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ABSTRACT Analytical methods are of great interest for the design and analysis of AC machines. This
paper proposes a new analytical method to study the harmonic rotating components of the magneto motive
force (MMF) produced by various types of armature windings and input currents. The windings can be
symmetrical-phase or asymmetrical-phase, single-layer or multi-layer, fractional-slot or integer-slot, with
arbitrary phase numbers. The analytical method is expressed as concise steps and closed-form equations,
and its validity and reliability are verified by comparison to finite element analysis (FEA) simulations
and experiments. As opposed to previous works, the proposed method establishes a more comprehensive
quantitative relationship among the harmonics of the resultant MMF, the arrangement of armature windings,
and the input currents. Practical implications of this method include enabling more accurate prediction of
machine performance, as well as optimizing machine design in both quantitative and qualitative respects.

INDEX TERMS ACmachine, armature winding, MMF harmonic, analytical method, closed form equation.

I. INTRODUCTION
Though finite element analysis (FEA) has many advantages
with regard to its mathematically and practically proven accu-
racy in analyzing the electromagnetic characteristics of AC
machines, it is usually unintuitive to determine the degree
of contribution of certain current or winding distribution
harmonics to the resultant field, torque or vibration. Further-
more, FEA requires a time-consuming calculation process
and has a high computational cost while lacking closed-form
solutions. Thus, these limitations make it difficult for FEA to
reveal the universality and commonality among various AC
machines.

In this paper, a versatile analytical method for analyzing
the electromagnetic characteristics of ACmachines is studied
and proposed to address the issue. The armature winding
magneto motive force (MMF) is chosen as the subject of
investigation. On one hand, MMF can reflect the field dis-
tribution [1], back EMF [2], [3], unbalanced magnetic force
(UMF) [4], [5], vibration and noise [6], [7]. On the other hand,
as a spatio-temporal entity, MMF is directly produced by
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temporal alternating currents carried in spatially distributed
armature windings, making it relatively straightforward to
derive mathematically.

The analytical treatment of the armature winding MMF
dates back to the 1900s [8], where the mathematical
derivation focuses on full-pitch concentrated and full-pitch
or short-pitch distributed symmetrical armature windings.
A preliminary investigation of the fundamental and harmonic
components of the MMF induced by these windings is also
included. However, the mathematical model is limited to the
previously mentioned winding types only. Independently, [9]
uses a vector-based mathematical approach to derive the
stator winding rotating field, named as the gliding field, in a
symmetrical polyphase induction motor. This approach also
applies to MMF fields, but the harmonic characteristics are
not thoroughly investigated. [10] further extends the ana-
lytical treatment of MMF in the previously stated literature
to a larger variety of cases, including asymmetrical arma-
ture windings, and discusses the presence and absence of
harmonics in the resultant MMF. Nevertheless, the effect
of non-sinusoidal currents is not analyzed in depth. Similar
mathematical treatments of MMF of fractional-slot arma-
ture windings can be seen in [11] on three-phase windings,
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and in [12] on general symmetrical windings. The meth-
ods of analysis from former studies are also recapitulated
in [2], [13], [14], [15], and [16]. As some mathematical
models for analyzing armature windings are being developed
and improved, methods using these new tools to analyze
armature winding MMF come into view. Space vectors and
the composition of complex quantities are adopted in [17]
to analyze the spatial harmonics of MMF produced by sym-
metrical multiphase windings. Similar conclusions to those
from [10] are drawn in this work, but additional mathematical
transformations are also introduced. A concept called the
winding function is elucidated and used in the mathematical
derivation of armature winding MMF in [18], [19], [20], and
[21], and is widely studied in works such as [3] and [22] to
analyze the MMF of fractional-slot concentrated windings.
However, the aforementioned methods have limitations and
typically apply to specific types of windings, particularly
symmetrical ones. Furthermore, they involve laborious han-
dling of pole-slot combinations and winding configurations,
and only offer a limited amount of quantitative analysis
regarding the correlation between winding distribution, non-
sinusoidal current, and the resultant MMF.

