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ABSTRACT The past decade has witnessed wide applications of deep neural networks in anomaly detection.
However, the dearth of interpretability in neural networks often hinders their reliability, especially for
industrial applications where practical users heavily rely on interpretablemethods to provide explanations for
their decision-making. In this paper, we propose a reconstruction-based approach to unsupervised detection
of anomalies in industrial defect data. Our algorithm employs an interpretability score during both the
training and test phases. Specifically, we train an autoencoder with a loss function that incorporates an
interpretability-aware error term. After training, the autoencoder processes a specific feature from the
difference between the test image and the average of training images and produces an attention map that
is used for detecting the anomalies. Our method not only achieves competitive performance compared with
non-interpretability-aware methods but also produces attention maps that facilitate a direct explanation of
detection results, which can potentially be useful for industrial practitioners.

INDEX TERMS Anomaly detection, autoencoders, interpretability, visual explanation.

I. INTRODUCTION
Anomaly detection is an important research field in machine
learning that aims to detect unusual patterns within given
data [1], [2], [3]. It is widely used in various fields, such
as network intrusion detection [4], signal processing [5],
abnormal behavior detection [6], and medical image analysis
[7]. Early anomaly detection algorithms were primarily used
in the field of data mining [8]. However, in recent years, with
the development of computer vision and related technologies,
there has been an increasing interest in applying anomaly
detection to the field of image processing [9], [10], [11].
In particular, many research works have introduced tech-
niques that utilize deep learning to detect anomalies in
images [12], [13].

In industrial applications, anomaly detection is crucial
for detecting visual defects in products. Industrial anomaly
detection aims to find visible defects in the appearance of var-
ious industrial products, including fabrics, chips, pharmaceu-
ticals, and even building materials [14], [15], [16], [17], [18].
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These defects, though minor, may seriously affect the nor-
mal function of the product. In industrial anomaly detection,
it is usually easy to obtain data that show a normal pattern,
whereas it is often challenging to obtain data that represent
possible defects. Therefore, the most natural scenario is the
unsupervised learning setting, where the task is to use unan-
notated samples or normal samples to build a detection model
and detect anomaly samples that differ from the expected
pattern [19].

Benefiting from their powerful capability of feature extrac-
tion and representation learning, methods based on convolu-
tional neural networks (CNNs) can greatly improve detection
and localization accuracy [19], [20]. For high-resolution
industrial application datasets for industrial applications,
there already exist powerful anomaly detectors [21], [22].
However, in addition to robustness and model performance,
model interpretability is crucial for decision-making, given
the strict inspection for product quality and safety, espe-
cially in the manufacturing field [23], [24]. Although various
methods exist for understanding CNNs [25], [26], they do
not form a part of the anomaly detection model and thus
cannot guarantee that the anomaly detection model is capable
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of correctly interpreting the results. In this paper, we inno-
vatively use a gradient-based interpretation method [27] to
include the heatmap used to explain a model as a loss, so that
the model will extract features that are crucial for explaining
the anomaly detection. In other words, our model promotes
making decisions that align with human intuition, which are
more explainable and helpful in industrial applications.

One famous class of approach in the anomaly detec-
tion area is reconstruction-based, or more specifically, based
on the neural network architecture of an Autoencoder
(AE) [28], [29]. The encoder transforms the input image into
a latent variable, and the decoder maps the latent variable to
a reconstructed version of the input image. The anomalous
images can be detected since they usually have a larger
reconstruction error between the input image and the recon-
structed image. However, the reconstruction loss is usually
unaware of the anomaly detection task and may produce
uninterpretable results, e.g., a larger reconstruction error for
normal pixels. In this paper, we address this problem from
two aspects. First, we introduce a novel interpretability-aware
loss to AE. In particular, we discourage attention over a large
region where the attention is from an explainable anomaly
heatmap. Second, we replace the reconstruction error used in
decision-making with the heatmap for each image, which can
be used for obtaining a localization map for interpreting the
results. Specifically, the attention map is obtained by back-
propagating the difference between averaged normal images
and the candidate image, which is then processed to produce
the anomaly score.

We summarize our contributions as follows.

• We introduce a novel interpretability-aware loss term for
CNNs, which can be flexibly used in various models and
produces interpretable anomaly detection results.

