
Received 24 May 2023, accepted 6 June 2023, date of publication 14 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3286298

Lenslet Image Coding With SAIs Synthesis via
3D CNNs-Based Reinforcement Learning
With a Rate Reward
XIAODA ZHONG 1, TAO LU2, (Member, IEEE), DIYANG XIAO 3, AND RUI ZHONG3, (Member, IEEE)
1Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China
2Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073, China
3School of Computer Science, Central China Normal University, Wuhan 430079, China

Corresponding author: Diyang Xiao (xdiyang@163.com)

This work was supported in part by the Hubei Key Laboratory of Intelligent Robot (Wuhan Institute of Technology), in part by the National
Natural Science Foundation of China under Grant 62002130, and in part by the Fundamental Research Funds for the Central Universities
under Grant CCNU22QN014.

ABSTRACT The deep learning-based coding schemes for lenslet images combine coding standards and
view synthesis through Deep Learning (DL) models, where the compression efficiency is heavily influenced
by the coding structure and quality of synthesized views. To exploit the inter-view redundancy among Sub-
Aperture Images (SAIs), this paper proposes a hybrid closed-loop coding system that uses a novel coding
structure based on checkerboard interleaving at a frame level. The frame-wise checkerboard interleaving
method partitions anOriginal SAIs’ Set (OSS) of images into twomutually exclusive subsets, each consisting
of alternating rows and columns of SAIs.We utilize the video coding standard Versatile Video Coding (VVC)
to encode one subset while proposing a novel rate constraint-reinforced 3D Convolutional Neural Networks
(CNNs) to predict the other subset, referred to as the complement subset. The rate constraint-reinforced 3D
CNNs is newly designed with a gradient loss and reinforced rate cost to improve synthesized SAIs’ image
quality and bit cost saving simultaneously. Experimental results on the light field image dataset demonstrate
that the proposed hybrid coding system outperforms both HEVC_LDP and the previous state-of-the-art
(SOTA), achieving an average BD-Bitrate savings of 41.58% and 23.31%, respectively.

INDEX TERMS Lenslet image, compression, reinforcement learning, 3D CNNs, VVC.

I. INTRODUCTION
This paper introduces a novel approach for enhancing the
quality of Lenslet (LL) images obtained through unfocused
plenoptic cameras, such as the Lytro camera, as originally
presented by Ng et al. [1]. The fundamental mechanism of
these cameras is the primary lens that focuses the reflected
light rays of an object onto themicrolens plane. Subsequently,
each microlens captures the converging light rays and directs
them to the image plane, where the incoming light intensity
from a discrete set of directions is recorded, leading to the
creation of a macro-pixel [2], [3]. To improve the quality of
LL images under a constant bitrate condition, we propose a
hybrid closed-loop compression system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang .

To address the challenge of managing the considerable
volume of data generated by modern cameras, it is crucial
to develop compression systems that can efficiently store
and transmit LL images. Recently, innovative compression
techniques have been introduced, which leverage DL mod-
els [4], [5], [6] to overcome the challenges of compressing
lenslet images.

Ionut [4] proposed a novel DL-based prediction model,
coupled with a context modelingmethod to encode prediction
errors. The approach exhibits superior performance over
the previous SOTA methods due to the learning ability of
deep learning models. However, this approach is designed
for lossless image compression and incurs a relatively high
bit cost compared to lossy compression techniques. This
paper focuses on the development of a closed-loop lossy
compression system that integrates DL-based prediction and
video coding standards.

62462
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4122-0670
https://orcid.org/0009-0006-8650-4497
https://orcid.org/0000-0003-1911-4676


X. Zhong et al.: Lenslet Image Coding With SAIs Synthesis via 3D CNNs-Based Reinforcement Learning

FIGURE 1. Flowchart of the hybrid coding system. OSS is the Original SAIs’ Set. (a) The conversion from Lenslet (LL) image to multiple Sub-Aperture
Images (SAIs) is carried out by collecting the pixels having the same coordinates (x, y ) in a macro-pixel. (b) The contributions involve the
checkboard interleaving based partition and the rate constraint 3D CNNs based synthesis. (c) The Epipolar Plane Image (EPI) is a 2-dimensional
projection of a 4-dimensional light field. In this flowchart, EPI is obtained by selecting and fixing one angular dimension and one spatial
dimension, where the optional angular dimensions are represented by i and j , and the spatial dimensions are represented by x and y .

In this paper, we discuss a DL-based hybrid compression
system that utilizes the concept of pseudo video-sequence
generation and inter-view redundancy to enhance compres-
sion efficiency. The approach involves converting Lenslet
(LL) images to Sub-Aperture Images (SAIs) through the
collection of pixels with the same coordinates in a macro-
pixel (see Figure 1), as proposed in [7] and [8]. The
hybrid compression system involves two critical elements:
the efficiency of the hybrid coding structure, including
scanning order and interleaving method, and the quality
of the predicted images through deep-learning-based view
synthesis.