In [23], the authors propose a generalized analyti-
cal method for the MMF harmonic analysis of armature
windings, which is versatile enough to be applied to both
symmetrical and asymmetrical, integer-slot and fractional-
slot windings. The analysis reveals the interactions between
spatial and temporal harmonics, and the resultant MMF har-
monics. To maintain universality, the conclusions do not
take into account factors such as the stator slots or poles.
However, the derivation process omits the calculation of a
crucial factor, and there is no experimental validation to verify
its conclusions. This paper complements the authors’ work
in [23] by determining the missing crucial factor, referred to
as the placement multiplier in this paper, and validating the
method with both FEA simulations and experiments.

The key contributions and novelty of our proposed method
in this paper, compared with the previous literature, are:
1) The proposed method can be applied to armature wind-

ings with arbitrary phase numbers, whether they are
symmetrical or asymmetrical. It also offers a way to per-
form an equivalence transformation on specific phases.

2) The proposed method is inherently applicable to
integer-slot and fractional-slot armature windings,
as well as non-sinusoidal currents, since it takes into
account all possible combinations of odd and even
orders of harmonics in both spatial and temporal
domains.

3) The proposed method aggregates the contributions
resulting from various pole-slot combinations into one
factor, and presents a clear procedure to calculate
the factor, ruling out the distinct effect of pole-slot
combinations.

4) The proposed method uncovers a comprehensive yet
concise quantitative correlation among the harmonics
of the resultant MMF, the arrangement of armature

windings, and the currents, encompassing their orders,
amplitudes, and phase angles.

5) The proposed method has been validated by both FEA
simulations and experimental results.

6) The proposed method can be easily integrated with and
well supplements existing studies, such as [24] and [25],
which place greater emphasis on the formation of static
spatial MMF harmonics in different kinds of windings.
It also supplements studies like [26], which focus more
on the generation of current harmonics due to PWM.

II. ANALYTICAL DERIVATION
To make the analytical method versatile for various winding
structures and current waveforms, the following conditions
are used in the derivation:

• The superposition of MMFs is used, thereby imply-
ing linearity in the calculation to compose the
resultant MMF.

• End windings and fringing effects are ignored. This
implies isotropy along the axial direction, thus allowing
the AC machines to be modeled in 2D space.

• To cover all possible situations thoroughly and theoret-
ically, the currents carried in the armature windings can
have arbitrary orders of harmonics up to infinity. This
means that abrupt changes are allowed in currents, as a
step function can be decomposed into an infinite number
of harmonics.

• Similarly, the orders of harmonics in the distribution of
armature windings can also be arbitrary and infinite in
the derivation process.

This paper mentions two specific types of harmonics: spa-
tial harmonics and temporal harmonics. Spatial harmonics
refer to the harmonics in space that are introduced by the
distribution of armature windings, while temporal harmonics
refer to the harmonics in time that are introduced by the
alternating currents carried in the windings. The resultant
MMF is a collective product of the spatial and temporal
harmonics, and manifests itself as a spatio-temporal traveling
wave.
Thewinding function, as proposed and studied in [18], [19],

[20], and [21], is defined as the MMF per unit current in
a single phase. It is selected in this paper to reflect the
spatial harmonics. Correspondingly, the phase current, which
represents the alternating current in a single phase, is used in
this paper to reflect the temporal harmonics.
This analytical method focuses on the MMF generated

by the armature windings. Therefore, no rotor-associated
parameters like pole pairs or pole-slot ratio are considered.
Hence, there is no such distinction as electrical frequency and
mechanical frequency. All spatial harmonic orders are with
reference to the fundamental harmonic, which is a complete
cycle in space. Meanwhile, temporal harmonic orders are
with reference to the designated fundamental phase current.
In symmetrical-phase windings, only windings with an

odd number of phases are considered. This is because any
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even-number-phase windings can be equivalent to windings
with an odd number of phases and a certain number of wind-
ing sets. Themethod of equivalencewill be presented in detail
in this section.

The analytical derivation process is organized progres-
sively. It starts with single-phase winding, then moves
on to symmetrical-phase windings, and finally ends with
asymmetrical-phase windings.

