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ABSTRACT Temporal dynamic convolution neural networks (TDY-CNNs) extract speaker embeddings
considering the time-varying characteristics of speech and improve text-independent speaker verification
performance. In this paper, we optimize TDY-CNNs based on the detailed analysis of the network architec-
ture. The temporal dynamic convolution generates attention weight of basis kernels from features defined
by concatenating average channel and frequency data, resulting in a reduction in network parameters by
26%. In addition, the temporal dynamic convolutions replace vanilla convolutions in earlier layers, while
the optimized temporal dynamic convolutions of latter layers use a steady kernel regardless of time bin
data. As a result, Opt-TDY-ResNet-34(×0.50) shows the best speaker verification performance with EER
of 1.07% among speaker verification models without data augmentation including ResNet-based baseline
networks and other state-of-the-art networks. Moreover, we validate that Opt-TDY-CNNs adapt to time-bin
data through various methods. By comparing the inter and intra phoneme distance of attention weights,
it was confirmed that the temporal dynamic convolution uses different kernels depending on the phoneme
groups directly related to the time-bin data. In addition, by applying gradient-weighted class activation
mapping (Grad-CAM) on speaker verification to obtain speaker activation map (SAM), we showed that
temporal dynamic convolution extracts speaker information from frequency characteristics of time bins such
as phonemes’ formant frequencies while vanilla convolution extracts vague outline of Mel-spectrogram.

INDEX TERMS Speaker verification, text-independent, temporal dynamic convolution, temporal data-
dependent kernel.

I. INTRODUCTION
Speaker verification aims to verify whether a test utter-
ance is spoken by the enrolled speaker whose utterances
were pre-recorded. This research topic has been devel-
oped for various applications such as biometric authen-
tication, forensics, security, and speaker diarization, etc.
Recently, speaker representing vectors also known as speaker
embeddings have been extracted using deep neural networks
(DNN), and DNN-based speaker embedding framework has
become a dominant approach to perform speaker verification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Crippa .

One example of speaker embedding is x-vector [1],
which is extracted using the time-delay neural network
(TDNN) [2], [3]. From then, various methods such as
F-TDNN [4], E-TDNN [5], and ECAPA-TDNN [6] have
improved the TDNN based speaker verification. In addi-
tion, neural networks based on VGG [7] and ResNet [8],
which are originally proposed for image recognition in
computer vision, were also applied to speaker verifica-
tion [9], [10], [11] using 2D audio data formant such as spec-
trogram, Mel-spectrogram, and MFCCs. Besides the works
on improving neural network architecture, there have been
other approaches on DNN training methods such as met-
ric learning and adversarial training are applied to extract
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speaker embeddingswith small intra-class distances and large
inter-class distance in various environments [12].

Among previous studies on speaker verification, only
few studies delved into a comprehensive understanding of
speaker embedding networks while most studies merely
focused on improving the verification performance. However,
such approach to deepen the understanding of deep-learning
based speaker verification is essential in order to effectively
improve speaker verification performance and actually apply-
and-assess them in real life uses. One such study observed
the characteristics of frame-level speaker embeddings by
moving the pooling layer to the back end of the neural
network [13]. The results showed that frame-level embed-
dings of vowels and nasals have sufficient information to
discriminate speakers, while fricatives and stops are not use-
ful to discriminate speakers as they show high similarity
scores even when they came from different speakers. Other
studies have also shown that vowels and nasals have major
influences on speaker verification while other phonemes are
less useful [14], [15]. By the way, other phonemes such
as stops, fricatives and affricates are generated from speak-
ers’ vocal tracts exhibiting different acoustic characteristics.
Therefore, they also are acoustically affected by speakers’
unique vocal tracts thus should exhibit speakers’ biometric
information. From the previous studies [13], [14], [15], it can
be inferred that most previous speaker verification models
are biasedly trained to recognize only speaker information
from vowels and nasals. It is a natural consequence consid-
ering that extracting speaker information from the temporal
portion of phonemes having the most distinct speaker infor-
mation is easier than extracting speaker information from
the entire time range. However, such training methods could
result in speaker verification model overfitted to few specific
phonemes, which is not robust enough to be used in real
circumstances. As other phonemes do have sufficient speaker
information also, speaker verification models’ performance
and robustness would be improved if we could train them
to extract speaker information from more phonemes whether
they are voiced or not.

In the text-independent speaker verification task, simi-
lar speaker information should be extracted from various
utterances composed of different phoneme configurations
given the utterances are form the same speaker. However,
phonemes are generated through different pathways and
mechanisms from speakers’ vocal tract, so acoustic char-
acteristics differ from each other. Thus, phonetic variabil-
ity arising from random text presents a major challenge
in achieving accuracy in text-independent speaker recog-
nition [16], and speaker embedding extraction algorithms
to consider phoneme diversity have been proposed. Before
the development of DNN-based models, segmentation of
speech signals into broad phonetic classes was used as a pre-
processing step, and speaker models were structured pho-
netically [17], [18], [19], [20]. Gaussian mixture models
were used to model various speaker features that depend

on phonetic variability [21], [22]. DNN-based models have
dramatically improved text-independent speaker verification
performance by proposing a segment-level training approach
rather than frame-level containing phonetic variability [1].
Considering that previous DNN-based speaker verification
methods apply convolution which extract speaker informa-
tion using fixed trained kernel [13], [14], [15], single static
kernel on each convolution layer would likely to result in
extracting information from specific phoneme groups only:
vowels and nasals. It is almost impossible to obtain single
convolution kernel capable of extracting speaker information
from different phonemes having varied acoustic characteris-
tics. To overcome such limitation, we proposed an adaptive
convolutional neural network (ACNN) in which the kernels
adaptively change along time segments of time-frequency
domain input [23]. ACNN was applied to baseline models
and improve speaker recognition performance compared to
the conventional CNN-based models. This study proved that
a temporal-data dependent network such as ACNN is suit-
able to consider different text in text-independent speaker
recognition tasks. Based on this study, we proposed a tem-
poral dynamic convolutional neural network (TDY-CNN),
a generalized network of ACNN [24]. TDY-CNNuses kernels
extracting speaker information adapts to time bins rather
than time segments. TDY-CNN improved text-independent
speaker verification performance by effectively capturing
time-varying speech information arising from phonemes
varying over time. However, there are two drawbacks of TDY-
CNN: large network parameters and insufficient analysis of
kernels. First drawback is that TDY-CNNs have approxi-
mately 9 times larger network parameters compared to con-
ventional CNN-based models. This can lead to overfitting
and instability of training, preventing the networks from
achieving the best performance. Second drawback is that the
previous study showed the relationship between kernels and
phoneme groups through several example utterances. This
analysis does not generalize the hypothesis that TDY-CNNs
extract speaker information considering the time-varying
information such as phonemes in text-independent situation.
In addition, it is unknown whether the kernels depending on
the time bins data are suitable for extracting speaker informa-
tion. Thus, it is necessary to improve the network structure
and verify the hypothesis through new analysis techniques.

