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ABSTRACT The smart grid relies on Advanced Metering Infrastructure (AMI) to function. Because of
the significant packet loss and slow transmission rate of the wireless connection between smart meters in
AMI, these infrastructures are considered Low-power and Lossy Networks (LLNs). The routing protocol
in an AMI network is crucial for ensuring the availability and timeliness of data transfer. IPv6 Routing
Protocol for Low-power and lossy networks (RPL) is an excellent routing option for the AMI communication
configuration. However, it is highly at risk against many external and internal attacks, and its effectiveness
may be severely diminished by Sybil assault. Different trust-based techniques have been suggested to
mitigate internal attacks. However, existing trust systems have high energy consumption issues, which cause
a reduction in the performance of LLNs due to complex calculations at the node level. Therefore, this paper
presents a novel fog-enabled GINI index-based trust mechanism (GITM) to mitigate Sybil attacks using the
forwarding behavior of legitimate member nodes. Regarding identifying and isolating Sybil assaults, our
approach outperforms the state-of-the-art methods. GITM detects and isolates a more significant number of
malicious network nodes compared to other techniques within a similar time frame. By using the proposed
GITM framework, the Sybil attack detection rate increases by 4.48%, energy consumption reduces by 21%,
and isolation latency reduces by 26.30% (concerning time). Furthermore, the end-to-end delay is merely
0.30% more in our case, and the number of control messages decreases by 28%.

INDEX TERMS Smart grid, GINI index, advanced metering infrastructure, LLN, RPL, Sybil attack, trust.

I. INTRODUCTION
Smart Grid (SG) infrastructures are believed to be the next
generation of traditional electricity grids. These infrastruc-
tures often include several innovations that boost efficiency
and stability to ensure an uninterrupted power supply to
households and businesses. It is a revolutionary innova-
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tion with advanced computing environments interconnected
through the Internet [1]. In addition, technologies such as 5G
and 6G empower the upcoming age of remote correspondence
frameworks with modern security methods [2]. Smart meter
communication networks are often built using wireless
technology. They are generally installed as Low power
and Lossy Networks (LLNs) [3]. LLNs are a group of
associations in which the inter-connected devices are largely
resource-limited (i.e., with memory, power, and computing
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capabilities) and are categorized by low information, high
error rates, and volatility in correspondence joins [4].
Power consumption information is gathered from consumers
using massive smart meters in an Advanced Metering
Infrastructure (AMI).

Unfortunately, attackers have colossal freedom to hack SG
devices and use them harmfully. These devices’ security is
an area that is being investigated and has pulled scientists
to eliminate their weaknesses. Many organizations and
associations are engaged in advancing and planning a secure
SG network. Numerous protocols and cryptographic methods
portray RPL-based Networks’ security issues; they neglect
to deal with internal attacks in such networks due to their
resource-constrained nature [5]. Developing robust routing
methods to cope with aggressive inferring Sybil assaults
is crucial for continuous and dependable data transfer in
AMI networks. However, it is widely acknowledged that
RPL is susceptible to many attacks, such as Sybil, rank, and
sinkhole [6], [7], [8]. This issue has raised a need for a trust-
based component to secure the routing and correspondence
of resource-compelled SG infrastructures.

Compared to internal attacks, external attacks are recep-
tive to standard security techniques such as authorization,
encryption, and other cryptographic mechanisms. However,
these approaches incur enormous computing, energy, and
storage overheads, rendering them inapplicable for resource-
constrained SG applications [6]. Therefore, for internal
assaults to be dealt with, a process must be in place. Trust-
based security, often known as soft security, is commonly
used to prevent internal threats. Once the rogue nodes
are identified, the remaining nodes use this knowledge to
safeguard their communications. However, standard trust
assessment algorithms need substantial memory, energy,
and message overhead. Resource-constrained IoT devices’
significant processing and communication overheads reduce
their performance and longevity. Monitoring a variety of trust
metrics enables the discovery of the incorrect node. Once a
malicious or destructive node is identified, the other nodes
use it to safeguard the network. However, the current trust
methods use plenty of resources owing to communication
messages and computation overheads, which consistently
weaken the efficiency and limit the durability of sensor
nodes-based SG infrastructures [9], [10].

Unluckily, present routing techniques are incapable of
effectively managing such traffic patterns. As a result, RPL
can solve these issues with a preemptive and efficient
IPv6 network protocol. This proactive IPv6 distance rout-
ing protocol builds topologies using Destination Oriented
Directed Acyclic Graph (DODAG) [11]. It can direct between
lossy connections and equipment with a large Packet Error
Rate (PER). Unfortunately, a solid security system is not
empowered, making RPL powerless against internal and
external attacks. Internal attacks, such as Sybil, are chal-
lenging to handle. Much research has been done; however,
most of the existing models strain the already constrained
IoT devices due to heavy node-level computations and

message exchange [12]. The classic security measures, such
as encryption and other cryptography procedures, are unsuit-
able for internal threats. These techniques pose enormous
computational, energy, and storage overheads, making them
inappropriate for resource-constrained IoT networks. As a
result, trust-based mechanisms that offer security against
internal attacks with minimal energy consumption overhead
are needed. In addition, internal attacks also increase
message and energy overheads due to the resending of lost
packets [13], [14].

Internal assaults need efficient security mechanisms to be
dealt with. When preventing internal threats, a technique
known as ‘‘soft security’’ or ‘‘trust-based security’’ has
become popular [15]. Other nodes utilize this information to
protect their communication after it has been used to identify
rogue nodes. In contrast, traditional trust assessment methods
cost many resources due to memory requirements, energy
consumption, and message overheads. These trust-based
techniques’ substantial computational and communication
overheads reduce the performance and lifespan of resource-
constrained Internet of Things (IoT) devices [16]. Hence,
there is a significant need for trust-based systems that
are small, lightweight, and energy-efficient, with minimal
storage use and processor complexity. To overcome these
problems, we propose a practical yet powerful trust-based
security framework that fulfills the above criteria. In addition,
it is an energy-efficient trust mechanism using GINI Index
at the fog layer, known as GITM, for convenience. We aim
to reduce memory, processing, and network congestion
in LLNs while enhancing security in RPL for increased
effectiveness and lifetime to counter internal threats. This
paper’s contributions are given below:

1) A novel dual-layered architecture is presented, tailored
for RPL-based SG networks, facilitating an in-depth
nodes’ behavior analysis for improving the network
functionality and performance under Sybil attack
scenarios.

2) An Energy-Efficient GINI Index-based trust assess-
ment framework is proposed to detect and isolate Sybil
attacks, thereby enhancing the resilience of RPL-based
SG networks.

3) To mitigate Sybil attacks with minimized memory,
computation, and message overhead at the node level,
the proposed method is designed to promote the more
efficient performance of RPL-based SG networks.

4) Mathematical modeling of the Sybil threat model is
performed to provide a quantitative framework for
understanding potential Sybil threats and their impacts
on the network, thereby formulating more effective
mitigation strategies.

5) Underpinned by mathematical propositions, corollar-
ies, and proofs, the research’s theoretical aspects are
solidified, thereby underscoring the proposed solu-
tion’s robustness and reliability.

6) Meticulously devised scenarios are included and a
mathematical case study is performed to facilitate the

62698 VOLUME 11, 2023



M. Hassan et al.: GITM To Mitigate and Isolate Sybil Attack

validation of the proposed solution and demonstrate its
practical feasibility and effectiveness.

7) A comprehensive comparison with current state-of-
the-art approaches is provided, offering empirical
evidence of the superior performance of the proposed
solution, hence underlining its relevance and potential
for practical applications.

The rest of the paper is organized into different sections;
the related work is summarized in Section II. The background
is provided in Section III. A helpful threat model is proposed
in Section IV. The proposed GITM model is detailed in
Section V. The experimentation details and results are
articulated in Section VI. Finally, a fruitful discussion of
the findings is provided in Section VII followed by the
conclusion, which is presented in Section VIII.

II. RELATED WORK
Several trust-based approaches and the types of attacks
they can counter are discussed here. A trust model was
presented in [17] to regulate the rank of each node in the
network. Each node in this paradigm computes its level of
trust in the next node based on the path a packet took to
get there. To protect against RPL routing protocol assaults,
Airehrour et al. [18] presented the Sec-trust RPL method.
In this method, rank and Sybil assaults are dealt with by a
trust calculation across nodes considering indirect and direct
packet transfers. Another work proposed in [19] provided a
multi-dimensional trust model for the LLN-based IoT that
is both comprehensive and dynamic. This study focuses
on Sybil, blackhole, and rank attacks. Packet loss, packet
forwarding indicator, mobility, and energy are metrics used
to assess a node’s reliability. Each child node reports its
neighbor ID, own ID, energy percentage, and packet error
rate to the parent node using the trust RPL model established
in [9]. A trust-based method for detecting distributed denial
of service attacks was proposed in [10]. The authors based
their method on the frequency of sent packets as a reliability
metric. The parent node keeps track of how often each child
node transmits data and flags any child node whose packet
frequency is much higher than the specified threshold.

