
Received 11 May 2023, accepted 9 June 2023, date of publication 14 June 2023, date of current version 22 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3286370

A Survey of Scheduling Algorithms for the
Time-Aware Shaper in Time-Sensitive
Networking (TSN)
THOMAS STÜBER , LUKAS OSSWALD , STEFFEN LINDNER ,
AND MICHAEL MENTH , (Senior Member, IEEE)
Chair of Communication Networks, University of Tübingen, 72074 Tübingen, Germany

Corresponding author: Thomas Stüber (thomas.stueber@uni-tuebingen.de)

This work was supported by the German Federal Ministry of Education and Research (BMBF) through the Collaborative Project
Künstliche Intelligenz zur dynamischen Optimierung des Netzwerkmanagements (KITOS) under Grant 16KIS1161. We additionally
acknowledge the support from the Open Access Publication Fund of the University of Tübingen.

ABSTRACT Time-Sensitive Networking (TSN) is an enhancement of Ethernet which provides various
mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with
strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the
transmission of their frames by end stations is coordinated in such a way that none or very little queuing
delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses
so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The
TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work,
we consider scheduling in TSN which comprises the computation of periodic transmission instants at end
stations and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of
TSN features and standards. We state the TSN scheduling problem and explain common extensions which
also include optimization problems. We review scheduling and optimization methods that have been used in
this context. Then, the contribution of currently available research work is surveyed. We extract and compile
optimization objectives, solved problem instances, and evaluation results. Research domains are identified,
and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.

INDEX TERMS Time-sensitive networking (TSN), time-aware shaper (TAS), scheduling, optimization,
ethernet bridging.

I. INTRODUCTION
Modern applications, e.g., Industry 4.0 factory automation
and motion control, demand highly deterministic network
service. Exceeding latency and jitter bounds can result in
immediate degradation of manufacturing quality or endanger
health of machinery and operators. Some of these appli-
cations have to exchange data streams with precise timing
to keep application-specific deadlines. Time-Sensitive Net-
working (TSN) is an emerging technology which enhances
Ethernet networks with real-time properties. In TSN, talkers
send uni- or multicast streams, called streams, to traffic sinks,

The associate editor coordinating the review of this manuscript and

approving it for publication was Divanilson Rodrigo Campelo .

called listeners. The network admits streams and guarantees
quality of service (QoS). Time-triggered (TT) traffic consti-
tutes periodic data streams with real-time requirements such
as bounded latency or jitter. The transmission times of TT
streams at their respective talkers must be scheduled such that
excessive queuing in the network is avoided and their require-
ments are met. Although TT traffic has high priority, it can be
delayed by low-priority frames in transmission blocking links
for short time. To ensure that links are not occupied by low-
priority traffic when needed for TT traffic, the standard IEEE
Std 802.1Qbv [6] introduces an enhancement for scheduled
traffic. The Time-Aware Shaper (TAS) can be implemented
with this enhancement. It defines periodic time slices during
which queues may send traffic to an output port and delays

61192 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1972-3754
https://orcid.org/0000-0001-8016-7043
https://orcid.org/0000-0002-5274-4621
https://orcid.org/0000-0002-3216-1015
https://orcid.org/0000-0001-8851-2665


T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

TABLE 1. Surveys covering related topics to this paper.

the respective traffic. In TSN, the TAS is used to protect TT
traffic from other traffic classes. Therefore, TSN requires that
appropriate TAS time slices are scheduled for output queues
on all switches, in addition to the transmission times of all
TT streams at their talkers. This combination guarantees very
short delays for TT streams in TSN.

Standardization does not yet cover methods for comput-
ing such schedules. However, the topic has been examined
by many publications. These research works use different
methods for schedule synthesis, evaluation, and objectives
for optimization. We survey the currently available literature
for TSN schedule computation. The paper focuses on pub-
lications published until March of 2023 about TSN sched-
ule planning with the TAS. Works about stream scheduling
related to other technologies than TSN or for other traf-
fic shapers in TSN than the TAS are not covered in this
survey.

A. RELATED SURVEYS
To the best of our knowledge, no other review covers schedul-
ing algorithms for TSN as its main topic. In fact, there is
no survey about scheduling for TT streams for Ethernet net-
works, regardless of the used standard. However, there are
surveys which intersect with the content of this work. Table 1
compiles the focus and the relationship of these surveys to
this paper.

Nasrallah et al. [1] survey standards for low-latency com-
munication. Besides DetNet and 5G, they also give a tutorial
on the TSN standards. They reference a small number of
papers related to traffic scheduling in TSN. However, they
do not elaborate on their content as scheduling is not the
focus of this work. Thus, only the most seminal works about
scheduling from this time are referenced.

Minaeva et al. [2] give a literature summary for schedul-
ing time-triggered real-time systems. They highlight research
works from 1968 to 2020. As opposed to this work, they
not only consider scheduling of streams in networks, but all
systems with periodic schedules. Seminal works for TSN
scheduling algorithms in the literature are mentioned, e.g., [7]
and [8]. Out of 126 references, only 6 of them intersect with
this work.

Deng et al. [4] review awide range of topics about AVB and
TSN from the literature of 2007 – 2021. Besides scheduling

approaches, they also give an overview of reliability and
security modeling, and delay analysis in the mentioned areas.
As a wider range of topics is covered, only a small part of the
survey is concerned with scheduling. From the 128 discussed
works, 17 works intersect with this survey.

Seol et al. [3] review TSN as a whole. The authors cover
publications of the years 2014 – 2020. An overview of active
research directions is given, including computing routings
and schedules in TSN. Not only the literature about schedul-
ing for the TAS is summarized, but also work concerned
with other queuing mechanisms, hardware, and simulation
frameworks. Therefore, only a small fraction of the literature
about scheduling for TAS-based queuing in TSN is surveyed.
They cover 207 research works, of which 29 are included in
this work. Because of the wide range of topics covered, these
works are referenced for further reading but their content is
not discussed.

The recent survey of Gavriluţ et al. [5] gives an excellent
introduction in the history of real-time Ethernet technologies.
Additionally, they present typical problems in the design of
networks for time-critical applications, e.g., scheduling, rout-
ing, worst-case delay analysis, topology synthesis, and band-
width allocation. Seminal works for each of these problems
are reported and summarized. Important results are recalled.
However, the focus is much broader than the scheduling
problem for the TAS. Thus, many works about scheduling
were not covered.

B. CONTRIBUTION
In contrast to the mentioned surveys of Table 1, we focus on
papers about scheduling algorithms and related topics which
use the TAS. This survey claims the following contributions:

• We give a tutorial on TSN basics.
• We define the TSN scheduling problem for TAS and
modifications to it. Additionally, we introduce common
solution methods used in the literature

• We survey currently available TSN literature about
scheduling for the TAS.

• We identify research directions, categorize the available
literature, and highlight contributions to these topics.

• We compare the available algorithms and the presented
evaluations to derive open research questions in this
area.

VOLUME 11, 2023 61193



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

C. SURVEY STRUCTURE
This paper is structured as follows. In Section II we present
a brief introduction to TSN with a special focus on the
TAS. Then, we formally define the scheduling problem in
TSN and give a tutorial to common solutions methods from
literature in Section III. Section IV gives an overview of the
state-of-the-art of TSN scheduling and categorizes the pre-
sented literature. Section V compares the presented research
work with regard to modelling assumptions, optimization
objective, problem instances and scalability. Furthermore,
we present the publication history of the surveyed literature in
Section VI. We discuss issues and open research questions in
Sections VII. Finally, we conclude the paper in Section VIII.

D. LIST OF FREQUENTLY USED ACRONYMS
The following acronyms are used in this paper.

ASAP As Soon As Possible.
AVB Audio Video Bridging.
BE Best Effort.
CBS Credit-Based Shaper.
CP Constraint Programming.
CQF Cyclic Queuing and Forwarding.
GA Genetic Algorithm.
GCL Gate Control List.
FIFO First-In-First-Out.
FRER Frame Replication and Elimination for

Reliability.
gPTP generalized Precision Time Protocol.
GRASP Greedy Randomized Adaptive Search

Procedure.
ILP Integer Linear Programming.
OMT Optimization Modulo Theories.
PBO Pseudo-Boolean Optimization.
PSFP Per-Stream Filtering and Policing.
QoS Quality of Service.
SMT Satisfiability Modulo Theories.
SRP Stream Reservation Protocol.
TAS Time-Aware Shaper.
TSN Time-Sensitive Networking.
TT Time-Triggered.
VLAN Virtual LAN.

II. FOUNDATIONS OF TSN
TSN is a set of standards for deterministic data transmis-
sion with real-time requirements over Ethernet networks.
In this section, we present a short tutorial about TSN. First,
we present AVB based on which TSN was developed. Then,
we introduce TSN with a special focus on scheduling and the
TAS.

A. AUDIO VIDEO BRIDGING
Historically, multimedia equipment was interconnected with
half-duplex point-to-point links for data transmission. These
links were often dedicated to a single purpose, i.e., the trans-
mission of one specific data stream. This results in a large

number of links which is expensive, hard to maintain, and
error prone. Switched computer networks solved these prob-
lems. The most widely adopted technology for switched local
area networks today is Ethernet. However, professional audio
and video applications need bounded latencies and jitter, i.e.,
real-time guarantees for data streams. Switching in Ether-
net networks was not designed for real-time transmissions.
Therefore, the Audio Video Bridging (AVB) task group of
the IEEE was founded to develop a standard to meet the
requirements ofmultimedia applications in switched Ethernet
networks.

AVB is organized in standards for time synchronization,
admission control, and traffic shaping.

1) TIME SYNCHRONISATION
Network devices need a common understanding of time to
ensure that all end stations in a network are able to coordinate
their actions. Every AVB-capable device is equipped with a
clock. The standard IEEE 802.1AS [9] defines a protocol to
synchronize the clocks of all devices in an AVB network.
This protocol is based on the Precise Time Protocol (PTP)
introduced in IEEE 1588 [10] and is denoted as general-
ized Precise Time Protocol (gPTP). The gPTP defines an
algorithm to select a so-called Grandmaster among the par-
ticipating nodes of the protocol. The internal clock of the
Grandmaster is used as reference clock. All other devices
synchronize their clocks to the clock of the Grandmaster with
time information sent from the Grandmaster. Intermediate
nodes adjust the received time information to compensate
propagation delays, processing delays, and different clock
speeds before retransmitting them. The gPTP allows sub-
microsecond precision for devices with at most seven hops
distance to each other. This is needed for applications running
on different end stations to synchronize their actions.

2) ADMISSION CONTROL
The Stream Reservation Protocol (SRP) introduced in IEEE
802.1Qat [11] allows senders of periodic data streams,
denoted as talkers, to reserve bandwidth in a multi-hop Eth-
ernet network. A talker which wants to send data advertises a
new data stream to its connected bridge. This advertisement
contains information about bandwidth and real-time require-
ments, the periodicity of the stream, and the destinationMAC
address. The destinationmay be amulticast group. The bridge
forwards the advertisement if the requested resources are
available. Worst-case latencies are calculated at every bridge.
When the request reaches the destination of a data stream,
denoted as listener, the listener acknowledges that it is ready,
and the bandwidth is reserved along the path.

3) TRAFFIC SHAPING
Traffic shaping is the generic term for techniques that dis-
tribute packet transmissions in time. The AVBworking group
defines the so-called Credit-Based Shaper (CBS) in IEEE
802.1Qav [12]. It can be leveraged to smooth out bursts such

61194 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

that receiving devices are not overwhelmed. This reduces
buffering and congestion in the network. The CBS is a leaky
bucket traffic shaper with at least two FIFO queues for two
traffic classes. These classes are denoted as class A and
class B. Both queues have a credit measured in bit. Dispatch-
ing and transmitting a frame from a queue is only allowed
if the credit of the respective queue is non-negative. Credit
increases linearly during times no frame is transmitted and
decreases linearly during transmissions. Latency bounds for
streams can be guaranteed by using a special configuration
for the CBS defined in IEEE 802.1BA [13]. These are specific
to the requirements of the AVB domain, guaranteeing 2ms
and 50ms for class A and B traffic in networks with at most
7 hops. However, the average delay of a frame increases to up
to 250µs per hop in the worst case when the CBS is used.

B. TIME-SENSITIVE NETWORKING
Ethernet networks are used in a wide range of industrial use
cases as Ethernet is cheap and easy to implement. However,
use cases such as industrial automation, in-vehicle commu-
nication or avionics have hard real-time requirements and
need reliability. Data streams not meeting their deadlines may
not only be worthless but impose safety risks. The latency
guarantees and average delays offered by AVB fail to comply
with the requirements of such use cases.

Time-Sensitive Networking (TSN) is a set of standards
enhancing AVB for deterministic and reliable transmission
of data over switched Ethernet networks. TSN is currently
developed in the IEEE 802.1 TSN task group and adds new
mechanisms for scheduling, traffic shaping, path selection,
stream reservation, filtering and policing, and fault-tolerance.
Most of the standards are enhancements of IEEE 802.1Q [14]
which defines bridges and Virtual LANs (VLANs). We give
a brief tutorial on the standards and mechanisms relevant for
the scope of this survey, i.e., traffic scheduling in TSN with
the TAS.

1) SIMILARITIES TO AVB
Similar toAVB, every device in TSN is equippedwith a clock.
TSN also uses the gPTP defined in IEEE 802.1AS [9] to
synchronize clocks of all network devices. The CBS and an
enhancement of the SRP are also part of TSN.

2) PATH SELECTION
TSN introduces a new mechanism for path selection in IEEE
802.1Qca [15]. In contrast to traditional Ethernet networks,
it is not necessary to use Spanning Tree Protocols or Short-
est Path Bridging. Paths can be computed by an arbitrary
algorithm and are only limited to be trees. Thus, frames can
be forwarded on an arbitrary path. Forwarding information
of these so-called Explicit Trees are distributed with the
Intermediate System to Intermediate System (IS-IS) protocol
and stored in bridges. The Explicit Tree for the forwarding of
a frame is determined by the MAC address of the root bridge
of the Explicit Tree and the VLAN ID in the frame’s header.

3) PRIORITIES
Every egress port of a TSN bridge is equipped with up
to eight egress queues. These queues are First-In-First-Out
(FIFO) queues. They correspond to the eight VLAN priorities
defined in IEEE 802.1Q [14]. The VLAN tag in the header
of an Ethernet frame determines the egress queue in which
the frame waits for transmission. Every queue is equipped
with a so-called Transmission Selection Algorithm (TSA).
The TSA signals whether a frame is ready for transmission to
a transmission selection mechanism. A possible implementa-
tion for a TSA is the CBS which allows frame transmissions
only when the credit is positive. This selection mechanism
selects the next queue from which a frame is dispatched and
sent. TSN uses strict priority as transmission selection, i.e.,
the next frame is dispatched from the highest priority queue
which signals a frame is ready for transmission.

4) FRAME PREEMPTION
High-priority traffic can be delayed due to conflicts with
lower-priority traffic. IEEE 802.1Qbu [16] describes a mech-
anism for frame preemption in TSN which reduces such
delays. Traffic is divided into preemptable frames and so-
called express frames. The transmission of preemptable
frames is paused and finished later if an express frame is ready
for transmission. Consequently, a preempted frame is divided
into fragments which are reassembled by the receiving node.
The minimum size of a frame fragment is defined to be
64 byte. However, every fragment of a frame except for the
last one has a trailer containing a 4 byte check sequence for
error detection. Therefore, a frame can only be preempted
after at least 60 byte were transmitted and the last 63 byte
of a frame cannot be preempted.

5) RELIABILITY AND THE FILTERING OF DUPLICATES
Bridging in classical Ethernet networks assumes that no
frames are duplicated and therefore no duplicates must be
filtered. However, safety critical applications may require
protection against frame loss and permanent link failures.
IEEE 802.1CB [17] introduces a mechanism which allows
to sent multiple copies of the same frame, possibly over
disjoint paths, and to eliminate duplicates. Thus, only a single
copy of the same frame is forwarded or delivered to a higher
layer on an end station. This mechanism is denoted as Frame
Replication and Elimination for Reliability (FRER).

6) TRAFFIC SCHEDULING
Time-triggered (TT) traffic, also denoted as scheduled traffic,
consists of periodic data streams with hard real-time require-
ments such as bounded latency and jitter. The properties of
TT streams such as period, maximum frame size, frames per
period, as well as the range of possible transmission offsets
from their respective talkers, are known in advance. The
transmission times of these streams at their respective talkers
can be controlled and must be coordinated to ensure that all
streams meet their real-time requirements. The computation

VOLUME 11, 2023 61195



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 1. Path of a frame through a bridge. The egress port implements
the enhancement for scheduled traffic. Every such egress ports has eight
egress queues guarded by a transmission gate (G). The GCL controls the
timed opening and closing of these gates.

of their periodic transmission times is denoted as traffic
scheduling.

a: TRAFFIC SHAPING
TSN introduces new traffic shapers in addition to the CBS.
An example for another shaper which can be used instead of
the CBS is Cyclic Queuing and Forwarding (CQF) defined in
IEEE 802.1Qch [18]. Time is divided into slots of predefined
length. The length of a slot is denoted as cycle time. Bridges
buffer all frames received during a slot and transmit them
in the subsequent slot. Thus, stream latencies can easily be
calculated from the cycle time and the number of hops.

IEEE 802.1Qbv [6] defines an enhancement for scheduled
traffic. It can be leveraged to implement the Time-Aware
Shaper (TAS). The TAS allows protecting TT traffic from
other traffic such as AVB traffic or best-effort (BE) traffic.
Additionally, the transit of TT streams through a network can
be scheduled. Every egress queue has a so-called transmis-
sion gate or simply gate. Gates are either open or closed.
Frames can only be dispatched and sent from an egress queue
if the respective gate is open. The closing and opening of a
gate is controlled by a so-called Gate Control List (GCL).
A GCL entry consists of a time interval [Ti,Ti+1] and a bit-
vector. The bit-vector indicates which gates are opened or
closed during the time interval [Ti,Ti+1]. Therefore, a GCL
entries defines a time slice exclusively available to traffic
with a priority corresponding to an open queue. These GCLs
are executed periodically for an indefinite number of times.
The computation of GCLs and appropriate cycle times, i.e.,
periods of these GCLs, is denoted as scheduling or GCL
synthesis. The number of available GCL entries in an egress
port is limited and depends on the used bridge. Figure 1

FIGURE 2. Time slices, GCL entries, and guard bands. The duration of a
guard band may be not available for BE traffic as a frame can only be
sent if transmission finishes before the respective gate is closed.

depicts the architecture of a typical TSN bridge according to
IEEE 802.1Q [14], including the components of the TAS.

The TAS can be used to protect traffic by scheduling the
GCLs accordingly.

b: GATE CLOSINGS AND GUARD BANDS
If the transmission of a frame is not finished until the end
of the time slice the transmission started, a frame in the next
time slice may be forced to wait until transmission finishes.
Thus, it would be possible that a frame of a TT stream
must wait because of a frame of BE traffic. This problem
is avoided in TSN. Bridges detect automatically whether a
frame transmission would conflict with a gate closing and
hold conflicting frames back in this case. A guard band
is a time interval with the length of the transmission of a
maximum sized standard Ethernet frame. The duration of a
guard band at the end of a time slice may not be available
for transmissions to comply with closed gates. However,
we emphasise that guard bands in TSN are implicit, i.e., they
must not be configured explicitly. Transmissions may even
start during a guard band if the transmission finishes before
the next gate closing. Figure 2 depicts a guard band which
restricts the transmission of BE traffic before the respective
gate is closed. If frame preemption is used, the maximum
size of a frame that cannot be preempted is 123 byte. This is
due to the minimum size of a frame fragment, i.e., 60 byte of
the frame and an additional 4 byte check sequence. A frame
with 123 byte cannot be preempted until the first 60 byte
are transmitted as the resulting first fragment would be too
small otherwise. However, the last 63 byte also cannot be
preempted as the resulting last fragment would be too small.
Therefore, guard bands can be reduced to the length of a
transmission of 123 byte if frame preemption is used.

c: SCHEDULER VS. TRAFFIC SCHEDULING
The term scheduler is sometimes used as a synonym for traf-
fic shaper. For instance, the CBS and the TAS are schedulers
in this terminology. Unfortunately, the term scheduler has
also another meaning in the context of this survey. Many
research works denote algorithms to plan GCL entries and
frame transmissions in time with the TAS as schedulers.
To avoid confusions, we will only use the second meaning in
the remainder of this paper, i.e., a scheduler is a scheduling
algorithm for the TAS. There are research works that use

61196 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

the first meaning in their title or abstract or cover schedul-
ing algorithms for other traffic shapers in TSN, e.g., Cyclic
Queuing and Forwarding (CQF). Thus, these works give the
impression that they are in the scope of this survey, e.g., [19],
[20], [21], [22], [23], [24], [25], [26], and [27]. However,
we remark that this survey only covers research works about
scheduling algorithms and the scheduling problem for the
TAS. Therefore, we do not discuss works which propose
new shapers, i.e., new schedulers, or analyse other shapers
than the TAS.

The challenge in planning a TSN network is to compute
the schedules that coordinate the transmission times for all
streams at their respective talkers and the GCLs of bridges
such that the requested real-time requirements of all TT
streams are met. This problem is formally defined in the next
section.

III. THE TSN SCHEDULING PROBLEM
First, we introduce a common network model, relevant prop-
erties of TT streams, and the definition of schedules. Second,
we state constraints for valid schedules. Then, we discuss
scheduling and optimization in the context of TSN and the
computational complexity of these problems. Furthermore,
we present common problem extensions solved in the liter-
ature. Finally, we give an introduction to common solution
techniques that have been applied to the scheduling problem.

A. NOMENCLATURE
A node of a TSN network is an end station or a TSN-capable
bridge. End stations are sources and destinations of data
streams. Bridges switch frames based on their header. We
remark that a node may be a bridge and an end station at
the same time, i.e., it implements bridging capabilities and is
an end point of data streams. Links are full-duplex Ethernet
connections between an end station and a bridge or between
two bridges. TSN bridges are inevitably subject to multiple
delays. These delays must be considered to ensure determin-
istic transmissions according to a schedule. The processing
delay of a bridge is the time between a frame arrives at an
ingress port, and it is put in an egress queue. The transmission
rate of an egress port is the rate at which data can be trans-
mitted over a link. The propagation delay of a link is the time
needed for electrical signals to traverse the link. The queuing
delay of a frame is the time the frame waits in an egress queue
for transmission. Ethernet uses a preamble before of a frame
transmission to signal a new transmission starts, and an inter-
frame gap between two frame transmissions to ensure that
the receiver can process a new frame. The maximum size
of a frame in TSN is 1542 byte, including inter-frame gap
and preamble. A TT stream is a periodically repeated data
stream with real-time requirements. Every stream has a talker
as source and possibly multiple listeners as destinations. The
earliest and latest transmission offsets describe the time range
during which a talker can start transmission relative to the
start of a period. The deadline of a stream is the time at which
all frames of the stream must have arrived at all destinations,

FIGURE 3. The period of stream A is three times the period of stream B.
For modelling purposes, the hyperperiod is introduced, i.e., all streams
are assumed to have that larger period. To cover the full duration of the
hyperperiod, B is modelled by three consecutive copies B1, B2, and B3.

also relative to the start of a period. The entire payload of a
stream must be delivered before the deadline. The payload of
a stream may be sent with multiple frames.