• We use this loss term to improve AE for anomaly detec-
tion. Accordingly, we further propose novel anomaly
scores that are derived based on an explainable heatmap.

• The proposed anomaly score places greater emphasis
on the defect area and can also detect multiple similar
defects in a single image. This makes our model highly
applicable and relevant for industrial practitioners.

• We conduct extensive experiments on industrial image
datasets. The results, both quantitatively (in AUC
scores) and qualitatively, show the effectiveness of our
proposed model.

II. RELATED WORKS
We survey related works on unsupervised anomaly detection
and interpretable CNN in §II-A and §II-B, respectively.

A. UNSUPERVISED ANOMALY DETECTION
Unsupervised anomaly detection, also known as novelty
detection, is a critical machine learning task used to iden-
tify anomalous samples by constructing a model based on
normal samples only [30]. Among the existing approaches
to unsupervised anomaly detection, the most related works

can be categorized into two main categories: classification-
based and reconstruction-based [31], [32], [33], [34].
Classification-based anomaly detection approaches aim to
extract highly discriminative features from normal sam-
ples to identify anomalous samples [35], [36]. Recent
examples of classification-based anomaly detection meth-
ods include OC-SVM [37], [38] and Deep SVDD [36].
On the other hand, the objective of the reconstruction-based
approach is to reconstruct samples based on the extracted
features, with the anticipation that anomalous samples will
receive worse reconstruction results compared to normal
samples based on the training information [28]. Com-
pared to relatively early models such as K-means [39],
recent reconstruction-based approaches adopt neural net-
works, especially autoencoders [40], [41], [42], variational
autoencoders (VAEs) [43], [44], and GANs [30], [34].
Nevertheless, none of the above approaches consider an
interpretability loss as our model. When used in industrial
contexts, these approaches can hardly produce meaningful
interpretations.

One work that is specifically related to ours is [45], where
the GradCAM attention map is integrated with a VAE model
to visually explain the principle behind anomaly detection.
However, their method requires the use of the special VAE
architecture with latent space parametrization representing
the mean and variance of the posterior. In contrast, our model
relies solely on the reconstruction of an AE and contains a
novel component in the loss function that incorporates the
GradCAM output. This component is used for deriving the
anomaly score. As a result, our approach allows us to obtain
more interpretable results in anomaly detection, which is
particularly useful in industrial applications.

B. INTERPRETING CONVOLUTIONAL NEURAL NETWORKS
The task of explaining CNNs has received consider-
able attention in recent years because it provides an
understanding of the model’s authenticity and enhances
the reliability of its outcomes [46], [47]. Two com-
monly used general approaches to visual-attention-based
CNN visualization are the response-based method and the
gradient-based method [48], [49]. Response-based methods
such as SAGAN [50], ABN [51], and Class Activation
Mapping (CAM) [25] modify the original CNN architec-
tures for auxiliary information but require specific CNN
architectures. For instance, CAM implements the visualiza-
tion of CNNs by modifying the model structures with a
global average pooling layer. However, CAM has restric-
tions in that it requires a global average pooling layer
to be applied to the convolutional feature maps. On the
other hand, the gradient-based approach utilizes the gradi-
ents calculated through backpropagation. Similar to CAM,
the Gradient-weighted Class Activation Mapping (Grad-
CAM) [27] generates a weighted attention map for CNN
models, but based on gradients computed through back-
propagation. GradCAM can be implemented without any
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restrictions on CNN architectures. However, GradCAM has
mostly been adopted only for validation and visualization
purposes after training the CNN model.

CNN interpretation has been found beneficial in various
applications, such as 3D object recognition [52], diag-
nosis [53], human activity recognition [54], and metric
learning [55]. In particular, CNN interpretation is crucial
in industrial applications, which serves as a motivation for
the current work. For instance, in [56], a visualized feature
map is extracted using GradCAM to meet the requirements
of process engineers. Similarly, GradCAM feature maps are
also extracted for power equipment maintenance [57] and
electromechanical system diagnosis [58]. Other visualization
techniques have also been adopted. For instance, in [59],
t-SNE is adopted to visualize the wafer defect maps. Our
method differs from the above works because we not only use
GradCAM for interpretation but also incorporate it as part of
the training process to improve our neural network model.