In this paper, we optimized the structure of temporal
dynamic convolutional neural networks (TDY-CNNs) and
named the resulting architecture Opt-TDY-CNNs. Based on
the analysis and case studies on the utilization of channel and
frequency data in time bins, we determined that the attention
weights of kernels were generated by average of channel and
frequency data. In addition, through the analysis of kernel
variation with different layers, optimized temporal dynamic
convolutions are only applied to the earlier layers where
phoneme’s acoustic information is dominant in the network.
Moreover, we analyzed how Opt-TDY-CNNs operate on dif-
ferent phonemes without providing phoneme information
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during training using intra/inter-phoneme distance of atten-
tion weights and gradient-weighted class activation mapping
(Grad-CAM) [25].

The remainder of the paper is organized as follows. Sec-
tion II explains related works on speaker recognition models
considering phoneme information and input-adaptive net-
works. Section III introduces the structure of optimized
temporal dynamic convolutional neural network (Opt-TDY-
CNN) and its differences from conventional TDY-CNN.
Section IV describes experimental setup and details, and
section V shows the experiment results and discussion.
Lastly, Section VI presents conclusions.

II. RELATED WORKS
A. EXTRACTION OF SPEAKER EMBEDDING CONSIDERING
PHONETIC INFORMATION
Utterances are composed of rapidly varying phonemes, those
having different acoustic characteristics due to different gen-
eration mechanisms. Therefore, it is important to extract
speaker information from varying acoustic characteristics of
phonemes in text-independent speaker verification. Conse-
quently, there have been studies proposed to extract speaker
embeddings considering phonetic information have been
proposed. These studies can be broadly categorized into
two categories: multi-task learning and domain-adversarial
learning.

Multi-task learning [26], [27] aims to improve regulariza-
tion and performance by leveraging domain-specific informa-
tion contained in the data of inter-related tasks. In speaker
verification task, phonetic information has been considered
as domain-specific information. Speaker embedding extrac-
tion layers of speaker verification model are shared with
related tasks, and models are trained simultaneously by min-
imizing criteria for speaker classification and related tasks.
By incorporating tasks those discriminates text phrases or
phonemes into speaker verification as multi-task learning,
text-independent as well as text-dependent speaker verifica-
tion performance have been improved [28], [29], [30], [31].

Similarly, domain-adversarial learning [32] is domain
adaptation approach for predicting results by training neural
networks to extract features excluding domain information of
data, so that model cannot discriminate which domain (source
or test) of input data is from. Gradient reversal layer (GRL)
is added in front of the domain discriminating network, and
model is trained to prevent domain discrimination. This idea
is applied to text-independent speaker verification by replac-
ing the domain-specific network with phoneme recognition
network, so that extracted speaker embeddings would not
include phoneme information [33], [34]. Such approaches
successfully enhanced speaker verification performance.

Multi-task and domain-adversarial learning improve text-
independent speaker verification performancewithout chang-
ing speaker embedding extraction network. These results
indicate that the phoneme information has both neces-
sary and unnecessary information for speaker verification.

However, both learning methods cannot selectively utilize
portions of phoneme information due to the models’ structure
and phoneme-related training criteria. On the other hand,
TDY-CNN [24] can consider phoneme information naturally
through temporal adaptive structure. In addition, TDY-CNN
is trained using speaker verification criteria only without
requiring additional phoneme information.

B. DYNAMIC NEURAL NETWORK
Conventional deep neural networks have fixed structure and
parameters regardless of input given to the network after
training. So there are inevitable limitations in representa-
tion power, efficiency, and interpretability [35], [36]. Unlike
static neural networks, dynamic neural networks adapt their
network structures or parameters to the input contents. For
example, early exiting [37], [38], [39] and skipping lay-
ers [40], [41], [42], [43], [44] alter network structure by
changing networks’ depth depending on the input. Also,
there are networks those change width by selecting neu-
rons [45], [46], [47] or branches [48], [49], [50], [51].
Unlike such networks with dynamic structure, networks
with dynamic parameters have fixed network structures and
change network parameters on the inputs instead. There
are two main approaches to obtain networks with dynamic
parameters: parameter generation and parameter adjustment.
A straightforward way to adapt parameter on inputs is
to generate parameters directly from the input [52], and
such approaches on CNNs and RNNs have been pro-
posed [53], [54], [55]. Directly generating network parame-
ters increases computational cost exponentially as it requires
many parameters to generate kernels with many channels.
On the other hand, parameter adjustment methods adjust
trained parameters adaptively, requiring relative less compu-
tation to adjust parameters. CNN-based dynamic networks
with parameter adjustment perform soft attention on basis
convolutional kernels for adaptive ensemble of parameters
with minimal increase in computation [56], [57], [58], [59].
Although various dynamic neural networks have been pro-
posed, these studies have been mainly conducted in com-
puter vision [57], [60], [61] and natural language process-
ing [62], [63].

