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ABSTRACT Multi-access Edge Computing (MEC) is expected to support platooning of vehicles, by running
the control logic that computes the acceleration values of the vehicles based on their position and speed.
Connectivity between vehicles and the MEC system is likely to be realized through the mobile network.
However, platoons will be composed of vehicles that are customers of different co-located mobile operators,
hence – in all likelihood – will also be customers of different MEC systems. In this paper, we devise and
evaluate an architectural framework that realizes Platooning-as-a-Service (PlaaS) in a multi-operator MEC
environment, compliant with the ETSIMEC standard: we describe the entities involved and their interactions,
we release an open-source proof-of-concept implementation for the popular Simu5G simulator, and we
evaluate the effect of our framework – and especially its latencies – on platoon stability.

INDEX TERMS Edge computing, MEC, multi-operator, platooning, Simu5G.

I. INTRODUCTION
The deployment of ubiquitous high-speed mobile access,
started with 4G and continuing with 5G, has paved the way
for distributed applications having real-time requirements,
such as Cooperative Adaptive Cruise Control (CACC)-based
platooning. In the latter, vehicles organize themselves so as
to form a line traveling at the same speed on a lane, keeping
a near-constant inter-vehicle distance. Near-instant commu-
nication capabilities enable centralized control strategies: a
centralized controller, knowing the state of all vehicles in the
platoon, can make optimal control decisions, hence improv-
ing the application performance (e.g., reducing inter-vehicle
distance for the same cruise speed, or further reducing accel-
erations/decelerations of vehicles, thus saving fuel).

Parallel to the above, there has been a growing trend
towards deployment of computing infrastructures as near as
possible to the end users, to reduce round-trip latency and
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leverage context information. Multi-access Edge Computing
(MEC), being standardized by the European Telecommunica-
tions Standards Institute (ETSI), is probably the best example
of a computing infrastructure, independent of – but synergic
with – the underlying communication infrastructure, that runs
applications on demand on behalf of users. While ETSI MEC
is designed to be independent of the access technology, hence
its name, it is clear that its deployment will chiefly occur in
conjunction with 4G, 5G and beyond-5G mobile networks.
The ETSIMEC infrastructure, in fact, is likely to be owned by
the very providers that own the mobile network infrastructure
as well.

In such an environment, a MEC-enabled mobile network
is the ideal candidate to host CACC-based platooning: both
the maneuver and the longitudinal platooning controllers can
run as applications in the MEC system, receiving updates
(e.g., position and speed) from the participating vehicles,
and issuing cruise-control commands to them. This makes
sense on several accounts: it enables complex algorithms to
be used (which might otherwise be impossible to run on a
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FIGURE 1. Platoon with one PL and four PMs, maintaining a constant
inter-vehicle distance d.

single car, e.g. a platoon leader, due to resource constraints)
thanks to the large amount of computing resources avail-
able; it enhances security, by allowing vehicles to leverage
the authentication, security and privacy features of a trusted
computing environment; it relieves individual vehicles of the
burden of running cooperative algorithms themselves, with
all the problems that this would entail (e.g., interoperability,
software version clashes, updates, etc.).

MEC-enabled platooning has already been suggested
in [9], [10], [11], [12], [13], and [14]. These works assess the
impact of the network (e.g., delay, losses) on the performance
(e.g., inter-vehicle distance, stability) of a given running pla-
toon control logic, with a static number of platoon members.
Moreover, they all assume that the control application runs
on a single MEC system. In this paper, we take a radically
different perspective: our aim is to design a Platooning-as-
a-Service (PlaaS) service architecture, compliant with the
ETSI MEC standard, to be used by subscribers of multi-
ple mobile network operators. In other words, we devise a
service providing mechanisms for discovery, subscription,
dynamic join/leave, etc., to run in an ETSI MEC framework.
We describe an architecture, comprising placement, behav-
ior and interaction of the various functions, that allows this
service to be used by vehicles, and we provide a reference
open-source implementation for the popular Simu5G sim-
ulator [1], [27], that researchers and practitioners can use,
e.g., to test their own control logic in a lifelike environment,
comprising both 3GPP-compliant 5G network access and an
ETSI-compliant MEC architecture. We explicitly design our
PlaaS framework so that it can run across different MEC
systems. Current mobile deployments show that mobile net-
works, owned by different operators, are co-located. Under
the assumption of single ownership of both network and
MEC infrastructure, it would be overly constraining to limit
platooning services to the subscribers of the same mobile
network operator. Just as subscribers of different networks
can communicate with each other – because network own-
ers have peering agreements, composed of both a techni-
cal and a business side – they should be allowed to run
MEC-based cooperative distributed applications such as pla-
tooning. To this aim, we leverage the ongoing discussion
on ETSI MEC federation [5] as a way for different MEC
systems to enable shared use of MEC services and MEC
apps. There are unique challenges to designing PlaaS in a
multi-operator context, such as defining the required enti-
ties and their respective interfaces, collecting information
(e.g., positions) of vehicles belonging to different MEC sys-
tem owners’ domain, and keeping the status of platoons

updated in all the involved MEC systems. Moreover, multi-
operator PlaaS presents unique challenges from a perfor-
mance standpoint, such as the impact of the delay on the
inter-federation link and the different computational load on
entities of different MEC systems, – which could not be
addressed in works [9], [10], [11], [12], [13], [14], dealing
with single MEC systems. We highlight these challenges,
explore their impact, and propose ways to overcome them.
To the best of our knowledge, this is the first work addressing
the above concerns.

The main contributions of this paper are:
- we design, for the first time, a complete PlaaS frame-
work, defining roles and interactions, to be used in a
multi-operator, ETSI-MEC-endowed mobile network;

- we prove its feasibility by evaluating it in scenarios
that include all the components that can influence the
performance, i.e., ETSI-compliant MEC architecture,
computation overhead, 5G network transport, vehicular
mobility;

- we integrate all our code within Simu5G and release it
publicly. This allows researchers to evaluate their pla-
tooning algorithms (e.g., CACC, lane change, join/leave
maneuvers, etc.) in the above-described environment,
virtually without any implementation effort.

The rest of this paper is organized as follows: Sec-
tion II reports background information, whereas Section III
discusses the related works. We present our framework in
Section IV, and evaluate it in Section V. Section VI draws
conclusions and highlights directions for future work.

II. BACKGROUND
This section provides an overview of platooning and
ETSI MEC.

A. PLATOONING
A platoon is a convoy of vehicles that travel on the same
lane. With reference to FIGURE 1, the head-of-line vehicle
is called platoon leader (PL), and the other platoon mem-
bers (PMs) strive to keep a constant (and possibly short)
distance from the vehicle ahead of them, adjusting their
speed. This is realized in practice by controlling the PMs
with two components, namely the longitudinal and lateral
controllers [19]. The longitudinal controller computes the
acceleration commands for the PMs in order to let them
keep a constant, target distance with respect to the preceding
vehicle, whereas the lateral controller issues the commands
that allows the vehicles to keep the current lane and stay
in-line with the preceding one. The higher-level commands
generated by the controllers are translated into lower-level
commands (i.e., throttle or brake) for the actuation system of
the PMs. The objective is to maintain platoon stability, i.e.,
to keep the inter-vehicle distance constant, while minimizing
fuel consumption. The target inter-vehicle distance will be a
function of the cruising speed. A shorter distance for the same
speedwill reduce air friction, hence fuel consumption, as well
as road occupancy.
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Adaptive Cruise Control (ACC) systems are based on PMs
adjusting their own speed based on onboard sensors such as
radar and lidars. However, ACC is affected by the so-called
string instability problem, i.e., errors in the inter-vehicle dis-
tances are amplified towards the tail of the platoon due to the
unavoidable actuation delay required by each PM to detect
the input from sensors, compute the new acceleration value
and actuate the command [20]. Cooperative ACC (CACC)
improves ACC by enabling information exchange among the
vehicles of the platoon, such as their position, speed and
acceleration. As a result, the information about the status of
the vehicles can be (almost) instantly shared among the vehi-
cles themselves, and the platoon control logic can promptly
adapt their speed/acceleration, hence minimizing shockwave
effects. CACC requires network support in order to let the
vehicles cooperate towards the above objective. During the
past few years, both IEEE 802.11p and 3GPP cellular net-
works have been considered as viable technologies to support
platoon control [22], [23]. Cellular Vehicle-to-everything (C-
V2X) has been standardized by 3GPP since Release 14 (LTE),
and is now an integral part of the 5G specifications. With
respect to IEEE 802.11p, it has the distinctive advantage
that it allows applications to run on licensed spectrum, with
ubiquitous coverage, controlled interference and reserved
resources. As far as the control logic is concerned, it can be
executed in either a distributed or a centralized manner [21].
In a distributed way, each PM runs its own control logic –
i.e., both the longitudinal and lateral controllers –, which is
usually based on its own position, speed, acceleration and that
of the preceding vehicle. With centralized control, all the PM
information (e.g., current speed and distance from the pre-
ceding vehicle) is sent by PMs to a central controller, which
computes commands for all of them and sends them back.
The central controller can reside on the PL or on an external
host. On one hand, centralized control can take advantage of
the global knowledge about the status of both the PL and all
the PMs to optimize the speed and acceleration of all the vehi-
cles at once, hence reducing convergence time. On the other
hand, all the information needs to be conveyed to a single
entity, which can make the required latency non-negligible
and affect the freshness of the information [21]. However,
more effective communication technologies – such as 5G
(and beyond) – can easily overcome the above limitation.
Moreover, the advent of MEC makes it easier to onboard the
centralized controller at the edge of the network, e.g., as a
MEC app [9], further reducing the communication latency.