Djedjig et al. [21] offered a ‘‘Metric-Based RPL trust-
worthiness’’ scheme. It also uses an extended RPL node
trustworthiness metric to mitigate attacks. Trust among the
nodes is evaluated by two methods: direct and indirect.
No simulation is done and no specific network attacks
are mentioned or mitigated in this paper. Djedjig et al. [22]
presented the Metric-based RPL trustworthiness Scheme to
mitigate RPL network attacks. The node’s trustworthiness
is calculated by its direct and indirect neighborhood obser-
vations. Pu et al. [20] presented an RPL technique to spot
and counteract against the malicious nodes. In this research,
a new node establishes a link with the network and publishes
different messages to different nodes, making the nodes
reset repeatedly and pass the malicious data. A Gini Index-
based approach is used to measure the malicious node.
Airehrour et al. [23] proposed two techniques for mitigating
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the RPL attacks, i.e., MRHOF’s RPL and Sec-trust RPL
technique, an RPL routing protocol for securing RPL from
different routing attacks. Node’s trust is calculated by its
neighbor node, making it bad-mouthing or good-mouthing
attacks. Hassan et al. [3] proposed a different technique for
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detecting and mitigating internal attacks. This paper mainly
works on the detection and mitigation of blackhole attacks.
It uses the global trust value for calculating the trust
of nodes.

Bhalaji et al. [24] proposed different techniques for
calculating trust. The techniques used were inter-DODAG
level trust and intra-DODAG level trust. It decreased the
packer loss ratio from 40% to 27%. Jiang et al. [25] proposed
a new trust technique to mitigate and isolate blackhole
attacks. It reduced the packet loss ratio from 40% to 20%.
Kaliyar et al. [26] proposed a trust-RPL technique to mitigate
Sybil and wormhole attacks and calculated the trust of
nodes by the direct trust method based on packet loss
and true positive rate parameters. The packet loss rate is
reduced to 10% while true positive rate values vary from
90-94%. Almusaylim et al. [27] proposed the new SRPL-
RP technique for calculating trust at the node level. The
parameters used for trust calculation were packet drop ratio
and energy consumption. Different trust techniques were
used, and experiments showed significant results with the
packet drop ratio dropping to 20%. Airehrour et al. [18]
proposed the Sec-trust RPL technique to mitigate the RPL
routing protocol attacks. Both direct and indirect trust model
calculates trust. Sec-trust RPL outperformed and experienced
a packet loss ratio under 28%. Mehta et al. [28] proposed a
lightweight trust mechanism using direct trust. The packet
loss rate is reduced from 60% to 20-30%.

Sybil attacks in RPL-based LLNsmay be detected and pre-
vented using a Gini index-based deterrent proposed in [29].
The malicious node quickly consumes the finite energy
resource of legitimate nodes by forcing them to refresh the
Trickle algorithm often and broadcasting a large number of
DODAG Information Object (DIO) communications. It also
broadcasts a considerable proportion of DODAG Information
Solicitation (DIS) messages with various fictitious identities.
Full-scale simulation studies for performance analysis and
comparison may be performed with OMNeT++. To quickly
assess the state of the network and respond to various
forms of assault, they propose using a responsive DIO
message response rate to determine the number of DIO
control messages to be sent during each observation window.
If a Sybil assault is discovered, the node that made the
discovery will send a message to all other nodes to warn
them.

Farooq et al. [4] proposed a multi-agent trust approach
to mitigate Sybil attacks in wireless sensor networks. The
suggested method uses multiple agents to fetch trust-related
data and ship it to the fog layer for analysis. The simulation
results demonstrate that the proposed approach performs
better than the state-of-the-art approaches regardingmessage,
memory, and computation overheads. A Bayesian network-
based method for identifying forwarding misbehavior in
RPL-based IoT networks was proposed by Liu et al. [30].
The method uses the node trust values and link quality
to determine the likelihood of forwarding misbehavior.
The authors’ experiments evaluating the proposed approach

demonstrate that it can successfully identify forwarding
misbehavior. The method, however, makes the erroneous
assumption that trust metrics and link quality are reli-
able, which may not always be the case in a real
environment.

A Deep Q-Learning-based approach for anomaly detection
and defense in distributed IoT-based cyber-physical systems
was proposed by Liu et al. [31]. The method employs a deep
neural network to identify irregularities in system behavior
and Q-Learning to determine the best defense strategy against
cyber-attacks. The results demonstrate that the suggested
approach can successfully detect and defend against various
cyber-attacks when applied to a real-world dataset. However,
the method’s reliance on the availability of labeled data for
training can be a drawback in some circumstances. In the IoT
context, Saleem et al. [32] discuss a trust management strat-
egy based on beta reputation for wireless sensor networks.
The plan aims to manage trust between network nodes to
increase the security and dependability of IoT networks. The
article thoroughly explains the proposed scheme and presents
simulation results to assess its effectiveness. A fuzzy logic
based trust management strategy was put forth in [33] to
protect RPL-based IoT networks from selective forwarding
attacks. The proposed method uses a trust value determined
by the node’s network behavior and packet delivery ratio. The
evaluation’s findings demonstrate how well the suggested
scheme can identify and stop selective forwarding attacks.
However, the approach’s scalability and applicability to
other types of attacks are not thoroughly examined in the
paper. A Deep Q-Network-based security framework for IoT
was proposed by Wang et al. [34] to detect flooding attacks.
Using a Q-learning algorithm, the framework determines the
best action in response to network states. Despite limitations
in scalability and applicability to other types of attacks, the
proposed approach yields encouraging results.

Table 1 summarises the details of different trust models
concerning trust type (i.e., direct or indirect trust), trust
model used, trust parameters, simulation tool, number of
nodes, simulation time, and results. Out of all, 75% papers
used the direct trust model to calculate each node’s trust
at the node level, showing that they are straining resource-
constrained SG devices. Whereas 60-65% use the packet loss
ratio parameter to calculate trust as it is one of the crucial trust
parameters for assessing a node’s credibility. Determining
trust parameters and methods in resource-constrained LLNs
is challenging. Specific parameters are not scalable or
adaptable because of the changing network dynamics, which
consume more energy and power in LLNs. Since LLNs are
highly resource-constrained, traditional security measures,
such as cryptography and trust-based mechanisms, may
drain their limited memory, power, and computing resources.
Therefore, this study targets internal attacks preserving
LLNs’ limited resources to improve network lifetime and
performance.

Table 2 compares different mitigation methods using trust
mechanisms for RPL-based routing attacks.
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III. BACKGROUND
This section details the background techniques and models
used in the proposed framework.

A. ROUTING PROTOCOL FOR LLN (RPL)
RPL is the accepted SG routing protocol for communication.
RPL, while operational, works by finding different routes.

On inception, an RPL protocol makes a tree-like topology
known as a Directed Acyclic Graph (DAG). Each sensor node
in an RPL network chooses a parent node that works as a
packet entryway for that specific node [36]. Data concerning
the topology of the Routing Protocol for LLNs is kept up as a
chart-like construction called Destination Oriented Directed
Acyclic Graph.

DODAG comprises paths between sender and sink nodes.
The rank of each node is kept up during routing, compared
with its situation in the DODAG tree, and each DODAG
is populated with parent data, which incorporate control
and course. Data are utilized for network security and
routing. The data utilized by DODAG will be DODAG
Information Solicitation and DODAG Information Object
for sending the DODAG details. For RPL, route choice
is a vital factor, and unlike traditional routing protocol,
RPL uses various variables to figure out the best path [20].
Different routing measurements, route limitations, and target
elements, such as Objective Functions (OF), are a few
variables utilized during directing. Directing choices depend
on indicated OFs like bounce tally, energy minimization, and
idleness.

B. GINI INDEX THEORY
The Gini index is an impurity value-based criterion. This
value evaluates the probability of two chosen values and
determines their divergence. The Gini impurity measures
how likely a randomly chosen characteristic would lead
to misclassification. It may be considered pure if all the
components are connected with a single class. The Gini index
may take on values between 0 and 1, where 0 indicates
perfect categorization, whereby all data points are assigned
to a single category. While 1 demonstrates the random
distribution of components across different classes. The
Gini Index 0.5 reflects an equal distribution of components
across several classifications. It is a statistics-based strategy.
As represented in Eq.(1), it uses statistical concepts to detect
divergence.

Gini(ytest , Strain) = 1 −

∑
(
σytest = cjStrain

|Strain|
)2 (1)

where Strain represents the training set, ytest represents the
testing set, and cj is constant. Further details are provided in
Section V.

C. SYBIL ATTACKS
Sybil attack is a devious attack. A malevolent node executing
this kind of assault could take on the appearance of a
few elements. To propel its assaults, a Sybil node can
additionally dispatch Byzantine assaults on the network.
It creates a deception that numerous malevolent hubs work
inside the organization, overpowering it and disturbing the
network’s topology. Although a few strategies have been
suggested to address the weaknesses in the security of the
RPL protocol, these strategies show differences. However,
trust is a good idea effectively explored, intending to
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TABLE 3. Routing and Internal Attacks’ state-of-the-art.

address security weaknesses in the RPL protocol. Table 3
represents different routing and internal attack state-of-the-art
limitations.

D. SMART GRID
The Smart Grid is an intelligent electricity network that
integrates advanced communication, information, and control
technologies into the traditional power grid to enhance
efficiency, reliability, and sustainability [37]. It enables two-
way communication between the power supplier and the
consumers, providing a more efficient and sustainable energy
management system, as shown in Fig. 1. Several components
of the SG work together to achieve its goals. The major
components of the SGs are discussed below:

1) Advanced Metering Infrastructure (AMI):
AMI is a smart-meter system that regularly measures
and records energy consumption data and transmits it
to the utility company in real-time. It allows utilities
to monitor energy usage patterns and manage the
grid more effectively. AMI also enables customers
to monitor their energy usage and make informed
decisions about their energy consumption [38].