III. APPROACH
We review autoencoders and their losses in §III-A. We then
introduce our novel interpretability-aware loss in §III-B and
our attention map used for anomaly detection in §III-C.

A. AUTOENCODER WITH STRUCTURAL SIMILARITY LOSS
FOR IMAGE ANOMALY DETECTION
Given input images

{
x(t)
}N
t=1, inRc×h×w, the encoder E maps

the images to low-dimensional latent variables
{
z(t)
}N
t=1 ⊂

Rd . The decoder D uses
{
z(t)
}N
t=1 to reconstruct the image,

transforming z(t) into x̂(t), which have the same dimension-
ality as and are similar to

{
x(t)
}N
t=1. Here, d represents the

dimensionality of the latent variable
{
z(t)
}N
t=1, while c, h,

and w respectively represent the numbers of channels, height,
and width of the image. The parameters of E and D are
learned by minimizing the reconstruction loss. Traditionally,
the reconstruction error is computed using pixel-wise eval-
uation metrics, such as the ℓ2 loss, to generate an anomaly
score map based on the discrepancy between the input image
and its reconstruction. However, it has been shown in [27]
that incorporating a structural similarity loss in autoen-
coder architectures enhances the model’s ability to capture
inter-dependencies between image regions. Consequently,
this approach effectively identifies complex structural defects
in images.

The Structural Similarity Index (SSIM) [60] is a method
used to compare two images to determine their similarity.
It compares local patterns of pixel intensities in two images,
denoted as x and y, based on three components: luminance
l(x, y), contrast c(x, y), and structure s(x, y). These compo-
nents are defined by

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (1)

c(x, y) =
2σxσy + C2

σ 2
x + σ 2

y + C2
, (2)

s(x, y) =
σxy + C3

σxσy + C3
, (3)

respectively, where µx denotes the average pixel luminance
of the image x, σx denotes the standard deviation of the pixel
luminance of the image x. Here, the constants C1, C2, and
C3 are included to avoid zero denominators, with C3 set to
C2/2. The SSIM index is then defined as a function of l, c,
and s, or more specifically,

SSIM(x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ 2
x + σ 2

y + C2

) . (4)

B. GENERATING INTERPRETABILITY-AWARE LOSS
In this section, we introduce our Interpretability-Aware (IA)
loss LIA. Unlike the vanilla GradCAM [27], which back-
propagates the CNN based on the score for a specific
classification type, our proposed loss can be implemented for
non-classification tasks. Specifically, we backpropagate the
latent variable z generated by the encoder (i.e., z = E(x))
until the gradient reaches a specified layer of the encoder.
We remark that z can be any feature in a CNN, allowing
our proposed loss to be applied flexibly to various CNN
architectures. In addition to AE, we will also demonstrate its
application in a classifier in our experiments.

To obtain the IA loss LIA for an input image x, encoded
to a latent variable z, we backpropagate the gradient of each
entry zi of z, i = 1, · · · , d , with respect to the feature maps
Aj in the j-th layer of the encoder. This process generates
the GradCAM attention mapMj, which is obtained through a
linear combination of feature maps Aj with ReLU activation:

Mj = ReLU

(∑
k

αkijA
k
j

)
, (5)

where k is the channel index. In (5), αkij ∈ R is obtained by
applying the global average pooling operation to the gradient
of zi with respect to Akj :

αkij = AvgPool

(
∂zi
∂Ak

j

)
. (6)

To ensure that the attention maps Mij generated from differ-
ent layers are comparable, we conduct bilinear interpolation
upsampling operations to bring them to the same size of
256 × 256. The IA loss LIA is derived from the upsampled
attention maps. Specifically, we first calculate the mean of
all the pixel values of the mapMij as follows:

µ =

d∑
i=1

h∑
s=1

w∑
t=1

M st
ij

dhw
, (7)

and then incorporate it into the regularization term as follows:

LIA = λµ2, (8)

where λ is the regularization coefficient of the IA loss.
Note that due to the ReLU operation in (5), each pixel

value M st
ij is non-negative. Consequently, µ can be viewed
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FIGURE 1. Illustration of the training stage of AE using both the reconstruction loss and the interpretability-aware loss. The upper part
shows the AE, which is naturally endowed with the reconstruction loss. The lower part shows backpropagation of the latent variable
with respect to the encoder layer and produces an attention map for calculating the interpretability-aware loss.

as a LASSO [61] term essentially, promoting sparsity in
the attention map. This sparsity encourages the attention to
focus on a small number of pixels, which is particularly
important in industrial applications where defective regions
in products are typically limited in size. It is worth noting
that this approach differs from using an ℓ2-like loss, which is
commonly employed to prevent overfitting.