The hyperperiod H of a set of streams S is the least
common multiple of the periods of the streams. Let s ∈ S
be a stream with period ps. A schedule for all streams in
S contains H

ps
consecutive replications of s, each having

the hyperperiod as period. Scheduling algorithms typically
consider transmission times, earliest and latest transmission
offsets, and deadlines relative to the beginning of the hyperpe-
riod. Figure 3 depicts an example with two streams A and B.
The period of stream A is three times the period of stream B.
A schedule for both streams thus contains only one period of
stream A and three periods of stream B. A schedule for a set
of TT streams in a TSN network consists of the transmission
offsets of all streams at their respective talkers, and GCL
configurations for all bridges. Transmission offsets of frames
at bridges along their path follow implicitly. Schedules must
be periodic, i.e., repeatable an indefinite number of times. The
hyperperiod of a set of streams is the period of schedules for
these streams.

B. SCHEDULING CONSTRAINTS
Given a problem instance for the TSN scheduling problem,
i.e., a set of TT streams and a network topology. Every sched-
ule which complies with the real-time requirements of all TT
streams is considered a valid solution of the TSN scheduling
problem. Such schedules are denoted as valid schedules in the
TSN scheduling literature. The following constraints restrict
the set of all possible schedules to the set of valid schedules.

1) BRIDGE DESIGN
TSN bridges are currently assumed to be store-and-forward
bridges. Frames cannot be forwarded by a bridge before they
have arrived at the egress queue. The duration of a transmis-
sion depends on the transmission rate of the sending egress

VOLUME 11, 2023 61197



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

port, the size of the frame, and the propagation delay of the
used link. The processing delay of the bridge must also be
considered.

2) EXCLUSIVE LINK USAGE
No two frames can be in transmission over a link in the same
direction at the same time.

3) DEADLINES
A stream meets its deadline when all of its frames arrive
at the stream’s destination before its deadline. For multicast
streams, this holds for all destinations.

4) ROUTING
The frames of a stream follow some routing. Every instance
of the same stream follows the same routing.

5) FRAME ORDER
There is no reordering of frames of the same stream. Frames
that are sent earlier arrive earlier than frames sent later.
This holds hop-by-hop and end-to-end. The source node of
a stream sends frames of a stream in-order. There are no
duplicates, i.e., a frame cannot be replicated by a bridge.

6) FIFO QUEUES
The order of frame arrivals at an egress queue must match the
order at which frames are sent.

7) QUEUE SIZE
Frames of scheduled traffic must not be dropped for any
reason.

8) GATE CONTROL
If a frame waits in an egress queue, it can only be sent when
the respective gate is open. The gate must stay open until
transmission finishes.

9) TRANSMISSION SELECTION
If multiple gates of an egress port are open and frames in the
respective queues arewaiting for transmission, the queuewith
the highest priority is the next queue to dispatch a frame.

10) ADDITIONAL FEATURES
Various modifications of the problem are presented in the
literature. Additional constraints may be needed to model
these problems. For example, multiple queues can be reserved
for TT traffic per egress port. Queue assignment of streams
must be modeled in this case. We discuss these problem
modifications in Section III-E.

C. FINDING A SCHEDULE VS. OPTIMIZATION
There may be multiple schedules for a given problem
instance. In fact, most problem instances have a large num-
ber of schedules as possible solutions. So far, the definition
of the scheduling problem does not differentiate between

these solutions. A common way to compare solutions is to
introduce an objective function. Such a function maps solu-
tions to real numbers. The solution to an optimization prob-
lem is the schedule which minimizes or maximizes the objec-
tive function, i.e., has a smaller or larger objective value than
any other schedule. Examples for objectives are minimizing
end-to-end delays or jitter of TT streams. Another possible
objective is minimizing the flowspan, i.e., the duration such
that all frames have arrived at their respective destinations.

D. COMPUTATIONAL COMPLEXITY
The problem of deciding whether there is a valid schedule
for a set of TT streams in a TSN network is known to be
NP-complete [7] in general as Bin Packing can be reduced
to it. This even holds without queuing [28]. NP is a class of
decision problems, i.e., contains only problems which can be
answered by either yes or no. Finding a schedule or finding an
optimal schedule are not decision problems. Therefore, they
are not contained in NP. However, they are computationally
at least as hard as the question whether there is a schedule.

E. PROBLEM EXTENSIONS AND RESTRICTIONS
The definition of the basic problem in Section III-B only
describes the common properties of the problems in the lit-
erature reviewed in this survey. Much research work focuses
on special cases or problem extensions with additional con-
straints. This section introduces these problem variations in a
general way such that they are clear in the remainder of this
survey.

1) JOINT ROUTING
The definition of Section III-B assumes that the routing of
every stream is a predefined part of the input and fixed. Much
research work is dedicated to a variation of the scheduling
problem with joint routing, which relaxes this assumption.
In contrast to the basic problem, the routing of streams is vari-
able and computed simultaneously with the schedule. This
gives the scheduling algorithm more flexibility, as streams
can be routed to omit heavily loaded links and thus con-
flicting scheduling constraints. A common approach is that
the algorithm gets a set of possible paths as input for every
stream, and it selects one per stream as the stream’s routing.
Other algorithms select arbitrary paths. Both approaches are
possible due to IEEE 802.1Qca [15] as the standard allows
arbitrary paths to be configured for every stream.

2) RELIABILITY
Research work dedicated to joint routing and scheduling
can take reliability considerations into account. Such works
define a model of possible faults and their probabilities.
Scheduling algorithms can compute schedules which meet
the real-time requirements of all streams with high probabil-
ity for a given fault model. These schedules are denoted as
robust schedules relative to a given fault model. For instance,
scheduling approaches can compute schedules which are

61198 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

robust against single link failures. This can be achieved by
introducing redundant streams with the same payload and
routing them through disjoint paths.

3) GCL SYNTHESIS
GCLs for all egress ports must be constructed. One possible
approach is to open the gates for scheduled traffic at the
beginning of a hyperperiod and never closing them. However,
this approach comes with the drawback that no other queue
can send. This may be necessary to protect other TT streams
with tighter bounds by avoiding congestion in the queues for
TT traffic.

Another common approach is to use a postprocess-
ing scheme after scheduling transmission offsets, e.g.,
in [28] and [29]. GCLs are constructed such that the gate of a
queue is opened when a transmission from this queue should
start according to the schedule. The respective gate is closed
when the transmission is finished according to the schedule.
This approach allows a scheduler to use gates to delay frames.
However, the number of available GCL entries is limited
in real hardware bridges. Therefore, scheduling transmission
offsets and synthesizing GCLs can also be considered in a
joint scheduling algorithm instead of a postprocessing, e.g.,
in [30] and [31].

4) QUEUING
Queuing can cause serious problems for schedules of streams
with real-time requirements [29]. Frames can get lost in
non-deterministic events, such as link or end station failure.
A frame missing in an egress queue may result in another
frame being dispatched earlier than expected and scheduled.
As a result, this frame may change the arrival order in some
egress queue, ultimately resulting in a stream missing its
deadline. Such problems can be avoided in two ways. First,
by avoiding queuing at all. Second, by not allowing frames to
wait in the same egress queue at the same time. In this way,
it is not possible that some frame is dispatched earlier than
scheduled due to a missing frame in an egress queue. These
restrictions are not imposed by bridges according to IEEE
802.1Q [14]. Instead, they are considered during scheduling
such that a scheduling algorithm only computes schedules
robust against these non-deterministic events. In the follow-
ing, we discuss problem extensions and restrictions from the
literature.

a: UNRESTRICTED QUEUING
Allowing frames of different streams to be in the same
queue at the same time is denoted as unrestricted queuing.
Figure 4(a) depicts a schedule by showing frame arrivals and
transmissions of a single bridge. The schedule shows two
streams, A and B, with two frames per period. The queuing
state is shown implicitly. A frame is queued at the same
time with all other frames that arrive before the frame is
transmitted. Thus, the frames A1 and B1 are in the egress
queue at the same time. If A1 does not arrive according to

the schedule, e.g., due to a permanent link failure, B1 is
transmitted earlier than scheduled. This is the case in the sec-
ond period depicted in Figure 4(b). Consequently, B1 arrives
earlier than scheduled in some other egress queue. This may
result in some other frame experiencing more queuing delay
than scheduled, ultimately leading to a missed deadline.

b: ISOLATION
The problems of queuing in case of non-deterministic events
can be solved by not allowing frames of different streams to
be in the same queue at the same time. If a frame is missing
in a queue and no other frame is scheduled to be queued
at the same time, no other frame can be transmitted earlier
than scheduled. This approach is denoted as frame isolation
in the literature. It was introduced in [29]. Figure 4(c) shows
a schedule valid with frame isolation. If A1 does not arrive at
the bridge, the schedule of B1 and B2 is unaffected.

c: NO-WAIT SCHEDULING
In no-wait scheduling, frames are dispatched and sent imme-
diately after arriving at an egress queue. Queuing is not
allowed. The rational of this constraint is to avoid all con-
sequences of non-deterministic events related to queuing.
It was introduced to the domain of TSN in [28]. Figure 4(d)
depicts a no-wait schedule for two streams. All frames are
sent immediately after arrival. For example, B1 is received
and transmitted after A1 and before A2 in the same period.

d: QUEUE ASSIGNMENT
Instead of restricting queue usage, the scheduling problem
can also be extended by allowing more than one queue per
egress port for TT streams [29], [31]. A scheduling algorithm
for such a problem not only schedules transmission offsets
andGCL entries, but also assignments of TT streams to egress
queues. This is especially interesting with respect to frame
isolation, as frames of multiple streams can simultaneously
wait for transmission by the same egress port in different
queues.

5) INTEGRATION OF AUDIO VIDEO BRIDGING
TT streams and AVB traffic can coexist in the same network
at the same time. TSN bridges may support to use the CBS
and the TAS in parallel according to [6]. TT streams and
AVB streams compete for the same links, but use different
queues in the egress ports. Therefore, the scheduling problem
can be extended to also include a set of AVB streams as
input. They are scheduled at their respective talkers, and
considerations for the behavior of the CBS must be included
during scheduling.

6) INTEGRATION OF BE TRAFFIC
BE streams have no real-time requirements, they are gener-
ally aperiodic and unknown a priori such that they cannot
be scheduled. However, some schedules may be beneficial
for BE traffic. For instance, large bursts of TT traffic within
a long hyperperiod could be avoided to facilitate frequent

VOLUME 11, 2023 61199



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 4. Queuing restrictions from TSN scheduling literature. Frame
arrivals at an ingress port and transmissions at an egress port of the
same bridge are shown. Processing delays are omitted to increase
comprehensibility.

transmission opportunities for BE traffic, which may reduce
the delay of BE traffic. Another example is avoiding GCL
entries unless they save substantial capacity for other traffic.
For each GCL entry, a guard band is needed within which
frame transmissions cannot start. Therefore, compact sched-
ules maximize capacity for BE traffic [28], [32].

7) DYNAMIC RECONFIGURATION
An entirely different problem related to the basic problem is
dynamic reconfiguration of existing schedules. Such recon-
figurations are necessary when streams are removed or new
streams should be integrated into a schedule. While removing
streams is rather easy, adding new streams to an existing

schedule can be complicated for two reasons. First, the trans-
mission offsets of already scheduled streams may have to
be changed. Second, links and egress queues are occupied
by earlier scheduled streams, which places constraints on
possible transmission offsets for new streams. The runtime of
a scheduler during reconfiguration must be very low in many
scenarios, such as in automotive use cases [33]. This is due
to fast changing real-time requirements and traffic patterns of
safety-critical applications. Recomputing the whole schedule
with offline algorithms may be computationally infeasible in
such cases.

8) MULTICAST
Streams in bridged Ethernet networks can be multicast
streams according to [14]. Multicast streams have more than
one listener as destinations. Therefore, the routing of a mul-
ticast stream is a tree. A multicast stream can be modelled
by a set of unicast streams. However, only a single copy of a
frame is transmitted per hop in TSN. Thus, this modelling is
not appropriate. Scheduling algorithms may contain consid-
erations for multicast streams instead of assuming all streams
to be unicast. Joint routing approaches must compute trees
instead of paths for every stream.

9) TASK SCHEDULING
Tasks are applications running on end stations. They are exe-
cuted periodically. Their execution depends on data received
via TT streams. Additionally, they can send TT streams after
they processed some received data. Scheduling algorithms for
TSN can schedule tasks and TT streams in a joint approach.

F. OPTIMIZATION METHODS
Weclassify the scheduling algorithms in the literature in exact
and heuristic approaches. Exact approaches compute a sched-
ule, or an optimal schedule if an objective is given, if one
exists, or prove the problem instance infeasible. Heuristic
approaches do not guarantee to find an optimal schedule.
Instead, they try to find reasonably good solutions within
short time. In the common case, they cannot deduce whether a
problem instance is infeasible, nor is finding a solution guar-
anteed if one exists. In this section, we introduce common
solution techniques and explain their basics.

1) EXACT APPROACHES
As the Scheduling Problem for TSN is NP-complete, there
is probably no polynomial-time algorithm to compute TSN
schedules. Therefore, it is reasonable to rely on the advances
of the past decades in mathematical and combinatorial opti-
mization. All exact solution approaches in the literature are
based on the following four techniques.

a: INTEGER LINEAR PROGRAMMING
An Integer Linear Program (ILP) describes the space of
possible solutions to a problem with linear inequalities.
Every assignment of variables which fulfills all inequalities

61200 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 5. Example of an ILP model.

FIGURE 6. Example of a formula used in SMT solving. The basic structure
is a formula from propositional logic, but predicates from other theories
may be used as atomic formulas instead of Boolean variables.

corresponds to a solution of the problem and vice versa.
Some variables may be restricted to take only integer values.
A linear objective function may describe the quality of solu-
tions. Figure 5 depicts an ILP which minimizes an objective
function. ILP solvers compute a feasible assignment which
minimizes the objective function. Every encountered solution
in the solution process corresponds to an upper bound on
the objective value of the optimal solution. Additionally, the
solver can infer lower bounds for the objective value of the
optimal solution during the solution process. So even when
finding the optimal solution is not possible in reasonable
time, ILP solvers yield estimations of the maximum gap to
the optimum. Widely used state-of-the-art ILP solvers are
CPLEX [34] and Gurobi [35].

b: SATISFIABILITY MODULO THEORIES
Satisfiability Modulo Theories (SMT) solvers find solutions
to problems described by first-order formulas. Formulas
model a problem with variables and predicates which are
connected by logical operators. Besides Boolean variables,
SMT solvers allow formulating predicates in other logical
theories and use them as atomic formulas. SMT solvers have
an interface for theory-specific solvers so that the problem
can be modelled with the best suitable theory. Examples of
theories are the theory of linear arithmetic with integers or
the theory of bit vectors. Figure 6 depicts a formula with
predicates from the theory of linear arithmetic with integers.
The basic structure of a model is a formula from proposi-
tional logic, but predicates from integer arithmetic are used
as atomic formulas.

The solver searches for an assignment of the variables that
evaluate the formula to true. It uses techniques from SAT

solving to reason about satisfiability, combined with theory-
specific solvers for conjunctions of predicates. SMT solving
is only about finding some satisfying solution. When the best
assignment regarding some objective function is computed,
the term OMT is used. Z3 [36] is a widely used SMT solver
which can also be used for optimization.

c: CONSTRAINT PROGRAMMING
Constraint Programming (CP) is a general solution approach
to combinatorial problems. The set of feasible solutions to a
problem is described in a declarative way. In this sense, ILP
and SMT solving are special cases of CP solving. However,
CP solvers use backtracking, local search, and constraint
propagation techniques to solve CP models as opposed to
ILP solvers. Another relevant case of CP is the restriction of
variable domains to a finite set. CP-SAT is a widely used CP
solver [37].

d: PSEUDO-BOOLEAN OPTIMIZATION
Similar to ILPs the solution space of a problem in Pseudo-
Boolean Optimization (PBO) is modelled with linear inequal-
ities, but all variables must be binary. However, instead of
using mathematical optimization as in ILP solving, tech-
niques from SAT solving like propagation and conflict
refinement are employed. A linear objective function can be
minimized by adding it as a constraint to the model with
some bound. The solver is calledmultiple times with different
bounded objective constraints. Every infeasible solver run
gives a lower bound on the optimal objective values. Every
solution yields an upper bound on the optimal solution. The
optimal solution is found, with respect to some minimal
precision, when the gap between lower and upper bound is
smaller than the minimal precision provided by the user.

2) HEURISTIC APPROACHES
Because finding optimal solutions for realistic problem
instances is infeasible in many cases, heuristic algorithms are
used. Such algorithms are used to find suitable solutions in
reasonable time, generally without knowing whether there
are better solutions. Metaheuristic approaches are common
algorithms that can be applied for a wide range of problems.
Alternatively, there are heuristics that use problem-specific
knowledge for many problems, and there may be combina-
tions of both.

a: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE
Greedy Randomized Adaptive Search Procedure (GRASP) is
a metaheuristic which can be adapted to various problems. Its
building blocks are a greedy-randomized algorithm to con-
struct initial feasible solutions, and a local search algorithm.
The greedy randomized algorithm incrementally constructs
a solution by making random decisions among the set of
decisions with the smallest increase in cost until a feasible
solution is found. The local search explores neighboring solu-
tions, i.e., solutionswithminimal changes, to the intermediate

VOLUME 11, 2023 61201



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 7. Classification of the surveyed research works in the scope of TSN scheduling.

solution. It explores the solution space until it finds a local
optimum. Both steps are repeated a predefined number of
times and the best encountered solution is returned. To adapt
GRASP for a specific problem, a greedy randomized algo-
rithm to generate initial solutions and a local search algorithm
must be constructed.

b: TABU SEARCH
Tabu Search is a metaheuristic to systematically explore the
solution space. It uses an initial solution as start and moves
to the best neighboring solution. The algorithm keeps a tabu
list of previously visited solutions or changes to solutions to
avoid walking cycles in the solution space. Only neighboring
solutions or changes to solutions which are not contained in
the tabu list are considered for the move. The best encoun-
tered solution after a specific number of moves is returned.

To construct a problem-specific heuristic, a heuristic to gen-
erate an initial solution and a function returning the possible
changes to some given solution must be built.

c: SIMULATED ANNEALING
Simulated Annealing (SA) is a metaheuristic used to find
good approximations of the global optimum of an opti-
mization problem. It is inspired by cooling processes in
physics. A global variable for temperature is used. Temper-
ature decreases slowly to 0 in discrete steps. In each step,
a neighboring solution is randomly selected, and the objec-
tive function is evaluated. The probability of moving to a
neighboring solution depends on the current temperature and
the objective value of the considered solution. A move to a
neighboring solution which is worse than the current solution
is possible with small probability to escape from local optima.

61202 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

As temperature decreases, the probability of moving to solu-
tions with worse objective value vanishes. The best solution
encountered after some acceptance criterion holds is returned.
To adapt SA to a specific problem, a heuristic to generate an
initial solution and a function returning the possible changes
to some given solution must be built. Additionally, the way
the temperature is decreased and the acceptance criterion
must be selected.

d: GENETIC ALGORITHMS
Genetic algorithms (GA) are a metaheuristic approach
inspired by evolution processes and natural selection in
biology. Candidate solutions are considered as individuals.
Chromosomes represent properties of these individuals and
are coded into bitstrings. At every point in time, there is
a pool of individuals, i.e., the population. New individuals
are constructed from two or more existing solutions, i.e.,
genetic crossover is performed. Individuals may be altered
randomly, i.e., their chromosomes are mutated. When tran-
siting to the next generation, some individuals die and are
removed from the population. The probability of dying for
an individual depends on its fitness. The fitness function is
the optimization objective of the modeled problem. The best
individual encountered after some number of generations is
returned. As in biology, high-quality solutions have a higher
probability to survive and reproduce, which in terms yields
new high-quality solutions. To construct a problem-specific
heuristic, a heuristic to generate initial solutions must be
constructed. Suitable crossover as well as mutation and selec-
tion mechanisms have to be used. Parameters like population
size, stopping criterion, and probabilities for selection and
mutation must be designed.

e: LIST SCHEDULING
List scheduling (LS) is a metaheuristic to schedule tasks on
identical machines. The tasks are sorted in a list according to
some measure of priority. In every step, the first task in the
list is selected. If a suitable machine is available, the task is
executed on this machine, otherwise the next task in the list is
selected. These steps are repeated until all tasks are executed.
Considering streams as tasks and end stations as machines
yields a heuristic for TSN scheduling. Awell-known heuristic
from the scheduling literature can be considered to be special
case of list scheduling. As-soon-as-possible (ASAP) schedul-
ing orders streams by priority and schedules them one by one
at the earliest possible time along their paths.

f: MACHINE LEARNING
Machine learning is the generic term for a wide range of
methods. Tools from linear algebra, statistics, and probability
theory are used to construct mathematical models that can
make decisions or construct solutions to a problem. The con-
struction of such a model is denoted as learning or training.
Typically, it takes a large amount of time and computational
effort to train a model, but answers to request can be obtained
really fast afterwards. Examples ofmachine learningmethods

are deep learning and reinforcement learning. However, the
details of these methods are way beyond the scope of this
survey. We refer to [38] and [39] for an introduction.

IV. LITERATURE SURVEY
In the following section, we give an overview of the literature
about TSN scheduling. We categorize research work based
on whether scheduling with fixed routing or joint routing is
considered. Both sections are further grouped by the main
topics of the respective papers. Comparability of techniques
and results of research works in the same group is ensured by
this classification. Figure 7 depicts this classification.

A. SCHEDULING W/FIXED ROUTING
We give an overview of research works which only deal
with the scheduling of TT streams. In all papers presented
in this section, the routing of TT streams is fixed and given
as input to the scheduling algorithm. Such scheduling algo-
rithms cannot change the routing during scheduling in case
of conflicting streams. We group publications in categories
based on similar topics, like model assumptions or problem
extensions.

1) SCHEDULING W/O PROBLEM EXTENSIONS
We discuss publications solving the unmodified scheduling
problem.

FIGURE 8. Incremental approach of Steiner [7]. Similar ideas were used
by other approaches, e.g., in [29].

Early work about scheduling of TT traffic in Ethernet
networks was conducted by Steiner [7]. Even though this

VOLUME 11, 2023 61203



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 9. Multi-layered ring topology used in [40].

work is not specific to TSN, it influenced many research
works covered by this survey. The author proposes the use
of SMT solving for the scheduling of TT streams. An incre-
mental approach is presented. Figure 8 depicts this approach.
Streams are scheduled one after another. Schedules of already
scheduled streams are fixed in later iterations. Backtracking is
used in case of infeasibility, i.e., the schedule of some stream
is unfixed and the stream is scheduled again simultaneously
with the new stream. Backtracking is repeated until a sched-
ule is found, or no stream schedules are left to unfix. This
idea was adopted by many later works for TSN scheduling,
e.g., [29] and [31].