2) Distribution Automation (DA):
DA involves advanced sensors, control systems, and
communication technologies tomonitor and control the
distribution of electricity on the grid. It allows utilities
to detect and respond to power outages more quickly
and efficiently, reducing downtime and improving
customer satisfaction. It also helps optimize energy
resource use, reduce carbon emissions, and increase the
reliability and resilience of the grid [39].

3) Demand Response (DR):
DR enables utilities to incentivize customers to reduce
their energy consumption during peak hours by pro-
viding them with financial rewards or other incentives.
It helps to balance the supply and demand of energy
on the grid and reduces the need for expensive and
polluting peaker plants. It also enables customers to
save money on their energy bills and contribute to the
sustainability of the grid [40].

4) Energy Storage Systems (ESS):
ESS are devices that store energy in the form of
electricity or other forms of energy, such as thermal
or chemical energy. They can store excess energy
generated during off-peak hours and release it during
peak hours when demand is high. It also enables
the integration of renewable energy sources, such as
solar and wind power, into the grid by providing
a buffer for the intermittent output of these sources
[41].

5) Microgrids:
Microgrids are small-scale, self-contained electricity
networks operating independently or in conjunction
with the main grid. They can provide power to remote
or isolated communities and backup power in power
outages or other emergencies. Microgrids can also be
used to integrate renewable energy sources, such as
solar and wind power, into the grid by providing a local
source of energy generation [42]
These are just a few of the significant components of
the SG, and there are many others, such as electric
vehicle charging infrastructure, grid analytics, and
cybersecurity, which are also important. The SG has the
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FIGURE 1. A generic smart grid infrastructure.

potential to transform the energy industry and provide a
more sustainable and efficient energymanagement sys-
tem for the future; therefore, its security is inevitable.

E. EFFECTS OF SYBIL ATTACK IN A SMART GRID
SCENARIO
A Sybil attack is a security attack in which an attacker creates
multiple fake identities or nodes to gain control of a network
or system. In a smart grid scenario, a Sybil attack can have
severe consequences as it can lead to the manipulation of
energy data, causing disruptions in the supply and demand
balance and ultimately impacting the stability and reliability
of the grid. Smart grid systems rely on a network of sensors,
communication channels, and control devices to monitor
and manage the flow of electricity. These devices need to
be authenticated and authorized to ensure the integrity and
security of the system. Sybil attacks can undermine this
security by creating fake nodes or devices that appear to be
legitimate but are controlled by the attacker.

One way a Sybil attack can work in a smart grid scenario
is by the attacker creating multiple fake smart meters. These
meters can generate false data, showing lower or higher
energy usage than the actual consumption. It can cause a
mismatch between the energy demand and supply, leading
to an imbalance in the grid. As a result, the grid operator
may take incorrect actions, such as reducing or increasing
the energy supply, which can have severe consequences for
the grid’s stability. Another way a Sybil attack can also work
in a smart grid scenario is by creating fake nodes on the

communication network. These nodes can intercept, modify
or inject messages into the communication channels, leading
to unauthorized access to the grid or manipulation of the
energy data.

Physical and software-based security measures are
required to prevent Sybil attacks in a smart grid. For instance,
physical security measures such as secure communication
channels and access control mechanisms can prevent unau-
thorized access to the smart grid infrastructure. Meanwhile,
software-based security measures such as authentication,
encryption, and intrusion detection systems can help prevent
Sybil attacks by detecting and blocking the creation of fake
nodes or devices.

In conclusion, Sybil attacks can severely impact the
security and stability of SGs. As such, it is crucial to
implement strong security measures to prevent such attacks
and ensure the integrity and reliability of the smart grid
infrastructure. Table 4 summarizes recent cyber attacks on SG
Networks.

F. SYBIL ATTACK IN SMART GRIDS: THREAT MODELS AND
FORMAL DESCRIPTION
1) THREAT MODEL 1
A Sybil attack happens when a single entity creates multiple
fake identities to control or manipulate a network. In the
context of smart grids, a Sybil attack can be launched against
the communication infrastructure used by AMI to collect and
transmit data from smart meters to the utility company. The
threat model for a Sybil attack in smart grids can be expressed
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TABLE 4. Recent cyber attacks on SG networks.

as a tuple in Eq. 2.

TM = {A,C,V } (2)

where A = {s,m1,m2, . . . ,mn, u} is the set of assets at risk.
Here, s represents the Sybil node(s) created by the attacker,
m1,m2, . . . ,mn are the legitimate smart meters, and u is the
utility company server that receives the data from the smart
meters. Let C = {k, p} be the set of attacker capabilities and
motivations. Here, k represents the attacker’s knowledge of
the AMI infrastructure and communication protocols, and p
represents the attacker’s motivation to manipulate or disrupt
the data transmitted by the smart meters. Let V = {rpl, vl}
be the set of vulnerabilities that may be exploited. Here, rpl
represents the Routing Protocol for Low-power and lossy
networks used for routing data between smart meters and the
utility company server. The vulnerabilities vl in RPL can be
exploited by the attacker to create Sybil nodes andmanipulate
the data transmitted by legitimate smart meters. The Sybil
attack threat model can be used to design and implement
appropriate security measures to protect against the identified
threats. In particular, the proposed mechanism can be used
to detect and isolate Sybil nodes and prevent them from
manipulating the data transmitted by legitimate smart meters.

2) CASE STUDY 1: SYBIL ATTACKS IN SMART GRIDS
a: OVERVIEW
In the Sybil attack scenario, a malicious node fosters multiple
fake identities, or Sybil nodes, in a network to deceive and
disrupt the functionality of legitimate nodes. Sybil attacks
can devastate SGs, including energy theft, inaccurate data
collection, and even cascading blackouts.

b: FORMAL DESCRIPTION
In a Sybil attack scenario on SGs, the attacker createsmultiple
fictitious smart meters that imitate the network’s legitimate

smart meters. These fake meters can generate false data,
transmit bogus control messages, and impersonate legitimate
smart meters in the network. Using the forged data, the
attacker can manipulate the network’s behavior, cause power
imbalances, and potentially cause blackouts.

c: MATHEMATICAL MODEL
Let the mart grid network be G = {Vn,Eg}, where V is the
set of nodes and E is the set of edges. Let Sy represent the
attacker-created Sybil nodes. The attacker seeks to maximize
the Sybil attack’s impact by creating many Sybil nodes while
minimizing the possibility of detection. The objective of the
attack is to convince legitimate nodes in the network that
Sybil nodes are legitimate. The Sybil nodes generate false
data and transmit false control messages to manipulate the
network’s behavior. Network manipulation allows attackers
to achieve their goals, such as power imbalances, energy theft,
or blackouts.

d: FORMAL DEFINITIONS
Sybil nodes can be formally defined as follows:

Let N represent the set of network nodes, and f : N →

[0, 1] represent a function that assigns each node a reputation
score. A node v ∈ N is a Sybil node if it has created
one or more fake identities {v1, v2, . . . , vk} to deceive other
nodes into believing that there are more nodes in the network
controlled by different entities. Formally, a node v ∈ N
is considered Sybil if there exists a set of nodes S =

{v1, v2, . . . , vk}, where k ≥ 1, such that: S∩N = ∅, i.e., none
of the fictitious identities in S have yet become a network
member. f (v) < 1

k+1 indicates that the reputation score of the
Sybil node v is less than the average score of the nodes in S∪v.
vi has no immediate link to any other node in N \S; therefore,
the fake identities do not have an immediate link to any
legitimate node. Notably, the preceding definition assumes
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that the reputation scores of network nodes are known and
that Sybil nodes are attempting to deceive other nodes by
creating fake identities.

• Sybil Nodes: A group of fictitious nodes created by an
attacker in a smart grid network to fool reliable nodes.

• False Data: Information generated by Sybil nodes that is
inconsistent with actual readings.

• Bogus Control Messages: Sybil node-generated mes-
sages that do not match the control commands.

• Manipulated Network: It refers to a network whose
behavior has been changed by Sybil nodes to serve the
attacker’s purposes.

e: PROPOSITION
Let S represent the Sybil attack that causes cz, which
includes wrong information collection, energy theft, power
imbalances, and cascading blackouts within the network N .
Let sn ∈ S = s1, s2, s3, . . . , sn denote a set of randomly
chosen fictitious Sybil identities as nodes. D be the degree
of difficulty in locating and mitigating sn within N , while T
be the trust-based mechanisms assessing the nodes’ atypical
behavior ab.

f: PROOF
The presence of S in N leads to several undesirable
consequences, including cz. To identify ab and augment D,
T measures the impact I based on TP (Trust parameters) in
N . T can effectively mitigate S and reduce the degree of
difficulty (D) associated with locating and handling sn within
the network N .

G. THREAT MODEL AND SECURITY ANALYSIS
Utilising cutting-edge technologies, smart grids increase the
efficiency and dependability of electricity distribution while
facilitating two-way communication between power suppli-
ers and consumers. Smart meters, sensors, communication
networks, and control systems are just a few of the system’s
various parts, all linked to a centralized management system.
The central management system uses the data from the
smart meters to monitor and manage the energy distribution
network. The smart meters gather information on electricity
consumption and send it there. Figure 2 represents a Sybil
attack scenario in a smart grid infrastructure with smart
meters, smart homes, and RPL nodes. The wireless network
connects the RPL nodes, ranging from 1 to 7. The RPL
protocol is used in the network to route data packets. In this
case, an attacker compromises Node 1 and creates four
fictitious identities with the names 1a, 1b, 1c, and 1d. The
network is subjected to a Sybil attack using these fictitious
identities. The attacker modifies the routing information in
the network and introduces fake data packets using the Sybil
nodes. Attackers can choose which packets to forward and
which to drop using the Sybil nodes to carry out selective
forwarding attacks. The legitimate nodes in the network use
the RPL protocol, which offers a mechanism for routing and
forwarding data packets between nodes based on the topology

details and the routing metrics. However, a Sybil node in the
network can alter the topology data and routing messages to
deceive the trusted nodes and create fictitious routes. It can
result in many security risks, including data tampering, data
injection, and denial of service attacks.

