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ABSTRACT Existing self-supervised sequential recommendations face the problem of noisy interactions
and sparse sequence data, and train models based only on item prediction losses, so they usually fail
to learn an appropriate sequential representation. In this paper, to address the above problem, we pro-
pose long and short-term interest contrastive learning under filter-enhanced sequential recommendation
(FLSCSR). Specifically, a filtering algorithm is used on the user’s interaction sequences to attenuate the
noisy information in the sequence data. Two independent encoders are used to model the user’s long-term
and short-term interests separately on the filter-based enhanced interaction sequences. Then user-specific
gating mechanisms are constructed to capture the long-term and short-term interests tailored to the user’s
personalized preferences, which are incorporated into the attention network to achieve better learning of
interest representations in sequence recommendations. In addition, representation alignment learning goals
are proposed to minimize the discrepancy between long-term and short-term interest representations in
personalized global contexts and local sequence representations. Experiments were conducted on three
public and industrial datasets, where the FLSCSR model could obtain superior performance compared to
the benchmark model: AUC improves by 0.76%-2.02%, GAUC improves by 0.55%-1.01%, MRR improves
by 1.19%-2.09%, and NDCG@2 improves by 1.07%-2.26%.

INDEX TERMS Sequential recommendation, filtering algorithm, self-supervised learning, contrastive
learning.

I. INTRODUCTION
With the popularity and development of Internet applications,
the scale of data and information has exploded. Recommen-
dation systems have become one of the largest AI com-
mercialization application scenarios, providing users with
personalized content services and improving the efficiency
of information distribution. Traditional recommendations are
usually algorithms based on collaborative filtering and con-
tent filtering of user behavior. The core idea is to consider
the user’s past behavior, such as the user’s historical inter-
action data, search history, purchase history, rating history,
etc. Based on these data, the user’s level of interest in items

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Hao Chen .

that have not yet been interacted with is predicted, and the
items that are most likely to be of interest to the user are rec-
ommended to the user. Unlike traditional recommendations,
sequential recommendations take into account not only the
user’s historical behaviors, but also the sequential and tempo-
ral information between them. It usually uses sequence mod-
eling techniques to learn patterns in user behavior sequences
and predict users’ possible future behaviors and interests to
provide more personalized recommendations to users. The
main difference between these two types of recommenda-
tions is whether the sequential and temporal information of
historical behaviors is considered. Traditional recommen-
dations only consider the static relationship between users
and items, while sequential recommendations consider the
dynamic evolution of user behavior. In addition, traditional
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recommendations are usually more applicable to sparse user-
item matrices, while sequential recommendations are usually
more applicable to long-term, continuous sequences of user
behaviors.

With the wide application of deep learning methods
in recommendation systems and user feedback predic-
tion tasks, sequential recommendation [1], [2] has also
adapted to the wave of deep learning, and numerous
deep learning-based sequential recommendation algorithms
have emerged [2], [3], [4], [5], [6], [7]. Some recent
works [8], [9], [10], [11] use two different models to learn
users’ long and short-term (LS-term) interests separately.
For example, Yu et al. [11] proposed the SLi-Rec model,
which for the first time uses two separate encoders to extract
users’ LS-term interests separately and combines these two
aspects of preferences through an attentional framework.
Zheng et al. [12] pointed out that the SLi-Rec algorithm is not
sufficient to distinguish between learned LS-term interests.
On the contrary, it increases model redundancy, resulting in
poor accuracy. Therefore, they further proposed the CLSR
model, which is the most advanced method at present to
monitor the separation of LS-term interests of users through
contrastive learning.

Although the above methods achieve better sequential rec-
ommendation performance in terms of user modeling, fea-
ture interaction and representation learning, there are still
some shortcomings that can be improved. Firstly, sequential
recommendation models are usually constructed based on
implicit feedback sequences, and due to the uncertainty of
user behavior, behavioral sequences may contain noisy infor-
mation and irrelevant interactions, thus interfering with the
next interaction prediction [13]. Secondly, each usermay only
be interested in some specific attributes of the item, so user
interests should be user-specific. Thirdly, user behavior data
is very sparse. Previousmethods usually use only item predic-
tion tasks to learn model parameters, thus it is often affected
by data sparsity and cannot learn sequence representation
well [14], [15].

Therefore, in order to address the three issues mentioned
above, we propose long and short-term interest contrastive
learning under filter-enhanced sequential recommendation
(FLSCSR). Based on the discussion and investigation of
comparative experimental results, the FLSCSRmodel outper-
forms state-of-the-art sequential recommendation methods in
terms of performance. The main contributions of this work
can be summarized as follows:

1) This work introduces a filteringmechanism to attenuate
noise information and extract meaningful features,
thereby mitigating the impact of noise interac-
tions in user behavior sequences on the contrastive
learning-based recommendationmodel. It also prevents
the generation of misleading self-supervised signals.