Oliver et al. [31] give an SMT model based on mapping
streams to transmission time windows of egress queues. The
number of these transmission windows is fixed per egress
port, and their placement and size is computed by the schedul-
ing algorithm. As a side effect of using a fixed number of
transmission windows, the number of gate events and thus
guard bands is limited, even though the authors do not explore
this matter. The authors use isolation to restrict the problems
imposed non-deterministic behavior, e.g., frame loss. Two
queues per egress port are dedicated for TT traffic. They
evaluate the solving time of their approach with respect to the
number of streams and the number of transmission windows
per egress port. Their results indicate that the solving time
increases exponentially with the number of streams. How-
ever, for reasonable numbers of streams and transmission
windows, solving time is more sensible to the number of
transmission windows. A comparison to the SMT from [29]
shows that the window-based approach with one window per
egress port is faster in finding a schedule. The average jitter
is significantly reduced when the number of transmission
windows per egress port is increased.

Steiner et al. [41] suggest the SMT model from [31] as
a starting point for the standardization of TSN scheduling
mechanisms. They demonstrate their model by reporting the
same evaluation results as in [31] with a reduced number of
transmission windows.

Hellmanns et al. [40] extend the Tabu Search algorithm
of [28] for no-wait scheduling. They construct a 2-stage
approach for hierarchical networks which consist of multiple
rings on different layers. They argue that such topologies are

common in factory automation. Figure 9 depicts a model of
such a topology. First, they schedule streams with talker and
listener in the same ring. This step is done individually for
every ring. No queuing is allowed in these schedules. Then,
they simulate the transmission of all streams with end points
in different rings as if they were sent at the same time from
their respective talkers. No queuing restrictions apply to these
streams, i.e., unrestricted queuing from Section III-E4.a is
allowed. If all streams meet their deadlines in this simulation,
the simulated behavior is used as schedule. They compare
this approach with scheduling all streams at once with the
Tabu Seach algorithm. Their evaluations demonstrate that
the proposed 2-stage scheduling scales better for problem
instances with many streams compared to the original Tabu
Search approach. The latter does not produce results for more
than 1000 streams due to memory limitations. The 2-stage
scheduling is two orders of magnitude faster in the special
case of multi-layered ring topologies. The authors report that
the number of needed GCL entries is significantly reduced by
the 2-stage approach.

Another heuristic for no-wait scheduling is proposed by
Zhang et al. [22]. They analyze how frame transmissions
may conflict and derive the range of possible transmission
offsets per frame. A comparison to the SMT of [31] and
the ILP of [28] shows clear performance benefits of the
proposed heuristic. The SMT was able to schedule about
300 streams, while the ILP scheduled about 1000 streams,
and the heuristic scheduled 1200 streams in the evaluation
scenario.

Kim et al. [42] give a heuristic algorithm to compute valid
schedules, and a post-processing to reduce end-to-end delays.
Streams are ordered by priority and are scheduled one after
another. The individual frames of a stream are scheduled
along the stream’s path. The hyperperiod is divided into inter-
vals and every frame is assigned to the earliest unoccupied
interval. The presented evaluations indicate that end-to-end
delays are reduced by up to one third per stream in the
evaluation scenarios.

The authors of Kim et al. [43], [44] propose a genetic
algorithm to schedule TT traffic in automotive scenarios.
Genes encode the scheduling order of frames. Frames are
scheduled as soon as possible according to this order and
along the respective stream’s path. The objective function
used to compare scheduling orders is the weighted sum of
end-to-end delays, jitter, and bandwidth utilization of the
corresponding schedule. As in [28], a schedule compression
algorithm is employed to reduce the bandwidth occupation of
guard bands. The proposed approach outperformed random
schedules regarding all three metrics in almost all evaluation
scenarios. The approach from [42] is also outperformed with
regard to the used objective.

Ansah et al. [45] present a scheduling algorithm in the
special case of a line topology where all talkers converge
in a single bridge. Based on this method, they also give an
algorithm to compute GCLs in such a topology if the streams
are schedulable.

61204 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

The special case of an in-vehicle networkwith only a single
hop is analyzed in [46]. They assume all traffic streams to be
send continuously and belonging to different traffic classes
and egress queues. Essentially, they implement round robin
traffic shaping with the TAS. However, we remark that real
in-vehicle networks are more complex and thus the gained
insights are limited.

The authors of [47] compare the suitability of a large set
of metaheuristics for TAS scheduling. They maximize the
number of scheduled streams for the same problem instance
with various functions of a metaheuristic library. The authors
observed the best results with math based and system based
heuristics and interpret this as a hint for future research
directions.

Vlk et al. [48] propose a heuristic algorithm to schedule
very large-scale problem instances. The algorithm shares
many similarities with the well known DPLL algorithm from
SAT solving [49], e.g., probing, backtracking in the case of
conflicts, and restarts. Frames are scheduled one by one. If a
conflict arises, all decisions are reverted up to the conflict-
ing frame. The authors compare the heuristic with SMT-,
ILP-, and GRASP-based algorithms. The schedulability of an
approach with respect to some set of problem instances is the
fraction of solvable problem instances within some time limit.
The proposed heuristic outperforms all other approaches
regarding schedulability and solving time. In fact, they were
able to schedule instances with up to 10812 streams in a tree-
like topology with 2000 nodes. This result outperforms all
other approaches in the literature. Evaluations with a real-
world instance from avionics are also presented.

Wang et al. propose a deep reinforcement learning
approach for no-wait scheduling in [50]. They train machine
learning models for various network topologies. The model
aims to reduce the maximum arrival time among all frames
to reduce the number of guard bands. For networks with up
to 9 bridges and 10 end stations, the authors report solving
times of at most 400 s.

2) RESEARCH WORK ABOUT QUEUING
We highlight works which allow or deal with the implications
of queuing.

Craciunas et al. [29] construct an incremental SMT model
to schedule TT streams based on [7]. They define flow isola-
tion and frame isolation as properties of a schedule to prevent
some sources of non-determinism, e.g., single link failures.
They present models to compute schedules with either flow
or frame isolation. Besides isolation in the time domain, they
also employ isolation in the spatial domain by the possibility
of assigning different streams to different queues. The authors
identified the problem of clock synchronization errors and
introduce gaps between frame transmission to cope with this
problem. They compare the effect of frame and flow isolation
to the solving time of their SMT model. Their evaluations
indicate that flow isolation reduces solving times compared

FIGURE 10. Size based isolation proposed in [53]. Frame transmissions
from an egress port connected to an end station are shown. Assume F1
and F2 are scheduled to wait some time in the same egress queue. If the
first frame F1 has not arrived at the egress queue, F2 cannot be
transmitted in the time slice dedicated for F1 as it is too short.

to frame isolation. However, more problem instances can be
scheduled with frame isolation.

Vlk et al. [51] investigate the effect of the isolation con-
straints from [29] on schedulability. When a frame is lost
during transmission and does not reach the next egress queue
as scheduled, another frame may be dispatched earlier than
scheduled from this queue. This frame in term can causemore
non-determinism on its path. Not allowing frames of different
streams to be in the same queue at the same time solves this
problem, but reduces the solution space considerably. Amod-
ification for bridges implementing the TAS is proposed to
cope with this conflict. Queues with this modification check
whether the next frame is the correct one with respect to the
schedule. If this is not the case, the queue idles until the next
frame transmission is scheduled. A comparison shows clear
benefits regarding schedulability. The number of streams
which are scheduled to arrive before their deadline is also
significantly increased compared to isolation models.

The authors of [52] present a heuristic to schedule streams
with queuing. The heuristic is based on transmissionwindows
similar to [31]. In contrast to earlier works which include
queuing in their model [29], [31], they drop isolation con-
straints. Network calculus is employed for a worst-case end-
to-end latency analysis. They minimize the occupation per-
centage of egress ports, i.e., the percentage of the hyperperiod
which is reserved for TT traffic. In this way, long and frequent
time intervals for lower-priority traffic are scheduled. Their
evaluations indicate that their approach is superior regarding
end-to-end delay and schedulability of streams compared to
earlier works from the same authors.

Chaine et al. [53] use queuing for jitter control. They pro-
pose to schedule streams without queuing at all egress ports
except for egress ports connected to end stations. Frames
are buffered in these egress ports and are released such that
jitter constraints are satisfied. The authors present a novel
isolation approach, denoted as size based isolation. Frames
must be buffered in increasing frame size order if they are
stored in the same queue. Two GCL entries are used to close
and open the corresponding gate between two frame trans-
missions. In this way, frames cannot be transmitted during an
earlier time slice than scheduled if another frame is missing
in the queue, as earlier time slices are too short. Figure 10
depicts such a scenario. The authors give an ILP model to

VOLUME 11, 2023 61205



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 11. Effect of the schedule compression algorithm from [28].
Scheduled frame transmissions (F) and guard bands (GB) over a single
link are shown.

compute schedules with their approach. A comparison of
their approach to an unspecified approach for latency mini-
mization demonstrates that their approach reduces schedul-
ing time significantly. However, this comes with the cost of
higher latencies.

Bujosa et al. [54] propose a heuristic scheduling algo-
rithm which handles queue assignment of streams. Instead
of scheduling frames or streams one after another on their
entire path, they schedule all transmissions over a single link
before scheduling the transmissions over another link. They
present results about the scalability and schedulability of their
approach compared to a CP approach from the literature [55].
Not surprisingly, scheduling is significantly slower with a CP
approach compared to a heuristic.

3) SCHEDULING W/OTHER TRAFFIC
The schedule of TT streams may affect other traffic classes.
AVB and BE traffic cannot be scheduled, but QoS metrics
of these classes can be influenced when they are taken into
account during the scheduling of TT streams. We summarize
works with such considerations.

Dürr et al. [28] present an ILP and a Tabu Search algorithm
to compute no-wait schedules for TT streams. Theymodel the
problem with job-shop scheduling, a widely used modelling
framework in the scheduling literature. The authors measure
the solving times of their Tabu Search and conclude that
the network topology and size have no influence on solving
times. They minimize the flowspan to construct a large time
slice for BE traffic at the end of the computed schedules.
They propose a compression algorithm as post-processing
for schedules which aims to reduce the number of GCL
entries needed to deploy a schedule. The authors note that this
increases the available bandwidth for BE traffic as the number
of guard bands is reduced. Figure 11 depicts the effect of the
schedule compression algorithm. They report that the number
of GCL entries can be reduced by 24% on average. Parts of
the content of this work are also featured in the PhD thesis of
Nayak [56].

The authors of [57] give an ILP to compute schedules for
TT streams and additionally present a GRASP heuristic to
schedule AVB streams. They restrict queuing by enforcing
frame isolation. Their heuristic computes a routing for AVB
streams such that they meet their deadlines. It reduces the
search space by only considering a fixed number of shortest

paths for every pair of nodes as possible routings. The sched-
ule of TT streams, computed by their ILP model, serves as
input for the heuristic and cannot be changed. They compare
their AVB routingwith the naïve approach of always selecting
the shortest path. The comparison demonstrates that more
AVB streams can be scheduled with their approach. A com-
parison of solving times of their ILP to the SMT from [29] is
conducted. They state that their proposed ILP does not scale
well for industrial-size instances and further efforts to create
a suitable heuristic are needed.

The authors of [58] propose an SDN-based method for
traffic bandwidth allocation in safety-critical environments.
While this work does not present a scheduling algorithm for
the TAS, it gives a method to configure the CBS such that
latency requirements of streams are met. They use a particle
swarm optimization heuristic for this purpose. Evaluation
results for the schedulability of stream reservation messages
under varying network utilization by TT traffic are reported.

Santos et al. [59] present an extensive SMT-based mod-
elling of the scheduling problem with openly accessible
implementation. Their model contains a range of features
known from previous works, e.g., transmission windows,
multicast, guard bands, and bandwidth considerations for BE
traffic which were not covered by a single approach in the
past. The starvation of BE traffic is prevented by restricting a
user-defined fraction of a hyperperiod exclusively to be used
by other traffic which is related to the approach of minimiz-
ing the flowspan [28]. Additionally, unrestricted queuing is
integrated which is uncommon in exact approaches so far.
The authors mention the limitation of only one gate opening
per queue per hyperperiod in the presented model which
reduces the available bandwidth for other traffic classes. They
evaluate their approach on a realistic sized network and report
successful scheduling for up to 10 multicast streams. The
model is also used in the well known simulation framework
OMNeT++ [60]. The thesis of Santos [61] explains the
model in detail.

Houtan et al. [62] compare schedules computed with vari-
ous objectives for the same SMT model with respect to the
QoS of BE traffic. They propose minimization and maxi-
mization of frame offsets, with the goal of increases the QoS
by grouping frames together. Additionally, they also suggest
two objectives whichmaximize the gaps between consecutive
frame transmissions over a link. They integrate frame and
flow isolation in their SMT model. Unfortunately, their work
lacks a description which one was used in the evaluations.
A comparison of the different objective functions indicates
that larger gaps between frame transmissions of TT streams
increase the QoS of BE streams. For instance, BE traffic may
experience less starvation and average latencies are reduced.
Figure 12 depicts how BE traffic may benefit from maxi-
mizing the gaps between TT frame transmissions. However,
we note that the used system model features deadlines for
BE traffic, and they measure the number of deadline misses,
so a comparison with the other mentioned research works is

61206 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 12. Effects of different objective functions to BE traffic in [62].
Frame transmissions of TT and BE traffic over a single link are shown.

not possible. The solving time for their SMT depends heavily
on the objective function used.

Themodel of [29] is used for an in-vehicle scenario in [63].
The authors present simulation results with typical traffic
patterns in such a scenario. They compare end-to-end delays
for schedules using the TAS to schedules using the strict pri-
ority mechanism. Their results indicate that scheduling with
the TAS can ensure real-time requirements of TT streams
while the performance of lower-priority traffic is less affected
compared to the strict priority mechanism.

Barzegaran et al. [64] give a CP approach to compute
transmission windows for TT streams. In contrast to other
window-based approaches [31], [41], they assume that not
all end stations support TSN. They use a worst-case delay
analysis to eliminate solutions that may violate the real-time
requirements of the given problem instance. They compare
their approach to the algorithms presented in [29], [31],
[52], and [57]. They outperform these approaches in terms of
solving time, but end-to-end delays and bandwidth utilization
are significantly worse compared to [29] and [31]. They also
perform simulation runs of their schedules with OMNeT++.
The results indicate that their worst-case analysis for end-
to-end delays holds but overestimates the simulated delays
considerably.

The coexiestence of the TAS and Cyclic Queuing and
Forwarding (CQF) in TSN is investigated by Pei et al. [65].
They propose to use CQF for rate constrained traffic with
deadlines, i.e., some egress queues per egress port are shaped
by CQF. Streams of scheduled traffic and rate constrained
traffic are scheduled simultaneously. They are scheduled one
after another in least laxity first order, i.e., the next scheduled
stream is the stream which deadline expires next. The same
approach is used only for scheduled traffic streams as an alter-
native for comparison. The evaluation shows that the joint
handling of scheduled traffic and rate constrained streams
results in higher schedulability.

Another approach which combines the TAS and CQF is
presented by [66]. They consider the scenario of multiple
traffic classes with different real-time constraints. Besides
of scheduled traffic with low latency and jitter requirements,
there are also two other traffic classes with uncritical periodic
streams and best effort traffic. The uncritical periodic streams
are assigned by egress queues shaped by the CQF. The authors
present a heuristic to compute a schedule for all traffic classes
simultaneously. The evaluations show that sorting streams in

FIGURE 13. Timing signals of two clock oscillators. Clock 1 runs slower
than clock 2. Therefore, the difference between both clocks increases
over time.

earliest deadline first order before scheduling is beneficial for
the schedulability. In contrast to that, sorting streams by frame
size or period reduces schedulability considerably.

Wang et al. [67] propose a combined scheduling scheme
for TT and AVB streams. AVB streams are shaped with CQF.
They use guard bands to protect TT frames fromAVB frames.
Their heuristic tries to schedule as many AVB streams as
possible while load balancing the traffic amount between the
time slots of the CQF mechanism. The authors report that
their approach significantly reduces jitter and solving times
compared to another approach for CQF.

Huang et al. [68] propose a recursive scheduling heuristic
using backtracking. They use a complex in-vehicle topology
to evaluate their approach and also include AVB streams in
the evaluation scenario. We highlight that they give detailed
stream parameters which is rare for real-world use cases.
They also include Frame Replication and Elimination for
Reliability [17] to cope with frame loss of safety critical traf-
fic. Additionally, an SMTmodel is presented and compared to
their heuristic. The heuristic outperforms the SMT in regard
to schedulability, scalability, and end-to-end latencies by far
in the evaluation scenario.

4) SCHEDULING W/RELIABILITY
Reliable transmission of data streams is one of the design
goals of TSN. Additionally, to hardware features ensuring
reliability, schedules can be assembled to mitigate the effects
of various faults. We discuss publications which take such
considerations into account.

The clock frequencies of two clocks are not exactly equal
for technical reasons. This results in so-called clock drift, i.e.,
clocks running with different speeds. Figure 13 depicts this
problem. Craciunas et al. [69] extend their model from [29]
to cope with clock drift during scheduling. They introduce a
parameter for the maximum allowed clock drift into all equa-
tions which contain transmission offsets or reception times
of frames. Effectively, they merely increase the gap between
frame transmissions which is already contained in the model
of [29]. Clocks are resynchronized after some predefined out-
of-sync detection timeout. The authors present a design space

VOLUME 11, 2023 61207



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

study which investigates the relationship between the maxi-
mum allowed clock drift, the worst-case clock drift rate, the
maximum possible diameter of the synchronization spanning
tree, and the out-of-sync detection timeout. Their findings
on a number of test networks indicate that shorter out-of-
sync detection timeouts are needed for higher clock drift
rates. Themaximum possible diameter of the synchronization
spanning tree is negatively affected by higher clock drift rates.
Evaluations for a test case regarding schedulability, end-to-
end latency, and solving time are conducted. The results show
that end-to-end latency increases for higher allowed clock
drifts. Maximizing the allowed clock drift yields a maximal
robust schedule for a given problem instance, but solving time
increases by an order of magnitude compared to setting a
fixed maximum clock drift in advance.

Feng et al. [70] consider the scheduling problem in the
presence of frame loss. Instead of scheduling redundant
streams over disjoint paths, as in [71], [72], and [73], reliabil-
ity is achieved by multiple transmissions of a stream over the
same path. Thus, the proposed approach is only applicable
in the case of spontaneous frame loss and temporary link
failures. The research work focuses on choosing an appropri-
ate number of repetitions per stream for a trade-off of relia-
bility and network utilization. In contrast to similar works,
considerations for AVB and BE streams are also included
in the algorithm, as repeated transmissions of TT streams
deplete the available bandwidth and may lead to starvation
of other traffic otherwise. The presented algorithm uses the
SMT model from [29] as a sub-routine. Their results show
that increasing the fault probability leads to a higher number
of retransmissions which in turn results in less available
bandwidth for BE traffic.

In later works, Feng et al. [74] studied a similar problem,
but also considered ACK and NACK messages and queue
assignment of streams. In contrast to [70], every TT stream is
sent exactly twice. Transmission windows for BE streams are
computed after the scheduling of TT streams. The scheduled
transmission intervals for the retransmissions can be used to
transmit BE traffic when no retransmissions are needed.

Dobrin et al. [75] present a heuristic scheme to schedule
streams with reliability considerations. They consider trans-
mission losses for frames such that only one frame is affected
by a fault at a time and the fault is fixed by some prede-
fined number of retransmissions. Their approach first tightens
the deadlines to take some number of retransmissions into
account. Then, they schedule streams in earliest deadline first
order. Additional considerations for rate constrained traffic
are also included in their scheme, following the scheduling of
the TT streams. Unfortunately, no evaluations are presented.
The authors note that future works will address more realistic
fault models.

5) RECONFIGURATION OF SCHEDULES
The reconfiguration of schedules has two distinct meanings
in the context of scheduling for the TAS. First, an update to an

existing schedule must be computed when the set of streams
or the requirements change. Second, a modified schedule
from the first case must be deployed to hardware devices,
i.e., GCLs and transmission offsets are reconfigured. This
section focuses on the first meaning as the deployment of
schedules is out of scope for scheduling algorithms. Adding
and removing streams from an existing schedule is necessary
in dynamically changing environments, e.g., automotive use
cases. While removing a stream is straightforward, adding
new streamsmay require more effort.We summarize research
works concerned with this problem extension.

Raagaard et al. [76] propose an algorithm for online
scheduling of new TT streams in an existing schedule. They
use a heuristic which schedules streams as early as possi-
ble such that schedules comply with isolation. When a new
stream should be added to an existing schedule, they calculate
whether there is a starting offset such that the stream can be
scheduled without changing the existing schedule. If this is
not possible, the stream is assigned to unused queues of the
egress ports along the stream’s path. The authors state that
adding streams to an empty schedule resembles theworst case
of removing all streams from a schedule and adding a set of
new streams. Thus, they evaluate how many streams can be
scheduled in a specific time. They report that their heuristic
is able to schedule about 1300 frames per second in medium-
sized test cases.

Pang et al. [77] compute schedules with an ILP such that
updating a schedule does not lead to frame loss or additional
update overhead. In contrast to [28] and [57], their approach
is not limited to TSN and streams are scheduled one by
one. Schedules of streams from previous iterations are fixed
in later iterations. When some stream cannot be scheduled,
backtracking is used by removing some stream of an earlier
iteration from the schedule. The authors prove that a set of
additional constraints of the ILP imply no conflicts during
schedule updates. They evaluate their algorithm with respect
to frame loss during updates and update duration on real-
world train and automotive networks. The results confirm
that no frames are lost and no time overhead is needed for
schedule updates.

Another algorithm for schedule updates is proposed by
Wang et al. [78]. They present a heuristic scheduling algo-
rithm with backtracking similar to [68]. Additionally, they
present an algorithm for incremental schedule updates which
omits frame loss during updates. A comparison between both
algorithms shows that the incremental update algorithm is
faster while it has poor schedulability for higher network
utilization.

Gärtner et al. [79] introduce a measure for schedule flexi-
bility denoted as flexcurve. The flexcurve is a function that
captures the number of possible embeddings of a stream
in an existing schedule. Thus, higher values correspond to
more possibilities to reschedule a stream. Already scheduled
streamsmay be selectedwith thismeasure and shifted to other
times to introduce gaps for new streams into a schedule. The
paper elaborates on the details of computing and updating

61208 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

the flexcurves. The authors compare their algorithm to
a not specified SMT approach and the algorithm of
Santos et al. [59]. In contrast to the SMT approach, solving
time of the proposed reconfiguration algorithm is linear for
up to 100 streams in the evaluation scenario. The approach of
Santos et al. [59] results in schedules with lower flexibility
and thus is less suitable for dynamic reconfiguration. A jour-
nal extension of this work is presented in [80].