A. SINGLE-PHASE WINDING
Assuming there is a polar axis in space referred to as the
original position, then at any space position angle β, the
winding function N of a single-phase armature winding with
respect to β and phase axis position φs (the spatial phase shift
of the winding) can be expressed as

N (β, φs) =

∑
νs

N̂νs cos
[
νs (β − φs) + ϕsνs

]
(1)

where νs denotes a certain order of spatial harmonics, N̂νs and
ϕsνs represent the amplitude and the harmonic-order-related
initial phase of the νsth order harmonic, respectively.

Similarly, the phase current I in a single-phase armature
winding is a function of time t and current phase shift φt (the
temporal phase shift of the current). It can be written as

I (t, φt) =

∑
νt

Îνt cos
[
νt (ωt − φt) + ϕtνt

]
(2)

where νt represents a certain order of temporal harmonics,
Îνt and ϕtνt are the amplitude and the harmonic-order-related
initial phase of the νt th order harmonic, respectively, and
ω is the fundamental harmonic angular frequency of the
alternating current.
The MMF, denoted as 2 in this paper, of a single-phase

winding is the multiplication of the winding function and
phase current of the same phase, thus a combination of
spatial and temporal harmonics. By applying trigonometric
transformations, the stated MMF can be broken down into
forward and backward rotating harmonics 2± (+: forward,
−: backward):

2± (β, t, φs, φt)

=

∑
νs

∑
νt

1
2
N̂νs Îνt cos

[
νsβ∓νtωt−(νsφs∓νtφt)+ϕsνs∓ϕtνt

]
(3)

B. SYMMETRICAL-PHASE WINDINGS
To calculate the MMF composed by a set of symmetrical-
phase windings from that of a single-phase winding presented
above, the spatial arrangement of the phases is very crucial.
It is usually determined by the desired number of poles and
slot-pole combination principles during the machine design
stage. Even so, as mentioned above, the analytical approach
proposed in this paper does not require the introduction of slot
or pole-related factors tomaintain universality in conclusions.

To address this issue, a placement multiplier x is intro-
duced. Although the spatial phase shift φs for each phase

winding can vary, the displacement of every two adjacent
phases is always equal. The temporal phase shift φt is spec-
ified as the reference value. Therefore, φs can be expressed
as the product of x and φt , as shown in (4). It is worth noting
that x can be either an integer or a fraction.

φs = xφt (4)

As both φt and φs are angles that have a period of 2π , the
desired value of x is non-unique for any winding configura-
tion. For clarity, in this paper, x is constrained to its minimal
positive alternative.

In the set of symmetrical-phase windings with k phases,
the temporal phase shift of the (n+ 1)th phase current is 2πn

k ,
where n = 0, 1, 2, · · · , k−1. By introducing Euler’s formula,
forward and backward rotating MMF harmonics composed
by the k symmetrical phases can be derived as

2± (β, t) =

∑
νs

∑
νt

1
2
N̂νs Îνt

Re

[
1−e−2(xνs∓νt )π i

1−e−
2
k (xνs∓νt )π i

e(νsβ∓νtωt+ϕsνs∓ϕtνt )i

]
(5)

In (5), the function Re returns the real part of its argument. e
and i are mathematical constants representing Euler’s number
and the imaginary unit, respectively.

By observing the items of the summation, there are two
cases to be discussed concerning the relationship between
xνs ∓ νt and k:
(i) If xνs ∓ νt is an integer multiple of k , the corresponding

harmonic in (5) can be simplified to

2±
νs,νt

(β, t) =
k
2
N̂νs Îνt

cos
(
νsβ ∓ νtωt + ϕsνs ∓ ϕtνt

)
(6)

The produced harmonic has an amplitude of k
2 N̂νs Îνt ,

a rotation angular speed of ±
νt
νs

ω, and an initial phase
of ϕsνs ∓ ϕtνt .

(ii) If xνs ∓ νt is not an integer multiple of k , the produced
harmonic is 0. This means no MMF harmonic will be
composed in this case.