To preserve the effectiveness of DL-based view synthesis
in image prediction, Jia [5] proposed a view synthesis
approach utilizingGenerative Adversarial Networks (GANs).
This method demonstrated exceptional performance in LL
image synthesis. However, the unstable training of GAN
can lead to unreliable image quality and affect the coding
efficiency. To address the limitations of GAN-basedmethods,
Bakir [9] proposed a Dual Discriminator GAN (D2GAN) that
showed an improvement in the quality of the synthesized
views. However, the adversarial components of the GAN
still suffer from unstable training, which results in significant
color differences among synthesized images.

To overcome the limitations, Hou introduced a compres-
sion framework that utilizes the angular super-resolution
technique based on CNNs to generate synthesized SAIs [6].
The approach entails encoding a select subset of the Original
SAIs’ Set (OSS) using HEVC compression. The resultant
sparse reconstructed SAIs are then fed into a CNNs model,
which predicts the SAIs for the complementary subset of
OSS. However, the degradation in the quality of synthesized
views is directly proportional to their distance from the
HEVC-encoded sparsely captured views, as our observations.
In particular, the CNN-driven view synthesis technique
results in lower image quality for views that are located
farther from the HEVC-encoded sparsely captured views.

In general, the compression framework in [6] lacks
efficient coding structure. Additionally, both the GAN and
CNNs based view synthesis techniques have drawbacks in

synthesizing high-quality images for LL images. Thus, our
objective is to enhance the compression performance for LL
images by presenting an appropriate coding structure and a
highly efficient DL-based view synthesis model.

In this paper, we propose a novel closed-loop hybrid
compression scheme for lenslet images inspired by the coding
structure presented in [5]. Our scheme introduces VVC [9] to
compress a subset of the original SAIs’ set and utilizes rate
constraint-reinforced 3D CNNs to predict the complement
of the subset. Nonetheless, the division of the subset for
conventional intra/inter or 3D CNNs-based prediction is a
crucial component that has a significant impact on the coding
efficiency of the hybrid compression framework. In summary,
the novel contributions of this study are as follows:

1. To fully exploit the inter-view redundancy among
SAIs, we propose a frame-wise checkerboard interleaving
method and then design a hybrid coding structure. The
frame-wise checkerboard interleaving method partitions an
Original SAIs’ Set (OSS) of images into two mutually
exclusive subsets by alternating rows and columns of SAIs.
More specifically, we assign the VCC’s intra/inter prediction
to the SAIs at the position with odd coordinates and the
rate-constraint 3D CNNs prediction to the SAIs with even
coordinates. However, the inputted LL images of the 3D
CNNs is the reconstructed images of the VVC encoder rather
than the original images. According to the coordinates of
SAIs, we split the OSS into a subset IA and its complement
IB (see Figure 1). The SAIs of the IA are firstly composited
into a pseudo video and then encoded by the VVC codec. The
SAIs of the IB are synthesized by the novel rate-constrained
3D CNNs.

2. The set ÎA consisting of reconstructed SAIs is formed
by decomposing the frames in the reconstructed pseudo
video. The SAIs within ÎA are then sequentially scanned
to produce Epipolar Plane Images (EPIs), as illustrated in
Figure 1. Subsequently, a rate constraint-reinforced 3DCNNs
is applied to the EPIs to synthesize views. More specifically,
the original 3D CNNs [10] cannot simultaneously achieve
low bit cost and high image quality for view synthesis-based
prediction. To address this issue, we introduce a new model
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of rate constraint 3D CNNs with a gradient loss function,
which employs the residuals’ rate of all SAIs in IB as a reward
to supervise the reinforcement learning process of the 3D
CNNs. This approach allows us to simultaneously optimize
both the bit cost and image quality of the synthesized views.

II. RELATED WORK
In this section, we briefly survey the coding standards-based
and deep-learning-based Lenslet Image Compression.

A. CODING STANDARDS-BASED LENSLET IMAGE
COMPRESSION
JPEG-Pleno [11] was proposed as a standard for capturing,
representing, converting formats, and compressing images
for light fields. Although it offered a complete framework for
plenoptic data, its encoder was not efficient in compressing
light field images. The JPEG-Pleno [11] has been evaluated
and found to be inefficient for LL image compression.
To overcome this constraint, High Efficiency Video Coding
(HEVC) [12] has been suggested as a compelling alternative
due to its considerably enhanced compression performance in
comparison to its forerunners. However, it’s essential to note
that HEVCwas primarily designed to account for local spatial
and temporal continuities in video data. Given that lenslet
images exhibit systematic spatial discontinuities between
microlens images, utilizing the HEVC standard to encode
such data can result in inefficiencies in compression.

