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ABSTRACT A new optimization framework for a high-dynamic point-to-point direct drive motion
control system (HDPDMS) is proposed. The conventional system optimization approach considers all
design parameters simultaneously, resulting in a high-dimensional search space and extensive computation.
In contrast, the proposed framework uses a new DDM surrogate model that establishes a correlation between
the key DDM characteristic parameters to decouple the whole optimization process. It begins with a system-
level optimization to identify suitable driver types, motion profile design parameters, and characteristic
parameters of the direct drive motors (DDMs) by the new surrogate model. Bayesian optimization then
determines the DDM design parameters corresponding to the identified characteristic parameters. Once
the DDM surrogate model is built, the proposed framework achieved the desired HDPDMS design in just
1 hour, saving 98.6%of computation time compared to the traditional approach. Additionally, multi-objective
optimization and Gaussian process regression prediction intervals were employed to obtain a suitable
training dataset and input range for the surrogate model, resulting in a 99.8% reduction in computation
resources compared to the traditional DDM surrogate model. Through completing three unique motion task
optimizations and creating a prototype, the optimization framework was proven effective, demonstrating the
potential of this novel method.

INDEX TERMS Point-to-point motion control, direct drive permanent-magnet machine, high dynamics,
novel system optimization framework.

I. INTRODUCTION
High-dynamic point-to-point direct drive motion control sys-
tems (HDPDMS) have wide industrial applications such as
high-speed pick-and-place drives, die bonders, and integrated
circuit sorting machines (Fig. 1). An HDPDMS rotates at
a specific angle with fast acceleration and deceleration in
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milliseconds and then rotates to the next position repeatedly.
In the production process, a system may work continuously
for more than 20 hours a day with a very high unit per
hour (UPH) [1]. Consequently, optimizing the motion control
system for higher efficiency is important.

In a typical direct drive motion control system, the load-
to-motor inertia ratio is often greater than 20:1. The moment
inertia of a direct drive motor (DDM), therefore, does not
significantly impact the design requirements for continuous
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FIGURE 1. High-dynamic point-to-point motion control systems
(HDPDMS). Primarily employed in the chip inspection stage, this machine
rotates chips at precise intervals for a brief period before pausing for
testing, after which it rotates to the next position and repeats the process.

FIGURE 2. Traditional optimization framework of HDPDMS. It includes
the DDM, driver, and motion curve three components. All the design
parameters and models are used in one big optimization loop.

torque, peak torque, and power of the DDM. Additionally,
motion times in this system are typically several seconds,
allowing the design requirements for the DDM to be directly
derived from the motion task and typical motion profiles,
such as triangular or trapezoidal waves for acceleration. The
proper driver can then be selected based on the required
continuous current, peak current, and bus voltage for the
DDM design. This approach results in decoupling the design
process for the three components.

However, in HDPDMSs, achieving a fast response requires
a low load-to-motor inertia ratio, less than 4:1. As a result,
the moment inertia of the DDM cannot be ignored. Due to the
motion time in the HDPDMS, themotion profile significantly
impacts the design requirements for the DDM and driver.
The strong coupling between the design requirements of
the three components, namely DDM, driver, and motion
profile, makes separate designs challenging in HDPDMSs.
Therefore, an integrated system optimization approach that
considers all three components is necessary for this situation.

The conventional optimization framework for HDPDMSs
is shown in Fig. 2. The primary objective of this opti-
mization is to determine suitable design parameters for
the DDM, driver, and motion profile for a specific motion
task. The optimization of the HDPDMS system poses a
significant challenge due to its complex nature, involving
a large number of design parameters and constraints for
all components. Additionally, the computation burden is
increased by the necessity of using finite element methods
(FEM) to calculate the DDM’s magnetic field. Achieving a

FIGURE 3. Multi-level optimization framework [2]. The design parameters
are separated into two subspaces, and optimizations are done in the
motor and control levels successively.

balance between overall cost and system reliability necessi-
tates multi-objective optimization, further compounding the
computational demands. Moreover, during the initial design
phase, the motion task requires additional adjustments,
further contributing to the already substantial computational
workload.

Several strategies to reduce computation resources have
been proposed, including multi-level optimization frame-
works [2], [3], [4], [5], analytical or semi-analytical models
[6], [7], [8], [9], [10], and surrogate models [9], [11], [12],
[13], [14], [15], [16], [17].

The multi-level optimization framework [2], [3] divides
the system into two levels: the motor level and the control
level, as shown in Fig. 3. The optimization process involves
two levels, starting with optimization for steady-state perfor-
mances like torque density and efficiency at the motor level,
and obtaining characteristic parameters such as resistance,
inductance, and flux-linkage for control-level optimization
to improve dynamic performances like current rising time
and overshoot. This method reduces the computation burden
at each level but only works well if the control design
parameters do not affect the steady performance parameters
of the motor. It is suitable for traction motor systems, for
example, in electric vehicles, but proves challenging for
HDPDMS as the design parameters of the motion profile
and driver influence design requirements of DDM, such as
continuous torque, peak torque, and efficiency.

Numerous analytical magnetic field models have been
proposed to reduce the computation burden [8], offering
the advantage of high generality [6], [18]. For a fixed
motor topology, a wide range of design parameters can
be changed to obtain different characteristic parameters
of the motor. However, these models are limited in their
ability to consider the magnetic saturation influence in soft
magnetic materials. Analytical or semi-analytical models
have a tradeoff between precision and speed to take magnetic
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saturation into account [7], [19]. In the case of an HDPDMS,
careful consideration of the saturation effect is required for
calculating the peak torque, a task that cannot be easily
accomplished with fast analytical or semi-analytical models.

The surrogate model is a predictive model trained
on information from the sampling points in a training
dataset [9], [14], [20]. Once the training is complete, the
surrogate model can make accurate predictions quickly and
can handle different motion task adjustments to find precise
optimization results. However, the ‘curse of dimensionality’
[12] is challenging for surrogate models. The size of the
training dataset increases exponentially with the dimension
of the design parameters, making it impractical for the high
number of the HDPDMS’s design parameters. Therefore,
reducing dimensionality is essential for surrogate models.
One way is to select critical design parameters based on
expert knowledge or perform a sensitivity analysis [21]
to identify important design parameters for the surrogate
models. However, sensitivity analysis is only effective in
a local region with limited ranges for design parameters.
Another approach is the sequential optimization method
(SOM) [22], [23], which focuses computation resources
on the more promising regions with a high probability
of containing the optimal solution, similar to Bayesian
optimization. However, its effectiveness is limited to a local
region, and if the motion task changes, the training dataset
needs to be recalculated for the SOM.

In summary, the methods discussed previously have
limitations that make them unsuitable for quick and accurate
optimization of HDPDMS for different motion tasks with
limited computational resources.