Besides controlling the platoon stability, a complete pla-
tooning framework must take care of all the operations
required to form and manage a platoon, namely discovery,
join and leave a platoon, merge and split existing platoons.
In particular, join/leave and merge/split operations require to
perform maneuvers involving both longitudinal and lateral
controllers [24]. For example, when a PM wants to leave a
platoon, the lateral controller of the PM must be instructed to
make the PM change lane and, if the latter was in the center of
the platoon, the longitudinal controller of the remaining PMs

must be commanded such that they can close the gap left by
the vehicle.

B. ETSI MULTI-ACCESS EDGE COMPUTING
MEC is a paradigm that allows network users to exploit appli-
cations running in a virtualized environment at the edge of the
network, hence it allows end users of the network to lever-
age the services provided by such applications with smaller
latency compared to, e.g., a remote cloud deployment. The
Industry Specification Group of ETSI has standardized the
MEC reference framework [2], by specifying its functional
entities, their interactions and the set of APIs they provide.
With reference to FIGURE 2, an ETSI MEC system includes
a MEC host level and a MEC systemlevel.

FIGURE 2. Main entities of the ETSI-MEC reference framework.

The MEC host level includes the virtualization infrastruc-
ture running the MEC apps and the MEC platform. The
latter provides a set of MEC services that can be exploited
by MEC apps to fulfill their objective. ETSI has specified
several standard APIs for relevantMEC services such as, e.g.,
the Radio Network Information Service (RNIS) [3] and the
Location Service (LS) [4], and new ones are currently being
standardized. MEC apps can offer services themselves: such
applications are called producers and expose an API to other
MEC apps, called consumers. Whenever a MEC app wants
to consume the functionalities provided by either a MEC
service or a producer MEC app, it obtains the location of
that entity from the Service Registry. In fact, MEC apps and
MEC services can be hosted by different MEC hosts under
the domain of a same MEC system. Once a MEC app knows
the (local or remote) endpoint of a MEC service or MEC app,
they can exchange data through the operator’s core network.
Note that data-plane communications are not standardized
by ETSI.

The MEC system level maintains a global view of the
MEC hosts in a MEC system and their resources, and han-
dles the lifecycle of MEC apps, i.e., instantiation, relocation
and termination. Its main element is the MEC orchestrator:
after a MEC app instantiation request has been authenticated
and authorized by the Operation Support System (OSS), the
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MEC orchestrator selects an appropriate MEC host – based
on application requirements (e.g., latency) and availability
of resources (e.g., CPU, memory, mass storage) and MEC
services – and instructs its MEC platform manager to deploy
the container or virtual machine that will run the MEC app.

A MEC app is made available to a MEC system through
a bundle of files provided by the application provider to the
MEC system, which uses them to instantiate the application
in a MEC host upon the request from a User Equipment (UE)
or the MEC system owner via management interfaces.

At the UE side, the UE app is the local application that
performs the data-plane communication with a MEC app.
However, when the UEwants to discover, instantiate or termi-
nate aMEC app, it must interact with the Device App, a MEC
system-level entity that interfaces with the User Applica-
tion Lifecycle Management Proxy (UALCMP). The latter is
responsible for forwarding lifecycle-related requests coming
from the UE to the MEC orchestrator.

A MEC system includes several MEC hosts under the
control of the same MEC orchestrator, and it is deployed by
the MEC system owner. Although not mandatory, the MEC
system owner is often the operator that owns the network
infrastructure too. Obviously, the geographical area covered
by MEC systems from different owners can overlap, similar
to what happens with mobile networks of different operators.
This originated the need to collaborate for MEC systems
belonging to different MEC owners. As a consequence, ETSI
MEC started considering MEC federation as a way for dif-
ferent MEC systems to enable shared use of MEC services
and MEC apps [5]. V2X services have been identified as
major use cases for MEC federations, since vehicular appli-
cations are supposed to work in heterogeneous environments
involving vehicles from differentmanufacturers, connected to
different network operators. The interactions between feder-
ated MEC systems are illustrated in FIGURE 3. A Federation
Manager is included next to theMEC orchestrator in theMEC
system level, which interfaces with Federation Managers of
other MEC systems. The Federation Manager is responsible
for discovering federated MEC systems and the MEC ser-
vices they offer – including performing authentication – as
well as for establishing data-plane communication between
MEC apps/services in different MEC systems. Note that the
actual data exchange between MEC apps/services does not
involve the Federation Managers and is not standardized by
ETSI. This framework allows MEC apps to consume the
services provided by a MEC app/service in a different MEC
system (e.g., of another MEC system owner).

III. RELATED WORKS
Several recent research works have investigated the synergy
between platooning applications and the MEC infrastructure.

Some papers [6] and [7] suggest to employ platoons of
vehicles as distributed computing infrastructures, whose pro-
cessing capabilities can be enhanced by MEC. Work [6] pro-
poses a scheme to run collaborative applications, distributed
among the platoon members, where the tasks composing the

FIGURE 3. MEC Federation.

application can be offloaded to a MEC host in order to meet
latency constraints. The selection of the tasks to be offloaded
is designed to minimize the cost of purchasing MEC com-
puting resources. Reference [7] tackles the same problem,
with the objective of minimizing the energy consumed by
the vehicles. Although the above works show how members
of a platoon and MEC can interact to offer new solutions,
MEC is not regarded as a technology to create and control
platoons, which instead rely on distributed control and inter-
vehicle communications. In [15] a mobile edge platoon cloud
(MEPC) is proposed, where idle resources at the PMs can
be allocated to tasks from surrounding vehicles. The authors
models the interactions between the vehicle generating the
task and the PMs as a Stackelberg game, and propose to use
the blockchain technology to protect the privacy of exchanged
data. According to [8], the above works can be included in
the broader category of the offloading mechanisms for V2X
services.