2) This work designs a user-specific gating mechanism
that takes into account both the static features and
dynamic context of users to capture personalized

long-term and short-term interests tailored to their indi-
vidual preferences.

3) This work proposes a representation alignment learning
objective to minimize the discrepancy between per-
sonalized global context representations of long-term
and short-term interests and local sequential represen-
tations. This aims to reduce information loss and dis-
tortion, assisting the model in better understanding user
interests and preferences.

II. RELATED WORK
A. SEQUENTIAL RECOMMENDATION
The core idea of sequential recommendation is to learn the
changes of users’ interests from the sequence of interac-
tion between users and items, so as to obtain more accu-
rate dynamic recommendation effect. Traditional sequential
recommendations are usually based on Markov chains and
matrix decomposition methods, which treat the user’s histor-
ical behaviour as static information and cannot effectively
capture the user’s long-term interests, making it difficult
to handle complex sequence patterns. With the continuous
development of deep learning, the sequential recommenda-
tion algorithm integrated with deep neural network has made
great achievements. At the initial stage, the recurrent neu-
ral network [16], [17], [18], [19], [20], [21] and convolu-
tional neural network [22], [23] were mainly used. These
sequential recommendation models have shown outstanding
advantages in modeling user behavior sequences, capturing
temporal relationships in sequences, and extracting local fea-
tures. Recently, with the application and rapid development of
graph neural network in image, natural language processing
and other fields, researchers have begun to use graph neural
network for interactive sequence modeling [24], [25]. Graph
neural networks have the advantages of capturing contex-
tual information, handling heterogeneous data and modeling
global contextual information in sequential recommenda-
tion algorithms. It provides a powerful modeling framework
for personalized recommendations of recommender systems.
The recent success of Transformer [26] has also driven the
development of Transformer-based sequential recommenda-
tion models [1], [2]. These models can model users’ interests
and behavioral patterns more accurately, handle datasets of
different sizes and more complex tasks. Transformer-based
sequential recommendation models perform well in various
recommendation scenarios.

Accurately modeling and distinguishing users’ long-term
and short-term interests is crucial [11]. However, traditional
sequential recommendation and advanced deep learning
models often fail to accurately differentiate users’ long-term
and short-term interests due to their use of unified repre-
sentations that cannot fully capture the variations in users’
interests. To address this issue, researchers have proposed
methods to differentiate long-term and short-term interests.
For example, Zhao et al. [8] modeled long-term interests
using matrix factorization models and employed recurrent
neural networks to model short-term interests. Yu et al. [11]
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developed a variant of LSTM for modeling short-term inter-
ests and utilized asymmetric singular value decomposition
to model long-term interests. However, these methods do
not impose supervision on the learned interest represen-
tations, thus failing to guarantee accurate disentanglement
of long-term and short-term interests. Therefore, we adopt
the main framework of the state-of-the-art CLSR model in
long-term and short-term modeling [12]. Our model sepa-
rately models users’ long-term and short-term interests and
achieves their decoupling.

B. SELF-SUPERVISED LEARNING
In the early stages, self-supervised learning was primar-
ily applied in computer vision [27] and natural language
processing [28] domains. Subsequently, some studies intro-
duced self-supervised learning into sequential recommenda-
tion to enhance the modeling of user behavior sequences
and improve the effectiveness of sequence recommendation.
For example, Zhou et al. [5] designed various self-supervised
learning tasks based on background information. They first
pre-trained the model and then fine-tuned it according to the
recommendation task, achieving better recommendation per-
formance. Xie et al. [7] utilized a contrastive learning frame-
work to derive self-supervised signals from the original user
behavior sequences, aiming to extract more meaningful user
behavior patterns and further effectively encode user repre-
sentations. Additionally, they proposed three data augmenta-
tion methods to construct self-supervised signals. However,
these methods overlooked the differences between long-term
and short-term interests, which are crucial for accurate rec-
ommendations.

Addressing the diverse user preferences, some researchers
have studied disentangled representation learning. Ma et
al. [29] proposed a variational autoencoder-based method
to learn multiple user preferences. Wang et al. [30] utilized
knowledge graphs to learn distinct user intents and dis-
tinguish them from each other. However, due to the lack
of labeled data for unsupervised disentanglement, most
of these methods failed to impose specific semantic con-
straints on the learned multiple representations, making them
less effective. In contrast to existing unsupervised meth-
ods, our model introduces self-supervised signals and per-
forms self-supervised learning by extracting contrastive tasks
between learned representations and interest proxies from
the original interaction sequences. This approach effectively
distinguishes and learns long-term and short-term interests,
thereby improving the accuracy and personalization of rec-
ommendations.