Recently, various dynamic neural networks for speaker
verification have been proposed [23], [64], [65]. Adaptive
X-vector model [64] adjusts convolution parameters depend-
ing on the utterance by linear combination of trained con-
volution kernels and biases. Adaptive convolutional neural
network (ACNN) [23] generates convolution kernels depend-
ing on short time segments using the time and frequency
domain information of each time segment. In addition,
global-local information-based dynamic convolution neural
network (GLIDCNN) [65] generates convolution kernels
depending on time-frequency regions using local and global
features of utterance. These studies attempt to apply dynamic
neural networks to text-independent speaker verification at
the segment-level. On the other hand, acoustic characteristics
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FIGURE 1. Structure of the temporal dynamic convolution for speaker
verification. The temporal dynamic convolution result is derived as a
weighted sum of yn which is the convolution result of k-th basis kernel.

of speech change over time, and a time bin is the minimum
unit in time-frequency domain data. To fully consider ran-
dom phoneme information changing over time, we proposed
dynamic neural networks to text-independent speaker verifi-
cation task at time-bin-level to consider speaker information
in time-varying data [24].

III. OPTIMIZED TEMPORAL DYNAMIC CONVOLUTIONAL
NEURAL NETWORKS
A. TEMPORAL DYNAMIC CONVOLUTION
The temporal dynamic convolution uses kernels adapted to
time bins data. The kernel is obtained byweighted summation
of basis kernels using attention weights, similar to the ker-
nel adjustment mechanisms of conditionally parameterized
convolution (CondConv) [58] and dynamic convolution [59].
However, unlike CondConv and dynamic convolution that
use one kernel for one input, the temporal dynamic con-
volution uses different kernels for every single time bin of
one input. However, kernel adjustment and convolution for
every single time bin requires a lot of memory and com-
putation. For computational efficiency of temporal dynamic
convolution, we aggregated convolution results of basis ker-
nels using attention weights as shown in Fig. 1. Given a
time-frequency domain feature x∈RCin×F×T asmodule input,
the convolution result yn∈RCout×F ′

×T ′

of the n-th basis kernel
Wn∈RCout×Cin×K×K and bias bn∈RCout is computed as

yn = Wn ∗ x+ bn
s.t. n = 1, 2, 3, · · · ,N , (1)

where ∗ denotes convolution. Cin and Cout are the numbers
of input and output channels. F and F ′ are the number of
frequency bins of input and output, respectively. T and T ′

are the number of time bins of input and output, respectively.
K is the (square) kernel shape, and N is the number of basis
kernels and biases. A total of N convolution results yn are

FIGURE 2. Structure of the attention weight generator 8 in the temporal
dynamic convolution. The attention weight is derived from a feature
generated by concatenating average of frequency and channel.

aggregated using the attentionmatrixπn ∈ RN×T ′

as follows:

y = σ

(∑N

n=1
yn ⊗ πn

)
, (2)

where ⊗ denotes element-wise multiplication, σ denotes the
non-linear activation function ReLU, and y∈RCout×F ′

×T ′

is
output of temporal dynamic convolution. The attentionmatrix
πn represents N -dimensional attention weights those differ
by time bins of time features T ′. As different attentions
are utilized on different time bins to derive the output, the
temporal dynamic convolution is the same as the convolution
using kernels adapted to time bins.

B. OPTIMIZED ATTENTION WEIGHT GENERATOR
In the overall process of the temporal dynamic convolution,
attention weight generator 8 produce N-dimensional atten-
tion weight from channel Cin and frequency F data of input
for each time bin to implement kernels adapted to time bin.
Both frequency and channel data contain speaker informa-
tion. The conventional temporal dynamic convolution [24]
computes the attention weight from a feature xfc ∈ RFCin×T

generated by flattening along the channel and frequency
dimensions. This has the advantage of being able to con-
sider all information within each time bin. However, since
the attention weights are extracted from FCin-dimensional
data, computational complexity increases exponentially as
the channel and frequency dimensions increase.

To efficiently utilize the channel and frequency data for
each time bin, we proposed a novel approach to represent
the channel-frequency 2-dimensional data as a 1-dimensional
channel vector and a 1-dimensional frequency vector. The
attention weight generator computes attention weights from
a feature generated by concatenating xf ∈ RF×T and xc ∈

RCin×T as shown in Fig. 2. xf produced by average pooling
along channel axis, and xc produced by average pooling along
frequency axis. Two 1D convolution layers are applied to
the concatenate feature xf+c∈R(F+Cin)×T , and the attention
weights are normalized by softmax function as follows:

πn = 8 (x) = σsoft (conv(σ (conv(xf+c)))), (3)

where σsoft denotes the softmax function and conv represents
a 1D convolution operation. Softmax constraint compresses
the space of aggregated kernels, so it can easily train the
attention with high accuracy using less kernels per layer [59].
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TABLE 1. Architectures of Proposed Opt-TDY-ResNet-34(×0.25).

This approach generates the kernel with each time bin from
F + Cin data, in contrast to the conventional TDY convolu-
tion that creates the kernel with each time bin from F×Cin
data. The concatenate feature has both compressed channel
and frequency information. So that, not only input feature
dimension of attention weight generator is greatly reduced,
but also information is preserved to enhance the performance.

The conventional attention weight generator and the opti-
mized attention weight generator have the same hidden layer
size and the number of basis kernels, except for the input
feature dimension. When the hidden layer size is Ch and the
number of basis kernels is N , the conventional generator has
FCinCh + ChN of the number of parameters and 2FCinCh +

2ChN of floating-point operations (FLOPs). The optimized
generator has (F+Cin)Ch +ChN of the number of parameters
and 2FCin + 2(F + Cin)Ch + 2ChN of FLOPs containing
average pooling operations. In general, F + Cin is smaller
thanFCin, so the optimized generator has fewermodel param-
eters and less FLOPs than the conventional generator. Thus,
we optimize temporal dynamic convolution by reducing the
number of parameters and operations.