The field of lenslet image coding has witnessed the
emergence of several techniques to tackle the challenges
associated with compressing plenoptic data. These tech-
niques include intra-prediction methodologies and wavelet
compression methods designed to leverage the inherent intra-
frame redundancies of the data. In a study conducted by [13],
a 4D Discrete Wavelet Transformation (DWT) technique was
proposed that was combined with the Set Partitioning into
Hierarchical Trees (SPIHT) algorithm to encode the resultant
wavelet subbands. This DWT compression system allows
for progressive decoding of LL data. Furthermore, to reduce
the redundancy within subbands, wavelet compression has
been applied to SAIs. In another study [14], the low-
frequency bands that were decomposed from reconstructed
SAIs via a 2D DWT were coded by a 3D Discrete Cosine
Transform (DCT) followed by Huffman coding, while the
high-frequency bands were directly processed by arithmetic
coding. These wavelet-based coding techniques provide
quality scalability and a comprehensive framework to explore
the intra-frame redundancies of LL images in the frequency
domain.

In the domain of lenslet image coding, an alternative
approach to minimize spatial redundancies is through
intra prediction directly applied to microlenses. In the
ICME 2016 Grand Challenge on LL Image Com-
pression [15], Self-Similarity (SS) compensated intra-
prediction [16] was proposed to exploit spatial redundancies
for specific microlens arrangements in LL images. Bi-
directional SS compensation based intra-prediction [17] was
subsequently introduced to further minimize prediction errors

for microlenses with slight view disparities. These SS-based
intra-prediction methods were found to achieve high coding
efficiency and low prediction error for the specific rectangular
pattern of microlenses. Furthermore, a locally linear
embedding method was proposed in [18] and integrated into
specially designed HEVC directional intra prediction modes
for rectangular microlenses. Recently, local redundancies
were exploited using a Gaussian regression-based prediction,
incorporated into directional intra prediction as a prediction
mode [19]. To further explore the repetitive patterns of LL
images, [20] proposed uni-directional and bi-directional SS
search-based schemes for reference selection, which aim to
minimize the prediction residuals under a Rate-Distortion
Optimization (RDO) criterion.

In the realm of exploiting redundancies among neighboring
viewpoints, a range of coding methods have been proposed
over the years. One such approach is the inter-prediction
codingmethod, which was presented in [21], where one of the
views is used as a reference to predictively code the remaining
views. Another popular approach involves the utilization
of the Multiview Video Coding (MVC) extension [22] of
the HEVC standard. To optimize the prediction residual
for MVC, [23] employs a 2D warping-based disparity
compensation. In [24], a joint motion and disparity estimation
method is proposed to take advantage of inter-frame and
inter-view predictions. Moreover, a hierarchical reference
structure is designed for HEVC-based inter-coding of the
pseudo video sequence in [8]. During ICME2016, Liu pro-
posed a method to generate synthesized SAIs by collecting
pixels corresponding to the same coordinates in a macro-
pixel [7]. Alternatively, SAIs can be composited into a pseudo
video, and HEVC_LDP can be utilized to exploit temporal
redundancies.

In our previous research [25], we presented a method for
macro-pixel prediction that involved a linear combination of
the neighboring reconstructed macro-pixels. This approach
used an L1-optimized prediction algorithm that exploited
the spatial correlation of pixels with the same spatial coor-
dinates within neighboring macro-pixels to reduce spatial
redundancies. Building upon this method, our subsequent
research [26] aimed to further improve coding efficiency
by reducing spatial redundancies even further. To achieve
this goal, we proposed a dictionary learning-based prediction
method directly on macro-pixels, which has demonstrated
promising performance on lenslet images [27].

B. DEEP-LEARNING-BASED LENSLET IMAGE
COMPRESSION
When traditional compression methods fail to achieve
breakthrough progress, researchers have turned to DL to
improve the performance of light field image compression.
In 2018, the first category is proposed based on macro-pixels
as the basic unit, where macro-pixels are reconstructed using
a CNNs prediction method, and CALIC encoding is applied
to the residual of macro-pixels to create a lossless coding
system [28]. However, this method consumes a relatively
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high bit rate. Afterwards, Zhong proposed deepCNNsmodels
based frame-intra predictionmodes, which are embedded into
35 frame-intra predictionmodes of HEVC. The optimal mode
is selected using a rate-distortion optimization algorithm.
This approach can save approximately 11% of the BD-Rate
compared to the HEVC coding standard [29].

Besides the above mentioned macro-pixels level-based
methods, the hybrid compression systems are alternatively
designed on the SAIs obtained by collecting pixels with the
same coordinates in a macro-pixel to achieve the conversion
from a light field image. The hybrid deep-learning-based
compression systems are categorized into two classes: the
spatial synthesis based compression methods and angular
view synthesis based compression methods.