It should be noted that the above-mentioned derivation is
satisfied on the premise that k is an odd number.

C. ASYMMETRICAL-PHASE WINDINGS
A set of asymmetrical-phase windings is constructed with
multiple sets of symmetrical phase windings. The currents in
each set get shifted by a temporal angle of π

gk consecutively,
where k is the number of phases in each set and g is the num-
ber of total sets. The spatial phase shifts of the windings in
each set can be determined accordingly using (4). Obviously,
symmetrical-phase windings can be seen as a special case of
asymmetrical-phase ones where g equals 1.
If k is an even number, a method of equivalence is intro-

duced to transform it into an odd number:
1) Let s equal the number of total regions that the space is

divided into by all the phase axes: gk;
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2) Express s as a product of an even number and an odd
number;

3) Let the even number be 2g′ and let the odd number be
k ′. Replace the original values of g and k with g′ and k ′

respectively.
According to the definitions in the previous subsection,

the forward and backward rotating MMF harmonics in the
asymmetrical g-set k-phase windings can thus be expressed
as

2± (β, t) =

∑
νs

∑
νt

1
2
N̂νs Îνt

Re
[
1 − e−2(xνs∓νt )π i

1 − e−
2
k (xνs∓νt )π i

1 − e−
1
k (xνs∓νt )π i

1 − e−
1
gk (xνs∓νt )π i

e(νsβ∓νtωt+ϕsνs∓ϕtνt )i
]

(7)

Based on the conclusions regarding the symmetrical phase
windings, it is assumed that xνs ∓ νt is an integer multiple of
k . Therefore, (7) can be further simplified to

2± (β, t) =

∑
νs

∑
νt

k
2
N̂νs Îνt

Re

[
1 − e−

1
k (xνs∓νt )π i

1 − e−
1
gk (xνs∓νt )π i

e(νsβ∓νtωt+ϕsνs∓ϕtνt )i

]
(8)

By observing the items of the summation, there are three
cases to be discussed concerning the relationship of xνs ∓ νt
with g and k:
(i) If xνs ∓ νt is an even multiple of gk , the corresponding

harmonic in (8) can be simplified to

2±
νs,νt

(β, t) =
gk
2
N̂νs Îνt

cos
(
νsβ ∓ νtωt + ϕsνs ∓ ϕtνt

)
(9)

The produced harmonic has an amplitude of gk
2 N̂νs Îνt ,

a rotation angular speed of ±
νt
νs

ω, and an initial phase of
ϕsνs ∓ ϕtνt .

(ii) If xνs ∓ νt is an odd multiple of k , and the odd multiple
is denoted as 2m + 1 where m ∈ Z (Z stands for
integral domain), the corresponding harmonic in (8) can
be simplified to

2±
νs,νt

(β, t) =
kN̂νs Îνt

2| sin 2m+1
2g π |

cos
[
νsβ ∓ νtωt + ϕsνs ∓ ϕtνt

− arctan
(
cot

2m+ 1
2g

π

)]
(10)

The produced harmonic has an amplitude of kN̂νs Îνt
2| sin 2m+1

2g π |
,

a rotation angular speed of ±
νt
νs

ω, and an initial phase of

ϕsνs ∓ ϕtνt − arctan
(
cot 2m+1

2g π
)
.

(iii) If the relationship of xνs ∓ νt with g and k does not
belong to the above-mentioned cases, no harmonic will
be produced.

Table 1 summarizes the analytical quantities of asymmet-
rical phase winding MMF harmonics. Since symmetrical-
phase windings can also be seen as asymmetrical-phase
windings with only one set, the results in this section are
applicable to both symmetrical-phase and asymmetrical-
phase windings.

D. COMPUTATION OF PLACEMENT MULTIPLIER
Even though the exact value of x will not affect the conclu-
sions, a deterministic way to compute it is essential for the
practical application of this analytical method.