1) CASE STUDY 2: SYBIL ATTACK IN A SMART METERING
SYSTEM
A smart meter measures a household’s energy usage in a
smart metering system and sends that data to the utility
provider for billing. Although the smart metering system is
intended to be secure, a Sybil attack can damage it. In this
case, a Sybil node is installed by an attacker inside the
smart metering network. Although the Sybil node in the
network seems legitimate, the attacker has control over it.
The attacker can use the Sybil node to alter the energy
consumption readings of other network nodes, which could
result in inaccurate utility billing and potential customer
financial loss.

A security flaw in the network allows the attacker access
to the smart metering system. They exploit this weakness to
introduce a Sybil node into the network that impersonates
a genuine node. The Sybil node then starts to tamper with
other network nodes’ readings on their energy usage. The
Sybil node can carry out various attacks, such as reporting
the energy usage of specific nodes, either too much or too
little. For instance, the attacker might give the Sybil node
instructions to over-report a particular household’s energy
usage, resulting in higher bills for that household.

Alternatively, the attacker might instruct the Sybil node
to overstate a specific household’s energy usage, resulting
in lower bills for that household. The utility company has
difficulty identifying the attack because the Sybil node seems
to be a legitimate node within the network. If the attacker can
access the Sybil node, they can keep changing the energy
consumption readings. To prevent this attack, the smart
metering system should implement robust security measures,
such as secure authentication mechanisms and encryption
protocols.

Additionally, the system needs to be regularly checked for
suspicious activity, such as odd energy use patterns or sudden
network traffic changes. In conclusion, a Sybil attack can
jeopardize a smart metering system’s integrity, resulting in
inaccurate utility billing and possible customer financial loss.
To stop these kinds of attacks, smart metering systems must
implement robust security measures.

a: FORMAL DESCRIPTION
Let a smart metering network be the graph G = {Vn,Eg},
where Vn is the set of nodes, and Eg is the set of edges. Let
vs be a Sybil node built by an attacker, and vi be a valid
node in the network. A group of Sybil nodes, denoted as
S = {vs1, vs2, . . . , vsk}, are under the attacker’s control.
Suppose the network’s trustworthy nodes use the RPL rout-

ing protocol. By creating fictitious routes and transmitting
false data, the attacker can attack the network internally using
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FIGURE 2. A Sybil attack scenario in a smart metering system.

Sybil nodes. Let D = {d1, d2, . . . , dn} represent the data
packets set sent over the network. The attacker can create
fake routes by falsifying routing messages and changing
the network’s topology information. Assume that R =

{r1, r2, . . . , rm} is the collection of routingmessages sent over
the network. By forging the packets’ source addresses, the
attacker can also send fake data packets to legitimate nodes in
the network. Let F = {f1, f2, . . . , fl} represent the collection
of erroneous data packets sent over the network.

The attacker aims to interfere with the smart metering
network’s normal operation by introducing false data and
fabricating routes. A game between the attacker and the
trustworthy nodes in the network can be used to describe the
attack. Let A represent the set of possible attacks where the
attacker can set up Sybil nodes, forge routing messages, and
send false data packets. Let L denote the range of operations
that legitimate nodes can perform, such as forwarding legal
data packets and identifying and isolating Sybil nodes.
By interfering with the network’s regular operations and
harming the system, the attacker intends to have as much
impact as possible. By identifying and isolating the Sybil

nodes and filtering out erroneous data packets, the legitimate
nodes seek to reduce the attack’s impact.

The attack can be represented as a two-player game
G = {V ,A,L, f }, where f is a payoff function that measures
the impact of the attack. The attacker’s payoff is defined as
the negative of the impact, while the legitimate nodes’ payoff
is defined as the positive of the impact. Formally, the payoff
function can be defined as presented in Eq. 3.

f (A,L) = −w1 · I − w2 · R− w3 · F (3)

where w1, w2, and w3 are weights that represent the relative
importance of each factor in the attack, I is the impact of
the attack, R is the number of forged routing messages,
and F is the number of false data packets. Sybil nodes can
be identified by keeping an eye on each node’s network
activity and examining their routing messages. When a
Sybil node is found, it can be isolated by having its traffic
filtered and its routes eliminated from the network topology.
The detection rate and energy consumption, for instance,
are two indicators of how well the isolation and detection
mechanism (i.e., trust-based security) works. Modifying the
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trust model’s thresholds and parameters can enhance security
against internal attacks.

b: MATHEMATICAL DEFINITION
Assume that the directed graph G = {Vn,Eg} represents a
smart metering network, with Vn denoting the set of nodes
and Eg denoting the set of edges. Let Sm represent the
collection of smart meters accountable for informing the
central server of their readings. A Sybil attack can create
multiple false identities and use them to gain access to a
network, interfere with its operation, or tamper with reported
measurements.

c: COROLLARY
The integrity, confidentiality, availability of the reported
measurements and the proper operation of the network can
all be compromised in a smart metering network by a Sybil
attack, which can result in monetary losses, safety risks, and
privacy violations.

d: PROOF
Assume that a hacker intends to use k Sybil nodes (i.e.,
{S1, S2, . . . , Sk}) to launch a Sybil attack against a smart
metering network. The attacker may employ social engineer-
ing, eavesdropping, or hacking techniques to gather the data
required to build the Sybil nodes. The attacker can use the
Sybil nodes after they have been created to carry out several
malicious tasks, including:

• Data theft: The Sybil nodes can impersonate legitimate
smart meters to intercept and steal the measurements
they report or compromise the communication channels.
The assailant may use the stolen information for
extortion, fraud, or identity theft, among other things.

• Data fabrication: The Sybil nodes can create and
transmit fictitious measurements to the central server by
creating them from scratch or stealing them from other
smart meters. The attacker can manipulate the network’s
billing, load balancing, or demand response using the
fabricated data, which could result in losses in revenue
or security risks.

• Data jamming: The Sybil nodes can interfere with
data transmission between the legitimate smart meters
and the central server by sending false messages,
overburdening the network, or introducing noise. The
attacker can launch a denial-of-service attack, postpone
reporting actual events, or conceal other nefarious
activities using the jammed data.

In a smart metering network, several security measures,
including authentication, encryption, intrusion detection,
and anomaly detection, can be used to thwart and detect
Sybil attacks. These mechanisms might, however, be subject
to trade-offs or restrictions, such as computational costs,
communication costs, false positives, or false negatives.
A thorough security analysis of the network’s topology,
protocols, and devices is required to assess the network’s
resilience to Sybil attacks and other types of attacks.

IV. THREAT MODEL IN OUR CASE
LetG = {Vr ,Eg} be an AMI network with Vr being the set of
nodes and Er being the set of communication links between
them. Let us divide the nodes in Vr into two types legitimate
(i.e., L) and Sybil (i.e., S) nodes. Table 5 represents the
parameters (used in this threat model) and their description.

The threat model can formally be described as follows:
A Sybil node masquerades as multiple legitimate nodes,
creating a false sense of network trust. Let f be the probability
that a node is a Sybil node, and f (1 − p) be the probability
of a communication link between a legitimate node and a
Sybil node. The proposed GITM mechanism seeks to detect
and isolate Sybil nodes with minimal energy consumption
at the node level while decreasing isolation latency and
enhancing attack detection rates to optimize network lifespan
and performance. Let c be the control messages required for
Sybil attack detection and isolation. Malicious behavior can
be characterized as misrouting or selective forwarding sf .
α represents the proportion of legitimate nodes that exhibit
malicious behavior.

Let us assume that the communication links between nodes
are either stable with a probability of p or unstable with
a probability of q. Unstable links can result in significant
packet loss and lagging transmission rates, resulting in
insufficient data and instability in correspondence links. Due
to the limited resources of IoT devices, LLNs must also
take energy consumption into consideration. To minimize
node-level energy consumption and memory overhead, trust-
related computations to the upper (fog) layer. It is to be
noted that message overhead costs will also decrease since
nodes will not resend lost messages due to attacks (as
malicious nodes will be isolated). This results in improved
network performance and conserved total network energy
consumption Etotal , which results in a longer network lifetime
Nlifetime compared to the existing work.

A. SCENARIO
This section presents the GINI index as a trust-based model
to identify nodes’ trustworthiness in the above scenario.
In the given scenario of a smart metering system, we can
use the Gini index as a trust-based model to identify the
trustworthiness of nodes in the network. The Gini index is
a measure of statistical dispersion that is commonly used to
represent the distribution of income or wealth in a population.
In the context of trust-based models, the Gini index can
represent the distribution of trust values among the nodes in a
network. Assume that the network has n nodes, each having
a trust value represented by Ti. A definition of the Gini index
is represented in Eq. 4:

G =
1
n

[
2

∑n
i=1 i · Ti∑n
i=1 Ti

− (n+ 1)
]

(4)

where n is the total number of nodes in the network, Ti is
the trust value of node i, and G is the Gini index. The Gini
index ranges from 0 to 1, with 0 denoting an equal distribution
of trust values among the nodes and 1 denoting an entirely
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TABLE 5. Parameter Description for Threat Model 1.

unequal distribution. We can compute the Gini index for each
node in the network based on their trust values to use it as
a trust-based model. Since there is a greater concentration
of trust values among a smaller number of nodes in nodes
with higher Gini index values, they will be regarded as less
reliable. On the other hand, nodes with lower Gini index
values will be regarded as more trustworthy because they
have an even distribution of trust values.

a: COROLLARY
The trustworthiness of nodes in a smart metering system can
be determined using the Gini index G as a model based on
trust.

b: PROOF
Let us assume that the smart metering system has n nodes,
each of which has a trust value denoted by Ti. Based on the
trust values of each node in the network, we can calculate the
G for each node by performing the following steps:
1) Determine the ST value, representing the network’s

overall trustworthiness: ST : ST =
∑n

i=1 Ti.
2) According to their trust values, rank the nodes from 1 to

n in descending order. Rank 1 will be assigned to the
node with the highest trust value, and rank n will be
assigned to the node with the lowest trust value. In the
given scenario, the Lorenz curve can be represented
in Eq. 5.