In spatial synthesis-based compression method proposed
by Ma et al. [30], the key idea is to encode low-resolution
SAIs with coding standards and enable spatial super-
resolution to synthesize the high-resolution SAIs. In contrast,
the angular view synthesis based hybrid compression sys-
tems [6], [31] apply coding standards such as HEVC and
VVC to a subset of the SAIs and then apply DL-based view
synthesis to the complement of the SAIs. We fulfilled and
compared the spatial synthesis and angular view synthesis-
based compression methods, and noticed that the angular
view synthesis-based method has more potential to perform
better than the spatial synthesis-based method.

In angular view synthesis-based compression method,
there are two critical elements: 1) the efficiency of the hybrid
coding structure, including scanning order and interleaving
method (how to partition the SAIs into the subset com-
pressed with the coding standards or the complement subset
synthesized by DL models), 2) the quality of the predicted
images through deep-learning-based view synthesis. In 2016,
Kalantari et al. proposed a light field image angular super-
resolution algorithm based on two consecutive CNNs model
of disparity and color estimation [32]. It synthesizes the
complement subset of SAIs from only four corner sparse
SAIs. The drawback of the interleaving strategy inKalantari’s
method [32] is that the image quality of the synthesized views
drop with the increasing distance between the synthesized
view and the corner views. Experiments show that the
maximum difference of view synthesis can reach more than
5dB, which demonstrates that the intervleaving strategy has
a significant impact on the visual effect. In end-to-end 3D
CNNs based view synthesis for LL images [10], the sparse
SAIs are sampled with an interval. Thus, the complement
subset of SAIs are synthesized from neighboring SAIs. Since
the coding structure of 3D CNNs based view synthesis
in [10] is more efficient for coding structure. We ultilize the
interleavingmethod of 3DCNNs based view synthesis in [10]
to partition the subset of view synthesis for hybrid coding
structure.

In 2018, Zhao proposed a method that reconstructs light
field images by encoding the base viewpoint obtained
through sparse sampling and using CNNs to reconstruct the
enhanced viewpoints based on the base viewpoint [33]. More
specific, the CNNs is designed to characterize the nonlinear

relationship among sub-views caused by the light intensity,
angle displacement-induced parallax, and distortion. This
method performs well, but it has not provided a complete
coding scheme.

Afterwards, Jia [5] proposed a method that combines a
view synthesis based on generative adversarial networks
(GAN) with a hierarchical prediction structure in the light
field image compression system. Jia’s method explores the
powerful performance of GAN in view synthesis and has been
proven to perform well in low-frequency image synthesis.
However, the instability of GAN training results in unreliable
image quality, which ultimately affects the coding efficiency.
Bakir proposes a double discriminator GAN (D2GAN) to
improve the quality of synthesized views [9]. However,
D2GAN suffers from the instability of GAN’s adversarial
components, which results in significant color differences
among synthesized images and then damage the coding
performance.

To overcome the limitations, Hou proposed a coding
framework involves using HEVC to code part of the OSS,
then using a CNNs model to predict the SAIs for the
remaining part based on sparse reconstructed data [6].
However, the quality of the synthesized views decreases with
increasing distance from the sparse views. Specifically, views
further from the HEVC-coded sparse views correspond to
lower image quality via the CNNs-based view synthesis.

In this paper, we investigate the angular view synthesis-
based compression method, and then explore the efficiency
of the hybrid coding structure and the image quality of the
view synthesis. To enhance the performance of the coding
framework, we proposed the checkerboard interleaving based
partition for coding structure and the rate constraint 3DCNNs
based synthesis to guarantee the synthesized views.

III. PROPOSED HYBRID LENSLET COMPRESSION
SYSTEM
Our study introduces a new closed-loop lenslet image
compression framework that uses checkboard interleaving
based partition and 3D CNNs-based reinforcement learning
with rate constraint for view synthesis. Prior research focused
on combining coding standards and DL models to achieve
higher performance, but our approach compares spatial [30]
and angular view synthesis and chooses the latter as the better
option. This addresses the challenge of partition methods and
optimizing view synthesis and achieves efficient compression
and high-quality rendering for LL image compression.

A. CHECKBOARD INTERLEAVING BASED PARTITION
The proposed lenslet image coding system is illustrated
in Figure 2, which follows a closed-loop hybrid coding
paradigm, takes the original SAI images of the OSS I = IA∪
IB as input, and then performs VVC coding for all the SAIs
within the subset IA = {I (i, j) ∈ Rw×h

} (where w, h denote
the width and height for each frame, and i, j ∈ {1, 3, · · · ,N }
denote the index of the SAI horizontally and vertically, and
N = 9) as well as view synthesis for the complement
IB = {I (i, j)}, IA ∩ IB = ∅, and i, j ∈ {2, 4, · · · ,N − 1}.
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FIGURE 2. Framework of the hybrid coding system with the rate constraint-reinforced 3D CNNs-based view
synthesis: OSS is the Original SAIs’ Set.