As illustrated in Fig. 1, training the AE entails minimizing
the sum of the SSIM loss, the MSE loss, and the IA loss.
To distinguish our approach from other AEs, we refer to our
model as IAAE. Once trained, the IAAE exhibits focused
attention that is utilized in anomaly detection, as explained
in the next section. Algorithm 1 summarizes the steps for
training the IAAE.

C. GENERATING INTERPRETABILITY-AWARE ATTENTION
MAP
For industrial products, the shooting conditions of their
images may vary, making it inappropriate to retrieve a normal
sample from the training stage and compare it directly with
a test sample. To address this issue, we leverage an AE
trained using an IA loss and utilize an Interpretability-Aware
Attention Map (IAAM) for anomaly detection, as described
below. It is important to note that IAAM differs from the
GradCAM attention map discussed in the previous section.
To be specific, IAAM focuses on the differences between
a test sample and normal images and thus provides more

Algorithm 1 Training IAAE

Input: Training data {x(i)}Li=1; initialized parameters
θ of AE with encoder E and decoder D; number of
epochs K ; batch indices I; learning rate α

Output: Trained parameters θ

1: for k = 1, · · · ,K do
2: for each batch {x(i)}i∈I do
3: z(i) = E(x(i)), x̂(i) = D(z(i))
4: LSSIM = SSIM(x(i), x̂(i)), according to (4)
5: LMSE = |I|−1

∑
i∈I

∥∥x(i) − x̂(i)
∥∥2

6: Compute LIA according to (5)–(8)
7: L = LSSIM + LMSE + LIA
8: θ ← θ − α∇θL
9: end for

10: end for

suitable scores for anomaly detection. In contrast, GradCAM
attention solely applies to the images themselves.

The first step in constructing the IAAM is to obtain a
difference map between an input image y∗ and the pixel-wise
mean of all normal examples used in training, denoted as
x̄. Given that our model is applied to images of industrial
products, the prior assumption is that in each anomalous
image, the area of the defect is concentrated and often small
compared to the entire product image. To locate these small,
compact defects more accurately, we amplify the differences
between y∗ and x̄. The detailed difference map is defined as
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FIGURE 2. Illustration of the IAAM generating process. Each test image is compared with the pixel-wise mean of
training images, which produces a difference map, used as input of the trained AE. The GradCAM attention map is
then extracted from backpropagating the latent variable to the encoder layer. The pixel values of the attention map
are then used for anomaly detection.

follows. For each y∗, let i be an index for the pixels (ranging
from 1 to n = c · h · w). We first calculate the mean of all the
exponential differences

µ∗ =
1
n

n∑
i=1

e(x̄i−y
∗
i )
p
, (9)

where the power p, applied to x̄i − y∗i , is an energy mea-
surement index, with a larger value of p indicating a greater
emphasis on the differences. Similarly, we calculate the stan-
dard deviation of all the exponential differences as follows:

σ ∗ =

√√√√∑n
i=1

(
e(x̄i−y

∗
i )
p
− µ∗

)2
n− 1

. (10)

At the end, we obtain the standardized image ỹ∗ whose entries
are given by

ỹ∗i =
e(x̄i−y

∗
i )
p
− µ∗

σ ∗
. (11)

Once ỹ∗ is obtained, similarly to how we obtain the Grad-
CAM attention map, we first encode it into a latent variable
z∗, and then backpropagate the gradient of z∗ with respect to
the feature maps A∗j in one of the encoder layers to generate
the interpretability-aware attention map M∗j . The procedure
for obtaining the IAAM is summarized in Fig. 2.

The IAAM obtained through the above procedures can
be used in anomaly detection tasks. Specifically, we use the
sum of the pixel values in M∗j as the anomaly score, which
is compared to a threshold. If the anomaly score is larger
than the threshold, then y∗ is considered an anomalous sam-
ple. Algorithm 2 outlines the necessary steps for performing
anomaly detection.