L(p) =
1
ST

n∑
i=1

Ti · 1i/n≤p (5)

where the cumulative percentage of the total trust
value is represented by L(p) with a given percentile
p, Ti denotes the trust value of node i, ST denotes
the aggregate trust value of all nodes in the network,
n denotes the total number of nodes in the network,
and 1i/n≤p is the indicator function that returns 1 if
i/n ≤ p otherwise a 0. This model can determine the
Lorenz curve for a specific set of trust values in a smart
metering system. The Gini index formula can then
determine the degree of inequality in the distribution
of trust values among the nodes.

3) Startingwith the nodewith the highest trust value, com-
pute the Lorenz curve, which depicts the cumulative
percentage of the total trust value held by the nodes.

The Lorenz curve can be visualized as a set of points
{xi, yi}, where xi denotes the total number of nodes (i/n)
and yi denotes the total amount of trust value held by
the nodes

(∑i
j=1 Tj/ST

)
.

4) The Gini index is calculated as given in Eq. 6:

G =
1
n

[
2

∑n
i=1 i · Ti
ST

− (n+ 1)
]

(6)

Hence to determine whether a node in a smart metering
system can be trusted, the Gini index can be used as a trust-
based model. The Gini indexG can be calculated using Eq. 7.

G =
1

n− 1

n∑
i=1

n∑
j=1

|xi − xj| (7)

The Gini index ranges from 0 to 1, where 0 represents
perfect equality (all nodes have equal trust scores), and
1 represents perfect inequality (one node has all the trust
scores and the others have none). The Gini index can be
used as a trust-based model to identify the trustworthiness
of nodes in an SG network. Nodes with higher trust scores
are consideredmore trustworthy, while nodes with lower trust
scores are considered less trustworthy.

c: LORENZ CURVE
A set of n non-negative numbers representing the cumulative
share of a population’s overall trust or reputation scores in
a smart grid network be {x1, x2, . . . , xn}. The total share is
normalized such that xn = 1, and these values are sorted
in non-decreasing order such that {x1 ≤ x2 ≤ . . . ≤ xn}.
The Lorenz curve represents the cumulative share of the
population and the cumulative share of the population’s trust
or reputation scores. Mathematically, it is defined in Eq. 8.

L(p) =
1∑n
i=1 xi

p∑
i=1

xi (8)

where p is a number between 1 and n, representing the
proportion of the population being considered, L(p) is the
cumulative share of trust or reputation scores held by the
bottom p proportion of the population.

d: GINI COEFFICIENT
The Gini coefficient is a measure of inequality calculated
from the Lorenz curve. It is defined as twice the area between
the Lorenz curve and the line of perfect equality (the diagonal
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TABLE 6. Nomenclature.

line from (0, 0) to (1, 1)), mathematically, it is defined in
Eq. 9.

G = 1 − 2
∫ 1

0
L(p)dp (9)

The value of G ranges from 0 to 1, with 0 representing
perfect equality and 1 representing perfect inequality.

e: LORENZ INEQUALITY
The Lorenzic function is a measure of the degree of deviation
from perfect equality in a distribution of non-negative
numbers. It is defined in Eq. 10.

Lic(x) =

∫ x
0 L(p)dp

x
(10)

where L(p) is the Lorenz curve of the distribution. The Lorenz
curve can detect a Sybil attack in a smart grid network. In a
Sybil attack, malicious nodes create false identities to pass for
various nodes and control the network’s behavior. Using the
Lorenz curve, we can visualize the cumulative distribution of
the nodes based on their trust or reputation scores. A Sybil
attack may cause an uneven distribution of trust scores if the
curve significantly deviates from the ideal 45-degree line.

V. PROPOSED ARCHITECTURE
This section first lists the assumptions we made to narrow
down the scope of the study and addresses the proposed
mechanism, which allows for analyzing SG nodes’ behavior
using the GINI index, fog, and device layers.

A. ASSUMPTIONS
The crucial assumptions that we made are as follows:

1) The fog layer is reliable, secure, and trustworthy.
2) The sink node is reliable and has sufficient energy.
3) The channel is secure and reliable with a minimal error

rate.

B. GINI RPL-ENABLED SG NETWORK SYSTEM
ARCHITECTURE
This section provides a thorough explanation of the proposed
framework’s functionality. The proposed architecture is
demonstrated in Fig. 3, which comprises a device layer and a

fog layer. Whereas, Fig. 4 shows the complete accessibility
of all layers and what functions or processes are being
performed in these layers. It also details the flow of DIS
message gathering, computation of Gini values, and then
separation of malicious nodes, and ultimately updating Gini
values, computation of Gini values, and then separating
malicious nodes and updating Gini values.

Moreover, the complete working of the proposed archi-
tecture and layers and their working is also elucidated. The
suggested architecture, i.e., the GINI countermeasure, uses
statistical characteristics of the identities corresponding to
the Sybil attack. Using the Gini index theory to identify
a Sybil network node, the GINI measures the distribution
of the identifiers inside the received DIS messages [20].
Nevertheless, there are other measures of inequality that can
be used to detect Sybils, such as the Theil index [53]. The
Theil index is a well-known indicator of income inequality
used in several fields, including social networks, ecology,
and epidemiology. It gauges the relative distribution of a
resource or attribute among a group of entities based on
entropy. It can be broken down into components that reflect
various sources of inequality, unlike the Gini index, which
only measures between-group inequality. The Gini index,
as opposed to the Theil index, is a better indicator for Sybil
detection in smart metering networks. The Gini index has
been widely used to detect Sybil attacks in the literature,
and research has shown that it is successful under various
conditions. For instance, the Gini index was used in many
studies (e.g., [29], [54]) to identify Sybil attacks on the power
grid, and it was found to perform better than other metrics
like the Theil index and the Herfindahl index. The network
size and the number of legitimate nodes impact the Gini index
less than the degree of concentration and the number of Sybil
nodes. In addition, the Gini index is easier to understand
and has a few advantages over the Theil index. The Lorenz
curve and degree of concentration can be used to interpret
the Gini index, a well-known indicator of inequality. The
Theil index is a more intricate metric that uses the exponential
and logarithmic functions and may be less apparent to non-
experts. Theil index’s robustness and dependability in the
presence of noise or anomalies may also be impacted because
it may be more sensitive to extreme values and outliers.

1) Device Layer
SG devices (i.e., actuators and sensor nodes) are
installed as LLNs in this layer, and devices deployed in
this layer act as a cluster. These nodes/devices gather,
sense, and pre-process data from the environment
before forwarding it to the root node. These are
stagnant and installed at random, considering the
stability of nodes. Via symmetric ties, each node
is linked to all of its neighbors. This layer’s two
key processes are DIS message collection and Trace
Table (TT ) creation.
a) Creation of Trace Table by DIS Messages:

Every time a new DIS message is received,
each node stores the trace of that message in
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FIGURE 3. The proposed GITM architecture.

its TT . This table monitors any possible DIS
message-forwarding misbehavior by the linked
nodes. A lack of storage space necessitates the
removal of traces from the preceding observation
window period with a timestamp of less than
tcs − Owin. Please note that the TT is moved to
the fog layer after each observation windowOwin
is completed. A system parameter that affects
performance is the current system time (tcs).
The received DIS message’s node identification
(nmac) and timestamp form an item in the TT (ts).
To join an existing network, a new node nx
broadcasts a DIS message and listens for a data
packet from other nodes in the area. When nY, for
example, receives a DIS message, it adds an item
to the TT , TTf = TTf [nx, tcs]. If a DIO message
were scheduled to be sent, it would be broadcast
with recent routing information piggybacked on
top of a restarted Trickle algorithm.

2) Fog Layer
In the fog layer, the maximum working of architecture
is performed. In this layer, three main processes are
performed. By adding a fog layer, nodes present in
the network are not calculating trust in themselves.

Because it consumes much energy, network nodes can
also be attacked and compromised, leading to security
issues [3], [18]. Therefore, all the trust calculations will
be done in the fog layer, which is fully trusted. It shows
the perfect result, and the energy consumption of these
nodes will be minimized. The functionalities of the fog
layer are as follows:
a) Creation of Gini Impurity Value:

After an observation window Owin closes, each
node uses Gini index theory to calculate the
dispersion of new node identities. The Gini index
is a criterion based on impurity determining how
much the target attribute’s value diverges the
probability distributions. In (11), suppose a set
X has Nc classes’ samples, and Pi represents the
relative samples frequency of class I in X. It will
produce the Gini Impurity Value of set X .