C. OPTIMIZED TEMPORAL DYNAMIC CONVOLUTIONAL
NEURAL NETWORK FOR TEXT-INDEPENDENT SPEAKER
VERIFICATION
ResNet [8] based on 2D convolution has recently been
applied to the field of speaker recognition as well as
image classification, showing good recognition perfor-
mance [9], [10], [11], [66], [67], [68]. In this paper,
we selected ResNet-18 and ResNet-34 as baseline net-
works for text-independent speaker verification. The chan-
nels of ResNet-18 and ResNet-34 are modified by half
(ResNet-18(×0.50) and ResNet-34(×0.50)) and a quarter
(ResNet-18(×0.25) and ResNet-34(×0.25)) to reduce the
computation load and prevent overfitting. To extract speaker
information by adapting to each time bin, TDY-CNNs [24]

were implemented by utilizing the temporal dynamic con-
volution instead of the vanilla convolution in ResNet-18
and ResNet-34. The main characteristic of conventional
TDY-CNNs is the replacement of all vanilla convolutions
with temporal dynamic convolutions. However, if the atten-
tion weight remains consistent for each time bin, the temporal
dynamic convolution is equivalent to the vanilla convolu-
tion. This case leads to an increase in model parameters
without any significant performance improvement. In light
of this concern, we investigated the attention weight of
temporal dynamic convolutions in each layer and observed
that consistent attention weights mostly emerged in the later
layers of the networks. Further details regarding this inves-
tigation will be discussed in Section V. Thus, we utilized
the temporal dynamic convolution with optimized attention
weight generator in earlier layers and the vanilla convolution
in later layers. We decided to call this optimized tempo-
ral dynamic convolutional neural network (Opt-TDY-CNN)
by prefixing Opt-TDY- to the baseline network name. The
structure of Opt-TDY-ResNet-34(×0.25) is shown in Table 1,
and temporal dynamic convolution is applied in Conv2 and
Conv3 layers. The networks consist of a first convolution
layer that extracts global features [59] and four residual layers
with convolution. Opt-TDY-ResNet-18(×0.25), Opt-TDY-
ResNet-18(×0.50) and Opt-TDY-ResNet-34(×0.50) also
have the same structure, but only the number of layers
and channels are different. Nonlinear function ReLU and
batch normalization are applied after every convolution. The
extracted frame-level speaker features are aggregated by
attentive statistical pooling (ASP), and the utterance-level
speaker embedding is a 512-dimensional vector of linear
layer result. We tried to confirm whether Opt-TDY-CNN is
suitable for text-independent speaker verification and analyze
how the network operates on different time bins.

IV. EXPERIMENTAL SETUP
A. DATASET
We trained the text-independent speaker verification models
using VoxCeleb2 [10] development set with total 1,092,009
utterances for 5,994 speakers. The models are tested on
VoxCeleb1 dataset [9] that has no overlap with VoxCeleb2
development set. Original Voxceleb1 test set contains 37,720
pairs generated from 40 speakers. Voxceleb1 may not provide
sufficient regularization performance due to the small number
of speakers, so we test the models on VoxCeleb1-E test set
consisting of 581,480 pairs generated from 1,251 speakers.
In addition, VoxCeleb1-H test set consisting of 552,536 pairs
of the same nationality and gender is also utilized to verify
the model performance.

B. INPUT REPRESENTATIONS
For input of speaker verification models, 64-dimensional log
Mel-spectrograms are extracted using a hamming window
of width 25ms with step 10ms and number of fast Fourier
transform 512. We randomly crop the Mel-spectrogram
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TABLE 2. Text-Independent Speaker Verification Performance of
Opt-TDY-ResNet-34(×0.25) on Different Number of Basis Kernels.

TABLE 3. Text-Independent Speaker Verification Performance of
Opt-TDY-ResNet-34(×0.25) on Different Pooling Layers.

segment for 2 seconds from each utterance and use the
Mel-spectrograms with a size of 64×200 for training with no
data augmentation. Mean and variance normalization is per-
formed on every frequency bin of the Mel-spectrogram [69].
In Opt-TDY-ResNets, the TDY convolution in Conv2 layer
determines the kernel for each 200 time bins, and the TDY
convolution in Conv3 layer determines the kernel for each
100 time bins.

C. LOSS FUNCTION AND IMPLEMENTATION DETAILS
Our implementation is based on the PyTorch with 4 NVIDIA
TITAN RTX. The Adam optimizer with weight decay 5 ×

10−5 is used. An initial learning rate is 10−3 decreasing by a
factor of 0.75 every 10 epochs. Batch normalization is used
with a fixed mini-batch size of 256 on each GPU, and no
data augmentation is performed during training. For TDY-
CNN, near-uniform attention in early training epochs can
address this optimization problem [59], so we reduced the
temperature in softmax constraint from 30 to 1 linearly in the
first 10 epochs.

The networks are trained using a loss function combining
the Angular Prototypical (AP) loss with the vanilla softmax
loss. It demonstrates a better verification performance than
using each or other combinations of the loss functions [66].
In addition, we do not apply data augmentation and score
normalization [70], [71], which are additional performance
improvement techniques, to isolate the impact of temporal
dynamic convolution on performance improvement, specif-
ically regarding time-varying characteristic of speech.

D. EVALUATION METRICS
We sample ten 4-second segments at the same intervals from
each test segment, and compute the 10× 10 (total 100) cosine
similarities between every pair of segments. The mean of the
100 similarities is used as the final pairwise score [10], [66].
Based on the average similarity score, we calculate Equal
Error Rate (EER) and the minimum value of the cost function
Cdet as evaluation metrics of verification. EER is the rate at
which both acceptance and rejection errors are equal. The
Cdet is a weighted sum of false-reject and false-accept error

TABLE 4. Text-Independent Speaker Verification Performance of
Opt-TDY-ResNet-34(×0.25) using Different Features for Generating
Attention Weight.

probabilities as follows:

Cdet = Cmiss × Ptar × Pmiss + Cfa × (1 − Ptar ) × Pfa (4)

wheremissed detection costCmiss is 1, spurious detection cost
Cfa is 1, and priori target probability Ptar is 0.05 [28], [35].

V. RESULT AND ANALYSIS
In this section, ablation studies are performed on Opt-TDY-
ResNet-34(×0.25), and we evaluate the Opt-TDY-CNNs for
text-independent speaker verification. Also, we analyze the
kernel variation and operation of temporal dynamic convolu-
tion with respect to time bins data with phoneme information.