After analyzing the traditional optimization framework
(Fig. 2), we find that the system-level optimization only
requires characteristic parameters of the DDM and driver.
The driver’s characteristic parameters are fixed once the
driver type is selected, leaving the optimization of the DDM’s
characteristic parameters - such as the phase resistance Rs,
phase synchronous inductance Ls, flux-linkage generated by
the permanent-magnet (PM) ψf, and DDM inertia JDDM
to be performed. If we can establish a surrogate model
that describes the relationships between these characteristic
parameters, such as ψf = S(Rs,Ls, JDDM), we can per-
form a system-level optimization to determine the required
characteristic parameters of the DDM. Following this,
a component-level optimization can be conducted to identify
the corresponding design parameters of the DDM that meet
the required characteristic parameters. These fundamental
ideas of the new optimization framework are illustrated in
Fig. 4. Since the dimension of characteristic parameters is
typically smaller than that of design parameters, the surrogate
model relieves the ‘curse of dimensionality’ problem and
enables quick and accurate system-level optimizations for
different motion tasks. As the new surrogate model takes
the DDM characteristic parameters as inputs, rather than
the design parameters as in traditional surrogate models,
the primary challenges of this approach are constructing

FIGURE 4. The fundamental concepts of the new optimization
framework. First, we construct a surrogate model that describes the
correlation among the characteristic parameters of DDM. Using this
surrogate model, we can perform system-level optimization to determine
the required characteristic parameters of DDM. Finally, we conduct a
component-level optimization to identify the corresponding design
parameters of the DDM that meet the required characteristic parameters.

an appropriate surrogate model for the DDM characteristic
parameters, effectively utilizing the surrogate model for
system-level optimization, and swiftly retrieving the design
parameters of the DDM.

In this article, we define the HDPDMS optimization
problem in section II. In section III, we introduce the
overview of the new optimization framework. A detailed
process of the new optimization is given in section IV.
In section V, we provide a comparison between the traditional
method and the new method. The prototype and experiment
are shown in section VI. Finally, the conclusions are given in
section VII.

II. THE DEFINITION OF THE HDPDMS OPTIMIZATION
A. POINT-TO-POINT MOTION TASK AND CONTROL
This article focuses on the point-to-point motion task, which
involves rotating a load from position A to position B within
a specified time using a DDM. Specifically, we aim to rotate
a load with a moment of inertia Jload by a specific angle θm
within a motion time of tm. After reaching the target position,
the machine waits for a dwell time of td before moving on
to the next position. An S-curve [24] is used to generate the
trajectory with two design parameters: the jerk time ratio αs
and the constant speed time ratio βs, which are shown in
Fig. 5. The dynamics model of the S-curve is described by

dθm
dt

= ωm

dωm

dt
= αm

dαm
dt

= jm,

(1)

where ωm is the rotational speed, αm is the rotational
acceleration, and jm is the rotational jerk. In our case, the
range of αs is set from 0.01 to 0.25, and the range of βs is
set from 0.01 to 0.96. They must also satisfy the inequality
4αs + βs ≤ 1.
The HDPDMS control diagram [25] is shown in Fig. 6.

The motion control system comprises three feedback loops:
a position loop, a velocity loop, and a current loop. The
corresponding loop receives the motion profile generator’s
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FIGURE 5. The jerk, acceleration, velocity, and displacement curves
generated by the S-curve [24]. The variable tm is the motion time. The
expressions αstm and βstm are the jerk time and time of constant speed,
respectively.

position, velocity, and acceleration feedforward commands.
The position and velocity loops use classical proportional
(P) / proportional-integral (PI) controllers, and several low-
pass filters are used to reduce high-frequency noise in the
velocity loop. The control diagram shown in Fig. 6 uses
the Id = 0 control strategy, so the d-axis current is set to
zero and ignored. A current controller and space vector pulse
width modulation (SVPWM) is employed to drive the motor.
Since the motion task is precisely defined and disturbances
are minimal, feedforward control dominates this motion
control, with feedback control mainly serving to correct
unexpected disturbances. In the HDPDMS optimization, we
concentrate on the design parameters of the feedforward
control, specifically the jerk time ratio αs and constant speed
time ratio βs in the S-curve motion profile generator.

The dynamics model of the DDM [25] and load is
described by the DDM characteristic parameters, like the
phase resistance Rs, phase synchronous inductance Ls, flux-
linkage generated by the PM ψf, and the inertia of the DDM
JDDR in

ud = Rsid + Ls
did
dt

− PωmLsiq

uq = Rsiq + Ls
diq
dt

+ Pωm(Lsid + ψf)

dωm

dt
=

3
2Pψfiq

Jload + JDDR
,

(2)

where the ud, uq, id, and iq are the voltages and currents in the
d-axis and q-axis.

B. DDM AND DRIVER
In addition to the motion task and motion control, we must
design the DDM and select the proper driver. For the DDM,
we use a surface-mounted PM synchronous motor (SPMSM)
because it has a high ratio between peak torque and inertia.

FIGURE 6. The motion control diagram for the HDPDMS. It comprises
three feedback loops: a position loop, a velocity loop, and a current loop.
The velocity and current feedforward controls are used to increase the
dynamic performances of the motion control system.

FIGURE 7. Structure of the surface-mounted PM machine.

FIGURE 8. The mechanical structure of the direct-drive motor includes:
the frameless motor, the bearing, the encoder, and the housing.

Therefore, it suits well for high dynamics point-to-point
motion. Straight teeth are used for easier manufacture and
a higher slot-filling factor. The topology and all design
parameters of the frameless motor are shown in Fig. 7. The
optimization design parameters are listed in Table 1, and the
fixed design parameters are shown in Table 2. The design
parameters of the housing, bearings, and encoder of the DDM
are derived from the design parameters of the frameless
motor. The whole structure of the DDM is shown in Fig. 8.

For themagnetic fieldmodels of theDDM, except the FEM
model, a subdomain model is used to reduce the computation
resource of optimization [26]. The subdomain model is a
quick and precise semi-analytical model if the magnetic
saturation effect is negligible [18]. A thermal network model
is used to calculate the temperature of the DDM [27], [28].

We select the driver from a commercial driver library.
The library gives the bus voltage Vbus, the output continuous
current I cdriver, the output peak current Ipdriver, and the cost of
the driver Cdriver (Table 3).
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TABLE 1. Parameters of the SPMSM machine and their range for
optimization. The dimensions are shown in Fig. 7.

TABLE 2. The fixed parameters of the SPMSM machine optimization.

TABLE 3. Drivers specifications.

C. HDPDMS OPTIMIZATION OBJECTIVES AND
CONSTRAINTS
A cost indicator and a reliability indicator are taken as the
optimization objectives of the HDPDMS optimization. The
cost indicator is used to measure the approximate cost of
the HDPDMS and operation cost during the operation. It is
defined by

C = Cdriver + CDDM + Coperation, (3)

where Cdriver and CDDM are the cost of the driver and motor,
respectively. Coperation is the electricity cost of the motion
system during the operation time.

Another reliability indicator R is used to measure the
reliability of the motion system by the minimum margin
for the bus voltage, continuous and peak current of the
driver, and the temperature of the winding. We use a
negative reliability indicatorR. As the optimization involves a
minimization,

R = −|min(Mbus,Mc,Mp,Mt)|, (4)

where
• Mbus =

Ubus−Vbus
Vbus

, Ubus is the required bus voltage
amplitude of the motion system,

• Mc =
I cdriver−Ic
I cdriver

, Ic is the required continuous current
amplitude of the motion system,

• Mc =
Ipdriver−Ip
Ipdriver

, Ip is the required peak current amplitude

of the motion system, and
• Mt =

Tmax−Twinding
Tmax

, Twinding is the average temperature
of the winding and Tmax is the maximum tolerable
temperature of the winding. In our case, Tmax is 100℃.