FIGURE 3. A novel rate constraint-reinforced 3D CNNs for view synthesis.

As illustrated in Figure 3, the SAIs within a red solid rect-
angle are sequentially scanned to form horizontal EPIs. EPIs
are slices extracted from the pseudo video V ∈ Rw×h×N 2

at a constant angular dimension. More specific, an Epipolar
Plane Image (EPI) is a 2D slice projected from a 4D
Light field by selecting and fixing two dimensions, which
involves three kinds of choices: two angular dimensions, two
spatial dimensions, or one angular dimension and one spatial
dimension.

In Figure 1, i and j represent the two optional angular
dimensions, while x and y are the two spatial dimensions.
V(i∗)(x, y, j) is a 3D pseudo video obtained by fixing one
angular dimension i∗ in 4D Light field. V(i∗,x∗)(y, j) and
V(i∗,y∗)(x, j) are two kinds of EPIs by fixing x∗ and y∗.
Moreover, I (i, j) is also one kind of EPI by fixing two angular
dimensions (i and j), formulated in (1):

I (i, j) = L(i∗=i,j∗=j)(x, y),

(1)

where L ∈ Rw×h×N×N denotes the 4D LL images.

B. 3D CNNs-BASED REINFORCEMENT LEARNING WITH
RATE CONSTRAINT FOR VIEW SYNTHESIS
The input of the view synthesis is the EPIs extracted from the
reconstructed SAIs of the subset ÎA = {Î (i, j)}. Afterwards,
we generate the synthesized SAIs Îs(i, j) for the complement

IB in two phases, including the upsampling interpolation
via Long’s fractionally stridden convolution [34], as well
as the novel 3D CNNs-based residual prediction with rate
constraint. The residuals of SAIs within the complement IB

are transformed, quantized, and entropy coded to generate the
encoded bits. The rate of the entropy-coded residuals is added
on the 3D CNNs [10] to reinforce the learning of the model.
Moreover, the gradient difference is also considered. The total
loss is formulated in (2):

Eloss = αDED + αGEG + αRER,

(2)

where αD, αG, and αR are the parameters that denote the
weight of each regularization term. In the following, we will
mathematically describe each term.
Residual. The novel 3D CNNs-based prediction residual

ED is given by (3):

ED =
∑

i,j∈{2,4,··· ,N−1}

{

∥∥∥Î (i, j)− Îs(i, j)∥∥∥2}, (3)

where Î (i, j) represents the reconstruction of the SAI at the
index denoted by (i, j) (the i-th row and the j-th column), and
Îs(i, j) is the predicted image yielding via the rate-reinforced
3D CNNs.
Rate reward. Moreover, the rate reward ER is formulated

in (4):

ER =
∑

i,j∈{2,4,··· ,N−1}

{λRresidual(i, j)}, (4)

where Rresidual(i, j) = Rate(Î (i, j) − Îs(i, j)), Rate() is the
rate of the entropy coded residual after the processes of
transformation and quantization, and λ = 0.85 · 2(QP−12)/3

is set on the selected QPs originally presented in [35].
More specifically, the frame-wise residual Ir (i, j) =

Î (i, j) − Îs(i, j) is partitioned into blocks. The nonzero
coefficients within the block-wise matrix are transformed via
DCT [12], quantized, and entropy coded by CABAC [12]
with quantization parameters QPs. Two components deter-
mining the bits cost of coding the residual are the position of
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the nonzero coefficients, denoted by Ip(i, j), and the nonzero
coefficients Ir (i, j) calculated by (5):

Rresidual(i, j) = Rate(Ip(i, j))+ Rate(Ir (i, j)), (5)

where Rate(Ip(i, j)) and Rate(Ir (i, j)) are the bits of encoding
the position and the coefficients, which are formulated as (6)
and (7):

Rate(Ip(i, j)) = a1 ·
∑

k∈{1,2,··· ,K }

N (k), (6)

Rate(Ir (i, j)) =
∑

k∈{1,2,··· ,K }

(a2 · QP+ b2), (7)

where k ∈ {1, 2, · · · ,K } represents the index of the
block in a frame, K is the total number of blocks. a1 is a
parameter computed as a1 = c · logd2 [35], depending on the
block-wise sparsity level c and the length of the coefficient
vectors d , and N (k) is the number of vectors from nonzero
coefficients which are transmitted to the decoder. (a2, b2) =
(−0.023, 1.576) is the pair of parameters used to encode
the coefficients calculated via the least-squares regression
line [36].
Gradient loss. We also include the gradient loss to preserve

the structure consistency of the image. The gradient loss EG
is formulated in (8):

