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ABSTRACT Gastric cancer can be classified into different subtypes according to their genetic expression.
Microsatellite instability (MSI) is one of these subtypes and an important clinical marker for prognosis
and consideration for immunotherapy. Since genetic testing is relatively expensive and laborious, this
study tackles the challenge of using deep neural networks (DNNs) to identify MSI based on analyzing
histomorphologic features of gastric whole-slide images (WSIs). A two-stage patch-wise framework was
proposed, which first differentiates the tumor regions from normal, then predicts MSI status from the
tumorous patches. The proposed deep learning architecture enhances the residual attention network with
non-local modules and visual context fusion modules, thereby allowing both local fine-grained details and
coarse long-range dependencies to be captured. Image post-processing procedures were also proposed to
better align the region segmentation with pathologist annotations. The model was applied to a three-way
classification task, namely normal tissue, microsatellite stable (MSS), and MSI, using a private dataset
gathered by Chang Gung Memorial Hospital and achieved 91.95% slide-wise accuracy. We also studied
the feasibility of transfer learning by fine tuning on the TCGA-STAD public dataset, where we attained a
high accuracy of 96.53% and an AUC of 0.99, outperforming previous literature.

INDEX TERMS Image post-processing, microsatellite instability, non-local neural networks, residual
attention network, whole slide image.

I. INTRODUCTION
Gastric cancer is the fifth most common type of cancer and
the third leading cause of cancer-related deaths worldwide
according to Global Cancer Observatory (GLOBOCAN)
2020 estimates [1]. There were 1.09 million new cases
(5.6% of all cancers) and 0.77 million new cancer-related
deaths (7.7% of all cancers) due to gastric cancer in
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2020. Gastric cancer exhibits significant heterogeneity in
histological appearance and molecular signatures [2], [3].
The Cancer Genome Atlas (TCGA) classifies gastric cancer
into four molecular subtypes: Epstein-Barr virus (EBV)-
positive, microsatellite instability (MSI), genomically stable
(GS), and chromosomal instability (CIN) [4]. The Asian
Cancer Research Group (ACRG) uses expression profiling
to divide gastric cancers into four subtypes: MSI, MSS
tumor protein p53-inactive (MSS/TP53-), MSS tumor protein
p53-active (MSS/TP53+), and MSS epithelial-mesenchymal
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transition (MSS/EMT) [5]. Microsatellites, also known as
short tandem repeats (STRs) or short sequence repeats
(SSRs), are strings of DNA motifs (1-10 base pairs) that
are often repeated tens or hundreds of times. Microsatellite
instability (MSI) is a condition in which these repeating
sequences in the DNA of cells have lengths different from
normal and are known to be caused by impaired mismatch
repair (MMR) proteins, namely, MLH1, MSH2, MSH6,
and PMS2. During the DNA replication and repair process,
DNA polymerase slippage occurs such that DNA motifs are
repeatedly inserted or deleted, leading to varying lengths in
the microsatellite [6]. These genomic mutations, known as
replication errors (RERs), reflect genetic instability and are
an important pathway of carcinogenesis [7]. Nowadays, MSI
has become an important clinical biomarker for the prognosis
of cancer patients and their response to immunotherapy.
Colorectal and gastric cancer patients with positive MSI
condition have been shown in literature to be suitable for
immune checkpoint inhibitors [8], [9].

However, the detection of MSI requires expensive and
complex genetic testing or alternative methods such as
immunohistochemistry ofMMRproteins. Interestingly,MSI-
associated colorectal or gastric cancer may exhibit cer-
tain distinctive medullary-like or solid histomorphologic
features, including poor differentiation, expansive growth
patterns, and abundant inflammatory stroma [10], [11].
These unique histological appearances of MSI-associated
cancers imply the potential applicability of diagnosing MSI
directly from histological slides by pathologists or artificial
intelligence.

In 1966, Prewitt et al. [12] proposed methods for measur-
ing cells from histological images and methods for object
detection, feature extraction, and classification functions,
which are still used in modern times. In the early days,
cytology and pathological histology could only be observed
in narrow fields of view using conventional microscopes, and
collection of these image slices was a time-consuming and
laborious task [13].With the advent of digital pathology scan-
ners, tissue slices can be digitized, paving the way for deep
learning research using digital pathology slices [14], [15].