In the g-set k-phase windings, let q represent the slot
number and p represent the pole pair number. Define h as
follows:

h =

{
k g = 1
2gk g > 1

(11)

The minimum mechanical phase shift span τ ∈ Z+ (Z+

stands for positive integral domain), expressed in the number
of slots, satisfies the following linear congruence equation:

2π
q
pτ ≡

2π
h

(mod 2π ) (12)

This means that the left-hand side ( 2πq pτ ) and right-hand
side ( 2πh ) of ≡ have the same remainder on division by
the modulus (2π ). By eliminating all fractions, (12) can be
rearranged as

hpτ ≡ q (mod hq) (13)

According tomodular arithmetic, the necessary and sufficient
condition for the existence of solutions to (13) is expressed by
the following condition. In this condition, | denotes exactly
divides and GCD is the function that calculates the greatest
common divisor of its arguments:

h · GCD (p, q) | q (14)

Assuming that condition (14) holds, the linear congruence
equation (13) can be rewritten into its equivalent binary-
linear-equation form, with respect to the integers τ and y:

hpτ + hqy = q (15)

To find a special solution of τ , the extended Euclidean algo-
rithm is first used to find a special pair of integer solutions a
and b that satisfies another binary linear equation:

pa+ qb = GCD (p, q) (16)

Equation (16) can then be further transformed into

hp
1
h

q
GCD (p, q)

a+ hq
1
h

q
GCD (p, q)

b = q (17)
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TABLE 1. Analytical Quantities of Asymmetrical Phase Winding MMF Harmonics.

By comparing (15) with (17), a special solution for τ , denoted
as τ0, can be directly obtained:

τ0 =
a
h

q
GCD (p, q)

(18)

The minimal positive integer solution for τ , denoted as τm,
can be expressed as:

τm = τ0 mod
q

GCD (p, q)
(19)

In (19), mod is the modulo operation that results in a value
with the same sign as the divisor q

GCD(p,q) . This ensures that
τm is positive. The value of x can then be easily determined,
as expressed in (20):

x = τm
h
q

(20)

The whole procedure for determining x is illustrated
in Figure 1.

Compared to calculating x, verifying it requires less com-
putational cost. From equation (20), it is known that τm must
equal x qh . However, as shown in (19), τm is the remainder
of a modulo operation and must be smaller than the divisor

q
GCD(p,q) . This indicates that the following condition must be
satisfied:

h > x · GCD (p, q) (21)

Considering that τm is a special solution of τ , all possible
values of τ can be expressed as shown in equation (22), where
m ∈ Z:

τ = x
q
h

+ m
q

GCD (p, q)
(22)

By substituting (22) into (13), a simple form of linear con-
gruence equation can be derived:

xp ≡ 1 (mod k) (23)

Therefore, equations (14), (21), and (23) are the necessary
and sufficient conditions to verify the existence and correct-
ness of x.

FIGURE 1. Computation of Placement Multiplier x .

E. USAGE OF ANALYTICAL METHOD
The proposed analytical method can be of help to rapidly
predict the characteristics of the resultant MMF harmonics
produced by various armature windings, or, to reverse-reason
and trace the source of a specific MMF harmonic. A general
procedure to use this analytical method is summarized as
following:

1) Acquire the set number g, phase number per set k , pole-
pair number p and slot number q of the target machine;

2) Calculate the placement multiplier x using g, k , p and q
according to Figure 1;

3) If qualitative analysis is sufficient, acquire the
single-phase winding configuration of the target
machine by referring to its winding connection diagram
or by dismantling it. Then, qualitatively draft the MMF
distribution curve of one phase with a unit current
flowing through it. If quantitative analysis is desired,

VOLUME 11, 2023 60185



Z.-Z. Wu, J.-X. Shen: Versatile Analytical Method of Investigating MMF Harmonics of Armature Windings

a relatively accurate single-phase MMF distribution can
be calculated using the magnetic circuit method or FEA.
The curve can also be acquired through experiments.
The obtained single-phase MMF distribution is denoted
as N ;

4) Use the given current, or measure and save the current
data of a single phase at the desired working point. The
single-phase current is referred to as I ;

5) Apply the Fourier transformation to N and I . The har-
monic orders, amplitudes, and initial phases of N are
denoted as νs, N̂νs and ϕsνs , respectively. Similarly, the
corresponding quantities of I are denoted as νt , Îνt and
ϕtνt , respectively;

6) Observe the significant harmonic components of N and
I , and check whether the orders of them satisfy the
conditions presented in Table 1 with the previously
introduced g, k and x. The amplitudes, initial phases and
angular speeds of the resultant MMF harmonics can also
be accordingly computed or decided.