A. TEXT-INDEPENDENT SPEAKER VERIFICATION USING
OPTIMIZED TEMPORAL DYNAMIC CONVOLUTIONAL
NEURAL NETWORK
1) THE NUMBER OF BASIS CONVOLUTION KERNELS
The temporal dynamic convolution produces kernels as
weighted summation of basis kernels. The number of basis
kernels N is directly related to the model complexity
affecting the speaker verification performance. We com-
pared speaker verification performance of Opt-TDY-ResNet-
34(×0.25) with various N and the result is shown in Table 2.
Text-independent speaker verification performance is getting
improved untilN reaches 8 to have the best performance with
EER of 1.32%. On the contrary, the performance is degraded
when N is 10 because of the difficulty of optimization and
the overfitting as the representation power of the model
increases, similar to previous result [59]. Thus, the temporal
dynamic convolution using 8 basis kernels is an optimal for
text-independent speaker verification, so we decided that N is
8 as default setup.

2) TEMPORAL POOLYING LAYER
The temporal pooling layer that converts frame-level features
into an utterance-level feature is one of the factors influ-
encing the speaker verification performance, so we com-
pared the performance of Opt-TDY-CNN on different type of
pooling layers. Table 3 shows the text-independent speaker
verification performance of Opt-TDY-ResNet-34(×0.25)
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TABLE 5. Text-Independent Speaker Verification Performance of
Opt-TDY-ResNet-34(×0.25) depending on Application of Optimized
Temporal Dynamic Convolution and Vanilla Convolution to Each Layer.

using following temporal pooling methods: average pool-
ing [72], [73], [74], statistical pooling [1], [75], self-attentive
pooling [76], [77], [78], and attentive statistical pooling [79].
Self-attentive pooling and attentive statistical pooling meth-
ods utilize self-attention mechanism, whereas average pool-
ing and statistical pooling methods apply the same weight
to all frame-level features. The self-attention mechanism of
temporal pooling layer provides additional improvement on
the speaker verification performance, and attentive statistical
pooling achieves the best performance with EER of 1.32%.
Since temporal dynamic convolution extracts frame-level
speaker features from all frames and self-attention mecha-
nism excludes unnecessary frame-level speaker features in
non-speech frames, this result demonstrates that the two
methods work complementarily to improve speaker verifi-
cation performance. Thus, we selected the attentive statisti-
cal pooling (ASP) method as the temporal pooling layer of
Opt-TDY-CNN and used it for the text-independent speaker
verification.

3) ATTENTION WEIGHT GENERATION USING DIFFERENT
FEATURES
The attention weight of basis kernels is generated from
each time bin data of input using two fully-connected lay-
ers. The data of each time bin consists of channel and fre-
quency dimensions, and speaker verification performance
varies depending on which dimension of data is used. So,
we compare the performance of Opt-TDY-ResNet-34(×0.25)
generating attention using average frequency features, aver-
age channel features, concatenated features, and flatten fea-
ture. The average frequency and channel features are derived
by applying average pooling to channel and frequency dimen-
sion of each time bin, respectively. The concatenated feature
is derived by concatenating average frequency and channel
features. The flattened feature is a 1-dimensional vector
consisting of all channel-frequency data, and conventional
TDY-CNN [24] generated attention using the flatten feature.
In this ablation study, temporal dynamic convolution replaces
all vanilla convolution except the first convolution. Table 4
shows the speaker verification results of Opt-TDY-ResNet-
34(×0.25) using different features for generating attention
weight. Comparing the effect of channel and frequency
dimension, Opt-TDY-ResNet-34(×0.25) using average chan-
nel features outperformedOpt-TDY-ResNet-34(×0.25) using

FIGURE 3. Standard deviation of attention weights for 8 basis kernels in
Conv2, Conv3, Conv4, and Conv5 layers of Opt-TDY-ResNet-34(×0.25).

average frequency features. This result indicates that channel
dimension data has more speaker representation power than
frequency dimension data. Since not only channel dimen-
sion but also frequency dimension is able to represent time
bin data, Opt-TDY-ResNet-34(×0.25) using concatenated
features showed the best performance as EER of 1.32%.
In addition, Opt-TDY-ResNet-34(×0.25) using concatenated
features showed better performance by utilizing fewer net-
work parameters and FLOPs compared to TDY-ResNet-
34(×0.25) that utilizes all data of each time bin. This may
be due to either the presence of irrelevant information in all
data of each time bin or underfitting caused by a large number
of model parameters. Thus, generating attention weight using
concatenated features in temporal dynamic convolution is
appropriate for the text-independent speaker verification.

4) TEMPORAL DYNAMIC CONVOLUTION AT DIFFERENT
LAYERS
Opt-TDY-CNNs refine only speaker information from spec-
trogram that includes speaker, phoneme, intonation informa-
tion, etc. The temporal dynamic convolution extracts speaker
information by adapting to the temporal information of layer
input, so it should be applied from the earlier layer of
network that utilizes the data with relatively large change
over time. We compared text-independent speaker verifica-
tion performance when temporal dynamic convolution was
sequentially applied from Conv2 to Conv5 of Opt-TDY-
ResNet-34(×0.25) as shown in Table 5. ResNet-34(×0.25)
using only vanilla convolution achieved EER of 1.52%,
and all Opt-TDY-ResNet-34(×0.25) outperforms ResNet-
34(×0.25). The performance improved as the number of
layers using temporal dynamic convolution increased. Opt-
TDY-ResNet-34(×0.25) using temporal dynamic convolu-
tion at all layers, which is the same structure of TDY-CNN,
achieves the best performance with EER of 1.32%. The best
performance is also achieved with temporal dynamic con-
volution applied to Conv2 and Conv3 layers, and even the
network size decreased significantly from 12.1M to 3.33M in
these two best EER cases. To analyze the cause of this result,
we compared the standard deviation of attention weights
for 8 basis kernels in different layer groups across 4,874
utterances of Voxceleb1 test dataset [9], as shown in Fig. 3.
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TABLE 6. Text-Independent Speaker Verification Performances of Networks on Voxceleb1, Voxceleb1-E, and Voxceleb1-H Test Sets without Data
Augmentation.