However, the analysis of these digital whole-slide images
(WSIs) presents enormous challenges. As WSIs are pyramid
images with extremely high resolution with tens of billions
of pixels, they cannot be supplied directly to models for
training because of hardware limitations. The most common
solution is to cut WSIs into many small patches to meet
hardware limitations. However, when WSIs are broken down
into patches, the spatial relations between the features within
different patches of the same WSI are lost.

To address this problem, researchers such as Li et al. [16]
employed dilated convolutions of different receptive
fields to retain as much spatial information as possible.
Kosaraju et al. [17] combined features extracted from
two different WSI resolutions to obtain both local and
global information. Zhu et al. [18] proposed feature balanced
module which combined channel attention and spatial

attention modules to extract information from the different
dimensions. In this study, we propose using overlapping
training patches and non-local network module to retain
features between patches.

Specific to the task of identifying MSI status in
gastric tissue slices, various model architectures have been
explored in the literature. For example, Kather et al. [19] and
Su et al. [20] employed ResNet18, Muti et al. [21] employed
ShuffleNet, and Hinata et al. [22] compared VGG16,
VGG19, ResNet50, and EfficientNetB0 and found that
VGG16 gave the best result. Saldanha et al. [23] employed
clustering-guided contrastive learning (RetCCL) [24] as the
model architecture and further explored distributed learning
in the form of swarm learning to merge models trained
on decentralized datasets. These researches had employed
different datasets, such as TCGA-STAD [4], BERN [25],
LEEDS [26], and TUM [27], with TCGA-STAD being the
most common. The results were mostly presented in terms of
area under the curve of the receiver operating characteristic
curve (AUC), achieving values ranging from 0.80 to 0.87.

To further improve the classification result for MSI
detection in gastric tissue slices, we proposed a two-stage
classification framework based on residual attention network
enhanced with non-local network and visual context fusion
modules to capture both fine-grained details and coarse
spatial information within and between patches. The first
stage differentiates tumorous patches from normal patches.
Then, the tumorous patches are fed to stage two network
to identify their MSS or MSI status. Image post-processing
procedures are also proposed to better align predictions
with pathologist annotations. Various experiments using a
private dataset gathered by Chang Gung Memorial Hospital
(CGMH) and TCGA-STAD public dataset were designed to
test the efficacy of the proposed framework.

The contributions of this study can be summarized as
follows:

1. We proposed a two-stageMSI classification framework
employing residual attention network, non-local net-
work, and visual context fusion modules to capture
information across patches. The framework achieved
96.53% overall accuracy and an AUC of 0.99 for
MSI detection on gastric tissue slices using the
public TCGA-STAD dataset, outperforming current
literature.

2. We demonstrated that transfer learning by pretraining
using our private CGMH dataset and then fine-tuning
on the public TCGA-STAD dataset improved overall
accuracy. The proposed post-processing improved
tumor localization IoU.

3. By visualizing the model’s attentive regions using
Score-CAM, we showed that the regions aligned with
clinical expectations of how MSI status could be
identified.

The rest of this paper is organized as follows: In Section II,
we explain the methodology of the proposed framework.
Section III details the experimental procedure and discusses

VOLUME 11, 2023 60375



S.-N. Yu et al.: Prediction of MSI From Gastric Histological Images

FIGURE 1. MSI detection framework.

FIGURE 2. Patch extraction procedure.

the results. Comparisons with other relevant studies are
presented in Section IV, and Section V concludes the paper.

II. METHODOLOGY
The proposed MSI detection framework includes four
phases: patch extraction, image pre-processing, deep learn-
ing, and image post-processing. The deep learning and
post-processing phases were further divided into two stages:
tumor identification and microsatellite status prediction,
as shown in Fig. 1.

In stage 1 of the deep learning phase, model 1 was used
to classify the patches as normal or tumorous tissues. These
classified patches were then combined into theWSIs for post-
processing. A threshold was set to determine whether the
WSI should be considered healthy or tumorous. The tumor
patches from tumorousWSIswere then fed into stage 2model
for binary classification into MSS or MSI. The classified
patches were again combined into WSIs for post-processing
and finally output as MSI detection results.

We describe in detail each step of the framework in the
following subsections.

A. PATCH EXTRACTION
TheWSIs used in this study had resolutions of approximately
200k × 100k pixels, with sizes ranging from 2 to 5 GB.
Limited by hardware capacity, it was not possible to directly
feed these original-resolution WSIs into the deep learning
network for training. Therefore, we downsampled the ×10
magnification WSIs by a factor of four and then cut the
resulting image into patches of 512 × 512 pixels in a sliding
window fashion. For the training set, these patches were
extracted with a 50% overlap. This not only increases the
number of samples available for training but also retains more
spatial information between different patches [28]. As for the
test set, non-overlapping patches were extracted so that the
patches can be pieced back into the original whole slides to
evaluate slide-wise metrics.