EG =
∑

i,j∈{2,4,··· ,N−1}

{

∥∥∥∇ Î (i, j)−∇ Îs(i, j)∥∥∥2}, (8)

In our system, the Sobel operator is used to compute the
horizontal and vertical gradient components for the gradient
operator denoted by ∇.
We firstly minimize the term (ED + EG) to optimize

the networks 2t of the 3D CNNs via the standard back
propagation [10]. Furthermore, we adopt the DDPG [37] to
train the rate reward-reinforced 3D CNNs by maximizing the
reward R at the t − th iteration, formulated in (9):

R =
1

1+ ER
, (9)

where 2t
← argmax{Rt−1(2t−1),Rt (2t )} represents the

process of updating the network 2t at the t-th iteration.
The DDPG is a united algorithm of the actor-critic

deterministic policy gradient algorithm [37], which contains
two kinds of models: the actor and the critic. The actor
takes action according to the environment state, and the critic
evaluates the actor’s action and provides action-value. In this
work, the actor is the rate reward-reinforced 3D CNNs. The
proposed method serves as the actor to learn a policy µθµ

by maximizing the expected actor-value, written as (10), and
then a linear regression network is developed to play as a
critic.

max
θµ

J (µ) = Es∼pβ

[
Qµθµ

(
s, µθµ (s)

)]
, (10)

where θµ is the parameter of the policy, pβ is the state
visitation distribution, s is the hidden state in the network, and
Qµθµ (·) is the actor-value function, modelled by the critic.

IV. EXPERIMENTAL SETUP
The same evaluation procedure as in [38] is followed in
the experimental evaluation of the proposed coding system,
i.e., we use the EPFL test set [39] consisting of 12 LL
images to evaluate the coding performance. Each raw image
has a resolution of 15 × 15×434 × 625 pixels. Due
to the dark artifacts around the macro-pixels, we extract
9 × 9×434 × 625 pixels to form SAIs (N =

9). The raw images are first demosaiced, devignetted,
clipped from 10-bit to 8-bit representation, color cal-
ibrated, and converted to the YCBCR4:2:0 color-map
representation.

Besides the 12 images for the test, the rest 106 images
from the dataset presented in [39] were used to train the
upsampling learnable kernel and 3D CNNs. To demon-
strate the advantages of the proposed compression method,
we compare the PSNR and the codelength of the encoded
LL images against the following HEVC-involved coding
systems:

1) HEVC operating in low delay P [12], denoted here
HEVC_LDP;

2) the pseudo-sequence-based compression of [7],
denoted here Liu2016;

3) the work with disparity-guided sparse coding described
in [40], denoted here as Chen2018;

4) the CNNs-based angular super-resolution approach
within the light field compression system in [6],
denoted here as Hou2019.

The experiments are performed using a set of QPs, which
includes 4 QPs, namely (18, 24, 30, 36). We empirically set
αD = 0.5, αG = 0.25, and αR = 0.25. The PSNR of the
decoded LL image denoted as PSNR, is computed on the raw
8-bit image as PSNR = 10× log2

2552
MSE , where

MSE =
1
N 2 ·

N∑
i,j=1

(I (i, j)− Î (i, j))2. (11)

The transmitted bits consist of the entropy coded residuals
of the prediction for both VVC and views synthesis, as well
as prediction modes information within the VVC encoder.
The 3D CNNs and upsampling kernels are learned and
optimized during training. During the test, we directly adopt
the networks stored in the designed hybrid codec. Thus, the
3D CNNs and upsampling kernels are not transmitted and
counted in encoded bits.

V. EXPERIMENTAL RESULTS
The comparisons are given in Table 1 and illustrated in
Figure 4. Table 1 reports the BD-PSNR (Bjontegaard Delta
Peak Signal-to-Noise Ratio) and BD-Bitrate (Bjontegaard
Delta Bitrate) computed using Bjontegaard’s evaluation
tools [42] for the 12 LL images from the EPFL dataset.
More specific, BD-PSNR and BD-Bitrate are commonly
used metrics to evaluate the performance of image and
video compression methods, where BD-PSNR measures the
quality of the compressed image by computing the peak
signal-to-noise ratio between the compressed and original
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FIGURE 4. Rate distortion curves of the proposed method and the references.

TABLE 1. Different methods compared to the Liu2016 [7]: BD-PSNR (dB) and BD-Bitrate (%) on YUV channels.

images, as well as BD-Bitrate measures the efficiency of the
compression method by quantifying the reduction in bit-rate
achieved relative to a reference method. Moreover, Figure 4
illustrates the rate distortion curves for the reference methods
and the proposed approach.