Other works [9], [10], [11], [12], [13], [14], instead, advo-
cate using MEC as an infrastructure, e.g., to run platoon-
ing control algorithms. Our previous paper [9] presented a
preliminary platooning framework based on an abstraction
of MEC, where the latter runs the logic to form platoons
and the centralized longitudinal controller. The focus of that
paper was to prove the feasibility of a MEC-enabled pla-
tooning framework via realistic mobile network simulations.
Work [10] presents aMEC-based platoon control architecture
and provides a thorough analysis of the impact of latency and
packet loss on the platoon stability. Although the work shows
the feasibility of edge-controlled platooning in different net-
work conditions, a description of the protocols involved to
create and maintain the platoon is missing. Moreover, results
were obtained by modeling network latencies as probabil-
ity distributions, and a realistic radio network scenario was
not actually simulated. In [11], authors propose a two-layer
framework aiming at coordinating multiple platoons, i.e.
forming a multi-platoon by coordinating a chain of indepen-
dent platoons. That paper evaluates multi-platoon stability,
as well as the communication overhead needed to control a
multi-platoon. In this case, too, the focus of the paper is on the
logic required to control the platoon, and details about MEC
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TABLE 1. Comparison of related works.

protocols required to manage the entire lifecycle of a platoon-
ing service (e.g., join of a new vehicle) are not described. Like
in [10], realistic simulations of the radio network were not
performed. Reference [12] presents a platoon control frame-
work implemented by Docker containers in the MEC. In the
proposed framework, information coming from the platoon
members is conveyed to the platoon leader, which forwards
it to its counterpart application at the MEC, called Virtual
Platoon App. The latter may complement the information
coming from the platoon leader with new data, e.g. from
road-side infrastructure. Such information is then passed to
another MEC application, namely the Virtual Control App,
acting as the longitudinal controller for all the vehicles of the
platoon. The output of the latter is then sent to the platoon
leader, which in turn forwards it to the other vehicles through
V2X communications. Although the proposed framework fits
well the ETSI MEC architecture, support for dynamic addi-
tion/removal of platoon members is not considered, and the
coexistence of multiple platoons is not discussed. Moreover,
by routing all the communications through the platoon leader,
the round-trip latency between a platoon member and the
controller may be non-negligible. In [13], coordination of
a platoon is delegated to the platoon leader, which gath-
ers platoon members’ information, computes their updated
acceleration values, and notifies them to other vehicles. The
MEC system is only used by the platoon leader to retrieve
information about the surrounding environment, like road
traffic, to deal with possible shockwave effects due to slower
preceding vehicles on the road. In [14], the authors propose
to split the functional blocks of a platoon control system into
a three-layer architecture involving vehicles, road-side units
and the cloud. The paper does not discuss the communica-
tion protocols within the framework of ETSI MEC and does
not evaluate the performance of the proposed architecture.
Work [16] proposes a wireless towing service for emergency

scenarios and evaluates it on a 5G network endowed with
MEC, simulated with Simu5G. MEC is used to host the app
that performs the various services (including AI-based driver
selection). The control logic manages a single towed vehicle.
Paper [17] assumes MEC-based cruise control and proposes
a Q-learning strategy to decide when to migrate the control
application in order to enhance performance. In [18], the
authors consider the problem of regulating the contention
window for platoons whose PMs use 802.11p to share data
with a edge-based controller.

None of the above works consider the case of platoons
involving vehicles from different network operators, which is
instead a common situation in practical scenarios. Thus, the
solutions proposed in the existing literature neglect the pecu-
liarities that a multi-operator MEC environment introduces,
in terms of both architectural requirements and performance.
To the best of our knowledge, the work in [25] is the only
work that considers a multi-operator environment. It focuses
on the issue of service continuity when a generic MEC-based
V2X application needs to be moved from one MEC host to
another, possibly belonging to another operator. Platooning
is taken as one exemplary use case for this issue. Although
the authors consider the problem of synchronizing informa-
tion among different MEC host during mobility, they do not
consider the architectural implications of vehicles in the same
platoon being connected to different network operators and
different MEC systems. Also, solutions are proposed only
theoretically, and details are not discussed.

In light of the above analysis (summarized in TABLE 1),
we can state that our work is the first to design functions
and protocols to run PlaaS, including not only cruise control,
but also all the required functionalities to discover, join, and
leave platoons; our PlaaS framework is fully compliant with
the ETSI-MEC standard; it allows a service operator to run
platoons consisting of vehicles whose MEC apps run on
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FIGURE 4. System model.

different federated MEC systems. Our PlaaS is presented in
Section IV, is proved feasible in Section V, after evaluation
in scenarios that model all the relevant components (network
transit, computational load, vehicular mobility, physical con-
straints).

IV. PROPOSED FRAMEWORK
In this section, we describe our PlaaS framework. We begin
by stating the working hypotheses, and then discuss PlaaS.
The latter has been designed from the start having in mind
its operation in a multi-operator scenario. However, for ease
of exposition, we describe it first in the framework of a sin-
gle operator, and then in a multi-operator context, involving
federation of ETSI MEC systems.

A. SYSTEM MODEL
With reference to FIGURE 4, we consider a road environment
(e.g., a highway) where vehicles may form several platoons.
Network coverage along the road is provided by multiple
mobile network operators, whose base stations are deployed
at the side of the road, possibly at co-located sites. Vehicles
are equipped with a transceiver module for cellular connec-
tivity, and they are subscribed to the mobile network of one
operator. This means that a vehicle is a UE that can com-
municate only with the base stations of the mobile network
operator it is subscribed to.1

We assume that each operator owns itsMEC system, which
is compliant with the ETSI MEC framework described in
Section II-B. Each MEC system is composed of multiple
MEC hosts, interconnected via the operator’s core network.
Applications running on a vehicle can communicate with
MEC apps located on the MEC hosts belonging to the
operator the vehicle is connected to. In order to provide a
multi-operator platooning service, MEC systems belonging
to different operators form a MEC Federation as envisaged
by the ETSI standard described in Section II-B.

1We make no hypotheses as to whether the underlying cellular network is
4G or 5G, since both can be used for the purpose of this paper – at least in a
line of principle. In Section V we will setup 5G scenarios for the evaluation,
for the sake of concreteness.

FIGURE 5. Proposed MEC-based platooning framework.

Our goal is to define an ETSIMEC-based PlaaS framework
that can be leveraged by vehicles to discover which platoons
are available in their neighborhood and possibly join them,
in order to have their cruise speed regulated accordingly. Our
PlaaS framework must be able to run on different, federated
MEC systems, so that platoons may be formed by vehicles
connected as UEs of different network operators. The above
framework is realized by a software package that includes
applications to be run at both the vehicle and MEC sides.
UE applications are installed on the vehicle, whereas MEC
applications will be onboarded to all the involved MEC
systems. Designing the applications according to the ETSI
MEC specifications ensures that standard APIs are employed,
hence portability of the MEC apps is guaranteed, as well as
the interoperability between MEC apps and services running
on different MEC systems.

In the remainder of this section, we first describe the main
components of the framework and their interactions in the
simpler case of a single network operator/MEC system. Then,
we generalize it to the multi-operator case.

B. MAIN COMPONENTS OF THE FRAMEWORK
FIGURE 5 shows the main logical entities of a MEC system
involved in our PlaaS framework. Green boxes represent
the applications that realize the service, whereas the other
boxes are standard ETSI MEC entities that interact with the
applications.

The UE Platooning App runs on the vehicles and interacts
with the MEC side of the PlaaS framework, by sending
requests to discover, join or leave a platoon and receiving
inputs from the platoon controller, such as the desired accel-
eration value to maintain the desired inter-vehicle distance
and speed. Locally, the UE Platooning App needs to interface
with the lower-level controller of the vehicle, which actuates
the control inputs received from the platooning controller.

On the MEC side, the PlaaS is realized through a triple
of MEC apps, namely the MEC Platooning Consumer App,
the MEC Platooning Producer App and the MEC Platoon-
ing Controller App, hereafter Consumer App, Producer App
and Controller App, respectively, for short.

The Consumer App acts as the counterpart of the UE
Platooning App on the MEC, and interacts with the Producer
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FIGURE 6. Internal structure of the MEC Platooning Producer App.

App and – when associated to a platoon – with the Controller
App. The Consumer App keeps track of the current state
of the vehicle (e.g., discovery request forwarded, waiting to
join a platoon, maneuvering, cruising, etc.), conveys requests
coming from the UE Platooning App (e.g., requests to dis-
cover or leave a platoon) to the Producer App, and forwards
control inputs from the Controller App to the UE Platoon-
ing App.

The Producer App is the core of the PlaaS framework. Its
main task is to maintain the list of Consumer Apps (hence,
of UEs) that are using the PlaaS and to track the status of
all the active platoons, e.g. which vehicles are associated to
which platoon. Its internal structure is shown in FIGURE 6.
It stores the relevant data structures that maintain the end-
points (IP address/port) of both the subscribed Consumer
Apps and the Controller Apps that manage the platoons, and
it handles the platoon discovery requests from the Consumer
Apps by identifying the platoon the latter may request to join.
To accomplish this, whenever a discovery request is received,
the Producer App runs a platoon selection algorithm that
selects the most suitable platoon for the requesting vehicle
among the active ones. The selection algorithm can factor
in all the information available, such as the current position
of both the vehicle and the platoons, the state of already
active platoons (e.g., their length, direction or target speed),
context data (road layout or regulations), user preference
and so on. The framework is designed to be flexible enough
to allow one to add different platoon selection algorithms
and switch between them whenever needed. The design of a
platoon selection algorithm is outside the scope of this paper.
Nonetheless, for the sake of concreteness, we briefly describe
a sample algorithm that can be used. With reference to the
pseudocode reported in LISTING 1, whenever the Producer
App receives a discovery request, it scans the list of currently
running Controller Apps and, for each of them, obtains the
direction of the corresponding platoon. If the direction is the
same of the car that issued the discovery request, the distance
between the car and platoon member at the tail of the platoon
is computed. Finally, the algorithm selects the platoon with
the smallest distance.