Algorithm 2Generate IAAM for Anomaly Detection

Input: Test data {y(j)}Nj=1; Training data {x(i)}Li=1;
AE trained using Algorithm 1 with the encoder E ;
image-wise threshold ϵT ; number of pixels n;

Output: Interpretability-Aware Attention MapMj

1: x̄ = L−1
∑L

i=1 x
(i)

2: for j = 1, . . . ,N do
3: µ(j)

= n−1
∑n

i=1 e
(x̄i−y

(j)
i )p

4: σ (j)
=

√
(n− 1)−1

∑n
i=1

(
e(x̄i−y

(j)
i )p
− µ(j)

)2
5: ỹ(j) = σ−1j

(
e(x̄−y

(j))p
− µ(j)

)
(broadcast operation)

6: z(j) = E(ỹ(j))
7: if GlobalSumPool(Mj) ≤ ϵT then
8: y(j) is a normal sample
9: else

10: y(j) is an anomalous sample
11: end if
12: end for

IV. EXPERIMENT RESULTS
We validate the effectiveness of our IA loss by visualizing
the results of a simple task in §IV-A. We compare our model
with baseline methods and discuss its performance in §IV-B.
All experiments reported in this paper were conducted on a
GPU server with NVIDIA GeForce RTX 3090 GPUs (24G
memory).

A. QUALITATIVE VALIDATION OF THE IA LOSS
We first qualitatively validate the application of the IA loss
by visualizing the attention maps from models trained by
minimizing a loss function with and without an additional IA
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FIGURE 3. Visualization of examples from the Casting Dataset and their GradCAM attention maps. The first row shows the input test
examples which represent defective products. The second and third rows show output attention maps from models trained with and
without our proposed IA loss, respectively.

TABLE 1. Hyperparameters for training the ResNet-50 model.

loss, respectively. To this end, we first train a simple classifier
using the above two alternatives and visualize the GradCAM
attention maps. It is important to note that the GradCAM
serves as an explanation of the classification results for prac-
tical users. By comparing the explanatory power of these
attention maps, we can observe the benefits of our IA loss.

The dataset we use is the Casting Dataset [62], which
consists of 7,348 grayscale images with dimensions of 300×
300 pixels. The dataset primarily contains products from the
casting manufacturing process. The training set consists of
2,875 normal images and 3,758 defect images, while the
test set contains 262 normal images and 453 defect images.
Defects in the dataset encompass various types, such as
blow holes, pinholes, burr, shrinkage defects, mould material
defects, pouring metal defects, metallurgical defects, and
others. The inspection process for these products is typically
carried out manually, which is time-consuming and subject
to human error. Anomalies in this dataset typically manifest
small areas within the product images, and there may be
multiple similar defects within the same image.

Our focus is on validating the effectiveness of our proposed
IA loss. To achieve this, we train two classification models
which distinguish normal and anomalous examples, using the
same architecture but different losses. The first model utilizes
a standard binary cross entropy (BCE) loss in addition to our
proposed IA loss, while the second model only employs the
BCE loss. The classifier is taken to be a ResNet-50 model,
trained from scratch using labeled data from the Casting

TABLE 2. AUC scores for the Casting Dataset. We report the average score
from 10 experiments with random initialization.

Dataset. Table 1 displays the hyperparameters utilized during
the training process.

In Table 2, we present the results of defect product detec-
tion using the area under the receiver operating characteristic
curve (AUC) as the evaluation metric. We compare the per-
formance of models trained with and without the IA loss.
We observe from the table that, although the model trained
with the IA loss performs better than themodel without the IA
loss, both models achieve high AUC scores. This implies that
practical users may find both models effective in detecting
defective products. However, in order to understand why a
product is considered defective, an interpretability method
needs to be applied. Next, we report the results obtained by
observing the GradCAM attention maps for selected exam-
ples from the Casting Dataset.