The entire process can be implemented into computer-aided
design programs to provide support for machine design,
prototyping and defect diagnosis.

III. VALIDATION WITH FEA SIMULATIONS AND
EXPERIMENTS
FEA simulations and experiments are conducted to verify the
proposed analytical method. Practical factors must be taken
into account when designing the experiments.

A. DESIGN OF EXPERIMENTS
As this study aims to calculate the harmonics in the resultant
MMF, rich harmonics, including even and odd ones in both
space and time, are desirable to thoroughly test the conclu-
sions demonstrated in Table 1 and cover all the possible
cases. Therefore, fractional-slot windings that generate mul-
tiple pole pairs and low-order harmonics are preferred for
constructing spatial harmonics. As for temporal harmonics,
although step currents rarely appear in armature windings in
applications, they possess rich harmonics with orders that can
reach infinity along the spectrum, and can produce greater
low-order harmonics with relatively smaller current. Hence,
step currents are selected to produce a sufficient number of
temporal harmonics. Additionally, step currents consist of
only several discrete constant values, thereby facilitating the
design and implementation of experiments.
Since the proposed analytical method is applicable to

machines with arbitrary phases, without losing practical-
ity, two types of frequently studied and used multiphase
windings, namely dual-three-phase windings (denoted as
machine A) and five-phase windings (denoted as machine B),
are selected as the experimental units. Three-phase windings
are not used as an example, since these types of windings
have been well studied and their study is relatively simple.
However, it should be noted that the proposed analytical
methodworks for three-phase windings, and even other wind-
ing structures, though no related details are discussed here.

TABLE 2. Machine Parameters.

FIGURE 2. Winding Connections of the Studied Machines.

Since the investigated MMF is composed only of armature
windings, and to keep the magnetic path intact, the rotor is
designed as a solid iron cylinder without magnets.

Since MMF cannot be measured directly, the magnetic
field, which can also be viewed as MMF spatially modulated
by geometric variations and unevenly distributed air gap
permeability, is chosen as the metric for measurement and
calculation instead. However, to mitigate the potential effect
of permeability saturation on the field, the maximum value of
currents carried in the windings is carefully restricted.

Themachine parameters used in the experiments are shown
in Table 2. The models and their parameters used in the FEA
simulations are identical to those used in the experiments.

In order to measure the magnetic field in the air gap,
an SS49E Hall effect sensor is placed on the surface of the
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FIGURE 3. Slot Geometric Parameters of the Studied Machines.

FIGURE 4. Experiment Diagram.

rotor. Using an STM32H7MCU, the analog output of the sen-
sor is converted into a digital signal and then collected. When
the rotor ismanually rotated slowly, the air gap fieldmeasured
by the sensor, along with the rotor position representing
the space position β measured by a quadrature encoder, are
simultaneously collected and transmitted to a PC using the
UART communication protocol. The data is then decoded and
processed withMATLAB. The complete experiment diagram
and experiment set are illustrated in Figure 4 and Figure 5,
respectively.

The basic experiment procedure can be summarized as
follows:
1) Set up the experimental apparatus and ensure that all

electrical and mechanical connections are in place;
2) Choose the first of the states as shown in Figure 8a and

Figure 9a;
3) Adjust the current outputs of the DC/DC regulators (i.e.,

current supply) to match the chosen state;
4) Manually rotate the rotor slowly, collect measured air

gap field data along with rotor position data, and trans-
mit the data to the PC;

5) Move on to the next state, return to step 3), and continue
from there, until all states have been traversed;

6) Process all the received data.