C. FILTERING ALGORITHMS
In order to capture the evolving patterns of user histor-
ical behavior, researchers have developed various deep
neural network-based sequential recommendation models.
Typical solutions include those based on recurrent neural
networks [16], [31] and Transformer [1], [2], [5], which

effectively leverage the historical information and exhibit
significant performance in this task. However, these methods
tend to overfit to all past peaks [32], [33], making them
susceptible to noise and resulting in limited predictive perfor-
mance. Therefore, a key challenge for sequential recommen-
dation models is to accurately preserve historical information
while reducing the influence of noise, achieving accurate and
robust predictions. Existing research mainly focuses on uti-
lizing auxiliary data to uncover users’ underlying preferences
and reduce noise in recommendation systems [34], [35], [36].
Auxiliary data can include external user behaviors, auxiliary
item features, and additional feedback. These data can pro-
vide additional information about user interests, preferences,
and behavior patterns, thereby enhancing the performance
and effectiveness of the recommendation system. However,
these methods often rely too heavily on users’ past behavior,
overlooking their latent interests and new preferences. More-
over, acquiring and processing auxiliary data requires signif-
icant effort, which is not always feasible in recommendation
systems.

Recent studies have shown the advantages of Fourier
Transform in terms of representation and characteristics in
the time-frequency domain. Deep learning models based on
Fourier Transform can transform input data into the fre-
quency domain by performing spectral conversion on time-
series signals, enabling learning and analysis based on the
properties and features of Fourier Transform. Inspired by the
theory of digital signal processing, Fourier Transform-based
deep learning methods have gained increasing interest in
the field of machine learning. For example, Woo et al. [37]
employed Fourier Transform in time-series modeling to cap-
ture rich periodic information, providing an efficient learning
paradigm in time-series analysis. Xu et al. [38] proposed a
learning-based frequency selection method to identify trivial
frequency components while removing redundant informa-
tion, representing an exploration of using frequency-domain
information for image processing. Zhou et al. [39] consid-
ered time-series prediction from the perspective of sequence
compression and applied Fourier analysis to retain the
part of the time series representation that correlates with
low-frequency Fourier components, thereby eliminating the
influence of noise. The research results demonstrate that deep
learning models based on Fourier Transform can effectively
capture the periodicity and frequency components of time-
series signals, providing a powerful means of representation
and modeling. Inspired by these characteristics, our model
applies Fourier Transform to the task of long-term and short-
term interest modeling in sequential recommendation. By uti-
lizing Fourier Transform-based filtering algorithms, it obtains
a sparse representation of the historical interaction sequence
and removes redundant information, thereby improving the
accuracy and quality of recommendations.

III. METHOD
Behavioral sequence data contains users’ interest prefer-
ences, and mining this information can improve the accuracy
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FIGURE 1. Network structure of CLSR.

of recommendation results. The sequences can be divided
into long-term and short-term sequences based on the time
span, which are used to characterize the long-term and short-
term interests of users, respectively. Long-term interests
reflect the interests and preferences of users that are sustained
over time. It is usually more stable and less influenced by
recent interactions. In other words, long-term interest can
be inferred from the entire sequence of historical interac-
tions. Therefore, the work uses user characteristics as input
to the long-term interest representation, which contains the
historical interactions of that user. Short-term interests, on the
other hand, reflect the user’s dynamic preferences that change
rapidly based on recent interactions. Short-term interests
evolve as users continue to interact with recommended prod-
ucts. For example, a user may build new interests after click-
ing on an item. At the same time, users may also gradually
lose certain interests. That is, short-term interests are time-
dependent variables. Therefore, in the evolution of short-term
interest, the short-term interest of the current moment evolves
from the short-term interest of the previous moment and is
influenced by the user’s interest representation of the previous
moment and the previous target good. Most of the current
work learns the unified representation of users’ LS-term inter-
ests, or does not distinguish between the two. If an unsuper-
vised approach is used to model users’ LS-term interests, it is
easy to mix the two aspects, resulting in worse performance.
Therefore, the work chooses the CLSR architecture for the
optimization of sequential recommendations, considering not
only that it is the latest sequential recommendation algorithm
available, but also that it obtains a decoupled representation
of the user’s long-term and short-term interests through a self-
supervised approach.

A. CLSR
The overall structure of CLSR is shown in Fig. 1, which
mainly consists of three parts: contrastive learning task,
adaptive fusion and interaction prediction network. Specif-
ically, firstly, two independent encoders are used to cap-
ture users’ LS-term interests respectively. Then, based on
the difference between users’ LS-term interests, the average

FIGURE 2. Network structure of FLSCSR.

representation of the entire interaction history and the average
representation of the last k interactions are used to construct
pseudo-labels for long-term and short-term interests respec-
tively, and decouple users’ long-term and short-term interests
by designing contrastive learning tasks. Finally, the user’s LS-
term interests are dynamically fused based on the target item
and user interaction history using attention networks, and the
final vector is spliced with the target item for prediction.