In this study, we conducted an evaluation of both existing
reference methods and our proposed approach through
a comparative analysis with Liu2016 method [7]. The
proposed method, named Proposed_VVC in Table 1 and
Figure 4, was compared with several reference methods,
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including Liu2016 [7], JPEG-Pleno [11], HEVC_LDP [12],
Chen2018 [40], and Hou2019 [6], in terms of BD-PSNR gain
and BD-Bitrate savings. The JPEG-Pleno [11] corresponds
to nearly -1.89 dB BD-PSNR loss against Liu2016 [7].
However, HEVC_LDP [12], Chen2018 [40], Hou2019 [6],
and the proposed method achieve an average BD-PSNR
gain of 0.09 dB, 0.58 dB, 0.73 dB, and 1.24 dB against
Liu2016 [7] respectively. These BD-PSNR gains correspond
to BD-Bitrate savings of 4.3%, 16.44%, 20.63%, and 45.88%.
Overall, the proposed method outperforms the reference
methods, achieving 1.15 dB, 0.66 dB, and 0.51 dB BD-PSNR
gain and 41.58%, 29.44%, and 25.25% BD-Bitrate saving
over HEVC_LDP [12], Chen2018 [40], and Hou2019 [6],
respectively.

Moreover, we conduct a comparative analysis between
our proposed method and Zhang’s approach [41]. Zhang’s
method [41] demonstrates an average BD-PSNR improve-
ment of 0.47 dB and BD-Bitrate savings of 15.25% when
compared to Liu2016 [7]. Although Zhang’s technique does
not surpass the performance of Chen2018 [40], Hou2019 [6],
and our proposed method, it exhibits robustness across
all 12 EPFL test images. Additionally, we investigate the find-
ings presented in Shi2023 [43]. The results from Shi2023 [43]
indicate that their approach slightly outperforms JPEG-
Pleno [11] but falls short when compared to Liu2016 [7].

The present study demonstrates that the proposed method
exhibits superior robustness compared to the reference meth-
ods. Notably, the proposed method outperforms Liu2016 [7]
in all tested LL images. In contrast, the reference meth-
ods [6], [12], [40] exhibit limited effectiveness in improving
all images. For instance, HEVC_LDP [12] shows a BD-
PSNR loss in seven out of twelve images, including ‘I01’,
‘I02’, ‘I03’, ‘I04’, ‘I05’, ‘I09’, and ‘I12’. Furthermore,
Chen2018 [40] reports that the image ‘I12’ demonstrates a
BD-PSNR loss of -0.38 dB. Similarly, Hou2019 [6] reports
that the images ‘I07’ and ‘I12’ demonstrate a BD-PSNR loss
of -0.09 dB and -1.12 dB, respectively. The proposed method
shows substantial improvement in all test images, thereby
demonstrating its robustness.

We also compare our method with Bakir’s work, LL image
compression with the dual discriminator GAN-based view
synthesis and Versatile Video Coding (VVC), denoted as
Bakir2020 [9]. The average BD-PSNR gain and BD-Bitrate
saving of Bakir2020 [9] against Liu2016 [7] is 0.68 dB and
22.57%. Given the excellent performance of the VVC, our
method yields an average BD-PSNR gain of 0.56 dB and rate
saving of 23.31% compared to Bakir2020 [9].

To confirm the effectiveness of the proposed hybrid
coding structure, we list the performance of the proposed
method with the HEVC_LDP [12] codec in Table 1. The
proposed method, termed Proposed_HEVC_LDP, replaces
the VVC codec with HEVC operating in low delay P,
thereby foregoing the advantages offered by the high coding
efficiency of VVC.Despite being unable to perform aswell as
the Proposed_VVC, the Proposed_HEVC_LDP outperforms
the reference methods, yielding 0.8 dB, 0.31 dB, and
0.16 dB BD-PSNR gain and 27.74%, 15.6%, and 11.41%

TABLE 2. Ablation results of the proposed 3D CNNs-based reinforcement
learning with rate constraint.

BD-Bitrate saving over HEVC_LDP [12], Chen2018 [40],
and Hou2019 [6], respectively. The experimental results
of the Proposed_HEVC_LDP demonstrate that the hybrid
coding structure perform superior than the SOTA.

VI. ABLATION STUDY
We conduct the ablation study for the LL prediction based
on the 3D CNNs-based reinforcement learning with rate
constraint. In Table 2, we utilize mode 1 to mode 4 to denote
the baseline method 3D CNNs [10] (mode 1), the proposed
models (mode 2, 3, 4). The proposed method comprises
the pixel-wise loss ED, the gradient loss EG, and the rate
constraint ER.
The ablation results of the proposed method on 12 LL

images justify that both the gradient loss EG can slightly
enhance performance of synthesized images. Mainly, for
the 12 LL images from the new EPFL test set [39], the
combination (mode 2) of the pixel-wise loss ED and the
gradient loss EG perform at 0.23 dB PSNR gain compared
to the baseline method of the proposed method (mode 1).
Moreover, the combination of the ED and the ER (mode 3)
raises the 0.27 dB PSNR against mode 1.