Gini(X ) = 1 −

Nc∑
i=1

P2i (11)

b) Gini Impurity Detection Mechanism:
This study employs a Gini impurity level to iden-
tify a suspected Sybil assault by evaluating the
prevalence of node identification for transmitted
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DIS control messages. Without a Sybil attack, the
Gini impurity value of freshly connected node
identities fluctuates. The ratio of newly connected
nodes is minimal, and the identity distribution is
relatively stable. The Gini impurity value influ-
ences the received DIS control messages. When
a Sybil attack occurs, the attacker multicasts an
abundance of DIS control messages with various
false identities, and the range exceeds the average
limit. Equation 12 is used to determine the Gini
impurity.

SA(Di) =



1 when
Gini(Di)−Gini(Di−1)

Gini(Di−1)
> TVGini,i

0 when
Gini(Di)−Gini(Di−1)

Gini(Di−1)
≤ TVGini,i

(12)

SA(Di) = 1 represents a Sybil attack and
TV .Gini, i is the threshold set and gets updated
with a filter gain constant K using a low pass
filter.

TVGini,i = K × TV avg
Gini,i + (1 − K ) × TVGini,i

(13)

In (13), TV avg
Gini,i represents an average threshold

set for Gini impurity against the entire observa-
tion window stage, and TVGini,i−1 represents a
Gini impurity threshold in the i− 1th observation
window stage.

c) Mitigation of Sybil Attack:
When the Gini impurity detection system identi-
fies a Sybil attack, the attack mitigation mecha-
nism reduces the DIO control message response
rate and moderates the Sybil assault. To quickly
assess the state of the network and respond to
various forms of assault, we propose using an
adaptive DIO message response rate to determine
the number of DIO control messages to be
sent during each observation window. If a Sybil
assault is discovered, the node that made the
discovery will send a message to all other nodes
to warn them. When a node gets an alarm
packet, it employs the DIO function to reduce
the Response Rate of the DIO (RRdio) control
message in the next observation window during
the following observation window. RRdio can be
calculated using (14).

RRdio = α − β.e1−ADsa.γ (14)

In (14), α, β, γ represents parameters of the
system. The α represents the asymptote ensuring
that the RRdio never reaches 0, ADsa is the

FIGURE 4. Flowchart of the proposed GITM.

cumulative detection probability of Sybil attacks,
as shown in (15).

ADsa =
TDsa
TOwin

(15)

The maximum count of Sybil attacks identified
is TDsa, and the total observation windows are
TOwin. Since the DIO message responding rate
RRd io might fluctuate depending on network
circumstances, this architecture stands to reason.
DIO message replies at RRd io rate decreases
rapidly during an aggressive assault before slowly
increasing after the attack. The RRd io may be
kept high if there is no Sybil attack. When the
total number of Sybil assaults identified in a
region reaches a specific threshold value (i.e.,
ξ ), an Isolate packet is generated and sent to
all of that region’s one-hop neighbors in order
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to prevent those neighbors prevent receiving any
DIS messages from of the local area.
Algorithm 1 presents GINI Index-based Trust
Mechanism. All required parameters such as TT ,
Nc, GINI (D), TDsa, ADsa, TOwin, RRdio, α, β, γ ,
CTsa, maci, d∗ σ are mentioned as input. After
evaluation of the packet communicated between
nodes (nx , ny), the packet is added in TT . Then for
all nodes value of Pi is calculated. The value of Pi
is used for the Gini Index value. When these data
are compared to a threshold, a node is classified as
a Sybil attack or a legitimate node. The isolation
procedure is done if the nodes are marked as Sybil
attack.

Algorithm 1 Proposed GINI Index-Based Trust Mechanism
1: initialize variables: TT ,Nc,GINI (D),TDsa,ADsa,

TOwin,RRdio, α, β, γ,CTsa,maci, d∗σ

2: if rec(nx , ny,DIS) == true then
3: TTi = TTiU [ny, tcs]
4: end if
5: while i <= N do
6: if tcs < σik then
7: Pi =

maci
d∗

8: Gini(X ) = 1 −
∑Nc

i=1 P
2
i

9: if Gini(Di)−Gini(Di−1)
Gini(Di−1)

> TV then
10: TDsa+ = 1
11: Broadcast Alarm Packet;
12: end if
13: ADsa =

TDsa
TOwin

14: RRd io = α − β.e1−ADsa

15: if TDsa > CTsa then
16: Broadcast Isolate Message;
17: end if

VI. EXPERIMENTATION AND RESULTS
To evaluate the effectiveness of the proposed model, we carry
out a series of extensive simulation-based experiments using
the COOJA Network Simulator 2.7. The network area under
consideration is a 100 m × 100 m network region in which
one DODAG root and thirty hubs are regularly transmitting.
The radio model reproduces the CC2420 protocol at an
average speed of 250 Kbps when the 802.15.4 MAC/PHY
controls in its default mode in the 2.4 GHz band. The
transmission rate of each hub is 30 meters per second—
random placement of one to three malicious nodes around
the network. The Sybil attack rate for malicious DIS packets
ranges from 0.1 to 3.0 per second. Sybil attacks occur
when a rogue node continuously sends out a large number
of DIS packets with fictitious identifiers. We simulate for
60 minutes overall for solid-state performance measures,
with each configuration running five times. The number
of nodes varies from 30 to 90. Similarly, we set different
rounds from 10 to 90 to check the scalability and constancy.

TABLE 7. Table of Experimentation parameters.

FIGURE 5. Sybil attack detection rate.

This study is evaluated based on the detection rate, energy
consumption, end-to-end latency, and the number of control
messages exchanged. Table 6 contains the symbols used in
the paper for convenient reference, whereas Table 7 contains
all the simulation details.

A. EVALUATION METRICS
This section discusses the evaluation metrics used in the
experimentation. We do a quantitative evaluation of our
proposed countermeasure’s efficacy in detecting attacks,
as assessed by the proportion of successfully identified
malicious nodes to the overall number of harmful nodes in
the network. In support of that, we choose attack detection
rate, energy consumption, end-to-end delay, number of
control messages exchanged, and the isolation latency as
evaluation metrics. The metric attack detection rate shows
how effectively the proposed mechanism detects the Sybil
attack with varying the number of nodes and attacker nodes.
Several control messages and energy consumption metrics
are also calculated with and without Sybil attack to evaluate
its effects on the network.

1) Sybil Attack Detection Rate
The Sybil attack rate is preserved in incremental
order to estimate the detection rate, as shown in
Fig. 5. When the number of Sybil attacks rises, the
overall detection rates of the proposed GITM, the
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FIGURE 6. Energy consumption.

GINI-1 [29] and the GINI-2 [20] increase significantly.
It happens because of the increased production and
distribution of malicious DIS messages containing
fictitious identities. When paired with an increased
Sybil attack rate, it allows for the recognition of more
Sybil attack attempts. The overall detection rate rises
as a result. More Sybil attacks may be recognized.
A greater detection rate may be achieved due to each
node computing the Gini index for two consecutive
observational windows and spotting any anomalous
fluctuation inside the DIS message receipt rate. The
GINI transmits a pre-determined number ofDIS signals
to detect the Sybil assault and stop it.
On the other hand, the Sybil attack is undetectable
when the quantity of malicious DIS messages is
smaller than the total number of harmful DISmessages.
A consequence is that the overall number of perceived
Sybil attacks diminishes, and the detection rate of GINI
lowers to a level lower than the level of this model.
The simulation is run iteratively, and the Sybil attack
number increases with each iteration. The results show
that when the simulation is run for 60 seconds with
30 malicious nodes, the attack detection rate of [20]
is 95%, [29] is 98%, and for the proposed GITM,
it is 100%. On average, the Sybil attack detection rate
increases by 4.48% in our case. The GITM algorithm
performs better than GINI-1 and GINI-2 in detecting
Sybil attacks and identifying nodes across all time
intervals. GITM has a higher detection rate than GINI-
1 in all cases, with the percentage difference ranging
from 2.0% to 8.1%. Meanwhile, GITM outperforms
GINI-2 with a percentage difference that ranges from
5.3% to 12.3%.
We can retain this level of precision by using current
and prior history in our search for malicious nodes.
These findings suggest that GITM is more effective
in detecting and isolating Sybil nodes in RPL-based
IoT networks due to its enhanced trust assessment
framework and energy-efficient design. GITM’s trust
assessment framework uses robust metrics to evaluate

FIGURE 7. End-to-end delay.

node behavior, including packet forwarding, MAC
address changing rate, DIO message rate, the node’s
remaining energy, and current system time. By ana-
lyzing a wide range of trust metrics, GITM provides
a more comprehensive and accurate evaluation of node
trustworthiness, resulting in higher detection rates than
GINI-1 and GINI-2.