B. FLSCSR
The CLSR algorithm is not enough to capture the user’s
personalized preferences, and only uses the item prediction
task learning model parameters, resulting in the inability to
effectively represent the learning interest. In addition, since
implicit feedback often does not represent users’ true inter-
ests and sequential behaviors may contain noisy information,
data denoising is also necessary to improve recommendation
performance. In the work, we choose to use filters in the back-
bone network of CLSR to denoise the sequence behavior, and
then introduce a user-specific gating mechanism to extract
more comprehensive features of the user, and further design
the loss function to better learn the sequence representation
and avoid the impact of data sparsity problem. The improved
algorithm is called FLSCSR in the work. Fig. 2 shows the
overall schematic diagram.

Let the number of items be N and the number of users
be M. {xu}Mu=1 denotes the set of interaction data for all
users, i.e. the list of items. Each xu =

[
iu1, i

u
2, . . . i

u
Tu

]
is the

interaction data of user u sorted in chronological order, Tu
represents the length of historical interactions of user u, and
each commodity iut is between [1,N ]. The historical sequence
of interactions {xu}Mu=1 for all users is used as input to the
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model and the output is the probability that a user will click
on an item or not.

1) SEQUENCE FILTERING ENHANCEMENT
In order to reduce irrelevant interactions in the behav-
ior sequence, the work obtains the sequence representation
E(x) ∈ Rn×d after the user behavior sequence passes through
the embedding layer, and then inputs it into the filter layer for
data filtering enhancement. As shown in Fig. 2 (A), it will
first undergo a fast Fourier transform transformation to the
frequency domain, with the following equation.

X l = ℜ(F l) (1)

where, F l ∈ Rn×d , n is the length of the sequence, d is the
dimension of the embedding, and l means that the sequence
has passed through l learnable filter enhancement modules.
If it is directly input from the embedded layer, then l=0, that
is, F0

= E(x). ℜ(•) denotes the Fast Fourier Transform and
the transformed X l is complex and X l ∈ Cn×d .
The sequence X l after the Fourier transform is then modu-

lated in the frequency domain by multiplying by a learnable
filter W ∈ Cn×d to modulate the frequency spectrum. The
formula is as follows,

∼

X l = W ⊙ X l (2)

where ⊙ is the element-wise multiplication. The filter K is
called the learnable filter, which can be updated in each train-
ing round by random gradient descent to achieve adaptive
filtering. The frequency domain filtered sequence is denoted

by
∼

X l . At this time, the frequency component of the noise

has been suppressed. Finally, the modulation spectrum
∼

X l is
transformed back into the time domain by the inverse fast
Fourier transform and the sequence representation is updated.
The formula is as follows,

E f (xuj ) =
∼

F l ← ℜ−1(
∼

X l) ∈ Rn×d (3)

where ℜ−1(•) represents the inverse fast Fourier transform,

and
∼

F l represents the user behavior sequence in the time
domain after filtering. The fast Fourier transform and inverse
fast Fourier transform operations can effectively reduce the
noise from the recorded data and extract meaningful features
from all frequencies.

2) SELF-SUPERVISED IMPLEMENTATION
The work first uses two independent encoders to learn sepa-
rate representations of user interests at different time scales,
i.e., long-term and short-term interests. In this case, long-
term interests are learned from user feature embeddings and
short-term interests are captured using recurrent neural net-
works. Specifically, query vectors are first generated for the
encoders. The long-term interest encoder 8 uses user feature
embeddings as query vectors. The short-term interest encoder

9 takes the user’s historical interaction sequences as input
and uses gated recurrent units to capture the relationships
over time. The final result is used as the query vector for the
short-term interest encoder. The calculations are as follows,

qul = E(u),

qu,ts = GRU ({xu1 , . . . , x
u
t }). (4)

Finally, the interaction sequence and the two query vectors
qul and qu,ts obtained above are fed into the corresponding
long-term encoder 8 and short-term encoder 9 to obtain
the long-term interest representations and short-term interest
representations. The formulas are as follows,

H t
l = 8(qul , {x

u
1 , . . . , x

u
t }),

H t
s = 9(qu,ts , {xu1 , . . . , x

u
t }). (5)

The specific process of the long-term encoder is shown in
Fig. 2 (B). The work uses the attention mechanism to trans-
form the sequence of user behaviors after multiplying the pro-
jection matrix with filtering enhancements into a new vector
which is vectorially stitched with the long-term query vector.
Then the weight of user’s long-term interest is obtained by
normalization of the multilayer perceptron. Finally,Weighted
sum the filter-enhanced user behavior sequences to obtain the
vector of long-term interest. The calculations are as follows,

vj = WlE f (xuj ),

αj = τl(vj || qul || (vj − q
u
l ) || (vj · q

u
l )),

aj =
exp(αj)∑t
i=1 exp(αi)

,

H t
l =

t∑
j=1

ajE f (xuj ). (6)

where xuj is the interaction item of user u at moment j,
E f (xuj ) is the filter-enhanced user behavior sequence, Wl is
the transformation matrix, τl denotes the multilayer percep-
tron network MLP, || denotes the splicing, aj is the weight of
the user’s long-term interest obtained by normalization, and
H t
l is the long-term interest representation.
The process of short-term encoder is shown in Fig. 2 (C).