Each active platoon is managed by one Controller App.
The internal architecture of the latter is shown in FIGURE 7.

LISTING 1. Pseudocode of an examplary platoon selection algorithm.

FIGURE 7. Internal structure of the MEC Platooning Controller App.

It includes a Cruise Control Algorithm and a Maneuver
Control Algorithm. Both algorithms generate inputs for both
the longitudinal and lateral controllers of the vehicles. The
former periodically computes the next control inputs for all
the platoon members (i.e., new acceleration values to be
enforced) in order to maintain the platoon stability and keep
the vehicles in the same lane, whereas the latter runs upon
the reception of a join (leave) request from a Consumer
App and issues the control inputs to allow the corresponding
vehicle to approach (detach from) the platoon and change
lane, if needed. The control algorithms exploit information
such as the Consumer App identifier and the vehicle’s last
available position, speed and acceleration. Such information
is obtained by querying the LS of the MEC platform, hence
saving the communication latency and overhead that would
otherwise be required to obtain the same information directly
from the vehicle through the radio interface. It is important to
note that different Controller Apps are independent of each
other, hence they can run different control algorithms. This
gives the PlaaS framework the flexibility to decide which
control algorithm suits better which platoon: for example,
it might be the case that platoons with different lengths,
or requirements in terms of target speed or inter-vehicle
distance, or onboard processing capabilities of the vehicles,
require different control algorithms. Thus, the Producer App
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FIGURE 8. MEC Consumer App state diagram.

includes a library of available control algorithms and can
select the most suitable one for each Controller App instance
during the instantiation of the latter. The Producer App can
also change the control algorithm enforced by one platoon
dynamically, if needed, without affecting the other platoons.
New algorithms can be easily added to the library anytime.

As shown in FIGURE 5, the UE Platooning App is made
available to vehicle manufacturers, which onboard it to their
vehicles. The Consumer, Producer and Controller Apps,
instead, are provided to the MEC system owner as virtual
machines or container images, which will then be instantiated
on the MEC virtualized infrastructure according to the stan-
dard mechanisms discussed in Section II-B. In particular, the
Producer App will be instantiated by the MEC system owner
through direct interaction with the OSS, whereas the instanti-
ation of the Consumer App will be dynamically requested by
theUEPlatooningApp via theDeviceApp and theUALCMP,
upon an explicit request from the driver of the vehicle, i.e.,
when she decides to exploit the services offered by the PlaaS.
The instantiation of a Controller App, instead, is triggered
by the Producer App when a new discovery request from a
Consumer App issues the creation of a new platoon.

Note that software updates for the UE Platooning App
can be issued over-the-air, without requiring the vehicle to
be taken to the car-maker maintenance centers. Likewise,
updates toMEC apps (e.g., providing new control algorithms)
can easily be done at the MEC hosts without service interrup-
tion and without involving the vehicles.

C. COMMUNICATION PROTOCOLS ENABLING THE
FRAMEWORK
We now describe the communication protocols implemented
by the entities presented above to realize the PlaaS frame-
work. To do this, we take the perspective of the Consumer
App and consider its state machine, shown in FIGURE 8.
We recall that once a Consumer App has been created, it com-
pletely represents a vehicle in the MEC system, and interacts
with the Producer App on its behalf.

Initially, once the UE has instantiated the Consumer App,
the latter is in the IDLE state, meaning that the vehicle is
not a member of any platoon. It remains in such state until
the vehicle (e.g., the driver) requests to access the platooning
service. The latter operation brings the Consumer App in the
DISCOVERY state, where it asks the Producer Apps to select
themost suitable platoon to join. If a suitable platoon is found,
the Consumer App receives the endpoint of the Controller

FIGURE 9. Discovery protocol.

App managing such platoon and sends a join request to it.
Since we assume that only one vehicle at a time can be
involved in a join/leave maneuver, join requests are queued
at the Producer App until no other join/leave maneuver were
previously queued. Then, once the vehicle is selected to join
in the platoon, the Consumer App receives a notification
and enters the JOIN MANEUVER state, where it receives
the commands to approach the selected platoon and take on
the desired position (either the head, tail or the middle of
the platoon). If the join maneuver completes successfully,
the Consumer App moves to the CRUISE state. This rep-
resents the steady state, where the vehicle is instructed by
the Cruise Control Algorithm in the Controller App with the
control inputs necessary to maintain the desired position and
speed within the platoon. When the vehicle is not interested
anymore in being a member of the platoon (e.g., the driver
wants to change direction), the Consumer App issues a leave
request and enters the LEAVE state, while the request is
enqueued at the Producer App. Once the Controller App has
acknowledged the request (i.e., the request has been selected
from the leave queue), the Consumer App transitions to the
LEAVE MANEUVER state, during which the vehicle per-
forms the action to abandon the platoon. Upon completion,
the Consumer App gets back to IDLE and it is ready to join
a new platoon if needed. In our framework, leave requests
have precedence over queued join requests (because a leave
operation may impinge on already scheduled join maneuvers,
by changing the state of the platoon itself).

In the following, we describe in detail the message
exchange among the entities when the Consumer App is in
DISCOVERY, JOIN MANEUVER, CRUISE and LEAVE
MANEUVER states. The actions that vehicles need to per-
form when executing the join and leave maneuvers are
orthogonal to the PlaaS framework, hence outside the scope
of this paper. Interested reader can find details about these
in [26].

FIGURE 9 shows the sequence of messages that realize the
DISCOVERY protocol. Firstly, the UE manifests its interest
in accessing platoon services to the Consumer App that it
previously instantiated. The message contains information
useful to find the best available platoon, such as current vehi-
cle’s position, speed, direction and destination. Such informa-
tion is then forwarded by the Consumer App to the Producer
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FIGURE 10. Join protocol.

App through the discoverymessage. The Producer App, upon
receiving the message, runs the Platoon Selection Algorithm
to retrieve the most suitable platoon among the ones tracked
by the Producer App itself. This choice can possibly be made
also based on information included in the discovery message.
For example, the algorithm may select the closest platoon
ahead traveling in the same direction. If a suitable platoon is
found, then the endpoint of the Controller App handling it is
returned to the Consumer App. Otherwise, the Producer App
can either reject the request, or create a new Controller App
instance – controlling a one-member platoon – and return
its endpoint. The choice in this case depends on the value
of the create flag in the discovery message: if it is set to 1,
then the Producer App will instantiate a new Controller App.
In this case, after the instantiation, the Producer App sends a
configurationmessage to the newController App to configure
the platoon, including the control algorithms to be used, the
control period, the direction of the platoon, the maximum
number of vehicles allowed, etc. A one-member platoon may
seem pointless, at first sight: however, the vehicle forming it
enjoys the advantage of having its own cruise regulated, and
acts as a platoon leader for others to join later.

The sequence diagram depicted in FIGURE 10 describes
the JOIN protocol. Once the Consumer App gets the end-
point of the Controller App, it sends a join request message.
The latter, besides already described geo-related information,
contains a unique identifier of the vehicle, namely the Con-
sumer App Id. Upon receiving the request, the Controller App
checks its own state: if there is already a vehicle involved in a
join or leave maneuver, then the join request is enqueued and
the Controller App updates the Consumer App with an ACK
message having the queued flag set. The latter just informs
the Consumer App that its join request will be served after
other pending ones. As soon as the join request is popped
from the queue, the join maneuver starts and, again, the
Consumer App is notified about the update. During the join
maneuver the Controller App periodically runs the Maneuver

FIGURE 11. Leave protocol.