All of these margins must have negative values to ensure
the safe operation of the system, and demagnetization of
the PMs must be considered for long-term reliability. These
parameters are referred to as the constraints of HDPDMS and
are discussed in more detail in the following section. IV-A2.

III. OVERVIEW OF THE NEW OPTIMIZATION
FRAMEWORK
A new optimization framework is provided (Fig. 4). The
novel optimization framework is based on the DDM
characteristic parameters surrogate models. In this section,
we address three crucial issues related to this new opti-
mization framework: building the surrogate model of DDM
characteristic parameters, utilizing the surrogate model for
system-level optimization, and swiftly retrieving the design
parameters of the DDM.

A. THE CONSTRUCTION OF THE NEW SURROGATE MODEL
First, we need to select the DDM characteristic parameters
in the HDPDMS optimization. For example, the phase
resistance Rs, phase synchronous inductance Ls, flux-linkage
generated by the PM ψf, and the inertia of the DDM
JDDM are selected as the DDM characteristic parameters.
Second, we need to collect the training dataset for the
surrogate models. However, obtaining a training dataset for
the surrogate model of DDM characteristic parameters is not
as straightforward as it is for the traditional surrogate model,
which takes design parameters as inputs. The reason is that
the characteristic parameters of the DDM are interdependent,
and not all combinations of them exist in reality. For instance,
it is impossible to find a DDM with a high value of flux-
linkage generated by the PM ψf, along with a low value
of inertia of DDM JDDM. Therefore, direct sampling of
characteristic parameters is not possible.

To address this issue, we set DDM characteristic parame-
ters as optimization objectives in a multi-objective optimiza-
tion of DDM. The optimization results, located on the Pareto
front, comprise the DDM optimization dataset containing
physical correlation information. We use this dataset as a
training set to build a surrogate model that takes Rs, Ls, and
JDDM as inputs and produces ψf as a single output. Since the
Pareto front exhibits unique properties, the surrogate model
ψf = S(Rs,Ls, JDDM) is an injective function that can be
constructed using Gaussian process regression (GPR) [11] to
map the inputs to the output.
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The GPR is a non-parametric machine learning algo-
rithm [11]. The advantage of the GPR is that it can not only
get the mean value of the prediction but also the variance of
the prediction [12].

For a typical regression problem, we have a training dataset
(X , y) withm sampling points, where X is anm×nmatrix that
includes them inputs with n-dimensional features, and where
y is an m-dimensional vector which includes the m outputs
with a single response. The GPR aims to return the prediction
value f∗ corresponding to a new inputX∗ based on the training
dataset. We assume that y and f∗ satisfy the multi-variables
Gaussian distribution in:[

y
f∗

]
∼ N

(
0,
[
K (X ,X ) + σ 2

n I K (X ,X∗)

K (X∗,X) K (X∗,X∗)

])
, (5)

where K (X ,X ) is the covariance function and the variance
σ 2
n of the Gaussian noise is used to model the random noise

in the data. In our case, we use the Matern 5/2 covariance
function [11]. Every element kij in K (X ,X ) is defined in:

kij
(
xi, xj

)
= σ 2

f

(
1 +

√
5r
σl

+
5r2

3σ 2
l

)
exp

(
−

√
5r
σl

)
, (6)

where r =
∥∥xi − xj

∥∥ is the norm between the xi and xj, and
σf and σl are hyper-parameters of the GPR.
The mean value and variance of the prediction equa-

tions [11] are:

f∗ ≜ E [f∗ | X , y,X∗]

= K (X∗,X)
[
K (X ,X ) + σ 2

n I
]−1

y (7)

σ 2
m = cov (f∗)

= K (X∗,X∗)

− K (X∗,X)
[
K (X ,X ) + σ 2

n I
]−1

K (X ,X∗) . (8)

B. THE UTILIZATION OF THE NEW SURROGATE MODEL IN
THE OPTIMIZATION OF THE SYSTEM-LEVEL
Using the mean prediction from (7), we can predict the flux-
linkage generated by the PM ψf depending on the inputs: the
phase resistance Rs, phase synchronous inductance Ls, and
the inertia of the DDM JDDM. They can be designated as
the optimization variables in the system-level optimization.
However, we can not use the arbitrary value of characteristic
parameters Rs, Ls, and JDDM. Because the inputs of the
surrogate model have an acceptable range. In the case of a
traditional surrogate model with design parameters as inputs,
determining the acceptable ranges is straightforward, as the
design parameters’ search space is a box space withminimum
and maximum values. However, the input space of the new
surrogate model is a projection of the Pareto front onto the
characteristic parameters’ space. For example, in Fig. 9, a
Pareto front of the peak torque Tp, copper loss Pc, and
inertia of the DDM JDDM is shown in Fig. 9 (a). This Pareto
front is used to build a surrogate model Tp = S(Pc, JDDM)
to predict the peak torque Tp by the copper loss Pc and
inertia of DDM JDDM. The input space of this surrogate

FIGURE 9. Input space of the surrogate model whose inputs are
characteristic parameters. The Pareto front between the peak torque,
copper loss, and inertia of DDM is shown on the left. The corresponding
input space is a projection from the Pareto front to the copper loss and
inertia of DDM space.

model is determined by the projection from this Pareto front
to the Pc and JDDM space. In Fig. 9 (b), the input space
of this surrogate model is irregular. Therefore, we need to
find the boundary of input space. The prediction variance
of the GPR by (8) is used to find the boundary of the input
space.

A 2D function y = 0.1x3 + 0.5x2 + x + ε in Fig. 10 is
used as a simple illustration that provides better visualization
and an intuitive explanation. This function shape is similar to
the Pareto front of the torque and copper loss in the SPMSM.
A random noise ε is added to model real data noise. A 95%
prediction interval is defined by the f∗±1.96σm. FromFig. 10,
we observe that the 95% prediction intervals at the two input
boundaries are larger than the middle range of the input.
The range of the 95% prediction intervals 1P is computed
in Fig. 11. Statistical analysis is performed on 1P for the
training dataset. Its mean value µ and standard deviation σ
are obtained. Threshold 1 and threshold 2 are set as µ + σ

and µ + 2σ to determine the input space’s boundary. In this
research, µ+ σ is used as the threshold for better robustness
of optimization results.

This method works well when the sampling points on the
Pareto front are uniform. If the sampling points on the Pareto
is nonuniform, like the situation in Fig. 12, this method fails
in some place, as shown in Fig. 13. To avoid this problem,
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FIGURE 10. 2D Pareto front with uniform sampling. The grey region of
95% prediction intervals at the two input boundaries is larger than in the
middle range of the input.

FIGURE 11. The range of the 95% prediction interval (1P) with the input
for the uniform sampling. Thresholds 1 and 2 are used to determine the
boundary of the input of the GPR. All 1P values are smaller than
thresholds 1 and 2 when input is within the boundaries.

FIGURE 12. 2D Pareto front with nonuniform sampling. The region of
95% prediction intervals is nonuniform, contrary to Fig. 10.

some methods are used in section IV-A to get the uniform
Pareto front.

C. RECOVERY OF THE DESIGN PARAMETERS OF DDM
Finally, we need to recover the design parameters of the
corresponding DDM with the best characteristic parameters
in the system-level optimization. At the system level, we use
the DDM characteristic parameters to directly optimize
with the new type of surrogate model. The surrogate
model only exhibits a correlation between the characteristic
parameters of the DDM and does not incorporate any

FIGURE 13. The range of the 95% prediction interval (1P) for the uniform
sampling. Some 1P values are bigger than threshold 1 or 2, even in
places where the input is away from the two sides. Thresholds 1 and
2 cannot determine the boundary of the input of the GPR.