6) GCL SYNTHESIS
Most research works use a post-processing to compute GCLs
from transmission offsets. However, this comes with the
drawback that GCLs have limited size in bridges and a
schedule may not be deployable. We present literature which
discusses explicit GCL generation.

Jin et al. [30] present an SMT approach to schedule TSN
streams with a fixed number of gate openings. Reducing the
number of gate events also reduces the number of guard
bands, such that more bandwidth is available for lower-
priority traffic. Their modelling assumptions regarding queu-
ing are even more restrictive than frame isolation as only
exactly one frame is allowed to be in a queue at any given
time. Their approach allows multiple queues for TT traffic
per egress port, but assigning streams to queues is not part of
the SMT model. This is done before solving the SMT model
by a greedy heuristic which aims to balance the workload of
all queues of an egress port. As their SMT model cannot be
solved in reasonable time, they use an incremental scheme
to schedule small groups of streams separately. Subsets of
streams are scheduled one after another such that the sched-
ules of previously scheduled subsets are fixed in later itera-
tions. The objective when optimizing a subset is to minimize
the maximal number of GCL entries for all egress ports.
They also propose a heuristic algorithm which complies with
a limited number of GCL entries. Their evaluations show
that the heuristic algorithm is an order of magnitude faster
than naïve heuristics while reducing the number of GCL
entries considerably. Instances with up to 10000 streams were
scheduled in reasonable timewhile the SMT approach has not
produced a feasible schedule for an instance with 100 streams
within 2 days.

Another incremental SMT scheme which aims to reduce
the number of GCL entries is given in [81]. Their approach
divides the hyperperiod into slices. Streams and GCLs are
scheduled for every slice individually. GCLs are updated and
deployed at the beginning of every slice during schedule
execution. The authors compare the number of GCL entries
needed with schedules computed for an entire hyperperiod.
Their results demonstrate that the number of GCL entries can
be reduced while keeping end-to-end delays in reasonable
bounds. However, it is not a surprise that fewer GCL entries
are required when updating the GCLs regularly is allowed,
as even a single entry per GCL is sufficient with frequent
updates.

A rather simple CP model for scheduling on a single
link with only four types of constraints is presented in [82].

However, they propose a post-processing to reduce the num-
ber of GCL entries needed in a schedule. For a small test
case of only three streams, the authors report a reduction of
bandwidth loss due to guard bands by 42.8%.

7) TASK SCHEDULING
Tasks are applications running on end stations. We highlight
publications which consider the scheduling of tasks on end
stations, additionally to scheduling data streams between
these tasks.

In [83], Feng et al. compute schedules for streams and
tasks sending or receiving streams simultaneously. Themodel
includes dependencies between streams and tasks, e.g.,
an application can only be executed when all frames of some
stream were received. The authors scheduled instances with
11 streams and more than 100 tasks. As many other works,
the authors note the exponential increase of solving times for
larger instances.

The authors of [84] present a CP model for scheduling
of TT traffic which takes characteristics of control applica-
tions into account. Control applications have an execution
interval and can only produce output streams for actuators
when certain input streams of sensors have arrived. Although
the quality of control application execution covers multiple
aspects, the only one taken into account is jitter. Queuing is
allowed in their model, but is restricted to frame isolation.
They compare exact and heuristic search strategies to find
solutions to the proposed CP model. For all presented test
cases, both search strategies find the optimal solution with
zero jitter, but the heuristic approach is orders of magnitude
faster.

These preliminary works were extended in [85]. In contrast
to [84], a more realistic quality measure for streams of control
applications is integrated into the CP model. It constitutes of
jitter and end-to-end delays of input and output streams of
control applications, and jitter for control application execu-
tion. They compare their model with the model from [29]
which is extended to include stream precedence for input
and output streams of control applications. That means the
model is able to enforce that control applications are executed
after their respective input streams have arrived. Analogously,
streams sent by a control application are scheduled to be
transmitted after the execution of the application has finished.
The authors report that the presented model outperforms the
model from [29] with respect to the proposed quality measure
by up to a factor of two on the test cases under consideration.
Additionally, they compute a schedule for a realistic test case
of an automotive mobile robot and validate their algorithm on
a simulation platform and on real hardware. The PhD thesis
of Barzegaran [86] features this work.

McLean et al. [87] present a converged approach for task
and message scheduling in automotive environments using
TSN. The authors propose metaheuristics based on genetic
algorithms and simulated annealing to compute the mapping
of tasks to processing cores. A combination of list scheduling

VOLUME 11, 2023 61209



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 14. Transmissions of two frames A and B over a link to a listener.
B cannot be scheduled to be transmitted at another time. In this case,
scheduling is only possible when the scheduler splits A into two frames.

and earliest deadline first scheduling is used to compute
schedules for message transmissions and task executions.
Instead of rejecting solutions violating one or more timing
constraints, the objective penalizes such solutions. Thus, the
algorithm is able to move towards feasible solutions when
fining an initial feasible solution is hard. The evaluations
show that the simulated annealing algorithm results in lower
solving times and better solutions compared to the genetic
algorithm heuristic.

Another converged approach for task andmessage schedul-
ing is proposed by Arestova et al. [88]. The authors introduce
the concept of earliest and latest start times for tasks in cause-
effect chains of tasks and streams. These times represent the
range of valid execution times for tasks and are used for the
fast rejection of invalid solutions. An incremental scheduling
heuristic which uses these times is presented. Additionally,
a repair function is integrated to recover from cases where
timing constraints are violated. The evaluations demonstrate
that the approach results in significantly reduced solving
times and worst case response times compared to approaches
from the related work.

8) OTHER TOPICS
This section summarizes research works with unique topics
that fit not well into the previous groups.

Jin et al. propose an SMT model which also handles an
optimized fragmentation of messages in [89]. Messages can
be transmitted with multiple frames. How messages are split
into frames is an additional degree of freedom in the presented
optimization. Due to performance reasons when solving the
model, they also give heuristics for message fragmentation
and scheduling. The presented evaluations demonstrate that
schedulability increases considerably by up to 50% when
message fragmentation is also taken into account. Figure 14
depicts an example of how schedulability can benefit from
message fragmentation. Additionally, the presented heuristic
algorithms can schedule instances an order of magnitude
larger than the SMT approach.

A genetic algorithm approach which takes frame preemp-
tion into account is presented in [90]. Their model contains
different kinds of MAC interfaces for preemptable and non-
preemptable frames. Consequently, the presented synthesis
problem not only covers the assignment of streams to queues,
but also the assignment of queues to interfaces. Queues are

FIGURE 15. Example of a converged network with 5G and Ethernet links
as considered in [91].

strictly prioritized, i.e., frames contained in a higher-priority
queue always preempt frames of a lower-priority queue. The
proposed GA aims to maximize the reliability of a schedule.
Reliability of a stream is defined as the maximum number
of allowed retransmissions without missing the deadline, and
the reliability of a schedule is the minimum reliability of all
streams. The authors present a comparison of the proposed
GA with well-known approaches from automotive traffic
scheduling. The baseline approaches are outperformed with
respect to schedulability and reliability. The authors explain
this result with the fact that their algorithm is specifically
constructed to use all the available TSN queues and to utilize
them in a way suitable for preemption.

The authors of [91] give a CP model for TSN in joint con-
verged wired and wireless networks. Their model integrates
Ethernet and 5G links simultaneously. Figure 15 depicts an
example for such a converged network. Frames transmitted
over a 5G link must be scheduled to fit into predefined
transmission slots. They aim to minimize unusable resources
in both types of links, i.e., time occupied by guard bands for
Ethernet links and unused bandwidth resources for 5G links.
The presented evaluations indicate that minimizing only one
kind of unusable resources leads to unsatisfying results for
the respective other kind.

Lin et al. [92] evaluate the impact of the so-called net-
work cycle to schedulability. The network cycle is a design
methodology for frame schedules. All stream periods are
assumed to be integer multiples of the network cycle. Frame
transmissions are alignedwith network cycles. The rational of
this is to omit conflicts between streamswith different periods
when streams are scheduled incrementally. They propose an
incremental heuristic which considers the network cycle. The
authors report the highest schedulability when the network
cycle is set to the greatest common divisor of all stream
periods.

The authors of [93] developed a graphical modelling tool
for TSN scheduling. They use logic programming to deduce
facts about the given problem instance. These facts are in
term used for constraint generation of an SMT model. If an
instance is infeasible, the conflict refinement capabilities of
the SMT solver is leveraged to guide the user in changing
the network configuration appropriately. Three test scenarios

61210 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

are presented where the streams causing infeasibility are
identified.

Machine learning techniques were introduced to the
domain of TSN scheduling in [94]. Tu et al. present a semi-
supervised machine learning model to partition streams in
groups before scheduling. They compare their approach with
the partitionings in [71] and [95], and state that they are
outperformed regarding schedulability. However, it is not
clear how this statement is backed by the actual computation
of schedules with the resulting stream groups.

We highlighted the contributions of research works for the
scheduling problem with fixed routings. We compare and
discuss the research works presented in this section together
with the research works for the joint routing problem in
Section V.

B. SCHEDULING W/JOINT ROUTING
In this section, we give an overview of research work which
inspects the joint routing and scheduling problem. In contrast
to works in IV-A, algorithms proposed by publications in this
section compute a routing and a schedule for a given set of
streams simultaneously. Again, we group the literature based
on the main topic of the respective papers.

1) JOINT SCHEDULING AND ROUTING W/O
PROBLEM EXTENSIONS
This section compiles publications which handle the joint
routing and scheduling problem. Research works are only
included when they do not focus on an additional topic high-
lighted in this survey.

An early ILP model which addresses the problem of joint
routing and scheduling is presented in [8]. Although it is
not exclusively for TSN, the authors state it is applicable
for such networks. Their evaluations show that schedulability
increases considerably compared to the same test cases with a
fixed routing. They compare the solving time of their ILP for
joint routing and scheduling with ILPs solely for scheduling.
As expected, the solving time is larger for joint routing and
scheduling compared to scheduling with a fixed routing.
Nevertheless, they still recommend joint routing as solution
quality increases considerably.

Falk et al. [96] extend the ILP from [28] to simultaneously
compute routing and schedule of TT streams. They analyze
the scalability of the joint routing and scheduling problem
using ILPs. The authors report that solving time is more influ-
enced by the number of streams than the size of the network
topology for their ILP. The evaluations show that network
topologies with more paths between any pair of nodes tend to
yield harder problem instances, as more routings are possible
for any stream.

Nie et al. [97] schedule and route streams incrementally.
Streams are grouped by divisibility of their periods, such
that streams in the same group can share the same links.
The authors focus completely on the case of large period

differences and omit the worst case of all streams having the
same period. In contrast to similar works, e.g., [71] and [98],
they consider only no-wait scheduling. Time is divided into
time slots whose lengths equal the greatest common divisor
of the periods of all streams. Although many evaluations are
performed for different network topologies, network sizes,
and traffic types, no results not seen in other works were
presented.

Xu et al. [99] propose an incremental SMT scheme sim-
ilar to [71] and [98]. However, they partition streams with
machine learning using some of the ideas from [94]. The
authors compare this partitioning approach with the parti-
tioning algorithms from [71], [94], [95], and [100]. The best
schedulability was obtained for the proposed partitioning
method, second to the methods from [71] and [94]. Schedula-
bility is slightly increased when more streams are scheduled
simultaneously, as more conflicting streams are handled in
the same iteration. Additionally, the authors compare the
incremental scheme with their global scheduling approach
from [101]. The incremental scheme outperforms the global
approach with respect to schedulability and scalability. The
difference in schedulability between both methods increases
for higher link utilization.

The authors of [102] present a PBOmodel for joint routing
and scheduling. They compare the solving time of their PB
approach with the solving time when routing and scheduling
are computed in separate steps by the same model. Their ini-
tial evaluations indicate that solving routing and scheduling in
separate steps reduces the overall solving time. Surprisingly,
their evaluations also show that the 2-step approach performs
significantly worse for larger instances compared to the joint
approach. They explain this behavior by the capability of
SAT solvers to learn from conflicts. Whenever the solver runs
into a conflicting variable assignment, it interferes the cause
of the conflict and adds a clause to the model which pre-
vents the conflict explicitly. The learned clauses are dropped
after the routing step in the 2-step approach. Schedulability
increases when routing and scheduling are performed in a sin-
gle step. They state that instances with more routing options
lead to easier solvable scheduling problems as streams can be
distributed over the network.

Arestova et al. [103] construct a genetic algorithm for
joint routing and scheduling. In contrast to other works with
genetic algorithms [100], [104], the authors focus on elab-
orating on the construction for such an approach in detail.
They combine the genetic algorithm with a neighborhood
search heuristic to find better solutions efficiently. They allow
queuing with flow isolation constraints from [29]. Addition-
ally, a schedule compression algorithm similar to the one
in [28] is presented, which is used to reduce the number of
guard bands. In a brief evaluation section, they compare their
approach with the well-known NEH algorithm [105] from
job-shop scheduling. The proposed approach finds feasible
schedules faster, while the resulting schedules have compara-
ble flowspans. The authors report that scheduling with joint

VOLUME 11, 2023 61211



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 16. Example of a conflict graph used in [108] for a single link
topology. Assume the transmission of each frame takes 5 time units.
Edges indicate stream schedules which are not compatible. The black
circled vertices are an independent set and induce a schedule.

routing takes only slightly more time than scheduling with
fixed routing with the genetic algorithm.

Kentis et al. [106] investigate the relation of port utilization
and GCL schedule duration in a short paper. They employ a
simple heuristic for schedulingwhich is not further explained,
and compare the resulting schedule duration with shortest-
path routing and the proposed congestion-aware routing. For
most test cases, the duration of the schedule is reduced. How-
ever, they do not motivate why shorter schedule durations are
beneficial.

The authors of [107] present an algorithm based on ant
colony optimization. First, they give a heuristic based on
simulated annealing and genetic algorithms. The authors state
that integrating transmission delays into this approach is hard
and propose an ant colony optimization heuristic to overcome
this problem. They give the fundamental building blocks of
such an algorithm and demonstrate that it can be suitable for
TSN scheduling, but also note that further investigation is
needed. Unfortunately, they do not elaborate on the routing,
and the only related evaluation indicates that increasing the
number of edges increases the solving time. The authors com-
pare their TSN-adapted ant colony optimization algorithm
with another ant colony optimization that is not specific for
TSN scheduling. They conclude that the adapted algorithms
results in less jitter and end-to-end delays, and converges after
fewer iterations.

Falk et al. propose a joint routing and scheduling algorithm
in [108] which is not based on constraints for frame trans-
missions. Their approach constructs a conflict graph where
each vertex represents a schedule for a single stream. Vertices
are connected by an edge if and only if the corresponding
stream schedules are conflicting. This reduces the scheduling
problem to finding an independent set in a conflict graph,
i.e., a set of vertices which are pairwise not connected by an
edge. Figure 16 depicts an example for a conflict graph and
an independent set. The authors use incremental heuristics to

FIGURE 17. Flow diagram of the proposed approach in [109].

construct independent sets in such graphs. Their evaluations
demonstrate that the conflict graph approach has advantages
regarding runtime and memory consumption compared to
ILPs. They remark that their implementation is just a proof
of concept, and more efficient algorithms to find independent
sets are known. They further note that this approach is cheap,
as no expensive ILP solver is needed.

An enhanced CP approach for routing and scheduling is
presented by Vlk et al. [109]. The authors present separate
models for routing and scheduling, and use them in a prob-
lem decomposition algorithm. First, they compute a routing
for the given streams. A schedule is computed using this
routing. If no schedule was found, constraints are added to
the routing model to prohibit the last routing solution. These
steps are repeated until a schedule is found. Alternatively,
it may be the case that all possible routings for some stream
lead to a conflict while scheduling. In that case, an instance
is deemed as infeasible. Figure 17 depicts a flow diagram
of the proposed approach. Most other research works which
performs routing and scheduling in separate steps considers
an instance infeasible after only one pass of routing and
scheduling. The model also includes queue assignment of
streams as additional degrees of freedom. The authors sub-
stitute their scheduling model with the algorithms from [28],
[29], and [110], and compared schedulability of the resulting
algorithms with their approach. Their CP model was able to
schedule the most instances, while the SMT model sched-
uled significantly fewer instances than all other algorithms.
Scheduling time was similar for all algorithms except for the
SMT model, which needed multiple times longer for most
instances.

He et al. [111] present a deep learning based approach
for joint routing and scheduling. They use a graph neural
network to handle arbitrary sized network topologies. They
evaluate their approach on various random network topolo-
gies and compare it with [8], [28], [40], and [104]. All other
approaches were outperformed in regard to schedulability
and scalability for various numbers of streams and network

61212 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

topology sizes. They also compare different encodings, poli-
cies, and sampling strategies featured in their deep learning
approach. The results give useful insights for future works
involving deep learning in TSN scheduling. Additionally, the
authors present measurements of jitter on a real hardware
testbed which integrates their deep learning scheduling algo-
rithm. They report no frame losses and ultra low jitter, which
indicates that the constructed schedules are valid.

2) SCHEDULING W/RELIABILITY
Reliability is an important topic in the literature of joint
routing and scheduling. The possibility of selecting disjoint
paths for redundant stream copies further increases reliability
in these research works.

Pozo et al. [112] present an ILP for joint routing which
considers reliability constraints. After a single link failure,
all streams over this link must be rescheduled and rerouted.
The authors propose a fast heuristic for this case. They also
evaluate which properties of a schedule are beneficial for
the repairability in case of a failure. The results indicate that
schedules which maximize the gaps between frame transmis-
sions are much easier to repair than schedules which mini-
mize the flowspan, even for three simultaneous link failures.

Atallah et al. [113] give a heuristic for fault-tolerant joint
scheduling, routing, and topology generation. Their algo-
rithm starts with a full mesh topology. Streams are routed
and scheduled one after another. A k-shortest-paths algorithm
is used to enumerate possible paths for a stream. If a path
with available time slots is found, schedule and routing are
fixed for later iterations. This is repeated multiple times with
disjoint paths for redundant copies of a stream to ensure
reliability. Links and bridges are only included in the final
topology when they are used by some stream. The algorithm
also selects bridges such that more expensive bridges are
only used when necessary. Figure 18 depicts this approach
for topology generation. The authors compare their algorithm
to another approach which realizes redundant paths through
multiple copies of the network topology. The proposed algo-
rithm scheduled all problem instances, while it reduces finan-
cial costs for network hardware considerably.

The authors of [71] propose an incremental ILP scheme to
comply with requirements for the robustness against single
link failures. First, the authors present a GRASP heuristic
for routing which considers reliability constraints. Streams
are replicated and routed over disjoint paths to comply with
requirements regarding robustness to single link failures. The
resulting routing is used as input to the incremental ILP
approach. Streams are partitioned into groups by introducing
a conflict metric and computing a weighted cut in the conflict
graph. Groups of streams are scheduled one after another.
The computed schedules are fixed when the next group is
scheduled. They model egress ports with only one queue for
TT traffic and frame isolation. A comparison of the presented
ILP with the ILPs from [8] and [102] demonstrates that it
outperforms both approaches regarding solving times.

FIGURE 18. Topology generation approach of [113]. A full mesh topology
is used during routing and scheduling. Links used in the final routing are
indicated in red. Only these links are included in the final topology. The
approach covers the selection of bridges from a library depending on the
generated topology. More expensive bridges with a higher number of
ports are indicated in dark blue.

Instead of robustness against link failures, Zhou et al. [114]
consider reliability against frame loss, i.e., frames that are lost
spontaneously during transmission without a permanent link
failure. They integrate constraints regarding the loss proba-
bility along the routed path of a stream in their SMT model.
However, these probabilities are only approximated, as the
used theory solver cannot handle exponentials. An incre-
mental scheme similar to [71] is used. Subsets of streams
are scheduled and routed one after another until all streams
are scheduled. Stream schedules are fixed in subsequent
iterations. They use redundant copies of streams to further
reduce the probability of frame loss, as there may be no single
path with the required reliability. In contrast to other works,
e.g., [71], [72], and [73], they do not enforce paths to be link
disjoint. Their evaluations show that schedulability with a
given level of reliability against frame loss increases with a
higher number of redundant copies per stream.

Syed et al. [115] present an ILP and a heuristic for
scheduling and path selection in in-vehicle networks. They
leverage Frame Replication and Elimination for Reliability
(FRER) [17] to ensure robustness against frame loss of safety-
critical streams. The ILP model is similar to the ILP used in
prior works by the same authors [116]. They report solving
times of about a day with the ILP while the heuristic solved
the same instances in a few minutes.

Following their works in [115], Syed et al. [117] devel-
oped an alternative to FRER. The authors propose a network
coding scheme to mitigate temporary and permanent link
failures. Two disjoint paths are used to transmit two frames.
A third path disjoint from the other two is used to transmit the
XORed data of these two frames. The loss of one frames can
be tolerated as the lost frame can be reconstructed from the
other two. Therefore, the redundant transmission of n frames
results in 3

2n frame transmission with this scheme. This is a

VOLUME 11, 2023 61213



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

significant reduction compared to the 2n frames needed with
FRER.

Another incremental scheme for scheduling and routing
in safety-critical automotive applications is presented by
Zhou et al. [118]. They consider possibly undetected system-
atic faults of bridges, i.e., implementation bugs or divergence
from specifications, instead of randomly arising errors like
frame loss. Messages and bridges have an Automotive Safety
Integrity Level (ASIL) assigned [119] which defines reliabil-
ity constraints of the respective component. A higher ASIL
corresponds to higher reliability. Additionally, to computing
routing and scheduling, their algorithm also selects which
bridges to use from a library. Messages can be decomposed
into redundant message copies with lower ASIL to be sent
over bridges with lower ASIL. A comparison of the presented
algorithm with and without message decomposition shows
that the total financial costs for bridges can be reduced by
up to 23.55% in the evaluation scenarios. The authors note
that higher ASILs increase the required number of message
copies, which leads to more congestion in the network and
thus higher end-to-end delays. Evaluations on a real-life auto-
motive test case are presented. Synthesis time increases con-
siderably with ASIL decomposition. However, the selected
bridges cost only a third compared to using only bridges with
the highest ASIL. The PhD thesis of Zhou [120] compiles the
content of [114], [118], and [121].

The authors of [72] present separate CPmodels to compute
schedules and routings as work-in-progress. These models
take security and reliability considerations into account. The
routing computed with the first model is used as fixed input
for the scheduling model, similar to [71]. Redundant streams
with disjoint paths are added if needed to comply with secu-
rity and reliability constraints.

The ideas from [72] are extended in [55]. Besides the CP
model, a simulated annealing algorithm combined with a list
scheduler is given. Additionally, a post-processing for latency
reduction of scheduled streams is applied after scheduling.
Their evaluations without security and reliability constraints
indicate that the SA approach is able to find a feasible sched-
ule in reasonable time, even for huge problem instances.
However, they also introduce a measure for schedule and
routing costs. This measure contains stream latencies, penal-
ties for streams which were not scheduled, and penalties for
overlapping paths. The results demonstrates that schedules
computed by SA have up to three times higher costs com-
pared to schedules computed by the CP approach. Introducing
the security and reliability constraints to the same problem
instances increased the costs of schedules computed by SA by
up to a factor of∼ 3.5. Nevertheless, the authors state that the
SA approach can be useful in comparing costs and reliability
capabilities of topologies, or to reconfigure the network in
case of link failures.