Control Algorithm to compute the acceleration (in both the
longitudinal and lateral directions) of the joining vehicle.
Such acceleration values are calculated based on the position
and speed of the vehicle. The latter are retrieved by querying
the LS running in theMEC platform: the LS provides a REST
API that allows the Controller App to obtain the geographical
coordinates and speed of a set of UEs [4]. The new accel-
eration value is then sent to the UE via its Consumer App.
When the controller-specific criterion for joining a platoon
is met (e.g., when the vehicle reaches a target distance to its
predecessor), the Controller App inserts the Consumer App
Id into the data structure representing the platoon, and sends
two messages: one to notify the Producer App about the new
platoon member, and one to inform the Consumer App that
the join maneuver has terminated. The Consumer App in turn
notifies the UE Platooning App.

The LEAVE protocol, shown in FIGURE 11, mirrors the
JOIN one. It is triggered by a leave request message sent by
the UE Platooning App, which reaches the Controller App via
the Consumer App. When the request is extracted from the
leave request queue, the maneuver control algorithm starts
computing the acceleration values to disconnect the vehicle
from the platoon. Once the leave maneuver is completed,
the Consumer App Id is removed from data structures at
both the Controller App and the Producer App. The latter
receives amessage that notifies the event.Moreover, when the
last member of a platoon left, the Producer App may decide
to terminate the Controller App managing the zero-member
platoon.

When in CRUISE state, the Consumer App receives
control inputs (i.e., acceleration values) from the Con-
troller App and forwards them to the UE Platooning App,
which in turn enforces them to the lower-level controller.
FIGURE 12 shows the operations performed by one Con-
troller App instance to generate those commands. We assume
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FIGURE 12. Control loop for one Controller App.

that new control inputs must be generated periodically to
allow vehicles maintaining the correct position and speed.
At each round, the Controller App must first update the
position of current platoon members. To do so, it queries the
LS again. Based on the latest positions and speeds, the Cruise
Control Algorithm running in the Controller App computes
a list with the new acceleration value for each member and
communicates each value to the corresponding Consumer
App, which forwards it to the UE Platooning App.

Last, the proposed framework needs a keep-alive mech-
anism to notify platoon status updates from the Controller
App to the Producer App. The Controller App periodically
sends a message with all the information about the position
and speed of each member of the platoon. This serves two
purposes: the first one is to keep the information about a
platoon updated on the Producer App, so that a platoon can
be correctly selected during the discovery phase. The second
one is to provide information on the operating status of the
Controller App: if a keep-alivemessage is not received by the
Producer App for some time, e.g. three periods, it may mean
the Controller App failed and the Producer App should take
appropriate actions, e.g., hiding the related platoon in further
discovery procedures and/or requesting the Consumer App to
issue a warning to the driver of the vehicle.

D. GENERALIZATION TO THE MULTI-OPERATOR
SCENARIO
As already discussed, a realistic road scenario includes vehi-
cles connected to different network operators. Generally, each
network operator may implement its ownMEC system, hence
vehicles may use applications and services provided by MEC
systems managed by different operators. In order to be effec-
tive, a platooning service must support formation and man-
agement of platoons involving vehicles bound to different
MEC systems. As discussed in Section II-B, MEC federa-
tion is a new paradigm introduced by ETSI for supporting
inter-operator MEC applications [5]. In this section, we gen-
eralize the PlaaS framework described previously by bringing
MEC federation into the picture and specifying the neces-

FIGURE 13. Multi-operator interactions. The red arrow highlights the
(logical) federation link.

sary adaptations to allow platooning to operate in a multi-
operator environment. For the sake of simplicity, we refer to
the case of aMEC federation composed of twoMEC systems,
although the same framework is valid for the case of more
than two MEC systems, too. In the latter case, the MEC fed-
eration can be realized using either a mesh or a star topology
(i.e., using a MEC Federation Broker). Note that such
topology only affects the way the MEC systems autho-
rize, authenticate and discover MEC apps/services in other
MEC systems – which is addressed by the ETSI MEC stan-
dard, hence is outside the scope of this paper –, whereas
it does not affect the flow of information required by
PlaaS. In fact, once the logical connection between two
MEC apps/services has been established, the communication
occurs independently, in a peer-to-peer fashion.

FIGURE 13 shows the interactions between MEC entities
of two different operators, namely operator A and opera-
tor B. Operator A’s Producer App keeps track of the platoons
managed within operator A’s MEC system. This is only a
partial view, as operator B’s Producer App may manage other
platoons in the same geographical area. Thus, the two Pro-
ducer Appsmust share some information to obtain a complete
picture of all the active platoons. For example, when a new
vehicle asks operator A’s Producer App to discover a platoon,
the most suitable platoon can be selected among the ones
controlled locally and the ones controlled by operator B’s
Producer App. Moreover, a platoon managed by operator A’s
Producer Appmay include vehicles associated to operator B’s
MEC system. This means that a Controller App in operator
A’s MEC system may need to retrieve the position informa-
tion of vehicles from the LS of operator B (or vice versa).
Thus, Producer Apps expose an interface to allow a Producer
App in another MEC system to acquire global knowledge

VOLUME 11, 2023 60049



G. Nardini et al.: Platooning-as-a-Service in a Multi-Operator ETSI MEC Environment

FIGURE 14. Modifications to the discovery protocol (w.r.t. FIGURE 9) in a
multi-operator scenarios.

about active platoons. This information exchange is made
possible by the MEC Federation Manager, which establishes
an authenticated connection between the two endpoints, i.e.
the two Producer Apps.

We describe hereafter how the protocols of the previous
subsection need to be modified. For ease of exposition,
we adopt the point of view of operator A, which is federated
with B. The extension to a multi-party federation is straight-
forward and is left to the interested reader.

When a vehicle wants to initiate a DISCOVERY proce-
dure at operator A, and before starting the platoon selec-
tion, A’s Producer App queries B’s Producer App to obtain
its list of active platoons and the endpoint of the relative
Controller Apps. This new interaction is depicted in blue
in FIGURE 14. To reduce the amount of data exchanged,
the request may specify a filter, for example based on the
geographical position and travel direction of the vehicle
requesting to join. After that, A’s Producer App behaves
like in the single-operator scenario, by executing the Pla-
toon Selection Algorithm and returning the endpoint of the
selected platoon’s Controller App to the Consumer App, even
if the Controller App is managed by B’s Producer App and
resides in operator B’s MEC system. The Consumer App will
then contact the Controller App, in order to do the JOIN
and LEAVE operations directly. This procedure is exactly
the same as in the single-operator scenario, except that the
communication occurs over the MEC federation link, rather
than internally to one MEC system. The only needed mod-
ification for multi-operator scenarios is that the Consumer
App must insert the Id of the MEC system it belongs to
in every message it sends. This allows the Controller App
to select the right LS when it has to retrieve the car posi-
tions. At configuration time, in fact, the Producer App puts
in the configuration message for the Controller App a list
of the Producer Apps (i.e., MEC systems) involved in the
federation. If, instead, a platoon is not found and the create
flag in the discovery request is set, then the Producer App
instantiates a Controller App in the operator A’sMEC system.
As far as the CRUISE procedure is concerned, the federation
features provided by ETSI are exploited again. As shown in
FIGURE 15, the control protocol is executed the same way as
in the single-operator scenario, with the only difference that

FIGURE 15. Modifications to the control loop protocol (w.r.t. FIGURE 12)
in a multi-operator scenarios.

vehicles’ positions need to be obtained from multiple LSs.
For example, when the Controller App is in operator B’sMEC
system and the platoon includes operator A’s vehicles, then
the Controller App must query operator A’s LS in order to
retrieve the position of operator A’s vehicles.

Although the modifications required to adapt the protocols
to the multi-operator scenario are limited, we observe that
multiple LSs with possibly different response times are now
involved, and that the link(s) connecting different opera-
tors’ MEC systems may introduce non-negligible delays. The
effects of the above phenomena on platoon stability will be
thoroughly investigated in the next section.

V. VALIDATION AND PERFORMANCE EVALUATION
In this section, we first validate our PlaaS framework, and
then evaluate its performance. We have implemented it in
Simu5G [1], [28], a well-known open-source 5G simulation
library. Simu5G provides 3GPP-compliant 4G/5G access,
and – being based on OMNeT++ [29] and INET [30] – is
interoperable with other similar libraries, e.g., Veins [31],
providing vehicular mobility. Simu5G allows one to simu-
late arbitrary 5G network layouts, including all the proto-
cols from the application to the physical layer. Moreover,
it includes a model of the ETSI MEC architecture, described
in [27], allowing users to simulate MEC-based applications.
Simu5G’s MEC model includes the RNIS and LS, the latter
being useful to support PlaaS. All the software used in this
paper is publicly available at [32].

