is
smaller than the thermal noise [7], [8]. The low-critical value
is a 5-bit ADC obtained by applying a gan slope of 1 and
0.5, which improves the face-detection accuracy by 2.08%,
from 95.42% to 97.5%. The proposed enhancement technique
demonstrates improved performance because the higher the
bit resolution, the higher is the resolution usage effect. In the
8-bit resolution SSADC, nonlinear quantization techniques
were applied for a 3.18% improvement from 95.59% to
98.75%. Using the proposed technique, the proposed CIS
achieves high face-detection accuracy even in low-resolution
ADC and reduces the ADC area and power.

III. IMPLEMENTATION RESULTS
Fig. 14 shows the layout and summary of the CIS with the
proposed integrated analog CNN processor. The proposed
CIS was designed with a 110 nm 1P4M CIS process at
3.3 × 3.6 mm2. A pixel is an active pixel sensor with a 4-
tr structure that uses a rolling shutter readout method with an
image resolution of 160×120. The total power consumption
is 4.02 mW at 120 frames/s and a global clock of 20 MHz.

Fig. 15 shows the power consumption depending on the
mode of the proposed CIS. As shown in Fig. 5, CIS and CNN
have different readout operations. The proposed CIS uses
an analog CNN processor as the CDS and analog memory
to output 160 × 1,205 bits of output data and 4.54 mW
at 120 FPS. Meanwhile, the CNN mode of the proposed CIS
outputs 160×120 input data as 40×30 5-bit output data, as it

FIGURE 14. Chip photograph.

FIGURE 15. Measured power consumption reduction.

can compress pixel 4-row data into 1-row data with an analog
CNN operation. Since only a 40-columnADCwas used in the
160-column ADC, the power consumption decreased by 11%
to 4.02 mW.

Fig. 16 shows the measurement environment and the
system block of the proposed CIS. The proposed CIS
was measured using field-programmable gate array (FPGA)
boards, LED displays projecting test images, a host PC, and
PC software. The TEST imagewas input from the laptop LED
display, and the proposed CIS could output different images
in the CIS and CNN modes. Either the CIS or CNN modes
operate with only one ramp generator, similar to a normal
CIS. In this paper, the ramp signal was generated using
an external digital-to-analog converter (DAC) on an FPGA
board. However, a bi-directional gamma curve for nonlinear
characteristics can be implemented by modifying the counter
circuit to almost the same area by changing the counter clock
frequency [8]. The output images are transmitted in the order
of FPGA, host PC, and software PC, and image classification
and retraining are performed. In addition, the weight and
nonlinear ramp signals trained through a Host PC and FPGA
can be adjusted externally. Images (input dataset) with 160 ×

120 resolution consisting of 600 human faces and 600 non-
face objects were used in the experiment. Furthermore, the
entire data set was divided into a 4:1 ratio to form a training
set and a test set. Using the proposed analog CNN circuits
and nonlinear ADC, the feature map images were quantized.
The final fully connected layer classifies and estimates the
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FIGURE 16. Measurement environment & system.

FIGURE 17. Measured images of (a) CIS mode and (b) CNN mode of the
proposed CIS.

accuracy. The proposed CIS achieved 97.50% face-detection
accuracy at a 5-bit resolution and 98.75% at an 8-bit resolu-
tion. Fig. 17 shows the measured images with the CIS and
CNN modes, respectively. It should be noted that the CIS
mode is used to control the focus before capturing images
and collecting data for retraining.

TABLE 1. Performance comparison table for CIS-integrated FD.

Table 1 shows a performance comparison table of CIS
integrated with face-detection algorithms. A conventional
CIS [4] integrated with face detection is designed in a
column for integration and fast data processing, and its
constraints achieve a low face-detection accuracy of 2×2
convolution layer (stride = 2) and fixed-weight 8-bit reso-
lution ADC. The additional out-of-array processor design [3]
achieves 96.18% accuracy at 0.62 mW through current con-
volution and digital operations but has a one FPS slower
data processing performance. In the case of [5] using 4T-
pulse width modulation (PWM) for fast data-processing
speed and low power consumption, it has 0.135 mW power
consumption at 250 FPS and achieves 93% face-detection
accuracy. However, it is difficult to use the 4T-PWM reading
method in typical mobile applications. The proposed CIS
had a 4.02 mW power consumption at 120 FPS through an
in-column design using a general 4T-APS. Analog CNN pro-
cessors with weight-updateable and nonlinear quantization
achieved a face-detection accuracy of 98.75% at an 8-bit
resolution SSADC. The proposed CIS has the lowest power
consumption of 0.57 mW among the methods that achieved
≥95% face-detection accuracy and a fast data-processing
speed of 120 FPS.

IV. CONCLUSION
This article proposes a CIS integrated with an in-column ana-
log CNN processor with a power consumption of 4.02 mW
and 98.75% face-detection accuracy at 120 FPS operation.
The proposed analog MAC circuit with integrated analog
memory, convolution and pooling operations, low-resolution
ADC usage, and weight update is possible. The proposed CIS
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can achieve high face-detection accuracy with weight updates
and the proposed nonlinear quantization techniques, even if
the face-detection accuracy is reduced by the random noise
generated in the hardware implementation. The proposed
CNN architecture can be implemented as an in-column CNN
processor with a 160×120 image resolution, which can be
effective for a variety of face-detection mobile applications.
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