Fig. 3 presents the examples from the test data in the
first row, followed by the GradCAM attention maps obtained
from models trained with the IA loss in the second row and
without the IA loss in the third row. From the visualiza-
tion, we observe notable differences between the two sets
of attention maps. In the case of the model without IA loss,
the attention areas appear large and ambiguous, indicating
that the model may struggle to accurately identify the correct
reason for the detection. Consequently, the results from this
model may be deemed untrustworthy, providing no guidance
for improving the manufacturing processes. In contrast, the
attention maps generated by the model with IA loss exhibit
more focused and localized hot areas. Comparing the first
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TABLE 3. Architecture of the AE used in the experiment. The index of
layers refers to the convolution layer. After each convolution layer,
a LeakyReLU activation function with a slope of 0.2 is applied. For
convolution layers 1-6 and 11-16, batch normalization (BatchNorm) is
applied to the output activations.

and second rows, we can observe that the anomaly areas
more closely correspond to human intuition. Additionally,
the model is capable of identifying multiple defects within
a single image. Evidently, our proposed IA loss assists the
model in effectively focusing on the true defect areas, thereby
enhancing its trustworthiness.

B. QUANTITATIVE RESULTS FOR ANOMALY DETECTION
1) EXPERIMENTAL SET UP
In this section, we evaluate the effectiveness of our proposed
method by training an AE using Algorithm 1 and obtaining
the IAAM for anomaly detection based on Algorithm 2.
During the training stage, only normal samples are utilized,
while a combination of normal and anomalous samples is
used for testing.

For our experiments, we utilize the BeanTech Anomaly
Detection (BTAD) Dataset [63], which is an industrial
anomaly detection dataset with pixel-level annotations. This
dataset consists of RGB images representing three different
industrial products, with 400 training images for Product 1,
1,000 training images for Product 2, and 399 training images
for Product 3.

To facilitate our experiments, we crop the images into
patches of size 256 × 256. The precise architecture of the
autoencoder network used in all experiments is provided in
Table 3. We employ the Adam optimizer [64] for training,
and the specific hyperparameters utilized during the training
stage are presented in Table 4.

We also implement other popular anomaly detection mod-
els using the same setting to serve as the benchmark, which
includes One-Class Support Vector Machine (OC-SVM)
[65], Local Outliers Factor (LOF) [66], K-Means [67], 1-
Nearest Neighbors (1NN) [67], GANomaly [30], L2-AE [28],

TABLE 4. Training hyperparameters of the proposed model. The power of
energy measurement index refers to the power used in equation (10).

SSIM-AE [28]. For all neural network-basedmethods, we use
the same hyperparameters for learning rate, batch size, etc.

2) RESULTS
In our evaluation, we use the AUC metric to measure the
performance of our proposed method and comparable meth-
ods, which is in line with previous works. Table 5 presents a
comparison of the performance results for anomaly detection.
We conduct the experiments using the same settings for three
times and record the mean and standard deviation of the
results for each run.

From the results, it is clear that our method excels the
benchmarks for all three products. In particular, it is better
thanAEmodels trainedwithout IA loss. At the same time, it is
consistently better than models not based on AE, including
traditional models and GAN-based models.

3) ANALYSIS ON TWO IMPORTANT FEATURES
To further explore and validate the influence of different
features on the model performance, we conduct a sensitivity
analysis to compare the effects caused by alternative choice
of hyperparameters. Specifically, there are two important
features to our model: first, the layers towards which the
GradCAM backpropagates in the training and testing pro-
cesses respectively; second, the energy measurement index
i.e., the exponential order p used in (9)–(11) for computing
the IAAM. Next, we discuss the effect of changing these two
features and show the numerical results according to changes.
In addition to our primary focus on detection, we present the
pixel-wise results in this section to provide a more compre-
hensive analysis.

a: GradCAM USING BACKPROPAGATION to DIFFERENT
CONVOLUTIONAL LAYERS

The focus of GradCAM varies depending on the layer to
which it backpropagates. Ablation studies conducted in [27]
suggest that deeper convolutional layers tend to capture more
high-level and abstract features of the image, while shallow
layers tend to capture more local and basic features. In our
context, the selection of the convolutional layer involves a
tradeoff during training. Choosing a deep layer sacrifices
resolution since deep layer features have smaller sizes and
require upsampling before producing the GradCAM attention
maps. On the other hand, choosing a shallow layer sacrifices
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TABLE 5. Image-level AUC results for the BTAD Dataset. We report the results for all the individual products, as well as the mean of all three products.