Li et al. [122] propose a heuristic for joint routing and
scheduling with reliability constraints. A greedy algorithm
is used to select paths for redundant copies of streams such

that link utilization is balanced. Frames are scheduled as
soon as possible. Both algorithms are combined in an iter-
ative local search scheme. Already scheduled and routed
streams are randomly removed from time to time, and the
remaining streams are rescheduled and rerouted in random
order. While the authors report a reduction in frame losses
by their approach, end-to-end delays are significantly larger
compared to schedules with routings computed by Dijkstra’s
algorithm.

3) SCHEDULING W/OTHER TRAFFIC
This section presents research works concerned with schedul-
ing in the presence of other traffic classes.

Gavriluţ et al. [123] construct a GRASP heuristic to sched-
ule TT streams while taking AVB traffic into account. In con-
trast to [57], their approach handles TT and AVB streams
simultaneously. The routing of AVB streams is given and
cannot be changed. The problem of finding a routing for
AVB streams in the presence of TT streams was addressed
and evaluated by Laursen et al. [124]. The authors of [124]
propose a hill climbing based heuristic algorithm. In the first
evaluation of [123], the authors use a shortest paths algorithm
to compute the routing for TT streams. The results show that
using the GRASP heuristic with an objective that considers
tardiness of AVB streams leads to AVB streams meeting
their deadlines. In contrast to that, the GRASP heuristic
with other objectives not considering AVB streams results
in schedules with late AVB streams. Even better results are
obtained when a routing with load balancing is used before
scheduling, which also decreases overall runtime. They report
that AVB traffic does not benefit fromminimizing the number
of queues for TT streams. However, this is rather obvious,
as their system model assumes that AVB streams already
have an assignment to AVB queues. Solving time of the
GRASP heuristic increases considerably when AVB streams
are taken into account. A short preview of these results was
previously published in [125] and the implementation details
of the heuristic are elaborated in [126].

The routing algorithm in [124] only considers AVB streams
in an offline scenario. Another work which focuses on the
routing of AVB streams in the presence of scheduled traffic
is presented in [127]. The authors propose an online routing
algorithm for AVB and TSN streams. The algorithm is based
on ant colony optimization and compared to the approach
of [124]. The evaluations indicate that the ant colony opti-
mization algorithm outperforms the approach of [124] with
respect to solving times.

Gavriluţ et al. [128] propose an algorithm which assigns
messages to traffic classes, i.e., whether a message should be
transmitted with TT or AVB streams and which AVB class
should be used. The assignment algorithm is based on the tabu
search metaheuristic. Additionally, the parameters for the
CBS are estimated such that AVB streams comply with their
real-time requirements. Afterwards, streams are scheduled

61214 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

with an adaption of the algorithm from [123] and [126]. The
evaluations show that the assignment algorithm significantly
increases the number of schedulable streams. Compared to
the SMT approach of [29], the assignment to traffic classes
increases the schedulability of legacy streams that cannot be
reassigned or rescheduled.

Berisa et al. [129] propose a heuristic for the joint routing
and scheduling of TT streams in the presence of AVB streams.
They make use of frame preemption to increase the schedu-
lability of AVB streams. To that end, they present a worst-
case response-time analysis of AVB streamswith preemption.
The heuristic is based on prior works by Gavriluţ et al. [123].
Their evaluations demonstrate that the schedulability of AVB
streams can be increased by allowing frame preemption while
the runtime of the heuristic also increases significantly in this
case.

Alnajin et al. [32] give a QoS-aware routing algorithm for
TSN streams with respect to various metrics. They present
four scheduling heuristics combined with these routings.
They compare these algorithms regarding the number of
guard bands needed in the resulting schedules. Their eval-
uations show that their heuristics can reduce the number of
guard bands significantly. They note that reducing the number
of guard bands is beneficial for BE traffic.

Li et al. [130] present a heuristic for joint routing and
scheduling to eliminate non-deterministic queuing delay in
networks with mixed time-critical traffic. Their scheduling
algorithm divides the bandwidth resources into time slots
and assigns streams to these slots such that transmission
conflicts cannot arise. Similar to [31], the maximum length
of the resulting GCLs is bounded instead of being computed
by a post-processing from transmission offsets. The solving
time with the heuristic is compared to [71], [96], and [103].
Solving time is the only inspected metric as the presented
algorithm, and the three compared approaches have no objec-
tive functions. In the presented scenarios, all three methods
were outperformed by multiple orders of magnitude. The
authors report schedules for 4000 streams with just 12 GCL
entries per egress port on average.

Yang et al. [131] use deep reinforcement learning for the
joint routing and scheduling problem. Additionally, they take
AVB and BE streams into account. The authors elaborate
on the details of their machine learning model and present
evaluations about the learning phase. They introduce three
baseline approaches also based on machine learning for com-
parison. The proposed model results in slightly lower average
latencies for all traffic classes in the evaluation scenario.

4) MULTICAST
This section highlights research works specifically concerned
with multicast streams in a joint routing and scheduling
approach.

The joint routing and scheduling model from [8] is
extended for multicast support in [132]. The authors state
that while this extension is trivial for pure scheduling models,

joint routing and scheduling with multicast is more compli-
cated as additional constraints for the routing are needed. Var-
ious pre-processing steps are presented to reduce the solution
space and thus solving time. The authors report that the time
to find a feasible solution was reduced by up to 82.4% while
the overall solving time was reduced by up to 47.6%.

Another approach for joint routing and scheduling with
multicast streams is presented by Li et al. [133]. Similar
to [132], the authors use pre-processing to simplify solving
of the model. The streams are divided into groups by spectral
clustering based on their properties. Similar to [71] and [72],
these groups are routed and scheduled one after another such
that previously computed schedules and routes are fixed.
The authors report that random clustering result in slightly
longer flowspans. As in similar incremental approaches,
reduced overall solving times and increased schedulability
are reported.

Yu et al. [134] propose an incremental approach with ILPs.
In contrast to [132], they route and schedulemulticast streams
one by one.Multiple queues per egress port and queue assign-
ment are also integrated in their model. Additionally, they
propose a pre-processing scheme which aims to simplify the
topology. The pre-processing merges cliques in the topology
to a single link. If routing and schedule can be computed, both
are modified for the original graph. Otherwise the conflicting
links are expanded and routing and scheduling are repeated.
Compared to [7] with a Steiner tree as fixed routing, the
proposed approach can schedule significantlymore instances.

A biology-inspired algorithm is given by
Pahlevan et al. [104]. They construct a genetic algorithm for
joint routing and scheduling which also comprises features
like multicast streams and dependencies between streams.
The authors state multicast capabilities as one of their main
contributions, but consider multicast streams simply as mul-
tiple unicast streams. In contrast to [29], [31], and [125],
only a single queue per egress port is dedicated to TT traffic.
While their evaluations indicate that solving time increases
compared to scheduling with a fixed routing, they show that
schedulability increases by joint routing and scheduling.

In later works, Pahlevan et al. [100] present a heuristic
list scheduling algorithm for the same purpose. They model
queuing and multicast streams in the same way as in [104].
Their evaluations again demonstrate that joint routing and
scheduling increases schedulability.

5) RECONFIGURATION OF SCHEDULES
Reconfiguration of streams can benefit from modifying not
only a schedule, but also the respective routing. Newly added
streams can be routed over paths with low utilization. This
section compiles the literature about reconfiguration in joint
routing and scheduling apporaches.

Research work from Syed et al. [116] deals with joint rout-
ing and scheduling in in-vehicle networks. They propose an
ILP model for streams that are known in advance which
takes load balancing into account. They compute schedules

VOLUME 11, 2023 61215



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

and routings for these streams such that as many streams
as possible can later be added dynamically. The evaluations
compare algorithmic details that are hard to asses without
detailed knowledge of the presented approach.

Following their work in [116], Syed et al. present multiple
heuristics for the dynamic scheduling of new streams in an
existing schedule [135]. Their heuristics are based on mod-
elling the scheduling problem as a vector bin packing prob-
lem. They evaluate the time needed for adding new streams in
an automotive use case, as reconfiguration in such scenarios
has strict timing requirements.

The authors of [33] construct multiple heuristics for
dynamic scheduling and routing with reliability constraints.
All heuristics are based on the same idea as in [135]. Every
stream is replicated twice when added to an existing schedule
to ensure reliability. The best heuristic is able to schedule
500 streams in about 410ms. The authors state this is a
reasonable response time in automotive use cases.

Yu et al. [136] developed a heuristic for online rescheduling
in scenarios with virtual machines as communication end-
points. Virtual machines in a cloud computing environment
may be migrated from one physical device to another such
that schedules and routings must be updated. Additionally, all
streams are multicast streams, which complicates reschedul-
ing after a VM migration. Therefore, the multicast tree for a
stream is computed such that the maximal distance from any
possible device where a VM could run to any destination is
minimized. The authors state that this will reduce conflicts
when a VM is migrated, as the new paths are short. Given
a schedule and a stream that is migrated, a greedy heuris-
tic computes the new schedule based on the precomputed
multicast tree. The authors compare their proposed routing
heuristic with an optimal routing obtained by an ILP. Solving
times are significantly reduced, while the routing objective
grows only slightly compared to the optimal routing. Schedu-
lability in case of a migration is considerably increased in
comparison to the same scheduling heuristic used with a
routing computed by the KMB algorithm [137].

Li et al. [138] consider the reconfiguration of routing,
scheduling, and mapping of applications to end stations in
case of permanent end station failure. They extend the ILP
of [139] to schedule applications to end stations for global
reconfiguration. As the resulting ILP instances are hard to
solve, they propose a heuristic routing andmapping algorithm
as alternative. The results of this heuristic are fixed in the ILP
model, such that only a schedule is computed. The heuristic
approach is able to reconfigure almost all instances, while the
ILP times out for most of them in their evaluations. While
both algorithms have exponential runtime in the number of
streams, the heuristic is two orders of magnitude faster for
the considered instances.

An incremental approach which schedules streams one by
one is presented in [98]. In contrast to [134], the computed
schedules are constrained to no-wait scheduling, i.e., no queu-
ing delays are allowed. The authors compare the proposed

approach with [8] and [71] with respect to schedulability and
show that schedulability is slightly increased. The proposed
pre-processing for the routing approach gives only minor
improvements regarding schedulability. The authors report
that 97.5% of the streams in an instance with 2000 streams
were scheduled in less than 10 seconds per stream. They state
this is fast enough for online scenarios.

6) OTHER TOPICS
This sections summarizes research works with unique topics
that do not fit well into the previous groups.

The authors of [121] propose a heuristic model to sched-
ule streams in the presence of frame preemption similar
to [90]. Additionally, they also include route computation in
their algorithm. They present an SMT model for this pur-
pose and use it in an incremental approach, similar to [95],
[102], and [140]. The presented results show that scheduling
time not only increases with the network size and the number
of streams, but also with the maximum number of allowed
preemptions and retransmissions. However, allowing more
preemptions increases schedulability only to some instance-
specific threshold.

Gavriluţ et al. [73] give multiple algorithms to simul-
taneously compute scheduling and routing of TT streams.
In contrast to [71], [72], and [96], these algorithms addition-
ally generate the network topology with minimal financial
costs imposed by network hardware. They present a problem-
specific heuristic, a GRASP heuristic, and a CP approach,
and compare them to each other regarding solving time and
solution quality. Their optimization objective captures worst-
case end-to-end delays as well as topology costs, i.e., costs for
links and bridges which are selected from a library. Redun-
dant copies of streams are included for reliability consider-
ations. Their evaluations focus on a comparison of the three
presented algorithms. As expected, the CP approach does not
scale well. The GRASP heuristic finds better solutions in
minutes compared to the CP approach in two days.

An SMT model which includes scheduling, routing, and
queue assignment of streams simultaneously is presented
by [101]. The authors state that saving bandwidth by not
using the same GCL cycle for all egress ports is also novel
to their approach. However, this is not true as other works
even schedule GCL closing events, e.g. [30] and [41]. They
propose tominimize the number of bridges used by scheduled
traffic in order to maximize utilization. In comparison to the
list scheduler of [100], schedulability is increased while the
solving time approaches the timeout after 40 h for fairly small
instances.

Zhang et al. [141] construct a heuristic which allows dif-
ferent routes for frames of the same stream to enable load
balancing. The required mechanism is implemented by an
SDN architecture. The scheduling procedure is a mix of
evolutionary algorithm and greedy algorithm. Multiple vari-
ations of the heuristic are compared in the evaluations. In the

61216 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

presented scenarios, scheduling time increased linearly with
the number of streams.

Another incremental scheme for scheduling and routing is
presented byMahfouzi et al. [95], [140]. The authors investi-
gate the stability of control applications, i.e., latency and jitter
of messages sent by these applications. Instead of grouping
streams by some conflict measure, they divide the network
period in slices and group the streams by the time slice in
which their transmission can start. They allow routing only
over some fixed number of precomputed shortest paths per
source-destination pair, similar to [123] and the AVB routing
in [57]. Their model allows unrestricted queuing without
further discussion of this topic. The evaluations indicate that
the number of allowed paths has a huge impact to solving
time. More possible paths result in a significant increase in
solving times. However, they note that three paths per pair
of nodes may be sufficient, as schedulability is over 90% in
this case. They conclude that the search space can be reduced
without decreasing schedulability considerably.

Yang et al. [142] present a network architecture for indus-
trial use cases based on TSN hardware and software-defined
networking (SDN). They focus on so-called chain flows.
Chain flows consist ofmultiple streamwhich are joined at one
or more nodes. For instance, an industrial controller may join
streams from multiple sensors and forward a single stream to
an actuator. The authors propose a tabu search heuristic and
an ILP for the scheduling of chain flows. They report benefits
in scalability and schedulability in comparison to handling
every stream of a chain flow individually.

Chain flows are further investigated by Gong et al. [143].
They propose a heuristic time-tabling algorithm combined
with a tabu search for schedule reconfiguration when the
network topology is changed. In contrast to the magazine
article [142], they elaborate on the details of these algo-
rithms. However, the reported results are consistent with the
results in [142].

Hellmanns et al. [144] focus their work not on the ability
to compute schedules, but analyze how input pre-processings
and solver configuration influence the scalability of solving
a joint routing and scheduling ILP model. They categorize
optimizations by whether they are input pre-processing, e.g.,
topology reduction, model generation related, e.g., tighter
variable bounds, or solver configurations, e.g. the use of value
hints for variables. They give an ILP without any optimiza-
tions as baseline for their evaluations. Different combinations
of the proposed optimizations are tested on the same set of
problem instances and compared with respect to scalability
and schedulability. Their evaluations indicate that solving
time can greatly benefit from input pre-processings, but the
effects of model generation optimizations and solver con-
figurations are negligible. Some of the optimizations even
increase solving time. However, queuing is not supported by
their base model. Thus, the observations only hold for the no-
wait case without queuing delay. It is not clear whether these

results can be transferred to other problem extensions from
the literature.

Bhattacharjee et al. [145] propose two algorithms for the
placement of talker applications in a network. Additionally,
both approaches also solve the joint routing and scheduling
problem. The first algorithm is an ILP for the placement
of talker applications that is combined with the GRASP
heuristic of [123]. The second algorithm is a simulated
annealing (SA) heuristic which computes the placement of
talker applications, the schedule, and the routing for a given
problem instance. The evaluations show that both algorithms
behave approximately similar with respect to load balancing
and solving times. However, the authors report considerably
reduces stream latencies with the SA heuristic.

V. COMPARISON AND DISCUSSION
We compare the presented research work from Section IV.
First, we compile modelling assumptions and problem exten-
sions. Second, we present common scheduling objectives.
Then, we investigate problem instances used for evaluations.
Finally, we summarize results regarding the scalability of the
presented approaches.

A. MODELLING ASSUMPTIONS AND
PROBLEM EXTENSIONS
Table 2 compiles important modelling assumptions and prob-
lem extensions in the surveyed research works with fixed
routings. Table 3 shows the same information for research
works about the joint routing problem. In the following sec-
tion, we compile the contributions to each of these topics.

1) OTHER TRAFFIC
Only five works examine TT and AVB streams simultane-
ously. Pop et al. [57] present a GRASP heuristic for the
handling of AVB streams. The heuristic gets a schedule of TT
streams as input and cannot change it. The authors of [125]
present a short preview of AVB-aware scheduling, which was
later extended in [123]. An adaption of this approach was
used in [128]. The authors present an algorithm to assign
messages to traffic classes in networks supporting AVB and
TSN simultaneously. Feng et al. [83] consider the bandwidth
available to AVB and BE traffic in their approach as they
consider repeated frame loss which may result in starvation.
Berisa et al. [129] use frame preemption and a worst-case
end-to-end delay analysis to increase the schedulability of
AVB streams. Huang et al. [68] give parameters for AVB
streams in an in-vehicle network and include them in their
evaluation scenario. Wang et al. [67] consider the joint han-
dling of AVB and TT streams. AVB streams are shaped by
CQF. Their objective aims to reduce the influence of non-
periodic BE traffic to AVB streams. Some works focus solely
on the routing of AVB streams in the presence of scheduled
traffic in TSN [124], [127]. Li et al. [58] present a heuristic
to configure the CBS in the presence of scheduled traffic.

VOLUME 11, 2023 61217



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

TABLE 2. Overview of considered problem extensions and restrictions in the literature of scheduling approaches with a fixed routing.

Other research works handle BE traffic by minimizing the
flowspan which yields a large time slot at the end of a sched-
ule exclusively for other traffic, e.g., [28], [40], and [62].
Pei et al. [65] evaluate their approach in the presence of BE
traffic and rate constrained traffic. Yao et al. [66] consider
the joint scheduling of periodic stream without real-time
requirements in their approach. The tables indicate works
that do not mention BE traffic, but use objective functions
that are beneficial to other traffic or that limit the number
of guard bands with (✓). For instance, Oliver et al. [31] limit
the number of guard bands indirectly by introducing a fixed
number of transmission time windows per egress port.

2) QUEUING
Queuing is a controversial topic in the TSN scheduling liter-
ature as non-determinism, e.g., frame loss, may cause serious
problems. Some research works do not allow queuing at all,
e.g., [28], [71], and [96]. The majority of the algorithms
in the literature uses frame isolation introduces by [29].
These works are indicated by (✓) in the Tables 2 and 3.
Vlk et al. [51] discuss the effects of isolation constraints.
They report results indicating that isolation constraints reduce
schedulability significantly. Without isolation, the number
of scheduled streams can be increased for all evaluated
topologies and problem instance sizes. Additionally, isolation

61218 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

TABLE 3. Overview of considered problem extensions and restrictions in the literature of joint routing approaches.

results in larger runtimes compared to scheduling without
isolation. In contrast, the differences in end-to-end delays
are negligible. However, they propose a different solution to
deal with non-determinism, effectively modifying the TAS.
Thus, their results are not applicable to current TSN imple-
mentations. There are some researchworks which allow unre-
stricted queuing, e.g., [59] and [75]. Most of these works do
not elaborate on the consequences of unrestricted queuing.
In contrast to that, Reusch et al. [52], Barzegaran et al. [64],
and Berisa et al. [129] introduced countermeasures for the
mentioned consequences. The authors include a worst-case

end-to-end delay analysis in their algorithms such that even
in the case of non-determinism, deadlines are met.

3) FIXED GCL LENGTH
Most algorithms presented in the literature handle the gen-
eration of GCLs indirectly. They schedule transmission off-
sets of frames at end stations and intermediate bridges. The
GCLs are generated by a post-processing after scheduling.
This step is only mentioned, and the respective authors do
not elaborate on it. Examples for such works are [29], [48],
and [55]. However, computing GCLs by a post-processing

VOLUME 11, 2023 61219



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

comes with two drawbacks. First, GCLs have limited size
in bridges. Thus, GCLs obtained by a post-processing may
not be deployable. Second, the scheduling algorithm can-
not include considerations for guard bands. There are some
exceptions to this in the literature. Jin et al. [30] present
a heuristic to compute schedules with a limited number of
GCL entries per egress port. Santos et al. [59] give a detailed
SMT model for TSN scheduling which includes the explicit
representation of GCLs. Yao et al. [66] limit the number of
GCL entries and the maximum queue size in their heuristic,
i.e., schedules which do not meet these constraints are not
considered valid solutions. Some works limit the number of
GCL entries indirectly by introducing transmission windows
for egress ports. Streams are mapped to these transmission
windows and their number is fixed before scheduling. Exam-
ples of such works are [31], [41], and [52]. All schedules for
no-wait scheduling can be deployed with a fixed number of
GCL entries. As no queuing delay is allowed, frames cannot
be scheduled to wait at closed gates. Such a schedule can be
deployed by opening all gates for TT traffic at the start of a
hyperperiod and never closing them.

4) RECONFIGURATION
In some scenarios it may be infeasible to compute new
schedules every time a stream should be integrated into or
removed from an existing schedule. For instance, automotive
scenarios may include ad-hoc connections between cars and
infrastructure. Computing new schedules every time a new
stream is added may take too much time, even with heuristic
algorithms. Syed et al. [33], [135] consider reconfiguration
in such automotive scenarios. Additionally, they also present
preliminary work about computing schedules suitable for
later reconfiguration in [116]. Raagaard et al. [76] present a
heuristic to add streams to an existing schedule. When the
heuristic fails, they assign the new stream to other egress
queues which were unused before. Pang et al. [77] present
work about deploying an updated schedule to a network
already executing another schedule. Their approach allows
updating the schedule without frame loss or new streams
interfering with the old schedule. Another use case for recon-
figuration is the reallocation of tasks sending and receiving
TT streams. Yu et al. [136] use virtual machines as end sta-
tions in their model. These virtual machines may be migrated
from one physical device to another, which requires updating
schedules and routings. A similar example for reconfigura-
tion is presented in [138]. The authors propose an approach
for updating a schedule in case of a permanent end station
failure. Schedules and routings must be updated in this case
as in [136]. Gärtner et al. [79] introduce a measure for sched-
ule flexibility which also considers deadlines. They use this
measure to update schedules in a beneficial way for future
updates. Lin et al. [92] show in their evaluations that aligning
frame transmissions to the greatest common divisor results in
schedules that are suitable for adding streams later.

TABLE 4. Fault models in research works dedicated to reliability.