FIGURE 14. The novel optimization framework. It includes four main
steps: DDM optimization, constructing DDM surrogate models, HDPDMS
optimization, and recovering the design parameters of DDM.

information regarding the corresponding design parameters.
Such information is stored in the DDM optimization dataset.
With the assistance of the DDM optimization dataset, we use
Bayesian optimization [12] to recover the design parameters
of the corresponding DDM. The DDM optimization dataset
provides the initial samples to build the surrogate model
to relieve the cold-start problem of Bayesian optimization.
Bayesian optimization makes full use of information from the
results during the optimization process to guide the optimiza-
tion search, which reduces the computation resource.

D. THE NEW OPTIMIZATION FRAMEWORK OF THE
HDPDMS
The new optimization framework is shown in Fig. 14 based
on the above ideas.

Firstly, we perform multi-objective optimization to obtain
the Pareto front of the DDM characteristic parameters. Then,
we uniformly sample the optimization results on the Pareto
front and store them as the DDM optimization dataset.

Secondly, we build surrogate models of DDM character-
istic parameters using the DDM optimization dataset. It is
important to note that this surrogate model is used to build
the mapping between different characteristic parameters of
the DDM and not between the design and characteristic
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parameters of the DDM as in traditional surrogate models
referenced in [3], [12], and [20].

Thirdly, we perform system-level optimization using the
DDM surrogate models and dynamics model of HDPDMS.
With the assistance of the DDM surrogate model, this system
optimization is quick and precise, and we can easily adjust
the driver and motion task to check the optimization results.

Finally, based on the optimization results obtained above,
we select a desired design to recover the design parameters of
the DDM. Using the DDMoptimization dataset and Bayesian
optimization, we can quickly recover the design parameters
of the DDM and perform the final validation check of the
entire system design.

The next section will provide a detailed and specific
method for performing the above optimization process.

IV. OPTIMIZATION PROCESS OF THE NEW FRAMEWORK
A. COMPONENT-LEVEL OPTIMIZATION AND SURROGATE
MODEL OF THE DDM
1) SELECTION OF THE CHARACTERISTIC PARAMETERS OF
THE DDM
First, we select the characteristic parameters of the DDM as
the optimization objectives. In (2), four characteristic param-
eters, phase resistance Rs, phase synchronous inductance Ls,
flux-linkage generated by the PM ψf, and the inertia of the
DDM JDDM, are used to describe the dynamics model of
the DDM. The flux-linkage generated by the PM ψf should
be a function of the current in the q-axis for the SPMSM
to consider the magnetic saturation. Hence, the peak torque
Tp, peak current I

p
motor, continuous torque Tc, and continuous

current I cmotor are selected as the characteristic parameters to
replace the ψf. In this article, we set the peak current I

p
motor to

three times the continuous current I cmotor. The corresponding
torques are peak torque Tp and continuous torque Tc. The
cost of the DDM CDDM and copper loss Pc are also needed
to compute the cost and reliability indicators in the system-
level optimization. Therefore they are added to the list of
characteristic parameters.

These nine characteristic parameters have some redundant
information. The continuous current I cmotor =

√
Pc
3Rs

is

related to Pc and Rs. The peak current Ipmotor is three
times higher than I cmotor. To reduce the computational
burden of multi-objective optimization, we have selected the
most important characteristic parameter among the rest of
the seven parameters. Since point-to-point motion control
systems are primarily limited by their peak torque and not
their continuous torque, we have chosen peak torque Tp as
the key characteristic parameter.

In an SPMSM, the electromagnetic dynamics are deter-
mined by the synchronous phase inductance Ls and the phase
resistanceRs of the motor’s stator windings. The synchronous
phase inductance Ls plays a more crucial role than the
phase resistance Rs in determining the response speed of the
electromagnetic dynamics in an SPMSM. The minimum jerk
time t jerkmin = αminTm is used to evaluate the minimum time

from the start to the maximum torque Tmax in the motion
control. A smaller minimum jerk time t jerkmin corresponds to
a quicker dynamic response ability of the motor. For the
SPMSM, the Id = 0 current control strategy is used. The
speed of the motor is relatively low from the start to the tmin

jerk
and the EMF can be neglected during the current rising time.
Based on the above analysis, the q-axis voltage in (2) can be
simplified into uq ≈ Rsiq +Ls

diq
dt . The q-axis current is given

by iq(t) =
Uq
Rs
(1−e−

Rs
Ls
t ), whereUq is the drivers’s maximum

voltage on the q-axis. Based on this equation, the minimum
jerk time tmin

jerk can be derived from

tmin
jerk = ln

(
(1 −

TmaxRs
KtUq

)−
Ls
Rs

)
, (9)

when the maximum torque Tmax in the motion control is
reached, where the Kt is the motor’s torque constant.
The maximum torque Tmax should be less than the peak

torque Tp, and the voltage drop on the resistance should be
less than the maximum voltage on the q-axisUq, if the proper
driver is used. Therefore, TmaxRs

KtUq
<

TpRs
KtUq

=
IpRs
Uq

< 1. We use

the Taylor series for the function f (x) = (1 + x)λ centered at
x = 0, where λ ∈ C and |x| < 1:

(1 + x)λ =

∞∑
k=0

(
λ
k

)
xk(

λ
k

)
=

λ(λ − 1)(λ − 2) · · · (λ − k + 1)
k!

, (10)

to approximate the minimum jerk time by (11). By selecting
the first two series, we obtain

tmin
jerk = ln

(
1 +

TmaxLs
KtUq

)
. (11)

Based on this equation, the tmin
jerk does not depend on the phase

resistance Rs. Therefore, the synchronous phase inductance
Ls is the more important characteristic parameter that reflects
the response speed of the electromagnetic dynamics in an
SPMSM.

In conclusion, the five important characteristic parameters
Tp,Ls, JDDM,Pc and CDDM are selected.

2) MULTI-OBJECTIVES OPTIMIZATION OF DDM
Based on the above analysis, characteristic parameters
Tp,Ls, JDDM,Pc, and CDDM are selected as the optimization
objectives. The resistance and PMs are subject to temperature
effects, with peak torque Tp and copper loss Pc in particular
being sensitive to temperature. During DDM optimization,
we aim to maintain the winding temperature at around 75℃.
As the torque, the loss, and the resistance are all dependent
on temperature, it is essential to maintain a consistent
temperature for the DDM optimization dataset. Based on the
dataset, this allows for the calculation of designs with varying
temperatures during system-level optimization, assuming that
the motor’s equivalent thermal resistance remains constant
when the winding temperature is between 50℃ and 100℃.
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FIGURE 15. The temperature difference between the winding and the
environment and the copper loss obtained from the experiment. The
gradient of this curve represents the equivalent thermal resistance of the
motor, which remains constant in the range of 50℃ to 100℃ for the
winding temperature. The experiment was conducted at an ambient
temperature of 28.3℃.

To verify this assumption, we made an experiment to
measure the equivalent thermal resistance. Figure 15 shows
the relationship between copper loss and the temperature
difference between the winding and the environment. For
this experiment, the ambient temperature of the experiment
was 28.3℃. The slope of the curve is the equivalent thermal
resistance of this motor. It is close to a constant at different
temperatures.