TABLE 6. AUC scores for GradCAM using different convolutional layers on the BTAD Dataset. For each setting, there are two rows: the top row reports the
pixel-wise score, and the bottom row reports the image-wise score.

FIGURE 4. Illustration of heat maps for different layers towards which GradCAM backpropagates in the testing stage. The
training layer is Encoder.9.

explanatory power since the features contain fewer semantics.
Therefore, we expect a layer in the middle to be most suitable
for our task.

To validate our choice, we compare alternative models
by adjusting the layers used for GradCAM backpropagation
during the training and testing stages, while keeping the
other hyperparameters the same. We consider convolutional
layers 0, 3, 6, 9, 12, 15, and 22. Table 6 displays the results
for Product 1 of the BTAD Dataset. The quantitative com-
parison suggests that the choice of the convolutional layer
does impact the model’s performance, but it is not very
sensitive, especially with respect to the layer used in the
testing phase. Regarding the training phase, models trained

on deeper convolutional layers generally perform better in
terms of localization and classification tasks, indicating that
deeper layers contain more useful semantics. However, using
a very deep layer (Encoder.22) for training and extracting the
attention map results in significantly worse performance due
to the very low resolution of the attention map.

To ensure that our method is explainable during the testing
phase, we visualize the performance of the alternative models
in Fig. 4, while fixing the layer used during training to be
Encoder.9. Testing on a shallower convolutional layer has
the advantage of focusing on a smaller and concentrated
area to depict the defects in the generated abnormal area.
However, it may also mistakenly narrow down the estimated
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FIGURE 5. Illustration of heat maps for different energy measurement indices in the testing stage.

TABLE 7. AUC scores for anomaly detection using different energy
measurement index p, validated on Product 1 of the BTAD Dataset. For
each p, the top row reports the pixel-wise score, and the bottom row
reports the image-wise score.

abnormal area when the defects are actually large. Therefore,
to ensure that our model provides good interpretability when
users examine the attention map, we choose the Encoder.9
convolutional layer for training and the Encoder.0 layer for
visualization.

b: ENERGY MEASUREMENT INDEX
The energy measurement index p in (9)–(11) affects the
concentration of the attention heat map generated by Grad-
CAM during the testing phase. By increasing the exponential
order p, the gradient becomes more polarized as it ampli-
fies the already high gradients and increases the distance
between these high gradients and the lower ones. Conse-
quently, the GradCAMheatmap exhibits amore concentrated
hot area since it is derived from these gradients. This specific
design aims to enhance the capability of IAAM in accurately
identifying the defective part of abnormal industrial data.
Furthermore, since the objective is to increase differentiation
among pixels, we restrict p to odd numbers. The validation
results for Product 1 of the BTAD Dataset using different
values of p are presented in Table 7, and the corresponding
heatmaps are visualized in Figure 5. It is evident that as the
energy measurement index increases, both the pixel-level and
image-level anomaly detection accuracy scores improve. This
validates our choice of using a larger value of p = 9 for
achieving better detection results and interpretability.

V. CONCLUSION
In this paper, we have presented an interpretable deep
learning-based algorithm for the detection of anomalies in
industrial products. Our algorithm leverages the capabilities

of neural networks for anomaly detection while ensuring
model interpretability, making it suitable for industrial users
who require actionable insights. The experimental results
have demonstrated that our algorithm surpasses the perfor-
mance of baseline anomaly detection methods in terms of
accuracy and interpretability. Particularly, the attention maps
generated by our algorithm offer valuable insights into its
functioning and can be leveraged to enhance its performance.

While our proposed algorithm holds significant potential
for various industrial applications such as quality control,
product inspection, and defect prevention, we would like to
acknowledge two potential limitations. Firstly, different types
of data may necessitate the adjustment of hyperparameters,
which should be considered alongside the selection of an
appropriate threshold during practical implementation. Sec-
ondly, our model utilizes GradCAM attention maps twice,
both during training and testing, which may introduce addi-
tional computational complexity.

In the future, our focus will be on enhancing the scala-
bility of our algorithm to handle larger datasets with more
complex anomalies. We will also extend our investigations
to other types of data, including audio or sensor data, where
interpretability is equally vital. Additionally, we will explore
how our interpretability-aware algorithm can foster effective
collaboration between humans and machines in industrial
settings.
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