We simulate the scenario shown in FIGURE 16. A group of
seven cars moves along the road in a straight line. The stretch
of motorway is served by two Mobile Network Operators
(MNOs) – namely A and B –, each one having four gNodeBs
(gNBs, i.e., 5GNew-Radio base stations) co-located, at 500m
of distance to each other. Three cars, named A[∗], belong to
MNO A, whereas the other four, B[∗], belong to MNO B.
The two MNOs use different carrier bands (2GHz and 4GHz,
respectively) and cars perform intra-MNO handovers based
on the Received Signal Strength Indicator (RSSI).We assume
that each gNB is configured in FrequencyDivisionDuplexing
(FDD) mode, and both downlink and uplink spectra are allo-
cated 10MHz-bandwidth with numerology index 0, resulting
in subframe duration of 1ms. UEs periodically report their
channel status information every 40 subframes. As far as the
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FIGURE 16. Scenario used for validation and evaluation.

TABLE 2. Main 5G radio access simulation paramaters.

physical layer of the radio channel is concerned, gNBs and
UEs transmit at 46 and 26dBm, respectively, and the channel
effects are modeled according to the Urban Macro scenario
defined by 3GPP specifications [33]. The parameters of the
5G networks are summarized in TABLE 2.

Each MNO has its own MEC system, including a single
MEC host. A MEC federation allows the communication
between the twoMEC systems, so that platooning controllers
can manage platoons having cars connected to different
MNOs. All the cars will be associated, by the relative MEC
Producer Apps, to the same Controller App to form a single
platoon. Cars perform a join request in sequence, i.e., from
A[0] to B[3], so that the join maneuver is always performed
at the tail of the platoon. For the sake of validation and
evaluation, our PlaaS uses the same control algorithm for both
the cruise and maneuver controllers, i.e., [34]. This is widely
used, and it has been implemented in our framework as one
of the available controllers.

A. VALIDATION
To validate the framework, we simulated the above scenario
by placing the cars at different distances from each other
(between 8 and 30 meters) and running at the same speed
of 25 m/s. The control algorithms have been configured as
shown in TABLE 3. The Controller App requests the updated
values of cars’ position to the ETSI MEC LS and, after 30ms,

TABLE 3. Configuration of the control algorithms.

FIGURE 17. Validation of the Join maneuver.

it executes the control algorithm that produces new con-
trol inputs for the cars, i.e., new acceleration values. This
procedure is repeated every 100ms. Concerning the control
algorithm, we configure it in order to let cars reach a target
speed of 25m/s and inter-vehicle distance of 10m.

FIGURE 17 shows the speed (top), the distance from the
preceding car (middle) and the state of the cars (bottom) dur-
ing the formation of the platoon. We can see that the platoon
is completely formed after about 41 seconds (when all the
cars are in CRUISE state), at which point in time the speed of
each car is 25 m/s and the distance between the cars is 10m,
as configured in the Controller App. During the initial stages,
i.e., the first two seconds, cars request the Producer App to be
associated to the best platoon. Since no platoons are already
available, the first car, i.e., A[0], triggers the instantiation of
a Controller App that will manage the platoons by means of
the Producer App. The following discovery requests coming
from other cars are then queued up until the Controller App
is created. Once a car knows the Controller App Id and the
corresponding endpoint, it sends a join request to it. The latter
is queued (orange line in the bottom graph) if another car is
already in the JOIN MANEUVER state. After a car moves
to the CRUISE state, it is controlled by the Cruise Control
Algorithm run by the Controller App.

FIGURE 18 shows what happens when a car in the middle
of the platoon leaves. Around second 51, car A[2] requires to
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FIGURE 18. Validation of the Leave maneuver.

leave the platoon. As shown by the red bar in the bottom chart
in FIGURE 18, it enters the LEAVEMANEUVER state until
the Maneuver Control Algorithm terminates the operation,
i.e. until the car completed a line change operation andmoved
to the side of the platoon. At the end of the operation, car A[2]
is detached from the platoon and cars B[∗] following it briefly
accelerate (see the top chart, between 55 and 65 seconds)
to cover the gap to A[1]. Around 67 seconds, the platoon
reached stability again, with each car following its predeces-
sor at the target distance.

B. PERFORMANCE EVALUATION
Our performance evaluation is aimed at proving that platoon
control through our framework is feasible. In order to do so,
we need to show two properties: first, that it is scalable. Sec-
ond, since this system has a closed feedback loop, that poten-
tial sources of delay (i.e., computations and network transit,
especially in a federated MEC environment) do not signifi-
cantly affect its operation. We are able to do this since our
simulation environment includes credible, detailed models of
both 5G network transit and the ETSIMEC environment. Our
results do depend on the particular Cruise Control Algorithm
used in our evaluation, i.e., [34]. On one hand, this is one of
themost widely studied controllers, whichmakes our analysis
relevant – we are not aware of any such evaluation in the
literature. On the other hand, our methodology is entirely
general, and can be followed by researchers interested in
evaluating their own control algorithms – which they can
easily plug in our software framework.

1) IMPACT OF COMPUTATION TIMES OF THE CONTROLLER
LOGIC
We first discuss the impact of the computations run by the
control algorithms. Note that in our scenario both the Cruise
and Maneuver Control Algorithms are the same. Ideally,
we should evaluate how long it takes for the algorithm to com-
plete a control loop, based on the number of cars. However,

FIGURE 19. Number of machine instructions run by controller [34] as a
function of the number of vehicles (dots) and linear interpolation (solid
line).

the Controller App runs in a virtualized environment (a MEC
host), hence the actual running time of its algorithmwill heav-
ily depend on the amount of resources that the virtual machine
or container running it is allocated, as well as on the speed of
the physical infrastructure. For this reason, we instead mea-
sure the number of machine instructions run by the algorithm.
That number can be (roughly) translated to an execution time,
given an estimate of the number of instructions per second
that the Controller App is allocated in the infrastructure. Our
simulator runs computations instantly – in simulated time –
but allows one to insert computation delays at the end of
such computations, to delay the response of a MEC App.
These delays are computed based on the number of machine
instructions of the computation, the MEC host CPU speed
and the fraction of CPU allocated to the MEC App [27].

We ran simulations with an increasing number of cars, and
counted the number of machine instructions executed by the
Cruise Control Algorithm. Such number has been calculated
by using the perf_event_open() system call, which allows one
to measure CPU cycles count, machine instructions, cache
misses, etc..2 Note that the number of machine instructions
depends on the language compiler and the CPU architecture.
Our code runs on an i5-5300U Intel CPU, and has been
compiled with the clang compiler using the -o3 optimization
option. The results reported in FIGURE 19 show that the
number of machine instructions increases linearly with the
number of cars, which makes this control algorithm quite
scalable.With 15 cars, the control algorithm executes on aver-
age 7531 machine instructions (results are very consistent
across replicas, hence no confidence intervals are reported).
On today’s processors, that can execute hundreds of million
instructions per second (MIPS),3 this number translates to
negligible times (microseconds), even assuming that the Con-
troller App is allocated a very low CPU percentage. It is
easy to see (and we will also show it later) that µs-scale
delays have no impact on the performance. For this controller,
the computation times of the Controller App will not be
a scalability bottleneck, unless a very large platoon is envis-
aged (in the order of hundreds of vehicles).

2https://man7.org/linux/man-pages/man2/perf_event_open.2.html
3https://en.wikipedia.org/wiki/Instructions_per_second
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FIGURE 20. Number of messages required to discover, join and leave a
platoons in radio interface and MEC with increasing number of cars.