5) RELIABILITY
Table 4 compiles fault models used in the literature. The
listed researchworks construct schedules robust in the respec-
tive fault model. Computing schedules robust against frame
loss is the most common kind of reliability in the TSN
scheduling literature. Park et al. [77] handle frame loss by
allowing the retransmission of frames. Schedules for such a
scenario must schedule enough time between frame transmis-
sions such that retransmissions do not interfere with other
frames. Another way to deal with frame loss is proposed
by Feng et al. [70], [74]. In contrast to [77], they do not use
retransmissions, but they schedule redundant copies of the
same stream over the same path. Zhou et al. [114] approx-
imate the probability of frame loss in a joint routing and
scheduling model. Redundant copies of streams are routed
over not necessarily disjoint paths to reduce the probability of
frame loss. Robustness against permanent single link failures
are also covered in several works. There are two approaches in
the TSN scheduling literature to handles such failures. First,
redundant copies of streams are scheduled and routed over
link-disjoint paths before a link failure arises. Examples for
such works are [33], [71], [73], and [113]. Huang et al. [68]
and Syed et al. [115] use Frame Replication and Elimination
for Reliability [17] to implement this approach. Second,
streams can be rescheduled and rerouted after a link fail-
ure occurred. Pozo et al. [112] present a heuristic for fast
rescheduling and rerouting in this case. We remark that all
works about computing schedules robust against permanent
link failures are also robust against frame loss. Both coun-
termeasures against link failures are also effective against
frame loss. Another kind of reliability is considered in [69].
The authors compute schedules robust against clock drift, i.e.,
clocks of different devices running not with the same speed.
They introduce gaps between frame transmissions such that
the maximum possible clock drift does not affect other frame
transmissions. Unknown hardware bugs or deviations from
TSN standards are treated by [118]. The proposed algorithm
selects expensive bridges with higher certification for paths

61220 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

of streams with higher safety requirements. In contrast to all
other mentioned works with reliability, Syed et al. [117] use
an encoding scheme to reconstruct lost frames. The XORed
data of two frames is transmitted over a path disjoint to the
paths of both frames.

6) MULTICAST
Every algorithm in literature can be used for multicast
streams, as a multicast stream can be substituted by a set of
unicast streams. However, the number of streams negatively
affects the solving time for a problem instance. Tables 2 and 3
indicate multicast support only for works which include
some considerations for the efficient integration of multicast
streams without introducing a set of new streams. Most such
works handle multicast streams by scheduling only a sin-
gle frame per link, regardless of the number of consecutive
links in the multicast tree of the respective stream. Examples
for such works are [31], [41], [59], [83], [85], and [128].
An analysis of the joint routing and scheduling problem with
multicast streams is presented in [132]. Yu et al. [136] com-
pute routings and schedules for multicast streams such that
migrating a virtual machine sending or receiving TT streams
can be done easily. Some works allow multicast streams, but
do not elaborate on the implementation details, e.g., [22].

7) TASK SCHEDULING
Only a few research works are concerned with the joint
scheduling of streams and tasks. Some of them have inte-
grated dependencies between streams and tasks, i.e., tasks can
only be scheduled after some stream has arrived. Such works
are presented in [83], [84], [85], [87], [88], and [104]. Other
works focus on the scheduling of tasks which produce TT
streams while considering safety and security considerations.
Preliminary results for this scenario are presented in [72] and
extended in [55].

8) SECURITY CONSIDERATIONS
While many works focus on the reliability of data transmis-
sions, security aspects were mostly ignored so far. An excep-
tion to this are the works of Reusch et al. [55], [72]. The
authors identified the problem of replay and impersonation
attacks. However, security aspects are not covered by cur-
rent TSN standards. The authors propose to use the TESLA
protocol [146] to mitigate these problems. The additional
messages for key exchanges and the additional tasks for
verification and key management are considered during
scheduling.

B. SCHEDULING OBJECTIVE
Objective functions are used to measure the quality of solu-
tions and to compare them. We discuss common objectives
from the literature and classify research works by their objec-
tive. Table 5 shows which research work features which kind
of objective.

TABLE 5. Categorization of research works based on optimization
objectives.

1) NO OBJECTIVE
Many research works have no scheduling objective and
only try to find some schedule which fulfills all con-
straints, e.g., [76], [96], [108], and [111]. We note that many
SMT approaches feature no objective [7], [41], [59], [93],
[95], [140]. In contrast to ILP solving, SMT solvers were not
originally designed for optimization. Therefore, many SMT
approaches focus on finding a feasible schedule.

2) LATENCY AND JITTER
TSN and the TAS were designed for traffic with hard real-
time requirements. Therefore, latency and jitter of streams
are interesting properties of schedules. Objective func-
tions including them are the most common kind of objec-
tives in TSN schedule optimization. Oliver et al. [31] and
Barzegaran et al. [84] minimize the per-stream jitter. Min-
imizing the flowspan, i.e., the time all TT stream arrive

VOLUME 11, 2023 61221



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

at their destination, is a common objective. Examples of
approaches using this objective include [28], [40], [50], [62],
[68], [100], [103], and [104]. A related but different objective
is the minimization of end-to-end delays of TT streams [8],
[51], [65], [77], [79], [131], [132]. Kim et al. [43], [44]
minimize multiple objectives weighted by constant factors.
They take end-to-end delays, jitter, and bandwidth occupation
into account. Barzegaran et al. [85] use a combination of
jitter and end-to-end latency as measure of schedule quality.
Nie et al. [97] minimize end-to-end latency and transmission
offsets simultaneously. We remark that these objectives are
not competing, as opposed to most multi-criterion problems.
Minimization of transmission offsets is also pursued by [22]
and [98] which is related but not equal to flowspan or end-to-
end latencyminimization. Zhou et al. [141] use a combination
of jitter, end-to-end delays, number of scheduled streams, and
link utilization.

3) QUEUING
Research works which apply isolation constraints for queuing
often use more than one queue per egress port for scheduled
traffic. In that way, they are able to schedule more streams
as isolation only concern streams in the same egress queue.
The assignment of streams to egress queues per egress port
is a degree of freedom in the respective scheduling prob-
lems. Therefore, they try to minimize the number of queues
reserved for TT streams per egress port, as the remaining
queues are available for other traffic. Examples for such
works include [29], [51], [57], [74], [109], and [125].

4) OTHER TRAFFIC
The schedule of TT streams has an influence on the Qual-
ity of Service for other traffic classes. Current approaches
for scheduling in TSN focus on AVB traffic and BE traf-
fic. For the joint scheduling of TT and AVB streams,
Gavriluţ et al. [123], [125] minimize the tardiness of AVB
streams as their deadlines are considered to be not strict.
Another objective related to AVB streams is used in [129].
The presented heuristic has the objective to schedule as many
AVB streams as possible. Yang et al. [131] minimize the the
weighted sum of stream latencies of scheduled traffic, AVB,
and BE streams. Wand et al. [67] use CQF to shape AVB
streams in their approach. The objective function aims to load
balance the AVB frame transmissions between the time slots
of the CQFmechanism. This reduces the probability that non-
periodic BE traffic overloads such a slot. The authors of [52]
minimize the occupation percentage of egress ports, i.e., the
percentage of a hyperperiod with no active transmission win-
dow for TT traffic. The rational of this is that low occupation
corresponds to long and frequent time intervals available to
other traffic. A similar objective is used in [64] as the authors
minimize the average bandwidth occupied by transmission
windows for scheduled traffic. Smirnov et al. [102] use a
multi-criterion objective for joint routing and scheduling.
They reduce the influence of scheduled traffic to other traffic,
and simultaneously minimize the number of GCL entries

needed to deploy a schedule. The work in [62] focuses
on comparing the influence of different objective functions
to the QoS of BE traffic. They propose minimization and
maximization of frame offsets, hoping that grouping frames
together increases the QoS. Additionally, they also suggest
two objectives whichmaximize the gaps between consecutive
frame transmissions on a link. They assume that starvation of
other traffic classes is reduced in this way.

5) ROUTING
Research works about joint routing and scheduling often
consider the quality of the routing in their objective. All of
them have in common that the length of the paths is mini-
mized. This is reasonable as longer paths correspond to higher
link utilizations, end-to-end latencies, and harder scheduling
instances. Schweissguth et al. [132] propose amulti-objective
optimization for joint routing and scheduling. First, routing
and schedule with minimized path lengths are computed. The
obtained path lengths are used as maximum path lengths
per stream in a second run. The second run minimizes end-
to-end latencies. The joint routing approach of [107] min-
imizes the number of links in the routing. Li et al. [138]
simultaneously minimize the path lengths and a measure for
scheduling conflicts of streams routed over the same link.
Yu et al. [134] schedule and route streams one after another.
They minimize a weighted sum of the number of links used
for the currently scheduled stream, and the bandwidth uti-
lization. Li et al. [133] simultaneously minimize path lengths
in the routing, and the flowspan. Yu et al. [136] consider
the migration of sources of TT streams. They minimize the
maximum distance from all possible source nodes of a stream
to all destination nodes in a multicast tree. Li et al. [122]
maximize the number of streams which are scheduled and
routed, and also try to minimize the maximum link load as a
secondary objective.

6) TOPOLOGY SYNTHESIS
In addition to joint routing and scheduling, some works also
construct the network topology. TSN bridges are expensive,
and thus such objectives always include costs for bridges.
Gavriluţ et al. [73] minimize multiple objectives weighted
by constant factors. The first objective is the tardiness of
TT streams to guide their GRASP heuristic to solutions with
no deadline misses. The second objective is topology costs.
A similar objective is used in [55]. The weighted sum of rout-
ing and schedule costs is minimized. Routing costs constitute
of overlap penalties for redundant paths and path lengths.
Schedule costs constitute of punishments for not schedula-
ble streams and stream latencies. Another approach which
minimizes topology costs is proposed in [118]. Selecting
bridges from a library is part of the presented problem, which
imposes costs for bridges and additional costs when multiple
vendors are used. Xu et al. [101] minimize the number of
bridges needed to schedule and route all streams such that
the utilization is maximized.

61222 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

7) RELIABILITY
Reliability requirements can be ensured by constraining
the set of feasible solutions. However, some works choose
to maximize reliability for their respective fault model.
Pozo et al. [112] maximize the idle times of links and frames,
as such schedules are easier to repair upon link failure.
Craciunas et al. [69] maximize the allowed out-of-sync clock
drift to cope with synchronization problems and maximize
robustness against clock drift. Park et. al. [90] maximize the
number of times a frame can be retransmitted without missing
its deadline, as they include preemption in their model.

8) GCL SYNTHESIS
TSN bridges do not have an unlimited number of GCL entries
per egress port. The minimization of GCL entries is consid-
ered by [30]. The reason for this is that the authors propose
an incremental approach and the overall number of needed
GCL entries is not known in advance. Reducing the number
of gate events also reduces the number of guard bands which
is beneficial for BE traffic. Kentis et al. [106] minimize the
GCL schedule duration. However, it is not clear why schedule
duration matters, as the limiting factor in TSN hardware is the
number of GCL entries.

9) OTHERS
Some research works use a problem specific objective not
comparable to other works. We present them for the sake
of completeness. The authors of [89] minimize the number
of frames as they propose a joint approach for scheduling
and message fragmentation. Syed et al. [115] and [116] use
a modelling specific objective which is related to load bal-
ancing of ports in an in-vehicle architecture with one central
processing unit. Ginthür et al. [91] minimize the wasted
bandwidth for different link layer technologies, i.e., Ethernet
and 5G links. Feng et al. [83] minimize the response time of
tasks which may be dependent on streams as they consider
the joint scheduling of streams and tasks. Chaine et al. [110]
maximize the length of transmission timewindows of streams
at their respective talkers such that latency and jitter require-
ments are met. This is the only work in TSN scheduling
which employs a quadratic objective function. Bhattachar-
jee et al. [145] employ a multi-criterion objective. Their first
objective is to minimize the maximum load across all servers
as the considered problem includes the placement of talker
applications. The second objective is to minimize the average
hop count of all streams. Lin et al. [92] present a heuristic for
incremental scheduling that aims to maximize the probability
that more streams can be added later. This is required in
industrial use cases as turning off machines to deploy a new
schedule may be expensive. Yang et al. [142] state that they
maximize the number of scheduled streamswhile minimizing
the link occupancy rate. However, this rate is not defined
in the published magazine article. Gong et al. [143] also
maximize the occupancy ratewhileminimizing themaximum
link utilization. They define the occupancy rate as the fraction

TABLE 6. Overview of investigated problem instances in the literature of
the scheduling problem with fixed routing.

of bandwidth reserved for scheduled traffic actually used
for transmissions. Min et al. [47] compare metaheuristics by
maximizing the number of scheduled stream for the same
problem instance.

VOLUME 11, 2023 61223



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

TABLE 7. Overview of investigated problem instances in the literature of
the joint routing problem.

C. PROBLEM INSTANCES
Before we describe evaluation results, we describe the
problem instances used for evaluations in the literature.
We present an overview of used network topologies, net-
work sizes, and numbers of streams. Tables 6 and 7 com-
pile this information about the problem instances used for
evaluations with fixed routing and joint routing, respectively.

Unfortunately, some research works do not elaborate on
the used topologies, which makes assessing and compar-
ing the results to other works harder. Most research works
only use synthetic test cases. Ring topologies are com-
monly used in evaluations, e.g., in [8], [40], [67], [87],
[88], [96], [97], [100], [101], [104], [108], [109], and [132].
Hellmanns et al. [40] argue that rings are a common topology
in real-world industrial facilities. Other systematic topolo-
gies used include line [31], [67], [96], grid [100], [104],
and snowflake-like [52], [62], [93], [125] networks. Vari-
ous randomly generated topologies are also used in eval-
uations. Erdós-Rényi graphs (ER) are the most common
ones [28], [96], [111], [114] [118], [121], [122], but Barabási-
Albert graphs (BA) [28], [96], [111], [122] [134] and ran-
dom regular graphs (RRG) [28], [111], [122] are also used.
A few research works features evaluations with real-world
topologies. Syed et al. [33], [115], [116], [117], [135]
use a real-world automotive architecture for their evalu-
ations. A large automotive architecture including stream
parameters is discussed in [68]. Other automotive archi-
tectures are used by Kim et al. [43], [44], Li et al. [130],
Mahfouzi et al. [95], [140], and Wang et al. [46]. Zhou et al.
[114], [118] conclude their evaluations by investigating a
real-world example fromGeneralMotors. The authors of [73]
also use a real-world problem instance from General Motors.
However, this instance is only a set of streams without
topology. Min et al. [47] use the network topology of the
National Science Foundation of the United States of Amer-
ica. Barzegaran et al. [64] presents evaluations with real-
world test cases from General Motors and a real-world space-
craft. Pang et al. [77] evaluate an algorithm for schedule
updates in a real-world in-train network and a spacecraft.
Similarly, the authors of [79] evaluate their algorithm for
schedule reconfigurations with the topology of a not specified
machine. Vlk et al. [48], Chaine et al. [53], Huang et al. [98],
Gavriluţ et al. [128], and Berisa et al. [129], perform evalua-
tions with a real-world spacecraft topology.

All research works concerned with synthetic test cases
use randomly generated streams. Sources and destinations
of these streams are selected uniformly from the sets of
talkers and listeners in the respective topology. The number
of streams varies considerably between different research
works. It ranges from 2 streams in the smallest instance of
Falk et al. [96] to up to 10812 streams in the largest instance
of Vlk et al. [48]. All works, which describe the placement
of deadlines, place them at the end of the respective stream’s
period. No research work allows deadlines to be after the end
of the hyperperiod a frame was sent. Stream periods range
from 32µs in [30] to 500ms in [29]. All research works
assume transmission rates of either 100Mb/s or 1Gb/s per
egress port.

D. SCALABILITY
Scheduling in TSN is known to be NP-complete. Therefore,
solving times and sizes of feasible problem instances matter.
Almost all research works about TSN scheduling include

61224 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

or even focus on evaluating the scalability of the respective
proposed approach. These evaluations measure the solving
times for selected problem instances. Tables 8 and 9 compile
the reported runtimes needed to solve the largest problem
instance for which a schedule was found in the respective
research work. Tables 10 and 11 report the same results
for research works which feature the joint computation of
schedules and routings. We divided results in separate tables
for exact and heuristic algorithms for better comparability.
In cases where it was not clear which problem instance can be
considered as the largest one, we used the number of streams
as tie-breaker. This is justified by several research works
surveyed in this paper, e.g., in [96]. The tables are meant to
show general tendencies and improvements, not to suggest
one approach over the other. Caution is needed when inter-
preting the tables. It shows the reported times after which an
algorithm terminated, not the time until a first valid schedule
was obtained, as almost all papers do not report this time.
This is a systematic disadvantage of exact approaches as they
only terminate when the optimal solution is found or some
timeout is reached, while heuristic algorithms may terminate
much earlier with suboptimal solutions. Some research works
deal with more parameters than the size of the network
and the number of streams, e.g., Oliver et al. [31] present
evaluations about the influence of the number of transmis-
sion windows per egress port to scalability. Other works
handle problem extensions, e.g., AVB or task scheduling.
Approximations are given when results are not stated in
the text and had to be estimated by the presented figures.
Ranges are given when multiple instances are considered to
be the largest. We identified two tendencies with respect to
solving times.

First, heuristic approaches can handle larger instances than
approaches with exact solution methods. While the num-
ber of network nodes is approximately in the same range,
heuristic algorithms can schedule problem instances with
more streams compared to exact approaches. Typical num-
bers of streams in exact approaches are less than 100, e.g.,
in [8], [69], and [96]. However, there are some notable
exceptions. Craciunas et al. [29] present an incremental
scheduling algorithm with backtracking, which scheduled
instances with 1000 streams in their evaluations. Later works
present incremental approaches which were able to schedule
as many as 2000 streams [98]. Oliver et al. [31] assigned
streams to transmission windows of egress ports and report
solved instances with 750 streams. Heuristic approaches were
able to schedule instances with more than 10000 streams,
e.g., [48] and [30].

Second, exact approaches which solve the joint routing
and scheduling problem can only handle instances with
smaller numbers of nodes compared to approaches solely
for scheduling. Typical networks in evaluations of joint rout-
ing algorithms contain less than 50 nodes [71], [72], [73].
This is due to the solution space growing heavily with an
increased number of possible paths per stream. However,
there are approaches able to compute routings and schedules

TABLE 8. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with exact approach and fixed routing are included for comparability.

TABLE 9. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with heuristic approach and fixed routing are included for comparability.

for problem instances with up to 96 nodes [109], [134].
Most networks in the literature of scheduling with a fixed
routing contain less than 96 nodes. The range of the number of

VOLUME 11, 2023 61225



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

TABLE 10. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with exact approach and joint routing are included for comparability.

streams is approximately the same for approaches with fixed
routing and joint routing.

VI. PUBLICATION HISTORY
We give an overview of the publication history of TSN
scheduling. First, we highlight seminal works from the lit-
erature. Then, we analyze the development of the field with
respect to the number of published papers per year.

A. SEMINAL WORKS
Early works about per-flow scheduling in Ethernet networks
were presented by Steiner [7] and Schweissguth et al. [8].
While these works are not specifically for TSN and abstract
on the details of the real-time enhancement for Ethernet. they
influencedmany later works presented in this survey. The first
works specifically about scheduling in TSNwere presented in
2016. Dürr et al. [28] presented an ILP for no-wait scheduling
and identified the problem of guard bands consuming band-
width. Craciunas et al. [29] adapted the work of Steiner [7] for
TSN. They introduced isolation constraints and incremental
scheduling to the domain of TSN. Gavrilut et al. [73] is
the first work which features joint routing and reliability
considerations. Raagard et al. [76] introduced reconfiguration
of schedules to TSN scheduling. Oliver et al. [31] proposed
a scheduling approach with limits the number of used GCL
entries by computing them in a joint approach with trans-
mission offsets. All earlier works computed GCLs by a post-
processing after scheduling.

B. PUBLISHED PAPERS
Figure 19 shows the number of papers about TSN scheduling
per year. The first papers about scheduling in TSN were
published in 2016. The general trend is that the field grows

TABLE 11. Overview of solving times of the respective largest reported
problem instance for which a schedule was found. Only research works
with heuristic approach and joint routing are included for comparability.

almost monotonously from one year to the next, with only
one exception in 2019. We observe a significant increase in
published works since the year 2020. Given the fast growth
of the last 2 years, we expect even more research works about
TSN scheduling in the future.

VII. FUTURE WORKS
In this section, we discuss the results of the literature study.
First, we suggest improvements for future research works.
Then, we highlight open problems not handled sufficiently
so far.

A. SUGGESTIONS FOR IMPROVEMENT
The surveyed literature features many high quality research
works. However, there is room for improvement in the pre-
sentation of some of these works. We suggest improvements
in the hope that the overall quality of the TSN scheduling
literature can be improved even more in the future. First,
we discuss shortcomings and improvements in the presenta-
tion of evaluation methodologies. Then, we suggest the use
of the technical terminology used in Ethernet bridging.

61226 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

FIGURE 19. Number of published research works per year about TSN
scheduling. Only works published before March 2023 are counted.

1) EVALUATION METHODOLOGIES
The scalability of the proposed solutions from the litera-
ture was extensively evaluated. Unfortunately, the impact of
possible additional features and changes in parameters to
the various objective functions was mostly ignored so far.
Although scalability is an important property of a scheduling
algorithm, it would be interesting to see more evaluations
regarding solution quality. Most test cases in the literature
are synthetically constructed, both network topology and
streams. Even though it is hard to obtain test cases from the
industry, let alone publish them, we would like to see more
evaluations with realistic instances. It is not clear whether
the proposed algorithms are suitable for large industry-scale
instances or how they look like. It is also extremely difficult to
compare the results of different research works as there is no
public set of test cases for benchmarks. Consequently, there
is little research work available about which algorithm should
be used in which setting.

Unfortunately, it is also hard to assess the significance
of evaluation results in some papers for two reasons. First,
the instances solved are not sufficiently described. At least
the topology and a description of assumed delays, e.g., pro-
cessing and propagation delay, should be contained in the
description of the network. Important properties of streams
like deadlines or periods are often missing. Second, some
evaluations report results for individual problem instances
and are thus more of anecdotal character. There are easy
and hard instances for every algorithm. Comparing multiple
approaches on the same selected instances can be useful,
but this may have the taste of picking specific instances in
support of some conclusion. Instead of reporting results for
individual instances, average results for multiple instances
with the same evaluation setting should be reported. However,
we acknowledge that evaluations for specific scenarios can be
of interest. Especially readers from the industry may enjoy
a rigorous report about a specific running system. We only
want to emphasize that strong conclusions should be backed
up by strong evidence and extensive evaluation. Another
property covered by many evaluations is the schedulability
of the respective proposed approach. These evaluations treat

instances as infeasible when no schedule was found before
some timeout. Thus, comparing the schedulability of two
scheduling approaches which support different features is
biased, as timeouts do not prove infeasibility. This may lead
to wrong conclusions in favor of some algorithm or model,
although schedulability is actually equal.

2) TERMINOLOGY
Many works surveyed in this paper use a vocabulary loosely
related to Ethernet bridging. However, the standards and other
relevant literature use a specific technical terminology. We
suggest that the scheduling community adopts this jargon.
Readers from adjacent research domains or who have prior
knowledge in Ethernet bridging can benefit from a consistent
vocabulary. The word stream is used in several standards,
e.g., [11], [12], and [147]. Therefore, we suggest to use stream
instead of flow. Network devices which send or receive data
streams are denoted as end stations in the original bridging
standard IEEE 802.1D [148]. The source end station of a
stream is denoted as talker, while the destination end station
is denoted as listener. Layer 2 switching devices are denoted
as bridges instead of switches in IEEE 802.1D [148] and
in the names of many other standards, e.g., in [9] and [14].
Thus, we suggest to use these terms when describing network
topologies.