2) Energy Consumption
During a Sybil attack, network energy consumption
significantly increases due to creating fake identities
and false data. It is expected as the attack requires these
actions to be taken. We compare the proposed GITM
with two state-of-the-art techniques: 1) [29] referred
to as GINI-1 and 2) [20] referred to as GINI-2. All
the models are tested to determine their respective
energy usage under the Sybil attack and its mitigation,
as presented in Fig. 6. The models’ detection costs
are subdivided into computational and communication
costs. The energy needed to send and receive messages
is assessed regarding the number of sent and received
packets (e.g., DIO and DIS messages). Computing
costs are calculated by comparing the current obser-
vation window (OW) period’s GINI impurity with the
last observed time frame. However, the power usage of
core activities, such as sending and receiving data via
a wireless network interface card, may be overlooked,
not the communication processes. The only way to
determine how much energy is used is to count how
many messages are sent and received. The energy
usage of all methods grows as the number of Sybil
assaults rises. In the event of an even greater Sybil
assault, malicious nodes will broadcast more harmful
DIS messages.
Consequently, as in the state-of-the-art, genuine nodes
get additional DIS signals and broadcast more DIO
messages, resulting in tremendous energy usage. How-
ever, GITM consumes less energy than GINI-1 and
GINI-2 due to shifting calculations on the upper layer.
Our model can assess, identify, and isolate possible
Sybil attacks on the fog layer. Secondly, GITM does
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this sooner than GINI-1 and GINI-2; the genuine nodes
in our model will receive and respond to fewer control
messages (e.g., DIO and DIS), resulting in less energy
being used. The results show that when the simulation
was run for 60 seconds with 30 malicious nodes, the
energy consumption of GINI-1 was 0.0936mj, and
for GINI-2, it is 0.1136. Furthermore, of proposed
GITM is 0.0736mj. Based on the results, it is clear
that GITM outperforms GINI-1 in reducing energy
consumption. The energy-efficient GINI index-based
trust assessment framework, i.e., GITM, accurately
identifies Sybil nodes, allowing for targeted isolation
and reduced energy consumption—the percentage
differences between GITM and GINI-1 range from
approximately 13.6% to 35.1%. GITM provides even
more significant energy savings than GINI-2, with
percentage differences ranging from approximately
23.4% to 56.7%. The proposed GITM algorithm
combines advanced energy-efficient techniques and the
GINI index to detect and isolate Sybil nodes, reducing
energy consumption effectively.

3) End-To-End Delay
The end-to-end latency is the time between the start
of packet transmission to a fog layer and its arrival at
the DAG’s node layer root. It is the total time a packet
travels from its origin (i.e., the network node) to its
final recipient (i.e., the fog node) through the network.
The end-to-end delay result is shown in Fig. 7. On the
x-axis is the number of nodes, and on the y-axis is
the millisecond delay. The graph shows the average
delay for the number of nodes. The study indicates that
GITM consistently achieves lower end-to-end delay
values than GINI-1 and GINI-2. It was observed across
different numbers of nodes, where GITM demonstrated
a reduced delay in message transmission and routing,
resulting in faster communication between nodes.
These results highlight the efficiency of the proposed
algorithm in minimizing latency and improving overall
network performance. Additionally, GITM maintains
its efficiency and performs consistently well as the
number of nodes increases, making it suitable for large-
scale smart grid deployments.
GITM prioritizes reliable communication paths, reduc-
ing delays caused by unreliable or compromised nodes.
By leveraging trust metrics and intelligent decision-
making algorithms, GITM ensures that messages are
routed through trusted nodes, minimizing the chances
of delays caused by malicious or unreliable routing
paths. In summary, the analysis of the end-to-end delay
results confirms that GITM outperforms GINI-1 and
GINI-2 in terms of reducing delay and improving
overall network performance. It is attributed to its trust-
based optimization, efficient routing decisions, and
scalability, all of which enhance the reliability and
responsiveness of RPL-based smart grid networks.

FIGURE 8. Number of control messages.

Moreover, since a layered mechanism has been intro-
duced in the proposed mechanism, it results in slightly
more delay than the GINI-1 and GINI-2 mechanism
at the start of the simulation. When the Sybil nodes
are detected and removed successfully, our mechanism
performs better and shows less end-to-end delay
afterwards. Trust calculation and propagation are done
at the node layer in the base paper, contributing to a
relatively lower delay. The average end-to-end delay
in our case is a mere 0.30% (in milliseconds) more
significant than the state-of-the-art concerning time.

4) Number of Control Messages
Numbers of control messages are exchanged between
nodes and attackers during the simulation for topology
discovery and other tasks. The following graph shows
no control messages overhead under the Sybil attack.
Different numbers of nodes are distributed during the
simulation. The average value at a particular number
of nodes is presented in the graph. Since the attackers
were dispersed uniformly over the network in the
state-of-the-art approach, the controlmessage overhead
grew in proportion to the number of attackers. As a
consequence, a large number of legitimate nodes are
compromised. Receiving the DIS Multicast through
the GINI mechanism leads all nodes within the radio
transmission range of the compromised node to reset
its Trickle timers, disseminating numerous DIO signals
from across the network.
When comparing the number of control messages
exchanged, GITM consistently has lower values than
GINI-1 and GINI-2. As the number of nodes increases
from 30 to 60, there is a 12.21% reduction in control
messages for GITM, and when the number of nodes
increases from 60 to 90, there is a 27.42% reduction.
Fig 8 shows that GITM is more effective at mitigating
Sybil attacks in smart grids as the number of nodes
increases. GINI-1 also shows improvement, with a
13.04% reduction in control messages between 30 and
60 nodes and a 23.08% reduction between 60 and
90 nodes. However, the percentage differences are
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FIGURE 9. Isolation latency of Sybil attacks.

slightly lower than GITM. It suggests that GINI-1 is
less efficient than GITM in minimizing control mes-
sages during Sybil attack mitigation. GINI-2 performs
better than GINI-1, with a 16.41% reduction in control
messages between 30 and 60 nodes and a 13.42%
reduction between 60 and 90 nodes, but still falls
short of GITM’s performance. Based on the percentage
differences and the lower-is-better principle, GITM
is the most efficient at mitigating Sybil attacks in
smart grids, consistently achieving the lowest number
of control messages exchanged. While GINI-1 and
GINI-2 show improvements, they are comparatively
less efficient in minimizing control messages.

5) Isolation Latency
The attacking node must be isolated as soon as possible
following detection. We only consider the isolation
latency for the particular attacker nodes that our
approach correctly identifies. Our suggested solution’s
isolation latency is much better because we apply
the isolation at the parent selection phase. Fig. 9
shows the isolation latency while detecting the Sybil
assault rate. It is the time taken for an isolated packet
to be sent before the isolation latency is calculated.
We achieved the lowest isolation latency rate using the
proposed fog-based layered methodology. Detection of
vast numbers of Sybil attacks may be done quickly.
Hence, an isolated packet is broadcast early when
the number of identified assaults exceeds an extent
value. Because the GINI-1 has a lower detection rate,
it has a longer isolation delay than the model under
consideration. Some Sybil attacks cannot be detected
by it. It results in a prolonged isolation delay since the
detected Sybil attacks take longer to meet the threshold
value for broadcasting isolated packets.
The GITM algorithm consistently demonstrates
significantly better isolation latencies than the state-of-
the-art GINI-1 and GINI-2 methods. The percentage
differences for GINI-1 are from 15 to 29%, while
it is much higher in the case of GINI-2, 39 to
46% low in our case. It indicates that GITM is a

FIGURE 10. Number of control messages with GITM, with- and without
Sybil attacks.

more efficient and effective approach for detecting
and isolating Sybil nodes. The larger percentage
differences show that GITM has a clear performance
advantage in reducing the time needed for isolating
Sybil nodes. These results highlight the superior
Sybil detection capabilities of GITM and its ability
to promptly identify and isolate Sybil nodes in the
network, which is crucial for preventing the spread of
malicious activities and maintaining the integrity of the
smart grid system. GITM’s innovative trust assessment
framework contributes to its improved performance
in accurately and efficiently detecting Sybil attacks.
The results suggest that GITM can be a valuable
solution for enhancing the security and reliability of
RPL-based smart grid networks. The reduced isolation
latencies achieved by GITM contribute to minimizing
the potential damage caused by Sybil attacks, thereby
improving the overall system performance. The
improved efficiency and effectiveness of GITM in
isolating Sybil nodes can lead to faster response times,
allowing network administrators to take appropriate
actions promptly and mitigate the impact of attacks
more effectively.

6) Control Messages with GITM, with and without Sybil
Attack
The GITM framework aims to reduce control message
overhead, primarily when an attack occurs. This
framework is designed to optimize control message
transmission and improve network efficiency in the
case of a Sybil attack. Figure 10 illustrates the control
message overhead reduction. A detailed comparison
with the ‘‘With- and without Attack’’ scenario is as
follows:
a) Scenario 1 (30 nodes): In the GITM scenario,

there is a difference of 900 in the control message
overhead compared to the scenario without any
attack. However, the control message overhead is
3900 less than the ‘‘With Attack’’ scenario, which
is significantly less.
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b) Scenario 2 (60 nodes): In the GITM scenario, the
control message difference is a mere 1850 com-
pared to the scenario without an attack. Whereas
the control message overhead is reduced by
4350 compared to the scenario with an attack.

c) Scenario 3 (90 nodes): In the GITM scenario,
the control message overhead is 1000 more
than the scenario without an attack. In contrast,
the amount of control message overhead is
4200 less than in the ‘‘With Attack’’ scenario.
This improvement has allowed us to enhance
the efficiency of the network and optimize its
resources.

When it comes to control message overhead, the
GITM approach performs better by reducing messages
significantly. The difference in control message
overhead between GITM and the ‘‘Without Attack’’
scenario is around 13% to 27%, and betweenGITMand
the ‘‘With Attack’’ scenario, it is around 27% to 41%.
It shows that the GITM approach efficiently minimizes
control message overhead under Sybil attack and
optimizes network resources. It shows that the GITM
effectively addresses challenges posed by Sybil attacks
in the smart grid network. This approach helps
reduce energy consumption, minimize control message
overhead, and improve the network’s efficiency and
performance. The percentage differences indicate
significant improvements brought about by the GITM,
which confirms its effectiveness in ensuring the secure
and efficient operation of the smart grid infrastructure.
The observed results are in linewith the basic principles
and mechanisms of the GITM approach.