Based on the above analysis, the constraint for the winding
temperature range has been established. The lower and upper
constraints of the winding temperature are set at 70℃ and
80℃, respectively. The constant equivalent thermal resistance
assumption is used to correct the Tp and Pc to keep the
winding temperature equal to 75℃. The kPM is used to do
the thermal correction for the PMs in

kPM = 1 − αPM

(
75℃ − Ta
Tw − Ta

(TPM − Ta) + Ta − 20℃
)
,

(12)

where Tw, TPM, and Ta are the temperature of the winding,
PMs, and environment, respectively. The variable αPM is the
thermal coefficient of the remanence in the PMwhich is equal
to 0.11% in our case.

The variable kcurrent is used to do the thermal correction for
the current by

kcurrent =
I75℃
ITw

=

√
(75℃ − Ta)RTw
(Tw − Ta)R75℃

, (13)

where I75℃ and ITw are the current when winding temper-
atures are equal to 75℃ and Tw, respectively. The phase
resistances RTw and R75℃ are obtained from RT = (1+α(T−

Ta))RTa at the different winding temperatures, where α =

0.00385 is the temperature coefficient of copper resistivity
when the ambient temperature Ta is 25℃. Equation (13) is

derived from
I275℃R75℃
I2TwRTw

=
75℃−Ta
Tw−Ta

, based on the constant

equivalent thermal resistance assumption.

In our case, we assume that the peak torque Tp is
proportional to the current and remanence of the PMwhen the
current and temperature is changed in a small range. Through
this assumption, the peak torque Tp is correct by the kPM and
kcurrent:

Tp = kPMkcurrentT o
p , (14)

where T o
p is the original value of the peak torque when the

motor is at ambient temperature.
In the same way, the copper loss Pc can be derived from

Pc = k2current
R75℃
RTw

Poc =
(75℃ − Ta)
(Tw − Ta)

Poc , (15)

where Poc is the original value of the copper loss when the
temperature of the motor is at ambient temperature.

The demagnetization is set as a constraint to ensure the
reliability of the DDM. A current four times the value of
the continuous current is used to check the demagnetization
of the PM. For the cost consideration, the PM volume ratio
upper αPM =

Vmax
PM

VMotor
is set as the constraint, where Vmax

PM is the
maximum volume of the PM and VMotor is the volume of the
motor. In our case, the αPM is equal to 0.074.
The cost of the motor encompasses a variety of fac-

tors, such as material costs, labor expenses, manufacturing
expenses, and auxiliary fixtures. To simplify the computation,
we assume that the cost of the motor is directly proportional
to its volume, considering the PM volume ratio constraints.
In this study, we adopt a price of 920 RMB per liter as the unit
price for the motor volume. Note that this cost function can
vary based on the manufacturing company and the market,
but it does not affect the primary conclusions of this article.

The phase resistance Rs and synchronous phase inductance
Ls are related to the total turns of winding Nw. In the
same motor, the relationships of the phase resistance and
synchronous phase inductance with different winding turns
are

Rs =

(
Nw

No

)2

Rso, (16)

and

Ls =

(
Nw

No

)2

Lso, (17)

where Rso and Lso are the original resistance and inductance
with the original total turns of winding No.
In the DDM optimization, we fix the total turns of winding

Nw as No and compute the phase resistance and inductance
as Rso and Lso. Then, we can use (16) and (17) to compute
phase resistance Rs and synchronous phase inductance Ls,
when we change the total turns of winding Nw in the system-
level optimization. Therefore, Nw is removed from the design
parameters in the DDMoptimization. The remaining 9 design
parameters in Table 1 are used for DDM optimization.

The bi-criterion evolutionary optimization algorithm
(BCE-IBEA) [29] is used. It combines the indicator-based
and non-dominated optimization algorithm advantages to
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FIGURE 16. DDM optimization framework. The pre-optimization with the
quick subdomain is performed first. The next optimization with FEM
inherits the pre-optimal results as the initial design. The BCE-IBEA [29],
NRBF, and robust filters [26] are used to get uniform sampling on the 5D
Pareto front to generate the DDM optimization dataset.

give a better diversity of the results in the Pareto front. A pre-
optimization uses a subdomain model for the magnetic field
computation to get the pre-optimal results. They are further
optimized using the FEM for magnetic field computation.
This method reduces the computation resource by about
70% [26]. The population is 210, and the number of
generations is 400 and 100 for the optimization using the
subdomain model and FEM, respectively. Most of the time
is spent on the 100 generations optimization with the FEM
model. Its computation resource is 210 × 100 = 21 000
cases. A single computation case involves computing the
magnetic and thermal models for a single DDM design.
The niche-radius-based filter (NSBF) and robust filter [26]
are used to get uniform sampling on the Pareto front based
on the optimization results from the different generations.
Finally, the DDMoptimization dataset is obtained. It includes
the design parameters and the corresponding optimization
objectives Tp,Ls, JD,Pc, and CDDR, such characteristic
parameters. The framework of the DDM optimization is
shown in Fig. 16.

3) SURROGATE MODELS OF CHARACTERISTIC PARAMETERS
OF THE DDM
After the muti-objectives optimization of the DDM, the
surrogate models of the characteristic parameters are built
based on the uniform sampling on the Pareto front. The
theory of GPR and simple 2D Pareto front examples were
shown in sections III-A and III-B. We expand these ideas
for the important DDM characteristic parameters to get the
5D Pareto front and corresponding surrogate models. The
framework of the surrogate models of DDM characteristic
parameters is shown in Fig. 17.

The peak torque Tp is selected as the output of the surrogate
model, and the remaining four characteristic parameters are
set as the inputs of the surrogate model in

Tp = GPRTp (Ls, JD,Pc,CDDR). (18)

FIGURE 17. The construction of the surrogate models for the
characteristic parameters. The three surrogate models are built to predict
the peak torque Tp, the continuous torque Tc, and the phase
resistance Rs.

The phase resistanceRs and continuous torque Tc surrogate
models are also built for system-level optimization. Firstly,
we compute the corresponding variables Rs and Tc for
the optimal designs uniformly spread on the Pareto front.
We apply thermal corrections to these variables, just as we do
for Pc and Tp. Finally, we use the five important characteristic
parameters as inputs and set Rs and Tc as outputs to build
surrogate models using GPR:

Tc = GPRTc (Tp,Ls, JD,Pc,CDDR) (19)

Rs = GPRRs (Tp,Ls, JD,Pc,CDDR). (20)

The prediction error distributions of the surrogate models
for the variables Tp,Rs, and Tc are shown in Fig. 18.
The precision of the Tp and Tc surrogate models is high. The
average errors are about 0.8% and 0.4%, respectively. The
precision of the Rs surrogate model is lower. Its average error
of it is about 3.5%. Nevertheless, it does not play a critical
role in system-level optimization.

B. SYSTEM-LEVEL OPTIMIZATION FOR HDPDMS
After the completion of surrogate models for the DDM
characteristic parameters, the optimization of HDPDMS
at the system level is performed. The framework of the
system-level optimization for the HDPDMS is shown in
Fig. 19.