2) IMPACT OF COMMUNICATION OVERHEAD
We now analyze the impact of the communication between
the involved entities. As PlaaS introduces a new set of mes-
sages to discover, join, and leave a platoon, we first con-
sider how much overhead such messages introduce in the
network, both over the radio interface and in the core network
(i.e., communication within a MEC system or between dif-
ferent MEC systems). FIGURE 20 shows the number of
messages that are required to manage the platoons with
increasing number of cars. In other words, we consider the
protocols shown in FIGURE 9, FIGURE 10, and FIGURE 11,
hence excluding the messages required to issue accelera-
tion/brake commands to the cars, which would be required
nevertheless even without our PlaaS. Since most of those
messages involved intra- or inter-MEC communications, the
number of messages sent over the radio is minimal. Likewise,
the messages exchanged within the core network are in the
order of the few hundreds, which can be easily supported by
high-bandwidth connections available in the core network.
Note that most of thesemessages could actually be exchanged
among entities that reside in the same MEC host. Thus, the
communication overhead introduced by PlaaS can be safely
considered negligible.

As far as the control loop of the platoon members is con-
cerned, FIGURE 21 shows the number of messages sent in
one minute from the PlaaS to the cars over the radio interface,
with different values of the control period. When the control
period is as fast as 0.01s and the number of cars is high,
the number of (downlink) messages can reach large values.
However, we observed in Section V-A that a control period
of 0.1s is enough to control the platoon satisfactorily, and in
this case the number of messages over the radio interface is
manageable.

Finally, we compare the number of control commands sent
over the radio interface with PlaaS against other approaches,
namely the one presented in [10] and a baseline without
MEC. In the latter, the platoon leader receives updates from
other platoon members, runs the controller logic locally and
sends commands back to the platoon members. FIGURE 22
shows that our PlaaS consumes less radio resources than
both the other approaches. In fact, in [10] it is assumed
that at every control cycle the cars also send their status
update in the uplink, whereas PlaaS exploits the ETSI MEC
LS. When MEC is not used at all, instead, each message

FIGURE 21. Number of messages required in the radio interface to
control the cars with increasing number of cars and control period.

FIGURE 22. Comparison of the number of messages required in the radio
interface to control the cars against the ones required in [10] and in a
scenario without MEC (centralized control performed by the platoon
leader).

(both status update from the platoon members and control
commands from the platoon leader) involves two radio trans-
missions: one in the uplink to the base station and one in the
downlink to the final destination.

3) IMPACT OF THE DELAYS AT THE LOCATION SERVICE
Our PlaaS obtains position information from the ETSI MEC
LS, using a request-response pattern. Note that the Controller
Appmakes one request per period to the LSs ofMEC systems
A and B. That request includes queries for the positions of all
the cars, which are returned by the LSs in a single response.
This may incur some delay, due to, for example, a high load of
requests at the LS server, or to the time needed by it to retrieve
the positions (e.g., because the position database is far from
the server, or MNO’s policies managing user sensitive data).
To evaluate the impact of these delays, we simulated the same
scenario with a platoon of seven cars, already formed. The
LS response times are calculated according to an exponen-
tial distribution with rate λ . We now assume instantaneous
communication between the MEC systems of MNOs A and
B – we will evaluate the impact of delays on the federation
link later. We analyze what happens when one of the LSs has
a much higher response time than the other, and when both
have a relatively high response time. We consider the three
different scenarios reported in TABLE 4, where each row
reports the mean response time of the two LSs involved in the
corresponding scenario. Results related to the inter-vehicle
distance are depicted in FIGURE 23. A non-obvious fact
is that only one car is significantly affected by the (heavy)
mismatch between the two response times, i.e., B[0] – the first
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FIGURE 23. Inter-vehicle distance when the LS response time changes.

TABLE 4. Response times at the LS of the two MNOs.

one connected to a different MNO (and MEC system) with
respect to the preceding cars –, whose distance has an offset
of up to ±1m with respect to the target. All other cars – from
both MNOs – are unaffected. This shows that LS delays are
not a scalability problem: they would be if these offsets were
increasing along the platoon, which they are not. On the other
hand, we need to understand better the relationship between
LS delays and the inter-vehicle distance offset experienced
by car B[0], which we can do by focusing on B[0] itself, the
only one tangibly affected.

We run the same scenario varying the mean response time
of both LSs from 0.5 ms to 30 ms. FIGURE 24 and FIG-
URE 25 show, respectively, the average and 95th percentile
of the absolute value of the deviation w.r.t. the target distance
between B[0] and A[2] (95% confidence intervals, calcu-
lated over 30 independent replicas, are negligible, hence not
reported). Both heatmaps show a similar pattern: the offset
increases with the mismatch in the LS response times. This
is because, when the response times of the LS are different,
the positions of the cars of MNO A and B are fetched at
different times. This leads the Cruise Control Algorithm to use
inaccurate positions when calculating the acceleration values
that are meant to keep a car at its target distance and speed.
Note that a vehicle moving at 25 m/s covers 0.75 m in 30 ms,
which is comparable to the offsets that we have observed in
FIGURE 23. This also confirms that µs-scale computation
delays (referred to in subsection V-B.1) are in fact immaterial.

The above problem occurs at B[0], i.e. the only car whose
predecessor is of a different MNO. This tells us that a PlaaS
service should strive to form platoons so that cars of the same
MNO occupy consecutive positions. This non-trivial result

FIGURE 24. Mean absolute offset with respect to the target inter-vehicle
distance of car B[0] as a function of the mean response time of the LS at
MEC systems A and B.

FIGURE 25. 95th percentile of the absolute offset with respect to the
target inter-vehicle distance as a function of the mean response time of
the LS at MEC systems A and B.

can drive the design of the join maneuver logic, in order to
select the most suitable position where a car must join the
platoon. By instructing the car to join the platoon right behind
(or in front of) another car connected to the same MNO, the
number of cars affected by the above instability problem will
be minimized.

We provide more solid ground to this observation by sim-
ulating a scenario with four MNOs – namely A, B, C and
D –, each of them serving four cars – with index ranging
from 0 to 3. All the cars belong to the same platoon andA[0] is
the platoon leader. We assume that the Controller App resides
on MNO A’s MEC system, and that the LS response time is
0.5ms for MNO A’s cars and 30ms for other MNOs’ cars.
We observe the inter-vehicle distance, comparing the case
where cars belonging to the same MNO occupy consecutive
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FIGURE 26. Inter-vehicle distance when cars of the same MNO occupy
consecutive positions in the platoon.

positions in the platoon (FIGURE 26) against the case where
two back-to-back cars always belong to different MNOs
(FIGURE 27). The latter case may occur in a situation where
the platoon enforces a simple joinmaneuever logic that makes
every new car join, e.g., at the tail of the platoon regardless the
MNOof the cars. In both cases, we group vehicles of anMNO
in the same subfigure, for better readability. FIGURE 26
shows that only the first car of everyMNO (i.e., the ones with
index 0) experiences some instability, whereas the other ones
have a near-constant inter-vehicle distance. Even the very
last car of the platoon, i.e. D[3], shows stable inter-vehicle
distance, hence demonstrating that our framework is valid
also for platoons composed of a large number of cars. Instead,
FIGURE 27 shows that when the order of cars in the platoon
is not carefully managed the inter-vehicle distance is highly
unstable for all the cars.

From the above charts, the offset of the first car of a MNO
in the platoon can be around 1m, which may or may not be
tolerable. We will discuss later a simple way to mitigate this
problem. We choose to discuss the impact of delays on the
federation link first, because it has similar effects, and our
solution will address both.

4) IMPACT OF DELAYS BETWEEN THE TWO MEC SYSTEMS
MEC systems communicate via a MEC federation link,
established between two peering points. Inter-MEC system
communications may incur some delay, for several reasons:
the load on the MEC federation link may be high, or the
link may be rate-limited because of peering Service Level
Agreements; external traffic may be subject to encapsu-
lation/decapsulation, reshaping, cyphering/deciphering, etc.

FIGURE 27. Inter-vehicle distance when cars of the same MNO occupy
non-consecutive positions in the platoon.

FIGURE 28. Inter-vehicle distance of car B[0] as a function of the delays
on the federation link.

All these may add some delay, whose impact needs to be
assessed.