7) Energy Consumption with GITM, with and without
Sybil Attack
Figure 11 compares the energy overhead with and
without Sybil attack and with Sybil and GITM
in action. The percentage differences represent the
relative increase in energy consumption in the GITM
scenario compared to the energy consumption without
attack ranging from approximately 10.84% to 34.35%.
The highest percentage difference occurs at 30 nodes,
indicating a relatively higher increase in energy con-
sumption compared to the ‘‘Without Attack’’ scenario.
The lowest percentage difference occurs at 60 nodes,
indicating a relatively lower increase in energy con-
sumption compared to the ‘‘Without Attack’’ scenario.
Overall, the percentage differences highlight the addi-
tional energy consumption introduced by the trust-
based approach in the GITM scenario. While there
is an increase in energy consumption, it is crucial to
consider the trade-off between energy consumption
and the enhanced security provided by Sybil attack
detection andmitigation. TheGITM framework aims to
strike a balance between energy efficiency and security,
ensuring that the increase in energy consumption is

FIGURE 11. Energy consumption with GITM, with- and without Sybil
attacks.

justifiable in preventing significant energy wastage
caused by malicious attacks.
The proposed GITM framework has proven effective in
reducing energy consumption in the presence of Sybil
attacks. By isolating and detecting the Sybil nodes, the
framework prevents unnecessary energy consumption
caused by malicious nodes. The percentage differences
range from approximately 23.18% to 65.66%, indi-
cating the relative decrease in energy consumption
achieved by the GITM framework compared to energy
consumption with the Sybil attack present. The highest
percentage difference is at 10 nodes, indicating a
significant energy consumption reduction. The lowest
percentage difference is at 50 nodes, indicating a minor
reduction compared to other scenarios. The larger
the percentage difference, the more significant the
energy savings achieved by the GITM framework. The
following points may be considered while analyzing
the figure in detail:

According to the study, the GITM method successfully
detects and minimizes Sybil attacks in RPL-based smart
grid networks. Trust evaluation using the GINI Index
helps identify and isolate Sybil nodes, resulting in lower
energy consumption and message overhead. The approach
is consistent with trust-based filtering, energy efficiency, and
scalability principles, making it a viable solution for boosting
the security and efficiency of smart grid infrastructures.

1) Energy Consumption with Sybil Attack: Energy con-
sumption increases significantly during a Sybil attack.
It is expected, as the attack involves the creation of fake
identities, generating false data, or resending packets
(in case of packet loss), leading to additional energy
usage in the network.

2) Energy Consumption without Attack: In the absence
of an attack, the energy consumption is relatively
lower compared to the scenario with a Sybil attack.
It indicates that the network operates more efficiently
when no malicious activities affect the nodes.

3) Energy Consumption with GITM: The proposed
GITM approach shows improved energy consumption
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compared to the scenario with a Sybil attack. The
energy consumption with GITM is closer to the energy
consumption without an attack, indicating that the trust
assessment framework effectively detects andmitigates
the Sybil attacks, reducing their impact on energy
consumption.

Based on these comparisons, it is evident that energy
consumption is significantly higher in the presence of
a Sybil attack. However, the proposed GITM approach
reduces energy consumption by detecting and isolating Sybil
attacks. By leveraging the GINI Index-based trust assessment
framework, the proposed approach enables more efficient
utilization of network resources, resulting in lower energy
consumption.

VII. DISCUSSION
Regarding energy consumption, memory usage, and message
overhead, using a fog layer for trust-related computations in
resource-constrained nodes has several advantages. Firstly,
by offloading trust computations to the fog layer, the
underlying nodes can conserve their limited energy resources,
allowing them to focus on their primary tasks, such as data
sensing, processing, and transmission. It can significantly
extend the nodes’ lifetime, reducing the need for frequent
maintenance and replacement. Secondly, using a fog layer
can reduce the memory usage of the underlying nodes.
Large amounts of data, such as trust scores, reputation
values, and past behavior history, are frequently required
for trust-related computations. Underlying nodes can reduce
their memory footprint and avoid congestion by performing
these computations in the fog layer. Finally, the proposed
technique can reduce network message overhead. When
a Sybil attack is detected and isolated, the subordinate
nodes are no longer required to resend the same packets
due to packet loss or corruption caused by the malicious
nodes. It can significantly reduce the number of network
messages sent, resulting in more efficient use of network
resources. As a result, the proposed technique could be a
viable option for trust management in resource-constrained
IoT networks. The underlying nodes can save energy, reduce
memory usage, and avoid message overhead caused by
Sybil attacks by offloading trust computations to the fog
layer. Here are some significant reasons for the obtained
results:

1) Energy Consumption Reduction: The GITM uses
the GINI Index to identify and isolate Sybil nodes
precisely. It reduces the amount of communica-
tion and energy used in the network. As a result,
Sybil attacks are detected and prevented efficiently,
resulting in lower energy consumption than other
methods.

2) Control Message Overhead Reduction: A Sybil attack
can cause an increase in message traffic, leading
to extra strain on the routing process. However, the
GITM approach can detect and isolate Sybil nodes,
preventing the need for additional messages. It allows

for more efficient use of network resources and reduces
overhead. The GITM method employs trust-based
filtering using the GINI Index to evaluate node reli-
ability. Nodes exhibiting malicious or untrustworthy
behavior are eliminated, and trust scores are assigned
based on node behavior. This process ensures that
only dependable nodes participate in data forward-
ing, resulting in highly secure and reliable network
communication.

3) Scalability: The GITM approach has been proven
effective across different network sizes. Sybil attacks
can significantly impact larger networks, causing more
energy consumption and control message overhead.
Despite this, the GITM approach remains scalable
and consistently performs better than other approaches
in reducing energy consumption and control message
overhead. This scalability is crucial for smart grid
deployments in the real world, where networks can vary
greatly in size.

Now we discuss the technical aspects of the contributions,
highlighting how they can reduce energy consumption in
smart grid networks through GITM, as follows:

1) Layered-based Architecture: The paper introduces
a novel layered-based architecture that provides a
structured approach to analyzing nodes’ behavior in
RPL-based smart grid networks. This architecture
organizes the network into distinct layers, making
monitoring and assessing individual nodes’ behavior
easier, detecting potential attacks like Sybil attacks, and
identifying anomalies.

2) Efficient Resource Usage: The proposed framework
offers a notable advantage in terms of efficiency in
memory, computation, and message overhead expenses
at the node level. Traditional security mechanisms for
Sybil detection often require significant computational
resources and communication overhead, which can
lead to increased energy consumption. However, the
proposed framework minimizes these expenses, ensur-
ing that energy consumption remains optimized while
maintaining high security.

3) Role of Fog Computing: Fog computing is vital in
optimizing energy consumption in smart grid networks.
By leveraging fog computing resources, specific tasks,
and computations can be offloaded from resource-
constrained nodes to nearby fog nodes or edge devices.
This approach reduces the energy burden on individual
nodes, allowing them to operate more efficiently and
conserve energy. Integrating fog computing within
the layered-based architecture and the trust assess-
ment framework can reduce energy consumption in
RPL-based smart grid networks.

Overall, the technical analysis highlights the significance
of the layered architecture, the GINI Index-based trust
assessment framework, and the role of fog computing in
achieving energy-efficient operations in smart grid networks.
The proposed approach offers a promising solution for
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enhancing smart grid infrastructures’ security and energy
efficiency by detecting and isolating Sybil attacks while
minimizing resource overhead.

In a nutshell, the proposed model has shown better
results than the state-of-the-art [29]. The proposed model
outperforms all parameters. Regarding the attack detection
rate, the proposed model detects the attacker nodes quickly
and more efficiently than the GINI-based technique. When
we talk about energy consumption, our mechanism consumes
much lower energy, and the residual energy of nodes remains
high. While in the GINI-based mechanism [29], the node’s
life fell rapidly. Isolation latency is lower in our model
case.

Sybil attack detection is efficient due to diverse parameters.
These parameters gave the perfect image of the attacker node
and facilitated the proposed mechanism in detection. The
primary reason behind the lower energy consumption is the
layered architecture. All tasks are divided into layers. The
upper layer now handles trust calculation and all complex
tasks; it is not part of the node layer. In the case of the
GINI-based process, the node’s life is quickly removed.
Isolation latency is lower in our model scenario. It can
be shown that the suggested approach has a lower control
message overhead. Control messages are those messages that
are routed in the network for different tasks, such as the
gathering of parameters for trust evaluation. Regarding all
these characteristics, the proposed model improves the GINI-
based approach.

VIII. CONCLUSION
The RPL protocol is widely regarded as the industry
standard for SG routing. Regarding external assaults, this
protocol has a powerful defense mechanism but is susceptible
to internal attacks. The objectives of this work were to
enhance SG security using RPL. Sybil attack is one of
the most challenging internal attacks. This study detected
and handled it using a Gini index solution promoting
trust-based security. Using a layered system, the proposed
framework includes layers of devices and fog. In this
model, the processing is separated from nodes, enhancing the
security and energy of the whole network. This framework
detected Sybil attacks accurately and efficiently, as depicted
in extensive simulation results. Furthermore, this strategy
significantly improves detection rate, latency, and energy
consumption, making it an effective tool against such
attacks.

In the future, we aim to create a testbed for the
proposed technique. We will also install a real network
comprising Telos B nodes. This testbed will work in an
interior setting to test the full capability of the suggested
countermeasure, since radio reception and network charac-
teristics may not be readily reproduced using simulations.
In addition, we would identify and isolate Sybil and
other internal attacks using different machine learning
models.
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