Frames are the units of data transmission, as TSN is a
layer 2 technology, while packets are the units of data trans-
missions in layer 3 technologies (cf. [149]). Although the
meaning of the term packet is clear in the context of schedul-
ing, it is technically wrong. Routing is the process of path
computation on layer 3. Therefore, the term path selection is
more appropriate in TSN. However, we note that we used the
term routing in this survey several times. The reason for this
is to ensure consistency with the reviewed literature which
solves the so-called joint routing problem.

B. OPEN PROBLEMS
The available literature is comprehensive with regard to solu-
tion approaches to the unmodified scheduling problem in
TSN. However, there is still a wide field of relevant aspects
which are not yet understood.

1) IMPACT OF GUARD BANDS AND GCL ENTRIES
To the best of our knowledge, the impact of guard bands on
bandwidth available to lower-priority traffic was not evalu-
ated in the literature. Likewise, the impact of available GCL
entries on available bandwidth for lower-priority traffic is not
investigated in detail. The evaluations so far suggest that AVB
streams benefit from schedules with many holes between TT
streams with regard to tardiness. However, such schedules
may need more gate closings and thus guard bands, which
reduces the available bandwidth. It is not clear how AVB
and BE traffic can be simultaneously integrated in a unified
approach for the scheduling of TT streams.

VOLUME 11, 2023 61227



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

2) ROUTING AND MULTICAST
The joint routing and scheduling problem was explored in
detail in the literature. All research works about this topic
agree that schedulability benefits from joint routing and
scheduling. However, solving the joint routing problem is
significantly harder compared to scheduling with a given
routing. Unfortunately, there is currently no exact and scal-
able approach known for joint routing. Additionally, it is not
understood which properties a routing should have to ben-
efit schedule synthesis and quality. TSN supports multicast
streams which are relevant in real use cases. Some of the
algorithms presented in researchworks covered by this survey
can handle multicast streams. However, the literature lacks
evaluations and insights about the appropriate integration of
multicast streams in a schedule.

3) ONLINE RECONFIGURATION
There is also little work about online schedule reconfigura-
tion, though it is important for operation. In some scenarios,
e.g., automotive networks, insertion and removal of streams
at execution time of the schedule can be important. So far
it is not explored exhaustively what properties a schedule
should have such that reconfiguration can by computed effi-
ciently. However, there are preliminary works about this
topic [79], [116]. Instead of rescheduling all streams, many
works about reconfiguration try to resolve conflicts by
assigning streams to other traffic classes [76] or paths
[136], [138]. Other ways to resolve scheduling conflicts
instead of rescheduling all streams may be needed in the
future. Unfortunately, there are no reconfiguration algorithms
for most of the problem extensions from Section III-E.

4) QUEUING AND HANDLING OF NON-DETERMINISM
An important open problem in TSN is sufficient integration of
queuing. Almost all research works use isolation constraints
from [29], i.e., they do not allow frames of different streams
to reside in the same queue at the same time. However,
this is not a requirement of the TAS. Some approaches
even separate streams by assigning them to different egress
queues during scheduling. The rational of this is to reduce the
impact of non-determinism like frame loss. Other attempts
to reduce the influence of such causes of non-determinism
are not yet explored. The benefits of unrestricted queuing
regarding schedulability or solution quality has not yet been
evaluated.

Real hardware bridges are subject to non-determinism.
There is jitter in processing delays, and clocks are not exactly
synchronized in reality. Additionally, frames that are sched-
uled to arrive approximately at the same time at two ingress
ports of the same bridge may cause race conditions, i.e.,
processing order is not deterministic. All research works
covered by this survey assume bridges are perfectly deter-
ministic. Thus, the literature lacks handling of such causes of
non-determinism.

5) FILTERING AND POLICING
Per-Stream Filtering and Policing (PSFP) is a standard
defined in IEEE 802.1Qci [147] for filtering and policing in
TSN. Currently, there are no devices available implement-
ing PSFP. However, filtering and policing could be used to
prevent violations of schedules through unexpected packets.
Packets not scheduled, delayed frames, and frames larger than
expected can be filtered at execution time of a schedule. Thus,
PSFP requires configuration of filtering entries that need to be
derived from the schedule. A joint approach may be needed
as PSFP imposes additional restrictions, e.g., the number of
available filtering entries will be limited in bridges.

6) SECURITY ASPECTS
The security of real-time Ethernet networks was mostly
ignored so far. All considerations for reliability and safety
in TSN assume that no malicious party is involved in the
communication. The standards do not cover countermea-
sures against replay or impersonation attacks. This may be
a problem for highly vulnerable use cases of TSN, e.g.,
factory automation and in-vehicle networks. Future schedul-
ing algorithms may integrate security considerations. For
instance, key exchange and management result in additional
streams that must be protected from other traffic. However,
source authentication and integrity may also be implemented
by future TSN standards or application layer protocols.
Other security problems may be countered with PSFP, e.g.,
jamming and Denial-of-Service attacks by malicious end
stations.

7) LEGACY DEVICES
Traditional Ethernet is a widespread layer 2 technology
for industrial applications. Such applications are typically
designed to be used for years or even decades. Thus, integrat-
ing legacy devices which are not capable of traffic schedul-
ing or time synchronization will be a major problem in the
next years for the deployment of TSN. Future scheduling
algorithms may help to integrate such devices. For instance,
scheduling algorithms can reserve bandwidth for the com-
munication of these devices. However, new devices, e.g.,
gateways or proxies, may be needed to fully support the
coexistence of legacy devices and scheduled traffic.

8) USE OF TSN MECHANISMS
TSN is not limited to scheduled traffic and the TAS. Other
traffic classes may have real-time requirements, but cannot
be scheduled as the respective streams are not periodic.
Different traffic classes may have different sets of real-
time requirements, e.g., demanding bounded jitter instead
of bounded latency. TSN features more mechanisms which
may be applied to fulfill these requirements, such as Asyn-
chronous Traffic Shaping [150] or Cyclic Queuing and
Forwarding [18]. A major open problem in TSN is the
coexistence of multiple mechanisms and the assignment of

61228 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

streams to them. Input may be a set of streams or traffic rates
with their descriptors and real-time requirements, and output
is their assignment to appropriate TSN mechanisms together
with the complete network configuration. This problem goes
far beyond the TSN scheduling problem, but may impose
additional constraints on the latter. Some requirements can
only be fulfilled by scheduling the respective streams and
computing GCLs for the TAS. Others may not even know
the traffic streams in advance and can be implemented by
the CBS or even simpler mechanisms. As even computing
GCLs for the TAS is a challenging task for current state-
of-the-art scheduling and optimization algorithms, such a
comprehensive approach is currently unreachable. Hopefully,
future works will move towards such long term goals and
enable users to exploit the full potential of TSN.

9) UNDERSTANDING OF THE TSN PROBLEM
So far, scalability analyses have been conducted on special
algorithms. However, they do not provide insights in what
makes the TSN problem hard. This also pertains to all prob-
lem extensions like joint routing and multicast, reliability,
robustness, BE or ABE traffic, etc. Moreover, properties
of schedules such as tightness or average duration of open
periods of the TAS have not yet been investigated. It would
be helpful to understand the impact of problem extensions on
the structure of schedules in an intuitive way. A better under-
standing of extensions and their impact on schedule structure
may facilitate the development of heuristic algorithms that
solve larger instances of the TSN problem with acceptable
quality compared to exact approaches.

VIII. CONCLUSION
TSN is a set of standards to enable real-time transmission over
switched Ethernet networks. IEEE 802.1Qbv [6] defines traf-
fic scheduling combined with the Time-Aware Shaper (TAS),
i.e., transmissions of periodic high-priority streams are sched-
uled such that packets hardly interfere and that ultra-low
latency is achieved. Moreover, the TAS protects scheduled
traffic against traffic from other traffic classes. This approach
requires the configuration of transmission times for streams
at the Talkers (source nodes) as well as the configuration of
the TAS on the switches.

In this paper, we first gave an introduction to TSN with
focus on traffic scheduling and the TAS. We defined the
‘‘TSN scheduling problem’’ and discussed common exten-
sions such as scheduling with fixed or joint routing, various
forms of queuing, support for reliability or lower-priority
traffic, or respecting technical restrictions. Some of these
extensions lead to optimization problems. We summarized
frequently used scheduling and optimization methods to
tackle these challenges. Then we reviewed a large body of
literature about the TSN scheduling problem and classified it
regarding the mentioned extensions. Subsequently, we ana-
lyzed and compared the works with respect to modelling
assumptions, scheduling objectives, problem instances, and
scalability, and pointed out advances. We tracked seminal

works and identified popular publication venues for TSN
scheduling. We discussed the area by suggesting improve-
ments and pointing out open problems.

This survey serves researchers to identify the current state
of the art and open problems in TSN scheduling. The many
problem extensions suggest that the construction of an effi-
cient scheduling or optimization algorithm which considers
all relevant aspects is infeasible. We expect future work to
provide a better understanding of the complexity of the TSN
scheduling problem to cover more problem extensions while
maintaining scalability.

ACKNOWLEDGMENT
The authors thank Manuel Eppler and Lukas Bechtel for
valuable input and stimulating discussions.

The authors alone are responsible for the content of the
paper.

REFERENCES
[1] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,

M. Reisslein, and H. ElBakoury, ‘‘Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL
research,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 88–145,
1st Quart., 2019.

[2] A. Minaeva and Z. Hanzálek, ‘‘Survey on periodic scheduling for time-
triggered hard real-time systems,’’ ACM Comput. Surv., vol. 54, no. 1,
pp. 1–32, Jan. 2022.

[3] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, ‘‘Timely survey of time-
sensitive networking: Past and future directions,’’ IEEE Access, vol. 9,
pp. 142506–142527, 2021.

[4] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, ‘‘A survey of real-time
Ethernet modeling and design methodologies: From AVB to TSN,’’ ACM
Comput. Surv., vol. 55, no. 2, pp. 1–36, Feb. 2023.

[5] V. Gavriluţ, A. Pruski, and M. S. Berger, ‘‘Constructive or optimized:
An overview of strategies to design networks for time-critical applica-
tions,’’ ACM Comput. Surv., vol. 55, no. 3, pp. 1–35, Mar. 2023.

[6] IEEE Standard for Local and Metropolitan Area Networks—Bridges and
Bridged Networks—Amendment 25: Enhancements for Scheduled Traffic,
IEEE Standard 802.1Qbv-2015, 2016, pp. 1–57.

[7] W. Steiner, ‘‘An evaluation of SMT-based schedule synthesis for time-
triggeredmulti-hop networks,’’ inProc. 31st IEEEReal-Time Syst. Symp.,
Nov. 2010, pp. 375–384.

[8] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, ‘‘ILP-based joint routing and scheduling for time-triggered
networks,’’ in Proc. 25th Int. Conf. Real-Time Netw. Syst., Oct. 2017,
pp. 8–17.

[9] IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,
IEEE Standard 802.1AS-2020, 2020, pp. 1–421.

[10] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, IEEE Standard 1588-2019,
2020, pp. 1–499.

[11] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP), IEEE Standard 802.1Qat-2010, 2010, pp. 1–119.

[12] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 12: Forwarding
and Queuing Enhancements for Time-Sensitive Streams,
IEEE Standard 802.1Qav-2009, 2010, pp. C1–72.

[13] IEEE Standard for Local and Metropolitan Area Networks–Audio Video
Bridging (AVB) Systems, IEEE Standard 802.1BA-2021, 2021, pp. 1–45.

[14] IEEE Standard for Local and Metropolitan Area Network–Bridges and
Bridged Networks, IEEE Standard 802.1Q-2018, 2018, pp. 1–1993.

[15] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 24: Path Control and Reservation,
IEEE Standard 802.1Qca-2015, 2016, pp. 1–120.

VOLUME 11, 2023 61229



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

[16] IEEE Standard for Local and Metropolitan Area Networks—Bridges
and Bridged Networks—Amendment 26: Frame Preemption,
IEEE Standard 802.1Qbu-2016, 2016, pp. 1–52.

[17] IEEE Standard for Local and Metropolitan Area Networks–Frame Repli-
cation and Elimination for Reliability, IEEE Standard 802.1CB-2017,
2017, pp. 1–102.

[18] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding,
Standard IEEE 802.1Qch-2017, 2017, pp. 1–30.

[19] G. Patti, L. L. Bello, and L. Leonardi, ‘‘Deadline-aware online scheduling
of TSN flows for automotive applications,’’ IEEE Trans. Ind. Informat.,
vol. 19, no. 4, pp. 5774–5784, Apr. 2023.

[20] M. Kim, J. Min, D. Hyeon, and J. Paek, ‘‘TAS scheduling for real-time
forwarding of emergency event traffic in TSN,’’ in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 1111–1113.

[21] J. Xue, G. Shou, Y. Liu, Y. Hu, and Z. Guo, ‘‘Time-aware traffic schedul-
ing with virtual queues in time-sensitive networking,’’ inProc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), May 2021, pp. 604–607.

[22] Y. Zhang, Q. Xu, S. Wang, Y. Chen, L. Xu, and C. Chen, ‘‘Scal-
able no-wait scheduling with flow-aware model conversion in time-
sensitive networking,’’ in Proc. IEEE Global Commun. Conf., Dec. 2022,
pp. 413–418.

[23] Z. Cao, Q. Liu, D. Liu, and Y. Hu, ‘‘Enhanced system design and schedul-
ing strategy for switches in time-sensitive networking,’’ IEEE Access,
vol. 9, pp. 42621–42634, 2021.

[24] Y. Zhang, J. Wu, M. Liu, and A. Tan, ‘‘TSN-based routing and scheduling
scheme for industrial Internet of Things in underground mining,’’ Eng.
Appl. Artif. Intell., vol. 115, Oct. 2022, Art. no. 105314.

[25] Y. Zhang, Q. Xu, L. Xu, C. Chen, and X. Guan, ‘‘Efficient flow schedul-
ing for industrial time-sensitive networking: A divisibility theory-based
method,’’ IEEE Trans. Ind. Informat., vol. 18, no. 12, pp. 9312–9323,
Dec. 2022.

[26] W. Han, Y. Li, and C. Yin, ‘‘A traffic scheduling algorithm combined
with ingress shaping in TSN,’’ in Proc. 14th Int. Conf. Wireless Commun.
Signal Process. (WCSP), Nov. 2022, pp. 586–591.

[27] M. Wei and S. Yang, ‘‘A network scheduling method for convergence of
industrial wireless network and TSN,’’ in Proc. 17th Int. Conf. Ubiquitous
Inf. Manage. Commun. (IMCOM), Jan. 2023, pp. 1–6.

[28] F. Dürr and N. G. Nayak, ‘‘No-wait packet scheduling for IEEE time-
sensitive networks (TSN),’’ inProc. 24th Int. Conf. Real-Time Netw. Syst.,
Oct. 2016, pp. 1–15.

[29] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, ‘‘Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst., Oct. 2016, pp. 183–192.

[30] X. Jin, C. Xia, N. Guan, C. Xu, D. Li, Y. Yin, and P. Zeng, ‘‘Real-time
scheduling of massive data in time sensitive networks with a limited
number of schedule entries,’’ IEEE Access, vol. 8, pp. 6751–6767, 2020.

[31] R. Serna Oliver, S. S. Craciunas, and W. Steiner, ‘‘IEEE 802.1 Qbv gate
control list synthesis using array theory encoding,’’ in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2018, pp. 13–24.

[32] A. Alnajim, S. Salehi, and C. Shen, ‘‘Incremental path-selection and
scheduling for time-sensitive networks,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[33] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, ‘‘Fault-tolerant
dynamic scheduling and routing for TSN based in-vehicle networks,’’ in
Proc. IEEE Veh. Netw. Conf. (VNC), Nov. 2021, pp. 72–75.

[34] Cplex, IBM ILOG, ‘‘V12.1: Users manual for CPLEX,’’ Int. Bus. Mach.
Corp., vol. 46, no. 53, p. 157, 2009.

[35] Gurobi Optimization, LLC. (2021).Gurobi Optimizer Reference Manual.
[Online]. Available: https://www.gurobi.com

[36] L. De Moura and N. Bjørner, ‘‘Z3: An efficient SMT solver,’’ in Proc.
Theory Pract. Softw., Int. Conf. Tools Algorithms Construct. Anal. Syst.,
2008, pp. 337–340.

[37] L. Perron and V. Furnon. (Jul. 2019). OR-Tools. Google. [Online]. Avail-
able: https://developers.google.com/optimization/

[38] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2020.

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[40] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and F. Dürr,
‘‘Scaling TSN scheduling for factory automation networks,’’ inProc. 16th
IEEE Int. Conf. Factory Commun. Syst. (WFCS), Apr. 2020, pp. 1–8.

[41] W. Steiner, S. S. Craciunas, and R. S. Oliver, ‘‘Traffic planning for time-
sensitive communication,’’ IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, Jun. 2018.

[42] H.-J. Kim, M.-H. Choi, M.-H. Kim, and S. Lee, ‘‘Development of an
Ethernet-based heuristic time-sensitive networking scheduling algorithm
for real-time in-vehicle data transmission,’’ Electronics, vol. 10, no. 2,
p. 157, Jan. 2021.

[43] H. J. Kim, K. C. Lee, and S. Lee, ‘‘A genetic algorithm based scheduling
method for automotive Ethernet,’’ in Proc. 47th Annu. Conf. IEEE Ind.
Electron. Soc., Oct. 2021, pp. 1–5.

[44] H.-J. Kim, K.-C. Lee, M.-H. Kim, and S. Lee, ‘‘Optimal scheduling
of time-sensitive networks for automotive Ethernet based on genetic
algorithm,’’ Electronics, vol. 11, no. 6, p. 926, Mar. 2022.

[45] F. Ansah, M. A. Abid, and H. deMeer, ‘‘Schedulability analysis and GCL
computation for time-sensitive networks,’’ in Proc. IEEE 17th Int. Conf.
Ind. Informat. (INDIN), vol. 1, Jul. 2019, pp. 926–932.

[46] H. Wang, Z. Zhao, and J. Wei, ‘‘Adaptive scheduling algorithm based on
time aware shaper,’’ in Proc. 5th Int. Conf. Adv. Electron. Mater., Comput.
Softw. Eng. (AEMCSE), Apr. 2022, pp. 555–562.

[47] J. Min, M. Oh,W. Kim, H. Seo, and J. Paek, ‘‘Evaluation of metaheuristic
algorithms for TAS scheduling in time-sensitive networking,’’ in Proc.
13th Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2022,
pp. 809–812.

[48] M. Vlk, K. Brejchová, Z. Hanzálek, and S. Tang, ‘‘Large-scale periodic
scheduling in time-sensitive networks,’’ Comput. Oper. Res., vol. 137,
Jan. 2022, Art. no. 105512.

[49] M. Davis, G. Logemann, and D. Loveland, ‘‘A machine program
for theorem-proving,’’ Commun. ACM, vol. 5, no. 7, pp. 394–397,
Jul. 1962.

[50] X. Wang, H. Yao, T. Mai, T. Nie, L. Zhu, and Y. Liu, ‘‘Deep reinforce-
ment learning aided no-wait flow scheduling in time-sensitive networks,’’
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2022,
pp. 812–817.

[51] M. Vlk, Z. Hanzálek, K. Brejchová, S. Tang, S. Bhattacharjee, and
S. Fu, ‘‘Enhancing schedulability and throughput of time-triggered traffic
in IEEE 802.1 Qbv time-sensitive networks,’’ IEEE Trans. Commun.,
vol. 68, no. 11, pp. 7023–7038, Nov. 2020.

[52] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, ‘‘Window-based sched-
ule synthesis for industrial IEEE 802.1 Qbv TSN networks,’’ inProc. 16th
IEEE Int. Conf. Factory Commun. Syst. (WFCS), Apr. 2020, pp. 1–4.

[53] P.-J. Chaine, M. Boyer, C. Pagetti, and F. Wartel, ‘‘Egress-TT configura-
tions for TSN networks,’’ in Proc. 30th Int. Conf. Real-Time Netw. Syst.,
Jun. 2022, p. 5869.

[54] D. Bujosa, M. Ashjaei, A. V. Papadopoulos, T. Nolte, and J. Proenza,
‘‘HERMES: Heuristic multi-queue scheduler for TSN time-triggered
traffic with zero reception jitter capabilities,’’ in Proc. 30th Int. Conf.
Real-Time Netw. Syst., Jun. 2022, p. 7080.

[55] N. Reusch, S. S. Craciunas, and P. Pop, ‘‘Dependability-aware routing
and scheduling for time-sensitive networking,’’ IET Cyber-Phys. Syst.,
Theory Appl., vol. 7, no. 3, pp. 124–146, Sep. 2022.

[56] N. G. Nayak, ‘‘Scheduling & routing time-triggered traffic in time-
sensitive networks,’’ Ph.D. dissertation, Graduate School Excellence
Adv. Manuf. Eng. (GSaME), Univ. Stuttgart, Stuttgart, Germany,
Tech. Rep., 2018.

[57] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, ‘‘Design opti-
misation of cyber-physical distributed systems using IEEE time-sensitive
networks,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1, pp. 86–94,
Dec. 2016.

[58] E. Li, F. He, L. Zhao, and X. Zhou, ‘‘A SDN-based traffic band-
width allocation method for time sensitive networking in avionics,’’ in
Proc. IEEE/AIAA 38th Digit. Avionics Syst. Conf. (DASC), Sep. 2019,
pp. 1–7.

[59] A. C. T. dos Santos, B. Schneider, and V. Nigam, ‘‘TSNSCHED: Auto-
mated schedule generation for time sensitive networking,’’ in Proc. For-
mal Methods Comput. Aided Design, 2019, pp. 69–77.

[60] A. Varga, OMNeT++. Berlin, Germany: Springer, 2010, pp. 35–59.
[61] A. C. T. D. Santos, ‘‘TSNsched: Automated schedule generation for

time sensitive networking,’’ Ph.D. dissertation, Centro de Informática,
Universidade Federal da Paraíba, Paraíba, Brazil, 2020.

[62] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen,
‘‘Synthesising schedules to improve QoS of best-effort traffic in TSN
networks,’’ in Proc. 29th Int. Conf. Real-Time Netw. Syst., Apr. 2021,
pp. 68–77.

61230 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

[63] W. Zhou and Z. Li, ‘‘Implementation and evaluation of SMT-based real-
time communication scheduling for IEEE 802.1 Qbv in next-generation
in-vehicle network,’’ in Proc. 2nd Int. Conf. Inf. Technol. Comput. Appl.
(ITCA), Dec. 2020, pp. 457–461.

[64] M. Barzegaran, N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, ‘‘Real-
time traffic guarantees in heterogeneous time-sensitive networks,’’ in
Proc. 30th Int. Conf. Real-Time Netw. Syst., Jun. 2022, p. 4657.

[65] J. Pei, Y. Hu, L. Tian, M. Li, and Z. Li, ‘‘A hybrid traffic scheduling
strategy for time-sensitive networking,’’ Electronics, vol. 11, no. 22,
p. 3762, Nov. 2022.