The average standard deviations of attention weights for
Conv2 and Conv3 layers are 0.065 and 0.110, respectively.
In contrast, for Conv4 and Conv5 layers, the standard devi-
ations of attention weights are 0.006 and 0.001, indicating
that the attention weights generated from time bins data are
almost identical. Since the kernel is determined by weighted
summation of basis kernel, the kernels of temporal dynamic
convolution in Conv4 and Conv5 almost constant regardless
of the time bins data. Thus, this result indicates that temporal
dynamic convolution is almost equivalent to vanilla convo-
lution in Conv4 and Conv5 layers. The reason is that only
the speaker information but not the time-varying information
remains as the dominant features in the outputs of the rel-
atively late layers. In addition, applying temporal dynamic
convolution to all layers like TDY-CNNs increases the chance
of instability of parameter optimization, which can lead to
performance disorder. Thus, we applied temporal dynamic
convolution only for Conv2 and Conv3 layers in an optimal
sense.

5) TEXT-INDEPENDENT SPEAKER VERIFICATION RESULTS
The structure of Opt-TDY-CNN was determined through
the various ablation studies in previous sections. Moreover,
we compared text-independent speaker verification perfor-
mance between baseline networks using vanilla convolution
and Opt-TDY-CNNs. Table 6 shows the speaker verification
performance of ResNets and Opt-TDY-ResNets without data
augmentation. ResNets, the baseline networks, had the same
structure with ASP as Opt-TDY-ResNets in Table 1, but uti-
lized only vanilla convolution. Among the baseline networks,
ResNet-34(×0.50) shows good speaker verification perfor-
mance with EER of 1.27% on Voxceleb1 test set. Opt-TDY-
ResNet-34(×0.50) outperforms ResNet-34(×0.50) with the
best speaker verification performance of EER 1.07% on
Voxceleb1 test set. Moreover, all Opt-TDY-ResNets outper-
form ResNets in Voxceleb1, Voxceleb1-E, and Voxceleb1-H
test sets.

Although temporal dynamic convolution uses the same
channel and kernel size as vanilla convolution to extract
speaker information, the speaker verification performance
is improved by utilizing kernels adapted to the information
of every time bins. However, temporal dynamic convolution
requires additional computational effort for generating the
kernel that adapts to time bins using eight basis kernels. Thus,
it is necessary to compare speaker verification performance
between the baseline networks and Opt-TDY-CNNs under
the similar number of parameters. We increased channel size
of the baseline networks by the ratio in parentheses next to
the network name so that the number of parameters become
close to that of Opt-TDY-CNNs. As shown in Table 6, the
channel increment of ResNets improved speaker verification
performance compared to the conventional ResNets, but they
do not outperform the Opt-TDY-ResNets. This indicates that
the kernel adapted to time bin is more effective than simple
channel increasing of static kernel to improve speaker ver-
ification performance. That is, Opt-TDY-CNN considering
changes in acoustic characteristics over time is effective for
text-independent speaker verification.

In addition, we also compared text-independent speaker
verification performance between Opt-TDY-ResNets and
the state-of-the-art networks: ResNet-50 [10], Thin-ResNet-
34 [11], RawNet2 [80], ResNet34 Q/SAP [67], ResNet34
H/ASP [67], and ECAPA-TDNN(C=1024) [6]. These state-
of-the-art networks were trained with Voxceleb2 without
data augmentation and tested with Voxceleb1, just like
our experiment conditions. We used the pre-trained net-
work results of the state-of-the-art networks, and the result
of ECAPA-TDNN was carried out by our implementa-
tion. The text-independent speaker verification results of the
state-of-the-art networks are shown in Table 6. Opt-TDY-
ResNet-34(×0.50) with EER of 1.07% has the best speaker
verification performance compared to the state-of-the-art net-
works. From the speaker verification results, we conclude that
TDY-CNN are more effective for text-independent speaker
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TABLE 7. Phoneme Groups of 58 Phonemes in TIMIT Dataset.

verification than the state-of-the-art networks using vanilla
convolution.

B. ANALYSIS OF KERNELS ON TEMPORAL DYNAMIC
CONVOLUTION WITH RESPECT TO PHONEMES
Opt-TDY-CNN improves the text-independent speaker veri-
fication performance compared to the baseline networks by
extracting speaker information using kernels adapted to time
bins. In this section, we compare the variation of the ker-
nels on different phonemes and analyze the time-frequency
characteristics of utterances from which the kernels extract
speaker information.

1) VARIATION OF KERNELS WITH RESPECT TO PHONEMES
As the first step in a detailed analysis of Opt-TDY-CNN,
we analyzed the kernel variation of temporal dynamic con-
volution depending on the information of time bins to verify
how the temporal dynamic convolution adapts to utterances
for the text-independent speaker verification. The smallest
unit that can split utterances is phonemes, so the kernels
of temporal dynamic convolution are compared depending
on the phoneme information corresponding to time bins.
In addition, the kernels of temporal dynamic convolution
are obtained by the weighted summation of basis kernels,
so attention weights of basis kernels indicate the input adapta-
tion tendency of the kernel. Thus, we focus on the correlation
between the attention weights and corresponding phonemes
on different layer depths.

In this experiment, we used TIMIT dataset [81] which
provides 6,300 utterances with 58 phoneme labels from
630 speakers. A total of 58 phonemes are categorized into
five groups (vowels; semivowels and glides; nasals; fricatives
and affricates; stops and closures), as shown in Table 7.
We denote these five phoneme groups as vowels, semivowels,
nasals, fricatives, and stops, respectively. Attention weights
are extracted on the five phoneme groups from the pre-
trained Opt-TDY-ResNet-34(×0.50), which showed the best
performance of 1.07%EER. In addition, attentionweights are
also compared at two layers, Conv2 and Conv3, in network
description of Table 1. Conv layers of ResNet are composed
of multiple convolutions, so the attention weights of the
intermediate temporal dynamic convolution in the layers are
compared.