1) HDPDMS OPTIMIZATION PROCESS
The optimization variables of the HDPDMS include syn-
chronous phase inductance Ls, the inertia of DDM JD,
copper loss Pc for a winding at 75℃, the volume of the
DDM CDDR, the jerk time ratio α, the constant speed time
ratio β, and the winding turns of the DDM Nw. Using the
surrogate models of DDM characteristic parameters, the peak
torque Tp, continuous torque Tc, and phase resistance Rs are
computed in less than 1 ms.
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FIGURE 18. Precision of the surrogate models of the peak torque Tp,
continuous torque Tc and phase resistance Rs. The precision of the Tp
and Tc surrogate models is high. The average errors are about 0.8% and
0.4%, respectively. The precision of the Rs surrogate model is lower. Its
average error of it is about 3.5%. Nevertheless, it does not play an
important role in system-level optimization.

To begin, we use the dynamics model of HDPDMS to
calculate both the current and voltage curves. We derive
the continuous current from the current curve to determine
the loss. Next, by assuming a constant thermal resistance,
we determine the winding temperature and refine the
loss through multiple iterations. Ultimately, the HDPDMS
is optimized by considering both its cost indicator and
reliability indicator defined in (3) and (4). The price of the
different drivers is shown in Table 3. The electricity cost
of the motion system Coperation is based on the following
assumption. The motion system operates 20 hours a day and
works for three years with 1 RMB / kWh.

The current and voltage margins of the driver are set as
constraints to keep the feasibility of the motion system. The
maximum winding temperature is set to 100℃ to keep the
safety of the DDM. A winding lower temperature of 50℃ is
also set as the constraint to reduce the search space. This also
ensures that the assumption that equivalent thermal resistance
is constant when winding is from 50℃ to 100℃ can be
used. The 95% prediction interval of the Tp surrogate model
should be less than the threshold defined in section III-B.

FIGURE 19. The optimization variables in the HDPDMS optimization
include the DDM characteristic parameters, motion curve design
parameters, and winding turns. Eight independent optimization processes
are computed in parallel to decrease the effect of the randomness of the
evolutionary optimization algorithm NSGA-II. If the optimization results
do not satisfy the design requirements, the next optimization inherits the
optimal results and performs further optimization searches.

We established it as a constraint to ensure the existence of
the DDM with these characteristic parameters in reality.

The NSGA-II [30] is selected as the optimization algo-
rithm. The population of every generation is 30, and the
number of generations is 150. Eight independent optimization
processes are computed parallelly to decrease the effect of
the randomness of the evolutionary optimization algorithm.
Then, all the datasets from the optimization processes are
combined and sampled uniformly on the Pareto front. Finally,
the motion designer can check the optimization results. If the
results are unsatisfactory, the next optimization process can
use these optimal results as the initial design to do a further
optimization search until the optimization results satisfy the
requirement.

2) HDPDMS OPTIMIZATION PARETO FRONTS
With the assistance of the surrogate models for the character-
istic parameters of the DDM, the system-level optimization
of the HDPDMS can be done quickly. Approximately five
iterations of the optimization process above are required to
obtain the convergence Pareto front for a particular motion
task and driver within 15 minutes. All computation was made
on an AMD 3700X with eight cores which runs at 4.2 GHz.
Three different motion tasks and three different drivers are
selected to do the optimization. The three motion tasks and
three drivers are shown in Tables 3 and 4. Motion task 1 is
typical for the HDPDMS commonly used in industry. Motion
task 2 is a relatively quick motion with a light load and long
dwell time. Motion task 3 is a relatively low motion with a
heavy load and short dwell time.

The Pareto fronts of the different motion tasks with the
different drivers are shown in Figs 20, 22, and 21.
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TABLE 4. Motion tasks.

FIGURE 20. The optimization results for motion task 1 are presented for
three drivers, where the driver with a higher volume is associated with a
greater reliability margin and cost. Driver A provides the lowest cost
indicator for reliability margins of less than 10%. Driver B offers the best
design solutions for reliability margins between 10% and 38%. However,
if the reliability margin needs to be greater than 40%, driver C is the
preferred option.

FIGURE 21. The optimization results for motion task 2 using three
different drivers show that the volume of drivers significantly impacts the
performance of relatively quick motions. Notably, the Pareto front varies
across the different driver types. Driver A is the recommended option for
instances where the reliability margin is less than 12%. In cases where
the reliability margin falls between 12% to 35%, driver B yields the best
candidate designs. However, driver C should be selected for situations
where a reliability margin of more than 40% is required.

Based on the results of the above experiments, we find
that the proposed new system optimization gets good Pareto
fronts for different motion tasks and drivers. Every motion
task needed approximately 15 minutes to get the optimization
Pareto front. The motion system designers can select the
desired HDPDMS design from the Pareto front based on their
expert experience.

C. DESIGN PARAMETERS RECOVERY
In the system-level optimization, a desired HDPDMS design
is selected in the Pareto front. The design parameters of the
DDM are needed to recover for this HDPDMS design. In this

FIGURE 22. The motion task 3 optimization results for three different
drivers demonstrate that the relatively low motion is not sensitive to the
volume of drivers. All the drivers can provide suitable designs when the
reliability margin is within the range of 5% to 40%. However, driver A is
preferred for achieving the smallest cost indicator designs.

step, we recover the design parameters of the DDM with the
assistance of the DDM optimization datasets and Bayesian
optimization. The framework of the recovery process is
shown in Figs 23 and 24.

1) RECOVERY OF THE DESIGN PARAMETERS WITH THE
ASSISTANCE OF THE DDM OPTIMIZATION DATASET
The selected DDM is called the expected design. The
DDM characteristic parameters in the expected design can
be set as a vector Vexpected = [Tp,Ls, JDDM,Pc,CDDR].
The characteristic parameters of every DDM in the DDM
optimization dataset can be set as a vector V n

DDM, where n
is the serial number of DDM in the dataset.

The distance d = |
Vexpected−V nDDM

Vexpected
| can be computed. Then,

the DDM with the minimum d can be found, called the
recovered design. This recovery method is called the ’closest
point’. Finally, the whole motion system can be validated
with the recovered design parameters to get the corresponding
cost Crecovered and reliability indicator Rrecovered. In this step,
we do not use the constant equivalent thermal resistance
assumption. The validation is performed based on the
design parameters of the recovered design by the iterative
computation with magnetic, thermal, and motion control
dynamics models. The difference in the temperature of the
winding between this computation and the last computation
is given by 1T = |

Tw−T o
w

T o
w

|, where Tw is the temperature of
the winding and T o

w is the temperature of the winding in the
last computation. Finally, the optimization objectives of the
recovery design are output until the 1T is less than 0.1%.
The optimization objectives of the expected design

and recovery design are set as a vector Oexpected =

[Cexpected,Rexpected] and Orecovered = [Crecovered,Rrecovered].
If the distance 1D = |

Oexpected−Orecovered
Oexpected

| is less than 0.02,
we output this recovered design. Otherwise, we use Bayesian
optimization to do the refined optimization.

2) REFINE-OPTIMIZATION WITH BAYESIAN OPTIMIZATION
Based on the recovered design from the above process,
we can do the refined optimization to reduce the distance1D.
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FIGURE 23. Design parameters recovery framework. To recover the design
parameters, we use the DDM optimization dataset to identify the DDM
with the characteristic parameters closest to the target design. The
validity of the recovered design parameters is assessed through iterative
computations involving magnetic, thermal, and motion control dynamics
models. If the distance between the recovered and target design
parameters, denoted as 1D, is less than 2%, the recovered design
parameters are considered acceptable and output. However, if 1D
exceeds 2%, we use Bayesian optimization to refine the recovered design
parameters.