First, short-term interest is captured on the filter-enhanced
user behavior sequence using recurrent neural networks such
as LSTM, GRU, Time-LSTM, etc. Since user behavior is
sparse and easy to ignore past information, the work con-
siders combining time intervals. Time-LSTM is used in the
recurrent neural network model to add temporal information
to reveal the relationship of user behavior. Similarly, the
work uses the attention mechanism to multiply the projec-
tion matrix by the output sequence of the recurrent neural
network, and then the new vector obtained. This vector and
the short-term query vector are used to obtain the weights of
the user’s short-term interest. The weighted sum of the output
sequences of the recurrent neural network is used to obtain the
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vector of short-term interest. The calculations are as follows,

{ou1, . . . , o
u
t } = ρ({E f (xu1 ), . . . ,E

f (xut )}),

vj = Wsouj ,

H t
s =

t∑
j=1

bj · ouj . (7)

where ρ denotes the recurrent neural network model. ouj is the
output sequence obtained from the recurrent neural network.
bj is the weight of the user’s short-term interest obtained by
normalization. H t

s is the short-term interest representation.
The above user modeling process extracts the long-term

and short-term interest representations of users in an unsuper-
visedmanner, which cannot ensure the separation of interests.
Therefore, the work adds self-supervision to both long-term
and short-term interest modeling. The agents of long-term
and short-term interests are obtained from the interaction
sequences to supervise the two interest encoders to achieve
the decoupling of LS-term interests. Specifically, the work
computes the average representation of the entire history of
interactions as a proxy for long-term interest and uses the
average representation of the last k interactions as a proxy
for short-term interest. It is worth noting that the work com-
putes the proxy only when the sequence length is greater
than a threshold It , where the threshold It and the length
k of the sequence of recent behaviors are hyperparameters
in the method. If the whole sequence contains only a few
items, there is no need to distinguish between long and short
term. Then, a comparison task is used to monitor the similar-
ity between interest representations and their corresponding
interest agents to capture the LS-term interests of users more
accurately. The calculations are as follows,

pu,tl =
1
t

t∑
j=1

E(xuj ),

pu,ts =
1
k

k∑
j=1

E(xut−j+1). (8)

where pu,tl is the average representation over the entire inter-
action history, i.e. a proxy for long-term interest, and pu,ts is
the average representation using the last k interactions, i.e.
a proxy for short-term interest.

Next, a contrastive learning task is constructed between
the interest proxy and the interest output by the encoder, and
the contrastive learning method is used to supervise that the
representations under the same sequence are similar. The con-
trastive task is shown in Fig. 2 (D). Taking long-term interest
as an example, the similarity between the long-term interest
representation and the long-term interest proxy representa-
tion is greater than that with the short-term interest proxy

representation. The four contrastive tasks are as follows,

sim(H t
l , p

u,t
l ) > sim(H t

l , p
u,t
s ),

sim(pu,tl ,H t
l ) > sim(pu,tl ,H t

s ),

sim(H t
s , p

u,t
s ) > sim(H t

s , p
u,t
l ),

sim(pu,ts ,H t
s ) > sim(pu,ts ,H t

l ). (9)

where Sim() measures the similarity of embeddings. The
model achieves stronger disentanglement through four con-
trasting tasks on the similarity between encoder output repre-
sentations and interest agents. In this paper, we adopt either
BPR or triplet loss to construct a loss function that cap-
tures the aforementioned constraint relationships, enabling
contrastive learning. Formally, inner product or Euclidean
distance is used to capture embedded similarity. Two loss
functions are computed as follows,

Lossbpr (a, p, q) = σ (< a, q > − < a, p >),

Losstri(a, p, q) = max{d(a, p)− d(a, q)+ m, 0}. (10)

where σ (•) is the activation function, <, > is the inner prod-
uct, d is the Euclidean distance and m is the boundary value.
The four corresponding contrastive losses can be constructed
by substituting Hl , Hs, pl and ps above with the following
equations.

Lossu,tcon = f (Hl, pl, ps)+ f (pl,Hl,Hs)+ f (Hs, ps, pl)

+ f (ps,Hs,Hl) (11)

where f can be either Lossbpr or Losstri.