In order to confirm the correlation between the attention
weights and the five phoneme groups, we visualized the atten-
tion weights distribution with respect to phonemes. Among

FIGURE 4. Low-dimensional PCA projection of attention weights in
speaker (a) MPDF0 and (b) FSLS0 for Conv2 and Conv3 layers on five
phoneme groups using Opt-TDY-ResNet-34(×0.50). Semivowels label
contains glides, fricative label contains affricative, and stops label
contains closures. The attention weights of temporal dynamic convolution
are phoneme-dependent in both speakers.

the 630 speakers in TIMIT dataset, speaker MPDF0 with
the largest variance of attention weights and FSLS0 with the
smallest variance of attention weights are selected. The atten-
tion weights of MPDF0 and FSLS0 are visualized presenting
five phoneme groups at Conv2 and Conv3 layers using a
principal component analysis (PCA) applied to the attention
weights of 8 basis kernels as shown in Fig. 4. The attention
weights distribution of semivowels is similar to the distribu-
tion of vowels, and the attention weights distribution of stops
is similar to the distribution of fricatives. The distributions of
these two groups are close within their own group while the
groups are distinctively distributed. The attention weights of
nasals are located close to the vowels, but they are grouped
separately. Based on these results, it can be inferred that the
attention weights vary depending on the phoneme groups
corresponding to each time bin.

However, with only a few samples, we cannot verify the
hypothesis that the temporal dynamic convolution utilizes
different kernels depending on the time-varying information
such as phonemes in time bins. Thus, we tried to compare the
Euclidian distance between the attention weight distributions
extracted from 6,300 utterances in TIMIT dataset by consid-
ering phoneme information of time bins. An average attention
weight is assigned as the centroid of attention weights in each
phoneme group. The inter-phoneme distance, which is the
distance between the attention weights of phoneme groups,
is defined as the Euclidian distance between the centroid

60654 VOLUME 11, 2023



S.-H. Kim et al.: Analysis-Based Optimization of TDY-CNN for Text-Independent Speaker Verification

TABLE 8. Average intra-phoneme distance and average inter-phoneme
distance of attention weights at (a) Conv2 and (b) Conv3 layers on five
phoneme groups in TIMIT dataset.

attention weights. The intra-phoneme distance, which is the
distance within attentionweights of the same phoneme group,
is defined as average Euclidian distance of the attention
weights from the centroid attention weight. The inter and
intra-phoneme distance calculation are performed on the
utterances within the same speaker in order to exclude the
effect of speaker variation on the adaptive kernel. We average
the inter and intra-phoneme distances for 630 speakers, and
the results are shown in Table 8.

Diagonal values indicate the average intra-phoneme dis-
tance, and upper triangular values indicate the average
inter-phoneme distances. At Conv3 layer, the average
inter-phoneme distance between vowels and semivowels is
the shortest distance of 0.054. Since this distance is about
1/4 of the average intra-phoneme distances of 0.166 and
0.205, the attention weights distributions of vowels and
semivowels are close together. This result indicates that
the attention weights of vowels and semivowels are similar.
Likewise, fricatives and stops groups also show a short
inter-phoneme distance of 0.111, which is about 1/3 of the
average intra-phoneme distances of 0.166 and 0.205, so frica-
tives and stops have similar attention weights. However, the
average inter-phoneme distance between vowels and frica-
tives is 0.575, which is about 3.5 times larger than the average
intra-phoneme distance of vowels. This means that the atten-
tion weights of vowels and fricatives are not similar. Nasals
also have different attention weights compared to the frica-
tives because the average inter-phoneme distance between
nasals and fricatives is the largest distance of 0.580. The
average inter-phoneme distance between vowels and nasals
is 0.170, so the attention weights of nasals are similar to
the attention weights of vowels rather than fricatives, but not
as semivowels. These tendencies of inter and intra-phoneme
distances of phonemes are also shown at Conv2 layer. Thus,
these results imply that the attention weights of temporal
dynamic convolution are changed with respect to the three
phoneme groups: vowels and semivowels; fricatives and
stops; and nasals.

TABLE 9. Average Intra-Phoneme Distance and Average Inter-Phoneme
Distance of Attention Weights at Conv2 and Conv3 Layers on Three
Phoneme Groups in TIMIT Dataset.

Moreover, we compared the inter/intra-phoneme distances
of attention weights between these three phoneme groups,
and the results are presented in Table 9. Regarding the
fricatives and stops group, the inter-phoneme distances
between this group and the other two phoneme groups were
comparable to the sum of the intra-phoneme distances within
each group. Specifically, distance between the centroids of
the two distributions is similar to the sum of the standard
deviations of each group. This result indicates that the atten-
tion distributions do not overlap significantly, implying that
the attention weights of the fricatives and stops group differ
significantly from the other two groups. On the other hand,
the inter-phoneme distance between the nasals group and
the vowels and semivowels group appeared similar to the
intra-phoneme distance within each group. More precisely,
the distance between the centroids of the two distributions
was comparable to the standard deviations of each group. This
result suggests the existence of some similarities in the atten-
tion weights between the nasals group and the vowels and
semivowels group. However, it is important to note that these
similarities do not indicate a completely consistent attention
pattern between the two groups. These trends observed in
phoneme distances alignwith the results presented in Table 8.
Another noteworthy observation is that the intra-phoneme
distance within the vowels and semivowels group is similar
to the intra-phoneme distances within the vowels group and
the semivowels group. This implies that the attention weights
of the vowels group and the semivowels group are almost
identical, a similarity also observed in the fricatives and stops
group. Thus, we confirm that the attention weights can be
categorized into the three distinct phoneme groups.

Interestingly, the tendency of attention weight distribu-
tions depending on the phoneme groups are related to the
phoneme generation mechanism and its acoustic character-
istics. The pronounced sounds of vowels and semivowels
are dominantly affected by vocal cords and tract. Phonemes
of vowels and semivowels have similar acoustic character-
istics, so the attention weights of vowels and semivowels
are similar. In addition, the pronounced sounds of nasals are
dominantly affected by nasal cavity. The vowels, semivowels,
and nasal also have similar acoustic characteristics based
on resonance, but they are slightly different due to different
production path. For this reason, the attention weights of
nasals are distributed relatively far from the attention weights
of vowels and semivowels. On the other hand, the pronounced
sounds of fricatives are dominantly affected by the turbulent
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FIGURE 5. Speaker activation maps of Conv2 and Conv3 layers in ResNet-34(×0.50) and Opt-TDY-ResNet-34(×0.50) for (a) SX282 by MPDF0 and (b) SX66
by FSLS0.

sound caused at the constriction in mouth cavity, and the
stops involve abrupt and impulsive sounds. Phonemes of
fricatives and stops have noise-like acoustic characteristics
so that they have similar attention weights. However, the
noise-like acoustic characteristics share no similarity with
characteristics of voiced sound such as vowels, semivowels,
and nasals. So, the attention weight of fricatives and stops
are well distinguished from the attention weights of vowels,
semivowels, and nasals. Therefore, each phoneme group is
distinguished by its pronunciation mechanism which deter-
mines acoustic characteristics, so that the kernel of temporal
dynamic convolution changes accordance with the acoustic
characteristics of time bins.