FIGURE 24. To train the local surrogate model of the distance 1D, we use
the closest designs with the expected designs from the DDM optimization
as the training dataset. The expected improvement infill criteria [12] is
employed in combination with the genetic algorithm (GA) [31] to
determine new samples and update the surrogate model iteratively until
the maximum number of samples is reached.

The Bayesian optimization is selected to do the refine
optimization.

FIGURE 25. Comparison between the original and recovered Pareto
fronts. In the figure, the expected designs are denoted by star points,
while the designs found using the closest points method with the DDM
optimization dataset are marked by square points. The round points
represent the designs obtained through Bayesian optimization. All of
these recovered designs are close to the expected designs, but those
obtained from Bayesian optimization are the closest.

First, we get the closest 30 designs by sorting the distance d
in the DDM optimization dataset. The distance 1D of these
30 designs is computed. The GPR is selected to build the
surrogate model between the design parameters of DDM and
distance 1D. The expected improvement infill criteria [12]
are used to determine the next sampling. The genetic
algorithm (GA) [31] is selected, and 100 generations with
eight populations are used to optimize to get the maximum
expected improvement. Then, the new sampling is added
to the training dataset, and update the surrogate model of
distance 1D until the number of the new sampling reaches
30.We recovered the design parameters of DDMwithin about
15 minutes.

3) RECOVERED DESIGNS RESULTS
As an example, the Pareto front of motion task 1 and driver
C are selected to recover the design parameters. We sampled
eight points on the original Pareto front and recovered their
design parameters. The result is shown in Fig. 25. From the
figure, we can find that the Pareto front with the closest point
method is close to the original Pareto front. All of the Pareto
front with Bayesian optimization are better than the Pareto
front with the closest point method and are closer to the
original Pareto front.

V. COMPARISON WITH TRADITIONAL METHODS
A. COMPARISON WITH THE TRADITIONAL OPTIMIZATION
FRAMEWORK
A comparison result between the new and traditional opti-
mization framework is performed. The traditional HDPDMS
optimization framework is shown in Fig. 26.

The traditional optimization framework used the same
range of design parameters as those of the new framework,
as seen in Table 1. The optimization objectives and con-
straints were also the same as those outlined in section IV.
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FIGURE 26. The traditional HDPDMS optimization framework. There is
only one level in the traditional framework. All the design parameters
and models are combined into one optimization. The optimization layer
bears the entire burden of computation.

FIGURE 27. Comparison of optimization results between the new and
traditional frameworks. The new optimization framework demonstrates
better convergence and a wider coverage range compared to the
traditional framework, despite utilizing similar computational resources.

Motion task A was selected, and three optimizations were
performed using different drivers. For a fair comparison,
the traditional optimization framework used the same com-
putation resource of 240 generations and 30 populations
with the optimization algorithm NSGA-II. This computation
resource was equivalent to 21 600 cases (calculated as 240×

30 × 3), comparable to the 21 000 cases needed by the new
optimization framework to obtain the DDM optimization
dataset. The optimization results of the new and traditional
optimization frameworks are depicted in Fig. 27. The new
optimization framework showed better convergence and a
wider coverage range compared to the traditional framework.

The new optimization framework needs 72 hours to collect
the DDM optimization dataset. After completing the opti-
mization dataset, the new optimization framework generates
the Pareto front for one driver type in just 15 minutes
and takes an additional 15 minutes to recover the design
parameters of the desired DDM. For a single optimization

task, which involves optimizing three types of drivers and
recovering design parameters, the total time is included. The
HDPDMS optimization is completed within 1 hour using
the new framework. In contrast, the traditional optimization
framework takes approximately 72 hours to accomplish
the same optimization task. For a single optimization task,
the new optimization framework can save about 98.6%
computation time. The benefits of the new optimization
framework become increasingly apparent as the number of
motion tasks increases. This will be a powerful tool for the
initial design phase requiring numerous adjustments to the
motion control system.

Compared to the traditional optimization framework,
which combines all the design parameters, models, and
constraints to do the optimization, the comprehensive new
optimization framework shown in Fig. 28 allows for a
separate optimization process at the component level and
system level. This is made possible by the new sur-
rogate model of characteristic parameters that decouples
the component-level and system-level optimizations. In the
component-level optimization, the focus is solely on opti-
mizing DDM to achieve better characteristic parameters
without considering the influence of the driver and motion
profile. In system-level optimization, the surrogate models
provide a physical correlation of the DDM characteristic
parameters, enabling the use of characteristic parameters for
HDPDMS optimization directly. Compared to the traditional
framework, the new framework uses fewer design parameters,
models, and constraints in each optimization level, reducing
the optimization burden and producing better optimization
results, as shown in Fig. 27.

B. COMPARISON WITH THE TRADITIONAL SURROGATE
MODEL
If the traditional surrogate model is used for the DDM,
the inputs are the design parameters of DDM, and the
outputs are characteristic parameters which include Tp,
Tc, Ls, and demagnetization. The four surrogate models
need to be built, respectively. The dimension of the design
parameters of DDM is nine. If the full factorial sampling
with the six samples on every dimension is performed,
the total size of the training dataset is 69 = 10 077 696
cases. The required number of samples significantly exceeds
the computational resource of a new surrogate model,
which is only about 21 000 cases. The new optimization
framework saves 99.8% of computation resources. The
SPMSM represents the simplest topology among PMmotors.
More complex topologies of PM motors require additional
design parameters, exacerbating the computational resource
issue.

The new surrogate model is a new form of dimension
reduction strategy. However, unlike traditional methods
outlined in Section I, which directly reduce the number
of design parameters, the new surrogate model achieves
dimension reduction by transforming the search space from
the design parameters space to the characteristic parameters
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FIGURE 28. The complete new HDPDMS optimization framework. The new framework allows for more efficient
optimization at both component and system levels, thanks to a decoupled surrogate model of DDM characteristic
parameters. This model enables independent optimization of the DDM at the component level, without considering the
influence of the driver and motion profile. At the system level, the model provides physical correlations between the DDM
characteristic parameters, allowing for direct use of these parameters in HDPDMS optimization. By reducing the number of
design parameters, models, and constraints in each level of optimization, the new framework can produce better results
while reducing the optimization burden.

space through the optimization of DDM. Specifically, the
search space is reduced from nine design parameters to five
characteristic parameters in our case.

Traditional dimension reduction strategies based on design
parameters depend on the motor topology. When the motor
topology changes, a new dimension reduction strategy
must be developed to select different design parameters.
In contrast, our new dimension reduction strategy is tailored
to a specific application, such as HDPDMS. As long as the
application remains unchanged, the selection of the important
characteristic parameters remains consistent, regardless of
the motor topology. A similar optimization process can be
performed for different motor topologies to optimize the
HDPDMS, even if the design parameters vary. Thus, this
method can be extended to other common motor topologies,
such as using different rotor topologies (e.g., Halbach array
and spoke array) or using various stator topologies, including
different slot shapes and tooth tips.