3) USER-SPECIFIC GATING
As each individual user may only be interested in certain spe-
cific attributes of the project, long-term and short-term inter-
ests should be user-specific. The work captures long-term and
short-term interests of personalized global context, tailored
according to user preferences, through a user-specific gating
mechanism. Taking the long-term representation of personal-
ized global context as an example, the formula is as follows,

Qtl = H t
l ⊗ σ (H t

lWg1 + PuWg2) (12)

where H t
l
∈ Rn×d , H t

s ∈ Rn×d , Wg1 ∈ Rd×1, Wg2 ∈

Rd×L , σ (•) is a sigmoid function and the user embedding Pu
describes user characteristics. Similarly, the short-term rep-
resentation of personalized global context for the user Qts can
be calculated through this formula. The next step is to design
an auxiliary loss function for the model by characterizing the
alignment target. The maximummean discrepancy (MMD) is
primarily used to measure the distance between two different
but related feature distributions xi ∈ Rm×d and yj ∈ Rn×d ,
i.e. the difference. The work therefore uses MMD to define
the distance between the long-term and short-term interest
representations of personalized global context (i.e.Qtl andQ

t
s)
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and the representation of local sequence, defined as follows.

MMD[X ,Y ] = [
1
m2

m∑
i,j=1

κ(xi, xj)−
2
mn

m,n∑
i,j=1

κ(xi, yj)

+
1
n2

n∑
i,j=1

κ(yi, yj)]
1
2 (13)

where κ(·, ·) is the kernel function, xi and yj denote the i-th
row of X and the j-th row of Y, respectively. The Gaussian
kernel with bandwidth ρ is used as the kernel function, i.e.

κ(x, y) = e
−
∥x−y∥2

2ρ2 .
As shown in Fig. 2 (E), the historical sequence is processed

through a GRU, resulting in a local sequence representation
hut . The model uses the maximum mean discrepancy to con-
struct an auxiliary loss function for optimization. Specifi-
cally, it aims to minimize the distance between the long-term
interest representation of personalized global context and the
representation of local sequence, as well as minimize the
distance between the short-term interest representation of
personalized global context and the representation of local
sequence. The formulas are as follows,

hut = GRU ({E(xu1 ), . . . ,E(x
u
t )}),

Lossu,tMM = MMD(hut ,Q
t
l )+MMD(h

u
t ,Q

t
s). (14)

4) DYNAMIC FUSION METHODS
Whether long-term or short-term interest plays a more impor-
tant role in different user-item interactions depends on a
variety of aspects, including the target item and the user’s
interaction history. For example, short-term interest is more
important when users have been browsing similar items,
while their behavior is largely driven by long-term interest
when they move to a completely different item. Therefore,
when user preferences change, the work uses an attention
machine network to adapt user interests to predict dynamic
changes in user preferences based on target goods and histor-
ical interactions.

As shown in Fig. 2 (F), the network adjusts weights to
track the importance of long-term and short-term interests,
accurately reflecting user preferences by integrating the fused
user interests. The predicted items and user interest represen-
tations are then fed into a two-layer perceptron to obtain the
prediction value. The calculations are as follows,

α = σ (τf (hut || E(x
u
t+1) || Q

t
l || Q

t
s)),

H t
= α · Qtl + (1− α) · Qts,

ŷt+1u,v = MLP(H t
|| E(xut+1)). (15)

where τf is a multilayer perceptron used for fusion. σ (•)
is the sigmoid function. α represents the fusion weights for
estimating based on local sequence representation, target
item, and user’s long-term and short-term personalized global
contextual interests. H t is the final representation of user
interests.

TABLE 1. Statistics of the three datasets used in experiments.

5) MULTI TASK LEARNING
Multi-task modeling is widely used in advertising, recom-
mendation and other scenario businesses in the current indus-
trial field. Multi-task models can model common represen-
tations of goals and optimize goals for multiple tasks, thus
improving predictions for multiple tasks. Since in real life
industrial tasks are related to click-through rate (CTR) pre-
diction, the work uses a negative log-likelihood loss function
as the body of the loss function, with the following equation.

Lossu,trec = −
1
N

∑
v∈O

yt+1u,v log(ŷt+1u,v )

+ (1− yt+1u,v ) log(1− ŷ
t+1
u,v ) (16)

In addition to the main prediction task, the work incor-
porates two other auxiliary learning objectives. The final
objective function of this model is calculated as follows.

Loss =
M∑
u=1

Tu∑
t=1

(Lossu,trec + β1Lossu,tcon + β2Loss
u,t
MM )

+ λ∥2∥2 (17)

where β1 and β2 are hyperparameters. λ∥2∥2 denotes L2
regularization to solve the overfitting problem.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENTAL PLATFORM
The experiment built a network using the Tensor-
Flow1.15.2 deep-learning framework with the Ubuntu
16.04 operating system and Pycharm. The hardware con-
figuration is as follows: dual parallel Nvidia Geforce GTX
1080 processor, 8G video memory, and 16G memory.

B. HYPERPARAMETER SETTING
The models used in the work are optimized by Adam. The
initial learning rate is set to 0.001, and Xavier initialization is
used to initialize parameters. The datasets are all fed at batch
size 400, and the embedding size is fixed at 40 for all models.