2) SPEAKER ACTIVATION MAP OF OPT-TDY-CNN USING
GRAD-CAM
The kernel of temporal dynamic convolution adapts to acous-
tic characteristics of time bins, and it is necessary to verify
whether the kernels are meaningful filters for speaker embed-
ding extraction. In this section, we explain Opt-TDY-CNN
using gradient-weighted class activation mapping (Grad-
CAM) [25], which generates a class activation map (CAM)
using class-specific gradients flowing into the final convo-
lutional layer. However, there are two problems in directly
applying Grad-CAM to speaker verification models. Firstly,
the speaker verification model only aims to extract speaker
embeddings without recognizing speakers, so it is difficult
to clearly define gradients of the target speaker to be rec-
ognized. To address this problem, we change the speaker
verification task to speaker identification task by attaching
a classification layer to the end of pre-trained speaker ver-
ification model. Grad-CAM is applied to the speaker iden-
tification model consisting of the classification layer and
the pre-trained speaker verification model. The classification

layer was trained using 630 speakers of TIMIT dataset.
Of the ten utterances of each speaker in TIMIT dataset,
two utterances are used as test set, and the remaining eight
utterances are used as training set [82], [83]. Secondly, all
time-frequency data of an utterance comes from a specific
speaker according to the definition of speaker verification
task, so it is meaningless to display CAM for a specific
speaker. In addition, the purpose of this analysis is to explain
how Opt-TDY-CNN extracts speaker information depending
on the time bins data within the utterance. Thus, we use
gradients flowing into the first convolution instead of the gra-
dients from last layer, which we named as speaker activation
map (SAM).

The SAMs of ResNet-34(×0.50) and Opt-TDY-ResNet-
34(×0.50) were visualized using the gradients of Conv2
and Conv3 layers for SX282 by MPDF0 and SX66 by
FSLS0 as shown in Fig. 5. Opt-TDY-ResNet-34(×0.50)
activates the low-frequency section for voiced sounds and
the high-frequency section for unvoiced sounds. Especially,
formant frequencies and harmonics of fundamental fre-
quency are emphasized. This activation maps of Opt-TDY-
ResNet-34(×0.50) match the frequency pattern of phonemes.
These results indicate that the temporal dynamic convolu-
tion extracts speaker information from the frequency patterns
related to phonemes. Similarly, ResNet-34(×0.50) activates
wide frequency region of utterances and vague outline of
each phoneme, but does not emphasize the detailed frequency
patterns of phonemes like Opt-TDY-ResNet-34(×0.50). That
is, the temporal dynamic convolution considers more detailed
frequency patterns in a precise way than the vanilla convo-
lution. Therefore, we verified that Opt-TDY-CNN extracts
speaker information from the significant part of a given utter-
ance following the detailed frequency pattern of phonemes
compared to the baseline network.
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VI. CONCLUSION
In this paper, we optimized the temporal dynamic convolu-
tional neural network which extracts speaker embedding by
adapting to time-varying data of input utterance based on the
various analysis. The temporal dynamic convolution utilized
kernels obtained by the weighted summation of basis kernels
with softmax constraint on attention weights. The contribu-
tion of this work is that the attention weight of basis kernels
is produced from average channel and frequency features
rather than all data in each time bin. Compared to the con-
ventional TDY-ResNet-34(×0.25), the model parameters of
Opt-TDY-ResNet-34(×0.25) were reduced by 26%, and the
EERwas also improved from 1.34% to 1.32%. However, tem-
poral dynamic convolutions in later layers use steady atten-
tion weights of basis kernels regardless of time bins, which
means that temporal dynamic convolution is equal to vanilla
convolution in later layers. Thus, we applied the temporal
dynamic convolutions to only the earlier layers of networks
replacing vanilla convolution in the structure of Opt-TDY-
CNNs. As a result, Opt-TDY-ResNet-34(×0.50) showed the
best performance with 1.07% of EER. Although the vanilla
convolution hasmore channels than temporal dynamic convo-
lution, Opt-TDY-CNNs outperformed the baseline networks
by 9.32%. Furthermore, kernels of temporal dynamic con-
volution adapt itself to the time-varying information of each
time bin such as phonemes using only speaker information
during training. The kernel of temporal dynamic convolu-
tion extracts speaker information from frequency character-
istics of each time bin. Therefore, the optimized temporal
dynamic convolutional neural network can give precise and
efficient text-independent speaker verification by adapting
to time-varying acoustic characteristics of utterances with
random texts.

Opt-TDY-CNNswere designed to address the time-varying
characteristic of speech resulting from phonetic variability in
random text. However, in a real application, external factors
such as changes in the acoustic environment and the presence
of noise can introduce contamination to the speaker informa-
tion. Since the kernel for each time is influenced by both noise
and speaker-related information in the channel and frequency
data, performance degradation can occur in the presence of
noisy speech. As part of our future work, we plan to eval-
uate the performance of Opt-TDY-CNNs in the presence of
noisy speech by employing data augmentation for extracting
speaker information while considering the time-varying char-
acteristic of speech, excluding the influence of noise. Further-
more, the time-varying characteristic of speech encompasses
not only textual variations but also language differences.
To investigate the effectiveness of Opt-TDY-CNNs in han-
dling language-related variations, we intend to utilize NIST
SRE datasets [84], [85], which introduce language mismatch
between the training and test data. This analysis will provide
insights into the ability of Opt-TDY-CNNs to handle diverse
time-varying characteristic caused by language variations.
Moreover, we will apply Opt-TDY-CNNs to various state-
of-the-art networks for text-independent speaker verification

to validate whether the temporal dynamic convolution can
be applied to various networks as well as ResNets. Also,
we plan to analyze principle components of the basis kernels
rather than attention weights and improve temporal dynamic
convolution for better text-independent speaker verification.
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