B. INPUTS OF ANALYTICAL METHOD
First, when a unit DC current flows through the first phase
of the windings, the resulting magnetic fields represent the

FIGURE 5. Experiment Set.

FIGURE 6. Phase A Air Gap Field per Unit Current in Machine A.

FIGURE 7. Phase A Air Gap Field per Unit Current in Machine B.

winding functions that depict the spatial characteristics. The
fields obtained from both FEA simulations and experiments
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FIGURE 8. Phase Currents in Machine A.

FIGURE 9. Phase Currents in Machine B.

are shown in Figure 6a and Figure 7a, indicating that the
simulations and experiments have almost identical winding
function setups. Such agreement is more recognizable in the
frequency domain, as shown in Figure 6b and Figure 7b.

FIGURE 10. Resultant Air Gap Fields in Machine A.

Moreover, it is observed that in addition to odd harmonics,
a considerable amount of even harmonics (4th, 2nd, 12th . . . )
are also introduced by the five-phase windings, but not by the
dual-three-phase windings.

The selected step phase currents, which depict the temporal
characteristics, are presented in Figure 8 and Figure 9. The
entire temporal period consists of 5 or 6 stable states marked
with circled numbers, as shown in Figure 8a and Figure 9a.
In each state, the current remains constant. The selected
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FIGURE 11. Resultant Air Gap Fields in Machine B.

current values are ±4.189 A, 0.000 A in machine A, and
±5.027 A, ±2.513 A, 0.000 A in machine B. Figure 8b and
Figure 9b show that both even and odd harmonics are injected
into the phase current in these two machines.

C. VALIDATION OF ANALYTICAL METHOD
The resultant air gap fields obtained from FEA simulations
and experiments are shown in Figure 10 and 11, for machine
A and machine B, respectively. The circled numbers in both

Figure 10a and Figure 11a correspond to those states in
Figure 8a and Figure 9a. In each state, the air gap field
varies along the space position β, reflecting spatial harmon-
ics. At the same time, for any given space position β, the field
changes from state 1⃝ to 2⃝, 3⃝, and so on, reflecting temporal
harmonics. Therefore, Figure 10a and Figure 11a represent
both spatial and temporal harmonics of the resultant MMFs
produced bymultiphase currents in the two types of windings,
respectively. Again, the simulation results agree very well
with test results, as the curves overlap each other.

A 2D Fourier Transform is used to extract amplitude and
phase angle information from the resultant magnetic field
harmonics for clearer comparisons in the frequency domain.
Since the fields acquired from simulations are nearly identical
to those obtained from experiments, only single-phase air gap
fields per unit current obtained from experiments are used as
inputs for the analytical method. Correspondingly, outputs of
the analytical method are compared with experiment results.
Figure 10b and Figure 11b compare the amplitudes of the
resultant air gap fields in machine A and machine B, respec-
tively. The primary harmonic components have a maximum
relative error of 1.9% and a maximum absolute error of
0.3 mT. Additionally, Figure 10c and Figure 11c show the
absolute errors of phase angles of resultant air gap fields in
machine A and machine B, respectively. And the absolute
errors of the primary harmonic components are below π

120 .
It can be observed that the results calculated by the analyt-

ical method closely match those obtained from experiments,
providing support for the quantitative relationship summa-
rized in Table 1.

IV. CONCLUSION
This paper presents an analytical method for investigating
MMF harmonics of armature windings in AC machines.
The complex but comprehensive relationships between spa-
tial harmonics of winding functions, temporal harmonics
of currents, and the spatio-temporal harmonics of MMFs
which are generated by them in either symmetrical-phase or
asymmetrical-phase windings with an arbitrary number of
phases are mathematically derived and generalized. The com-
plete procedure for deriving and using this analytical method
is presented in detail, and its correctness is fully verified with
FEA simulations and experiments. The analytical method is
versatile for analyzing MMF characteristics of AC machines
with any type of winding structure, and has practical impli-
cations to help design, test, or diagnose AC machines. In the
future, this analytical method has the potential to facilitate
related studies involving the use of MMF for further in-depth
analysis of AC machines.
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