C. DATASETS
The work evaluates the recommendation performance of
public e-commerce data, and Table 1 summarizes the basic
statistics for the three datasets.

Taobao: The dataset was collected from the largest
e-commerce platform in China and is widely used in
recommendation studies [40], [41]. Click-through data
from 25 November to 3 December 2017 was retained, and
users with less than 10 interactions were screened. Based on
existing work, the first 7 days are used as the training set, the
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8th day as the validation set, and the last day as the test set in
the work.

Amazon: The dataset contains many Amazon product
reviews and metadata, and it is widely used as a benchmark
dataset in the field of recommendation systems. The work
conducts experiments on a subset namedMovies and TV. The
dataset is rich in user behaviors, and contains comments that
can reveal customers’ shopping behaviors.

Yelp: The dataset is used for personal, educational and
academic purposes. Since it is very large, the less active
users and merchants are filtered by a 10-core setting, that is,
ensure that each user and product in the dataset has at least
10 reviews.

D. EVALUATION METRICS
To evaluate the performance of each model, four metrics
were selected as model evaluation metrics in this work. These
include two widely used accuracy metrics, AUC and GAUC,
and two widely used ranking metrics, MRR and NDCG,
which are defined as follows.

AUC: AUC indicates the proportion of correctly classified
samples to the total number of samples and reflects the ability
of the classification model to rank the samples.

GAUC: GAUC is an improved version of AUC, which is
a weighted average of each user’s AUC, where the weight is
the number of clicks he has made. It analyzes from different
user personalized recommendations.

MRR: It is the ranking of the target item in the actual
recommendation list, focusing on whether the recommended
item is at the top.

NDCG@K: Considering the actual relevance and ranking
order of each item, it is used to evaluate the quality of the
ranking results. In the work, k is set to 2, which is a widely
used setting in existing work.

E. BASELINE METHODS
The work compares the proposed FLSCSR model with the
following baseline methods.

NCF [42]: The approach uses deep learning to model user
and project characteristics, giving themodel non-linear repre-
sentational capabilities. Specifically, a multi-layer perceptron
is used to learn the user-item interaction function and thus
derive the resultant values.

DIN [43]: A local activation unit is used to increase
the weight of historical information related to candidate
advertisements, and attention mechanism is introduced to
fully mine the information in the user’s historical behavior
sequence.

LightGCN [44]: The method proposes a lightweight graph
convolutional network for collaborative filtering, which
greatly simplifies the model design.

Caser [22]: The method uses vertical and horizontal con-
volution to capture the sequential behaviour patterns of the
user for recommendations.

GRU4Rec [16]: The method uses gated recurrent units to
capture sequential correlations and make recommendations.

DIEN [45]: The method uses recurrent neural networks
to extract user interests more accurately. And further uses
recurrent neural networks and attentionmechanism to capture
the dynamic changes of interest to encode the sequence of
items.

CLSR [12]: The method uses a contrastive learning frame-
work to separate users’ long-term and short-term interests.

F. PERFORMANCE COMPARISON
1) EXPERIMENTAL COMPARISON OF DIFFERENT METHODS
In order to verify the recommendation performance of
the proposed model, experiments were conducted on three
datasets, Taobao, Amazon-Movie and TV and yelp. Table 2
shows the performance comparison of the different methods.

Table 2 shows the recommendation performance of eight
different methods on three datasets, and the results show that
the algorithm in this study has a more outstanding perfor-
mance compared to other algorithms. Among them, the AUC
metric of the FLSCSR model reaches 89.17% on the Taobao
dataset, which is 1.16 to 17.97 percentage points higher than
other algorithms. On the Amazon-Movie and TV dataset, the
FLSCSRmodel achieves an AUCmetric of 86.22%, which is
2.02 to 10.58 percentage points higher than other algorithms.
On the yelp dataset, the FLSCSR model achieves an AUC
metric of 93.69%, which is 0.76 to 11.12 percentage points
higher than other algorithms. In summary, the overall perfor-
mance of the improved model is greatly improved compared
to other algorithms.

2) ABLATION STUDY
The improved FLSCSR algorithm is based on the original
backbone network with the addition of a filter layer (denoted
as Filter), a user-specific gating mechanism (denoted as Gat-
ing) and an auxiliary loss (denoted as MMD). In order to
be able to analyze more intuitively the improvement of the
improved FLSCSR compared to the original algorithm, the
work conducts ablation studies on two datasets, Taobao and
Amazon-Movie and TV, and the specific results are shown
in Table 3. As shown in Table 3, Experiment 1 shows the
experimental results of the CLSR algorithm without the addi-
tion of Filter, Gating and MMD. On the Taobao dataset, the
AUC metrics and MRR metrics of the model are 88.01% and
42.74%, respectively. On the Amazon-Movie and TV dataset,
they are 84.2% and 32.08%, respectively.