We analyze the system in the same scenario, with small
response times at both LSs A and B (0.5 ms) and a delay
on the federation link varying between 1 and 50 ms. Again,
we only focus on the car B[0] because we ascertained –
after a preliminary investigation, not shown for the sake of
conciseness – that it is the most affected one. The results
showing the inter-vehicle distance are shown in FIGURE 28.
The figure shows a threshold behavior: when the delay is

below 20 ms (top four lines), there is a minor increase in the
inter-vehicle distance. As soon as the delay reaches 20 ms,
the distance drops remarkably, to values below 9m. Note that,
in this range of delays, the relationship between the delay and
the offset is also non-monotonic. This unexpected behavior is
due to the superimposition of two different effects. One is
the fact that the Cruise Control Algorithm works with stale
positions for B[∗] cars, this time due to the round-trip time
(RTT) on the federation link, which adds to the response
time of LS B. This, as we discussed in the previous evalua-
tion, creates an offset in the inter-vehicle distance A[2]-B[0].
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FIGURE 29. Interplay between control periods and position requests,
with short delay (top) and large delay (bottom) on the federation link.

Moreover, and uniquely to this example, there is an interplay
between the response times and the control loop period,
which requires a careful explanation. As per FIGURE 29,
both position requests and platoon control loops are run every
100 ms, and there is a 30 ms offset between the first and
the second. FIGURE 29 shows two consecutive instances of
position requests, at 100 and 200 ms, together with their RTT
on LS A and B, as well as two instances of control loops, at
130 and 230 ms.

When the federation link has a (one-way) delay below
15 ms, (top timeline in FIGURE 29), the RTT of LS B is
smaller than the 30 ms offset, hence the most recent posi-
tion acquired for B[0] is always used by the Cruise Control
Algorithm. Note that this position is also more recent than
the one of A[2] (by about 10 ms, in the example). In this case
the algorithm will presume that B[0] is closer to A[2] than
it should, and will decelerate it, moving it further back until
the longer distance compensates the RTT. In fact, for delays
smaller than 15 ms on the federation link, B[0] stabilizes to a
distance just above 10 m (see FIGURE 28).
When, instead, the one-way delay on the federation link

exceeds 15ms (bottom timeline in FIGURE 29), then the
algorithm (e.g., at t = 230ms) will use a stale position for
B[0], i.e. one that was requested at t = 100ms and reflects
where B[0] was more than one control period before. This
will prompt the algorithm to accelerate car B[0] instead,
thus stabilizing it on a (much) shorter distance. This also
explains why – counterintuitively – the error decreases with
the federation link delay in this case: with higher delays,
B[0]’s position is paradoxicallymore recent, hence the accel-
eration mismatch will stabilize at a distance closer to the ideal
value. For example, with a federation link delay of 20 ms, the
timestamp difference between cars B and A is 80 ms, which
at 25 m/s creates a 2-meters gap. With a 50 ms delay, instead,
the difference is 1.25 m, as confirmed by FIGURE 28.

5) COUNTERING THE EFFECTS OF NETWORK DELAYS
The previous subsections show that network/system delays
may be harmful, because they mislead the Cruise Control
Algorithm into assuming that vehicles are not where they

FIGURE 30. Inter-vehicle distance of B[0] before (top) and after (bottom)
timestamp-based position adjustment.

actually are, making it compute wrong accelerations. A very
simple workaround for this problem is to use the timestamps
within the responses of the LSs, and feed them to the control
algorithm together with the positions. This way, the control
algorithm can compute a more realistic estimate of the actual
vehicle position when it computes accelerations. Assume that
the control algorithm runs at time t , and receives from the LS
a position computed at time t−1t . It then can easily compute
the distance covered by the vehicle in 1t , based on the speed
and acceleration computed in the previous cycle.

We now show what happens when delays are compensated
by the control algorithm using these timestamps. To better
highlight the ensuing improvements, we need to setup slightly
different simulation conditions: more specifically, we need
the platoon leader not to have a constant speed. Otherwise,
since all cars in our simulations start as an already formed pla-
toon, the position correction would lead to zero acceleration
and the cars would not change their behavior. Accordingly,
the leader has been configured to vary its speed4 accord-
ing to a sinusoidal pattern with values between 23.6 and
26.4 m/s [10].

FIGURE 30 shows the distance of car B[0] to its predeces-
sor, before and after timestamp-based position adjustment.
The correction described above greatly reduces imperfec-
tions. Only a small, residual oscillation around the target
distance is still visible, which is due to the fact that the
acceleration commands that need to reach cars B[∗] will still
have to pass through the federation link, hencewill get to their
destination later than thosemeant for cars A[∗]. However, this
does not create undue problems. It is in fact easy to observe
that this technique – which we just proved effective against
the federation link delay – actually compensates position
delays whatever their origin, and will thus have the same
effect on all the others mentioned in this evaluation.

4Note that algorithm [34] also controls the acceleration of the leader. For
this experiment, we tweaked it so that it takes the actual speed of the leader
as an input datum.
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C. DISCUSSION
We now briefly address a few items that should be taken into
account when defining and provisioning a PlaaS.

The first is the communication overhead of our PlaaS. This
is not really an issue here: the period and content of messages
in both directions is such as to impose a very light load already
on a 4G network, let alone on a 5G one. Moreover, message
exchange between MEC apps and MEC services occurs on a
wired network infrastructure, which can be expected not to
represent a bottleneck.

The second is the accuracy of the LS. We have seen in the
previous sections that the accuracy of platoon control depends
on the (temporal) accuracy of position information. One may
then wonder if the spatial(in)accuracy of the LS, due to
inherent constraints of the employed localization algorithms,
may add up to similar – or worse – undesirable consequences.
Currently, the location information provided by a 5G network
allows one to identify UEs with an uncertainty in the order of
a few decimeters [35]. Ongoing projects target uncertainties
smaller than one centimeter for the near future [36]. These
inaccuracies are clearly tolerable, given the speeds and tim-
ings involved.

We also observe that the results reported in this sec-
tion show little, if any, dependence on the type of vehicles
involved. We repeated the experiments with different max-
imum acceleration, to model e.g. trucks or vans, and we
obtained qualitatively similar results, which we omit for the
sake of conciseness.

As far as possible limitations are concerned, we highlight
that enabling the proposed PlaaS in a multi-operator sce-
nario requires that all the involved multiple operators support
ETSI MEC Federation, hence implementing and exposing
the required APIs to allow other operators’ MEC systems to
discover and use the respective services, such as Producer
Apps and LS. Moreover, service-level agreements among the
involved operators might need to be in place in order to,
e.g., allow a Producer App to exploit the LS exposed by
another operator’s MEC system. In this regard, incentives
mechanisms may be required to foster interactions among
different MEC operators.

VI. CONCLUSION AND FUTURE WORK
In this paper we have presented – for the first time, to the
best of our knowledge – a comprehensive software architec-
ture to implement ETSI MEC-based platooning in a multi-
operator environment. In the latter, operators leverage MEC
federation to share, in a controlled way, the information
that allows users to locate, join, cruise along with, and
leave, platoons formed by vehicles subscribed to multiple
operators. We have described the main software compo-
nents and their interactions and protocols, which are coher-
ent with the ETSI-MEC industrial standard. Furthermore,
we have thoroughly investigated the practical feasibility of
MEC-based platoon control in a federated context. We have
shown that computation overhead is never an issue, nor is

communication latency on a 5G network. What may create
instability and/or suboptimalities is the temporal inaccuracy
in position reporting, due to different system delays. We have
shown the extent of these problems and proposed an inexpen-
sive way to solve them. Our study demonstrates the viability
of MEC-based platooning in a multi-operator context, with
control information carried across a 5G network.

We have been able to do this by experimenting on an
open-source simulator, Simu5G, which includes 5G network
access, ETSI MEC, vehicular mobility and platooning. All
our code is made available to the community, including
sample platoon control algorithms found in the literature.
We believe that this represents a contribution for the scien-
tific community, enabling researchers to test their findings
in a common, comprehensive and validated environment.
Moreover, a very recent paper [16] shows that, thanks to
the modular nature of Simu5G, it is possible to connect it
to the CARLA urban driving simulator [37], designed for
autonomous driving research and capable of modeling, sens-
ing and controlling the physical environment in great detail.
This adds value to the software framework presented in this
paper, making it usable to setup experiments in complex
scenarios.

As a future work, we plan to extend our framework by
implementing the operations to split and merge platoons,
as well as new control algorithms specifically designed
for centralized platooning. Moreover, we plan to follow up
on [16], exploiting the opportunities opened by this work –
e.g., to test our PlaaS framework in connection with CARLA.
Blockchain technologies may also be investigated as a viable
option to incentivize the collaboration among multiple MEC
operators, hence to overcome potential reluctance from oper-
ators to expose their services to other operators, as discussed
in Section V-C.
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