Furthermore, the proposed method outperforms the 3D
CNNs [10] (mode 1) significantly. The combination (mode 4)
arrives at 0.7 dB PSNR gain against mode 1. The superior per-
formance of the gradient loss (mode 2), the the rate contraint
ER (mode 3), and the combination (mode 4) demonstrates that
the proposed method effectively enhance the image quality
of the view synthesis while maintaining the bitrate cost. The
improvements verify that the 3D CNNs-based reinforcement
learning with rate constraint is more robust than the 3D
CNNs [10] (mode 1) by enhancing the gradient and rate
constraint. Meanwhile, we see that the image enhancement
and the rate constraint are compatible in enhancing the
performance.

VII. TIME COMPLEXITY COMPARISON
The proposed framework was implemented on a machine
equipped with an Intel® CoreTM i9-10900K CPU, NVIDIA
GeForce RTX 3090, and 32GB of RAM, running a 64-bit
Ubuntu 18.04.05 LTS Operating System. We evaluate the
complexity of the proposed method. The proposed method
comprises two components, the standard VVC to encode one
subset followed by the novel rate constraint-reinforced 3D
CNNs to predict the complement subset.

In Versatile Video Coding (VVC), the time complexity
of video compression is determined by various processing
steps, including intra prediction, inter prediction, transform
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coding, quantization, and entropy coding. Due to its increased
complexity and improved compression efficiency, the time
complexity of VVC is expected to be higher than that
of previous video coding standards. Specifically, the time
complexity of intra and inter prediction in VVC can be
expressed as O(Mv · kv ·αcu) and O(Mv · fv ·βcu), respectively.
Here, Mv = 6 represents the number of Coding Unit (CU)
sizes (4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 ×
128), kv = 65 denotes the number of intra directions,
and fv = 5 denotes the average number of motion vector
candidates. The specific factors αcu and βcu are determined
by various factors such as method implementation, code
optimizations, execution platform, and memory allocation
of CU.

In comparison, HEVC has a time complexity of
O(Mh · kh · αcu) and O(Mh · fh · βcu), where Mh = 4 and
kh = 35 represent the number of CU sizes and intra
directions, and fh = 3 represents the average number of
motion vector candidates. It should be noted that the actual
time complexity of both VVC and HEVC is dependent on
the implementation and hardware used. Nevertheless, the
enhanced compression efficiency and additional processing
steps of VVC are expected to result in a higher time
complexity than that of HEVC.

For the training of the rate constraint 3D CNNs model,
an offline approach is used, while the online view synthesis
component solely employs 3D CNNs. The time complexity
of view synthesis is expressed in terms of 3D CNNs as
O(

∑L
l=1 w · h · f · Dt (l) · D(l)). Here, l ∈ [1,L] denotes

the number of convolutional kernels, with L = 3 in
our case. Furthermore, Dt (l) refers to the number of
convolutional layers, where Dt (1) = 64, Dt (2) = 16, and
Dt (3) = 1. Additionally,D(l) denotes the dimensions of each
convolutional layer, whereD(1) = 9×9×3,D(2) = 1×1×3,
and D(3) = 5 × 5 × 3. The values of w = 624, h = 432,
and f = 5 represent the width, height, and frame number
of the pseudo video adopted for view synthesis, respectively.
Therefore, the time complexity of the view synthesis is
determined by the summation of the product of the number
of convolutional kernels, dimensions of each convolutional
layer, and the pseudo video’s width, height, and frame
number.

VIII. FAILURE CASE
The proposed method exhibits weaknesses in high bitrate
coding scenarios. To illustrate this issue, we have provided
rate distortion curves as shown in Figure 4. Our framework
for coding SAIs has shown that the coding performance,
particularly the PSNR values, is highly dependent on the
image quality of the rate constraint 3D CNNs model-based
view synthesis. However, we have observed that our method
performs better in low bitrate scenarios than in high bitrate
scenarios during the training procedure of the rate constraint
3D CNNs. To improve the coding performance in high bitrate
cases, we plan to augment the training datasets in our future
work.

IX. CONCLUSION
We propose a closed-loop hybrid coding system with a novel
prediction structure, which designs rate constraint-reinforced
3D CNNs to synthesize the views for image reconstruction.
Firstly, we adopt the VVC codec to encode and reconstruct a
subset. A novel 3DCNNswith a rate constraint reinforcement
learning method is proposed to synthesize the complement
of the subset on the stacked EPIs. The residual of the 3D
CNNs prediction is also transformed, quantified, and entropy-
coded to generate the transmitted bits. The proposed coding
system achieves significantly higher PSNR and rate savings
compared to reference codecs, with impressive rate savings
going as high as 41.58% and 23.31% against HEVC_LDP
and Bakir2020 in lenslet image coding.
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