When viewed from the perspective of the design parameter
space, the traditional surrogate model allocates computa-
tional resources uniformly across the entire design parameter
space. As a result, a considerable amount of computation
resources are used on many redundant and unnecessary
designs. Traditional dimensional reduction strategies involve
replacing the complete design parameter space with a smaller

subspace of design parameters that contain the most relevant
information. However, the computational resources are still
allocated uniformly across the entire subspace. The new
optimization framework employs optimization techniques to
concentrate computational resources on the most relevant
and useful regions of the design parameter space for better
characteristic parameters, thereby minimizing wastage and
conserving computation resources.

Based on the above analysis, the Performance comparison
of the proposed approach and traditional optimization
framework and surrogate model is shown in the Table 5.

VI. PROTOTYPE AND EXPERIMENT
We designed three DDMs corresponding to three different
motion tasks, with motion tasks 1 and 3 using driver C
and motion task 2 using driver B. We selected the designs
that met the reliability indicators of -20% as shown in
Figs 20, 22, and 21. Light loads and quick motion for motion
task 2 called for a long and slender motor, while heavy loads
and slow motion for motion task 3 required a short and
pancake motor. The 3D view of these three frameless motors
is depicted in Fig. 29.

To verify the effectiveness of our new optimization
framework and the precision of the models used in the
optimization process, we constructed a prototype for motion
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TABLE 5. Performance comparison of the proposed approach, the traditional optimization framework, and the traditional surrogate model.

FIGURE 29. From left to right, the frameless motors correspond to three
different motion tasks and vary in size, particularly for the motors in
motion tasks 2 and 3. The need for light loads and quick motion results in
a long and slender motor for motion task 2, while the need for heavy
loads and slow motion leads to a short and stout motor for motion task
3. All the motors were generated using the same DDM optimization
dataset and surrogate model through the optimization process described
in section IV.

task 1. The prototype, load, and experiment platform can be
viewed in Fig. 30. To complete the motion task, we used
driver C to drive the DDM with the load. We also tested
the temperature of the winding using a PT-100 fixed to the
winding of the DDM, and the temperature of the housing
using a thermocouple. The optimal design parameters of
the prototype are presented in Table 6. Additionally, we
established the motion profile parameters for completing
motion task 1, as listed in Table 7. Figure 31 illustrates
the motion process, where each position involves a rotation
angle of 18◦ and a motion time of 20 ms. Following the
motion, a dwell time of 40 ms is allocated for chip sorting
or inspection.

Figure 32 displays the current loop regulation with an
update frequency of 20 kHz. We adjusted the bandwidth
of the current loop to approximately 680 Hz with a 63◦

phase margin. Figure 33 shows the position and velocity loop
regulation with an update frequency of 2 kHz. We adjusted
the bandwidth of the position loop to approximately 80 Hz
with a 40◦ phase margin.

TABLE 6. Optimal design parameters of the HDPDMS for motion task 1.

TABLE 7. Motion profile parameters for motion task 1.

Figure 34 presents the velocity and current curves during
the motion time. From the figure, we can observe that
the current tracks the current command, while the velocity
feedback experiences a delay of 0.5 ms due to the 2 kHz
update frequency of the velocity loop. The maximum current
observed is approximately 25.2 A, which still has a 16%
peak current margin with respect to the driver’s 30 A peak
current capacity. Similarly, the continuous current observed
is approximately 11.6 A, which still has a 22% continuous
current margin with respect to the driver’s 15 A continuous
current capacity.
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FIGURE 30. Prototype and experiment platform.

FIGURE 31. Motion process. Each position involves a rotation angle of
18◦ and a motion time of 20 ms, followed by a 40 ms dwell time allocated
for chip sorting or testing.

FIGURE 32. The current loop’s step response and corresponding
open-loop Bode plot.

FIGURE 33. Open loop Bode plot of the position loop.

Figure 35 displays the results of the thermal test. During
the test, the ambient temperature was 20℃, and the winding
temperature rose approximately 51℃. We assumed that the
temperature rise of the winding would be the same at an
ambient temperature of 25℃. The temperature of the winding
would be 76℃, which is within the 24% margin of the upper
limit of 100℃. This temperature was lower than our predicted

FIGURE 34. Velocity and current curve during the motion time. The
current and velocity can track the current command and reference
velocity, while the velocity feedback experiences a delay of 0.5 ms due to
the 2 kHz update frequency of the velocity loop. The whole motion time is
20 ms which satisfies the motion task 1 requirement.

FIGURE 35. Temperatures rising of winding and housing. The test
ambient temperature was about 20℃, and the temperature rise of the
winding was about 51℃, which was smaller than our prediction (55℃)
due to the heat dissipation from the mechanical load part, which is not
taken into account in our thermal model.

FIGURE 36. Prototype test result and Pareto front of new and traditional
optimization framework.

value of 80℃ due to our thermal model not accounting for
heat dissipation from the mechanical load part in Fig. 30,
which increased the heat dissipation surface and lowered
the winding temperature. This error was acceptable due to
the simplification of the thermal model. The prototype was
able to perform well for motion task 1, as shown by the
prototype test results on the Pareto front in Fig. 36. Due to
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manufacturing and measurement limitations, the prototype’s
loss is greater than that of the theoretical model, resulting
in slightly higher cost indicators. The prototype’s reliability
indicator was 16% due to the higher peak current, which
is lower than the optimal design reliability indicator of
20% from the new optimization framework but still higher
than the reliability indicator of 12% obtained from the
traditional optimization framework. These results validate the
effectiveness of the new optimization framework.

VII. CONCLUSION
This article presents a novel optimization framework for
HDPDMS using surrogate models of characteristic param-
eters, which allows for quick and precise optimization
of the entire system with limited computation resources.
Unlike traditional optimization frameworks that combine
all design parameters, models, and constraints, this new
framework enables a separate optimization process at both
the component level and system level through the use of
surrogate models of characteristic parameters. During each
optimization level, the component-level and system-level
optimizations employ fewer design parameters, models, and
constraints, effectively reducing the optimization burden
and yielding better optimization results. Once the surrogate
models are built, the framework could find the desired
HDPDMS design for a specific motion task in just 1 hour,
saving about 98.6% computation time compared to traditional
methods. This tool is particularly useful for the initial design
phase, which requires numerous adjustments to the motion
control system.

Moreover, the new surrogate model uses optimization
to centralize computation resources on the most useful
search space, resulting in a 99.8% reduction in computation
resources required to build the training dataset, compared
to the traditional surrogate model, whose inputs are design
parameters with full factorial sampling in our case. This new
approach can be seen as a dimension reduction strategy that
transfers the search space from the design parameters to the
characteristic parameters of the components, as opposed to
traditional dimension reduction strategies that only reduce the
number of design parameters.

The new optimization framework provided is versatile.
Firstly, it is not limited to any particular motor topology,
making it unnecessary to conduct a sensitivity analysis
and manually select important design parameters of the
motor as required by traditional surrogate models. This
means the method can be easily applied to different motor
topologies for the HDPDMS. Secondly, the framework can
absorb various optimization strategies to further reduce
computation resources in both component-level and system-
level optimizations. For instance, a pre-optimization using
a quick analytical model can be applied during component-
level optimization. Surrogate models can be substituted
with alternative regression methods if those methods can
offer sufficient prediction accuracy and can determine the
boundaries of the input space. Similarly, the recovery method

for design parameters, such as the inverse surrogate model
[32], [33], can also be replaced. This method establishes
a mapping between the characteristic parameters and the
design parameters. In future research, we will investigate the
impact of various methods within this innovative optimiza-
tion framework.
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