One key challenge faced by sequential recommendation
models is how to accurately preserve historical informa-
tion while reducing the interference of noise, in order to
achieve accurate and robust predictions. Recent research has
shown that deep learning models based on Fourier Trans-
form can effectively capture the periodicity and frequency
components of time series signals. Inspired by this charac-
teristic, our model applies Fourier Transform to the task of
modeling long-term and short-term interests in sequential
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TABLE 2. Comparison of the performance of the different methods.

TABLE 3. Results of ablation experiments at both AUC and MRR metrics.

recommendation. In Experiment 2, we added a Filter
module to the CLSR algorithm, which utilizes a Fourier
Transform-based filtering algorithm. On the Taobao dataset,
the AUC metrics and MRR metrics of the improved model
improved by 0.67% and 0.27%, respectively, over those of
the original model. On the Amazon-Movie and TV dataset,
the improvement was 0.34% and 0.7%, respectively. The
experimental results demonstrate that the method achieves
more accurate representation and prediction capabilities in
sequential recommendation tasks by utilizing the Fourier
Transform-based filtering algorithm. This indicates that the
Fourier Transform-based filtering algorithm provides a pow-
erful means of representation and modeling in sequential
recommendation, and it has the potential to enhance recom-
mendation performance.

This model considers the entire sequence information and
models it, capturing more global sequence representations
and contextual information. As the global context informa-
tion is expected to be user-specific, supplementing the static
features of the user profile is crucial for personalized rec-
ommendation systems. Therefore, this model incorporates a
user-specific gating mechanism. Experiment 3 is the addi-
tion of the Gating module to the CLSR algorithm. The
model also shows better recommendation performance after
adding the user-specific gating mechanism. On the Taobao
dataset, the AUC and MRR metrics of the improved model
improved by 0.74% and 0.47%, respectively, over those of
the original model. On the Amazon-Movie and TV dataset,
the improvement is 1.32% and 1.34%, respectively. This
demonstrates that integrating both the static features of the
users and dynamic context can enhance the accuracy of the
recommendation system and improve its performance and
user experience.

In recent studies, the GCL4SR model has employed max-
imum mean discrepancy to assist in capturing the global
context in sequential representations, enabling a better under-
standing of user interests and preferences, and generating
personalized recommendations that align more closely with

user preferences. Inspired by auxiliary learning objectives,
this model introduces a representation alignment objective
that integrates both global and local information. This mod-
ule aims to reduce information loss and distortion, thereby
enhancing the accuracy, personalization, and information
consistency of the recommendation system. Experiment 4 is
a further addition of the MMD loss module to the model
of Experiment 3. The improved model shows outstanding
sequence recommendation performance on both datasets.
On the Taobao dataset, the AUC metrics and MRR metrics
improved by 1.11% and 0.74%, respectively, over those of the
original model. On the Amazon-Movie and TV dataset, the
improvement is 1.88% and 1.55%, respectively. The exper-
imental results demonstrate that minimizing the distance
between personalized global contextual long-term and short-
term interest representations and local sequential represen-
tations using MMD contributes to improved accuracy of the
recommendation system, resulting in recommendations that
better align with the users’ actual needs.

Experiment 5 shows the experimental results of the final
improved model under the conditions of adding Filter, Gating
and MMD. On the Taobao dataset, the AUC metrics and
MRR metrics of the FLSCSR model improve by 1.16% and
1.28%, respectively, over those of the original model. On the
Amazon-Movie and TV dataset, the AUC and MRR met-
rics of the FLSCSR model improve by 2.02% and 2.09%,
respectively, over those of the original model. It can be seen
that the improved FLSCSR model has better performance in
recommendation performance after data denoising, adding
user-specific gating mechanism and auxiliary loss to the orig-
inal backbone network.

V. CONCLUSION AND FUTURE WORK
Noisy interactions and data sparsity are pressing problems
in the field of sequence recommendation, and most of the
current research methods use only item-based prediction
loss, which cannot effectively obtain sequence representa-
tions. Therefore, we propose long and short-term interest
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contrastive learning under filter-enhanced sequential recom-
mendation with targeted improvements on the basis of the
CLSR model. The work uses a filtering mechanism to atten-
uate the influence of neural networks by noise, constructs
a user-specific gating mechanism to enable user interests to
reflect unique user preferences. Furthermore, a representa-
tion alignment learning objective is proposed to better learn
sequential representation. Extensive experiments on public
datasets have shown that the FLSCSR model has better rec-
ommendation performance.

Although the method proposed in the work has achieved
good results, there are still some areas for improvement.
Future work will focus on designing alternative ways of
extracting proxies of interest and exploring new auxiliary
function learning tasks to further enhance the performance of
FLSCSR. In addition, the application of the proposedmethod
to the industrial field is another important work in the future.
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