[66] X. Yao, Z. Gan, Y. Chen, L. Guo, andW.Wang, ‘‘Hybrid flow scheduling
with additional simple compensation mechanisms in time-sensitive net-
works,’’ in Proc. IEEE 6th Adv. Inf. Technol., Electron. Autom. Control
Conf. (IAEAC), Oct. 2022, pp. 1315–1320.

[67] S.Wang, Q. Xu, Y. Zhang, L. Xu, and C. Chen, ‘‘Hybrid traffic scheduling
based on adaptive time slot slicing in time-sensitive networking,’’ in Proc.
IEEE Int. Conf. Ind. Technol. (ICIT), Aug. 2022, pp. 1–7.

[68] Z. Huang, H. Zhu, H. Zhang, and T. Huang, ‘‘A scalable heuristic time-
sensitive traffic scheduling algorithm for in-vehicle network,’’ in Proc.
5th Int. Conf. Hot Inf.-Centric Netw. (HotICN), Nov. 2022, pp. 111–118.

[69] S. S. Craciunas and R. S. Oliver, ‘‘Out-of-sync schedule robustness for
time-sensitive networks,’’ inProc. 17th IEEE Int. Conf. Factory Commun.
Syst. (WFCS), Jun. 2021, pp. 75–82.

[70] Z. Feng, M. Cai, and Q. Deng, ‘‘An efficient pro-active fault-tolerance
scheduling of IEEE 802.1 Qbv time-sensitive network,’’ IEEE Internet
Things J., vol. 9, no. 16, pp. 14501–14510, Aug. 2022.

[71] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, ‘‘Routing and schedul-
ing of time-triggered traffic in time-sensitive networks,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 7, pp. 4525–4534, Jul. 2020.

[72] N. Reusch, P. Pop, and S. S. Craciunas, ‘‘Work-in-progress: Safe and
secure configuration synthesis for TSN using constraint programming,’’
in Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2020, pp. 387–390.

[73] V. Gavrilut, B. Zarrin, P. Pop, and S. Samii, ‘‘Fault-tolerant topology and
routing synthesis for IEEE time-sensitive networking,’’ in Proc. 25th Int.
Conf. Real-Time Netw. Syst., Oct. 2017, pp. 267–276.

[74] Z. Feng, Q. Deng, M. Cai, and J. Li, ‘‘Efficient reservation-based fault-
tolerant scheduling for IEEE 802.1 Qbv time-sensitive networking,’’
J. Syst. Archit., vol. 123, Feb. 2022, Art. no. 102381.

[75] R. Dobrin, N. Desai, and S. Punnekkat, ‘‘On fault-tolerant scheduling of
time sensitive networks,’’ in Proc. Int. Workshop Secur. Dependability
Crit. Embedded Real-Time Syst., vol. 73, 2019, pp. 5:1–5:13.

[76] M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner, ‘‘Runtime recon-
figuration of time-sensitive networking (TSN) schedules for fog comput-
ing,’’ in Proc. IEEE Fog World Congr. (FWC), Oct. 2017, pp. 1–6.

[77] Z. Pang, X. Huang, Z. Li, S. Zhang, Y. Xu, H. Wan, and X. Zhao,
‘‘Flow scheduling for conflict-free network updates in time-sensitive
software-defined networks,’’ IEEE Trans. Ind. Informat., vol. 17, no. 3,
pp. 1668–1678, Mar. 2021.

[78] Y. Wang, F. Wang, W. Wang, X. Tan, J. Wen, Y. Wang, and P. Lin,
‘‘Design and implementation of traffic scheduling algorithm for time-
sensitive network,’’ in Proc. IEEE Int. Symp. BroadbandMultimedia Syst.
Broadcast. (BMSB), Jun. 2022, pp. 1–6.

[79] C. Gärtner, A. Rizk, B. Koldehofe, R. Guillaume, R. Kundel, and R. Stein-
metz, ‘‘On the incremental reconfiguration of time-sensitive networks at
runtime,’’ in Proc. IFIP Netw. Conf., Jun. 2022, pp. 1–9.

[80] C. Gärtner, A. Rizk, B. Koldehofe, R. Guillaume, R. Kundel, and
R. Steinmetz, ‘‘Fast incremental reconfiguration of dynamic time-
sensitive networks at runtime,’’ Comput. Netw., vol. 224, Apr. 2023,
Art. no. 109606.

[81] Q. Li, D. Li, X. Jin, Q. Wang, and P. Zeng, ‘‘A simple and efficient time-
sensitive networking traffic scheduling method for industrial scenarios,’’
Electronics, vol. 9, no. 12, p. 2131, Dec. 2020.

[82] J. Dai, Z. Wang, and L. Zhong, ‘‘Research on gating scheduling of time
sensitive network based on constraint strategy,’’ J. Phys., Conf. Ser.,
vol. 1920, no. 1, May 2021, Art. no. 012089.

[83] T. Feng andH. Yang, ‘‘SMT-based task- and network-level static schedule
for time sensitive network,’’ in Proc. Int. Conf. Commun., Inf. Syst.
Comput. Eng. (CISCE), May 2021, pp. 764–770.

[84] M. Barzegaran, B. Zarrin, and P. Pop, ‘‘Quality-of-control-aware schedul-
ing of communication in TSN-based fog computing platforms using
constraint programming,’’ in Proc. Workshop Fog Comput. IoT, 2020,
pp. 3:1–3:9.

[85] M. Barzegaran and P. Pop, ‘‘Communication scheduling for control per-
formance in TSN-based fog computing platforms,’’ IEEE Access, vol. 9,
pp. 50782–50797, 2021.

[86] M. Barzegaran, ‘‘Configuration optimization of fog computing platforms
for control applications,’’ Ph.D. dissertation, Dept. Appl. Math. Comput.
Sci., Tech. Univ. Denmark, Lyngby, Denmark, 2021.

[87] S. D. McLean, E. A. Juul Hansen, P. Pop, and S. S. Craciunas, ‘‘Configur-
ing ADAS platforms for automotive applications using metaheuristics,’’
Frontiers Robot. AI, vol. 8, pp. 1–15, Jan. 2022.

[88] A. Arestova, W. Baron, K. J. Hielscher, and R. German, ‘‘ITANS: Incre-
mental task and network scheduling for time-sensitive networks,’’ IEEE
Open J. Intell. Transp. Syst., vol. 3, pp. 369–387, 2022.

[89] X. Jin, C. Xia, N. Guan, and P. Zeng, ‘‘Joint algorithm of message
fragmentation and no-wait scheduling for time-sensitive networks,’’
IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 478–490, Feb. 2021.

[90] T. Park, S. Samii, and K. G. Shin, ‘‘Design optimization of frame pre-
emption in real-time switched Ethernet,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 420–425.

[91] D. Ginthör, R. Guillaume, J. von Hoyningen-Huene, M. Schüngel,
and H. D. Schotten, ‘‘End-to-end optimized joint scheduling of con-
verged wireless and wired time-sensitive networks,’’ in Proc. 25th IEEE
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), vol. 1, Sep. 2020,
pp. 222–229.

[92] J. Lin, W. Li, X. Feng, S. Zhan, J. Feng, J. Cheng, T. Wang, Q. Li,
Y. Wang, F. Li, and B. Tang, ‘‘Rethinking the use of network cycle in
time-sensitive networking (TSN) flow scheduling,’’ in Proc. IEEE/ACM
30th Int. Symp. Quality Service (IWQoS), Jun. 2022, pp. 1–11.

[93] M. H. Farzaneh, S. Kugele, and A. Knoll, ‘‘A graphical modeling tool
supporting automated schedule synthesis for time-sensitive networking,’’
in Proc. 22nd IEEE Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2017, pp. 1–8.

[94] J. Tu, Q. Xu, L. Xu, and C. Chen, ‘‘SSL-SP: A semi-supervised-learning-
based stream partitioning method for scale iterated scheduling in time-
sensitive networks,’’ in Proc. 22nd IEEE Int. Conf. Ind. Technol. (ICIT),
vol. 1, Mar. 2021, pp. 1182–1187.

[95] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,
‘‘Stability-aware integrated routing and scheduling for control applica-
tions in Ethernet networks,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2018, pp. 682–687.

[96] J. Falk, F. Dürr, and K. Rothermel, ‘‘Exploring practical limitations of
joint routing and scheduling for TSN with ILP,’’ in Proc. IEEE 24th Int.
Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2018,
pp. 136–146.

[97] H. Nie, S. Li, and Y. Liu, ‘‘An enhanced routing and scheduling mech-
anism for time-triggered traffic with large period differences in time-
sensitive networking,’’ Appl. Sci., vol. 12, no. 9, p. 4448, Apr. 2022.

[98] Y. Huang, S. Wang, T. Huang, B. Wu, Y. Wu, and Y. Liu, ‘‘Online routing
and scheduling for time-sensitive networks,’’ inProc. IEEE 41st Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2021, pp. 272–281.

[99] L. Xu, Q. Xu, J. Tu, J. Zhang, Y. Zhang, C. Chen, andX.Guan, ‘‘Learning-
based scalable scheduling and routing co-design with stream similarity
partitioning for time-sensitive networking,’’ IEEE Internet Things J.,
vol. 9, no. 15, pp. 13353–13363, Aug. 2022.

[100] M. Pahlevan, N. Tabassam, and R. Obermaisser, ‘‘Heuristic list scheduler
for time triggered traffic in time sensitive networks,’’ ACM SIGBED Rev.,
vol. 16, no. 1, pp. 15–20, Feb. 2019.

[101] L. Xu, Q. Xu, Y. Zhang, J. Zhang, and C. Chen, ‘‘Co-design approach
of scheduling and routing in time sensitive networking,’’ in Proc. IEEE
Conf. Ind. Cyberphys. Syst. (ICPS), vol. 1, Jun. 2020, pp. 111–116.

[102] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, ‘‘Optimizing message
routing and scheduling in automotive mixed-criticality time-triggered
networks,’’ in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Jun. 2017, pp. 1–6.

[103] A. Arestova, K.-S. J. Hielscher, and R. German, ‘‘Design of a hybrid
genetic algorithm for time-sensitive networking,’’ in Proc. Int. Conf.
Meas., Modeling Eval. Comput. Syst., 2020, pp. 99–117.

[104] M. Pahlevan and R. Obermaisser, ‘‘Genetic algorithm for scheduling
time-triggered traffic in time-sensitive networks,’’ in Proc. IEEE 23rd
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), vol. 1, Sep. 2018,
pp. 337–344.

[105] M. Nawaz, E. E. Enscore, and I. Ham, ‘‘A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,’’ Omega, vol. 11, no. 1,
pp. 91–95, Jan. 1983.

VOLUME 11, 2023 61231



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

[106] A. M. Kentis, M. S. Berger, and J. Soler, ‘‘Effects of port congestion in
the gate control list scheduling of time sensitive networks,’’ in Proc. 8th
Int. Conf. Netw. Future (NOF), Nov. 2017, pp. 138–140.

[107] Y.Wang, J. Chen,W. Ning, H. Yu, S. Lin, Z.Wang, G. Pang, and C. Chen,
‘‘A time-sensitive network scheduling algorithm based on improved ant
colony optimization,’’ Alexandria Eng. J., vol. 60, no. 1, pp. 107–114,
Feb. 2021.

[108] J. Falk, F. Dürr, and K. Rothermel, ‘‘Time-triggered traffic planning for
data networks with conflict graphs,’’ in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2020, pp. 124–136.

[109] M. Vlk, Z. Hanzálek, and S. Tang, ‘‘Constraint programming approaches
to joint routing and scheduling in time-sensitive networks,’’ Comput. Ind.
Eng., vol. 157, Jul. 2021, Art. no. 107317.

[110] B. Caddell, ‘‘Joint routing and scheduling with SMT,’’ B.Sc. thesis, Inst.
Parallel Distrib. Syst., Univ. Stuttgart, Stuttgart, Germany, 2018.

[111] X. He, X. Zhuge, F. Dang, W. Xu, and Z. Yang, ‘‘DeepScheduler:
Enabling flow-aware scheduling in time-sensitive networking,’’ in Proc.
IEEE INFOCOM, Mar. 2023, pp. 1–4.

[112] F. Pozo, G. Rodriguez-Navas, and H. Hansson, ‘‘Schedule reparability:
Enhancing time-triggered network recovery upon link failures,’’ in Proc.
IEEE 24th Int. Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA),
Aug. 2018, pp. 147–156.

[113] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, ‘‘Fault-resilient
topology planning and traffic configuration for IEEE 802.1 Qbv TSN
networks,’’ in Proc. IEEE 24th Int. Symp. On-Line Test. Robust Syst.
Design (IOLTS), Jul. 2018, pp. 151–156.

[114] Y. Zhou, S. Samii, P. Eles, and Z. Peng, ‘‘Reliability-aware scheduling
and routing for messages in time-sensitive networking,’’ ACM Trans.
Embedded Comput. Syst., vol. 20, no. 5, pp. 1–24, Sep. 2021.

[115] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, ‘‘Fault-tolerant
static scheduling and routing for in-vehicle networks,’’ in Proc. 32nd Int.
Telecommun. Netw. Appl. Conf. (ITNAC), Nov. 2022, pp. 273–279.

[116] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, ‘‘MIP-based joint
scheduling and routing with load balancing for TSN based in-vehicle
networks,’’ in Proc. IEEE Veh. Netw. Conf. (VNC), Dec. 2020, pp. 1–7.

[117] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, ‘‘Network coding
based fault-tolerant dynamic scheduling and routing for in-vehicle net-
works,’’ J. Netw. Syst. Manage., vol. 31, no. 1, p. 27, Jan. 2023.

[118] Y. Zhou, S. Samii, P. Eles, and Z. Peng, ‘‘ASIL-decomposition based
routing and scheduling in safety-critical time-sensitive networking,’’ in
Proc. IEEE 27th Real-Time Embedded Technol. Appl. Symp. (RTAS),
May 2021, pp. 184–195.

[119] Road Vehicles: Functional Safety, Standard ISO 26262, 2018.
[120] Y. Zhou, ‘‘Synthesis of safety-critical real-time systems,’’

Ph.D. dissertation, Dept. Comput. Inf. Sci., Linköping Univ., Linköping,
Sweden, 2022.

[121] Y. Zhou, S. Samii, P. Eles, and Z. Peng, ‘‘Time-triggered scheduling for
time-sensitive networking with preemption,’’ in Proc. 27th Asia South
Pacific Design Autom. Conf. (ASP-DAC), Jan. 2022, pp. 262–267.

[122] H. Li, H. Cheng, and L. Yang, ‘‘Reliable routing and scheduling in time-
sensitive networks,’’ in Proc. 17th Int. Conf. Mobility, Sens. Netw. (MSN),
Dec. 2021, pp. 806–811.

[123] V. Gavrilut, L. Zhao, M. L. Raagaard, and P. Pop, ‘‘AVB-aware routing
and scheduling of time-triggered traffic for TSN,’’ IEEE Access, vol. 6,
pp. 75229–75243, 2018.

[124] S. M. Laursen, P. Pop, and W. Steiner, ‘‘Routing optimization of AVB
streams in TSN networks,’’ SIGBED Rev., vol. 13, no. 4, p. 4348,
2016.

[125] V. Gavrilut and P. Pop, ‘‘Scheduling in time sensitive networks (TSN)
for mixed-criticality industrial applications,’’ in Proc. 14th IEEE Int.
Workshop Factory Commun. Syst. (WFCS), Jun. 2018, pp. 1–4.

[126] M. L. Raagaard and P. Pop, ‘‘Optimization algorithms for the scheduling
of IEEE 802.1 time-sensitive networking (TSN),’’ Tech. Univ. Denmark,
Lyngby, Denmark, Tech. Rep. 1, 2017.

[127] C. Chuang, T. Yu, C. Lin, A. Pang, and T. Hsieh, ‘‘Online stream-aware
routing for TSN-based industrial control systems,’’ in Proc. 25th IEEE
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), vol. 1, Sep. 2020,
pp. 254–261.

[128] V. Gavriluţ and P. Pop, ‘‘Traffic-type assignment for TSN-based mixed-
criticality cyber-physical systems,’’ACMTrans. Cyber-Phys. Syst., vol. 4,
no. 2, pp. 1–27, Apr. 2020.

[129] A. Berisa, L. Zhao, S. S. Craciunas, M. Ashjaei, S. Mubeen,
M. Daneshtalab, and M. Sjödin, ‘‘AVB-aware routing and scheduling for
critical traffic in time-sensitive networks with preemption,’’ in Proc. 30th
Int. Conf. Real-Time Netw. Syst., Jun. 2022, pp. 207–218.

[130] Y. Li, J. Jiang, and S. H. Hong, ‘‘Joint traffic routing and scheduling
algorithm eliminating the nondeterministic interruption for TSNnetworks
used in IIoT,’’ IEEE Internet Things J., vol. 9, no. 19, pp. 18663–18680,
Oct. 2022.

[131] L. Yang, Y. Wei, F. R. Yu, and Z. Han, ‘‘Joint routing and schedul-
ing optimization in time-sensitive networks using graph-convolutional-
network-based deep reinforcement learning,’’ IEEE Internet Things J.,
vol. 9, no. 23, pp. 23981–23994, Dec. 2022.

[132] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, and
G. Mühl, ‘‘ILP-based routing and scheduling of multicast realtime traffic
in time-sensitive networks,’’ in Proc. IEEE 26th Int. Conf. Embedded
Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2020, pp. 1–11.

[133] C. Li, C. Zhang, W. Zheng, X. Wen, Z. Lu, and J. Zhao, ‘‘Joint rout-
ing and scheduling for dynamic applications in multicast time-sensitive
networks,’’ in Proc. IEEE Int. Conf. Commun. Workshops, Jun. 2021,
pp. 1–6.

[134] Q. Yu and M. Gu, ‘‘Adaptive group routing and scheduling in multicast
time-sensitive networks,’’ IEEE Access, vol. 8, pp. 37855–37865, 2020.

[135] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, ‘‘Dynamic schedul-
ing and routing for TSN based in-vehicle networks,’’ in Proc. IEEE Int.
Conf. Commun. Workshops, Jun. 2021, pp. 1–6.

[136] Q. Yu, H. Wan, X. Zhao, Y. Gao, and M. Gu, ‘‘Online scheduling
for dynamic VM migration in multicast time-sensitive networks,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 6, pp. 3778–3788, Jun. 2020.

[137] L. Kou, G. Markowsky, and L. Berman, ‘‘A fast algorithm for Steiner
trees,’’ Acta Inf., vol. 15, no. 2, pp. 141–145, 1981.

[138] J. Li, H. Xiong, Q. Li, F. Xiong, and J. Feng, ‘‘Run-time reconfiguration
strategy and implementation of time-triggered networks,’’ Electronics,
vol. 11, no. 9, p. 1477, May 2022.

[139] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Incremental flow scheduling
and routing in time-sensitive software-defined networks,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 5, pp. 2066–2075, May 2018.

[140] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,
‘‘Breaking silos to guarantee control stability with communication over
Ethernet TSN,’’ IEEE Des. Test. IEEE Des. Test. Comput., vol. 38, no. 5,
pp. 48–56, Oct. 2021.

[141] Y. Zheng, S. Wang, S. Yin, B. Wu, and Y. Liu, ‘‘Mix-flow scheduling
for concurrent multipath transmission in time-sensitive networking,’’ in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021,
pp. 1–6.

[142] D. Yang, K. Gong, J. Ren, W. Zhang, W. Wu, and H. Zhang, ‘‘TC-
flow: Chain flow scheduling for advanced industrial applications in time-
sensitive networks,’’ IEEE Netw., vol. 36, no. 2, pp. 16–24, Mar. 2022.

[143] K. Gong, D. Yang, W. Zhang, and J. Ren, ‘‘An efficient scheduling
approach for multi-level industrial chain flows in time-sensitive network-
ing,’’ Comput. Netw., vol. 221, Feb. 2023, Art. no. 109516.

[144] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and
R. Hummen, ‘‘How to optimize joint routing and scheduling models for
TSN using integer linear programming,’’ in Proc. 29th Int. Conf. Real-
Time Netw. Syst., Apr. 2021, pp. 100–111.

[145] S. Bhattacharjee, K. Alexandris, E. Hansen, P. Pop, and T. Bauschert,
‘‘Latency-aware function placement, routing, and scheduling in TSN-
based industrial networks,’’ inProc. IEEE Int. Conf. Commun.,May 2022,
pp. 4248–4254.

[146] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, ‘‘Efficient and secure
source authentication for multicast,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp. (NDSS), vol. 1, 2001, pp. 35–46.

[147] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks–Amendment 28: Per-Stream Filtering and Policing,
IEEE Standard 802.1Qci-2017, 2017, pp. 1–65.

[148] Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges, IEEE Standard 802.1D-1990, 1991, pp. 1–176.

[149] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. London, U.K.: Pearson, 2016.

[150] IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks—Amendment 34: Asynchronous Traffic Shaping,
IEEE Standard 802.1Qcr-2020, 2020, pp. 1–151.

61232 VOLUME 11, 2023



T. Stüber et al.: Survey of Scheduling Algorithms for the Time-Aware Shaper in TSN

THOMAS STÜBER received the master’s degree,
in 2018. He is currently pursuing the Ph.D.
degree with the Chair of Communication Net-
works of Prof. Dr. Habil. Michael Menth, Univer-
sity of Tübingen, Germany. He became part of the
Communication Networks Research Group. His
research interests include time-sensitive network-
ing (TSN), scheduling, performance evaluation,
and operations research.

LUKAS OSSWALD received the master’s degree,
in 2020. He is currently pursuing the Ph.D.
degree with the Chair of Communication Net-
works of Prof. Dr. Habil. Michael Menth, Uni-
versity of Tübingen, Germany. He became part
of the Communication Networks Research Group.
His research interests include time-sensitive net-
working (TSN), admission control, and network
configuration.

STEFFEN LINDNER received themaster’s degree,
in 2019. He is currently pursuing the Ph.D.
degree with the Chair of Communication Net-
works of Prof. Dr. Habil. Michael Menth, Univer-
sity of Tübingen, Germany. He became part of the
Communication Networks Research Group. His
research interests include software-defined net-
working, P4, and congestion management.

MICHAEL MENTH (Senior Member, IEEE)
received the Diploma degree from The University
of Texas at Austin, Austin, TX, USA, in 1998,
the Ph.D. degree from Ulm University, Germany,
in 2004, and the Habilitation degree from the Uni-
versity of Würzburg, Germany, in 2010. He has
been the Chair Holder of Communication Net-
works, since 2010. He is currently a Professor
with theDepartment of Computer Science, Univer-
sity of Tübingen, Germany. His special interests

are performance analysis and optimization of communication networks,
resilience and routing issues, as well as resource and congestion manage-
ment. His recent research interests include network softwarization, in partic-
ular P4-based data plane programming, time-sensitive networking (TSN), the
Internet of Things, and internet protocols. He contributes to standardization
bodies, mainly to the IETF.

VOLUME 11, 2023 61233