Next, we employ traditional morphological closing oper-
ation and Laplacian edge detector [29] to eliminate back-
ground and blurry patches, as outlined in Fig. 2. The closing
operation involves expansion then erosion to fill the smaller
voids and connect narrow gaps often seen in adipose tissue
and mucus. These tissues appear sparse on the whole slide
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FIGURE 3. (a) Sparse tissue, (b) resulting mask after closing operation.

FIGURE 4. (a) Blurry patches found on the edges of glass slides. (b) The
patch on the top is normal, whereas the patch below is affected by blurry
artifacts. The same patches after the Laplacian edge detection are shown
on the right. The affected patches exhibited a lower pixel variance.

and may be mistaken for a background, as shown in Fig. 3(a).
The closing operation enhanced their presence, resulting in
the masking images shown in Fig. 3(b). Patches with ratio of
tissue to patch area lower than 0.2 were treated as background
and discarded.

Some patchesmay also be affected by the edges of the glass
slides, resulting in a blurry line that laid across the images,
as seen in Fig. 4(a). To prevent these flawed patches from
affecting themodel, we employed the Laplacian edge detector
to the images, as shown in Fig. 4(c). The blurry regions of
the patches have much fewer edges detected and thus have a
lower variance in the pixel value overall. We set the variance
threshold to 500 and patches with variances lower than the
threshold were considered blurry and discarded.

B. IMAGE PREPROCESSING
In traditional pathological examinations, tissues removed
from the human body are chemically stained to identify
the different parts of the tissues. In this study, samples
were stained with hematoxylin and eosin (H&E) [30].
Hematoxylin stains basophilic structures (e.g., nuclei) blue,
and eosin stains eosinophilic structures (e.g., intracellular

FIGURE 5. (a) The original images, (b) color-normalized images.

and extracellular proteins, and connective tissue) to different
shades of pink [31]. However, owing to differences in
scanning instruments and dye manufacturers, the color
distribution of stained tissues can vary. Color normalization
was performed to reduce the differences, as shown in Fig. 5.

We employed the color normalization method proposed
by Macenko et al. [32], which converts RGB values in tissue
samples into optical density (OD) space. Each pixel is
assumed to be a linear combination of two staining vectors
corresponding to the two dye colors. The staining vectors for
each sample image can then be determined by finding the
edges of the pixel distribution in the OD space.

C. DEEP LEARNING MODEL
One difference between medical images and natural images
is that lesions in medical images often have both fine-grained
details and coarse complex structures. To extract both fine
and coarse features from the WSI patches, we proposed
a double-branched architecture which includes a residual
attention network branch that extracts fine local features
and a non-local network branch to obtain coarse structural
information across different parts of the image.

1) RESIDUAL ATTENTION NETWORK
The architecture proposed in this study is based on the
residual attention network proposed by Wang et al. [33],
which has achieved state-of-the-art results in many object
recognition benchmarks. The residual attention network
reformulated the attention mechanism in a residual and
feedforward fashion so that a very deep residual attention
network could be easily trained end-to-end. This allows for
very fine features to be learned.

The residual attention network module has two branches:
(1) a soft mask branch and (2) a trunk branch. The trunk
branch receives the input x and extracts feature output
T (x) via convolution. The soft mask branch uses a concept
similar to the encoder-decoder used in image segmentation
tasks to form top-down and bottom-up structures. In the
encoder section, multiple convolution and pooling layers
reduced the image resolution and increased the receptive
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field size, thereby extracting high-level features. These
high-level features represent the features in the sample
images that the model should pay attention to. Subsequently,
the decoder section upsamples these high-level feature maps
through deconvolution layers with bilinear interpolation to
the original image size. This is followed by two 1 × 1
convolution layers, a sigmoid activation function, and finally
outputted asM (x).
This soft mask output M (x) is combined with the output

of trunk branch T (x) in a residual fashion, where an identity
mapping is added so that feature selection by the soft mask
branch either improves the result, or is not worse than without
attention, as shown in (1).

Hi,c (x) = (1 +Mi,c (x)) · Ti,c(x) (1)

2) NON-LOCAL NEURAL NETWORKS
To further enhance the residual attention network in identify-
ing long-range dependencies, we incorporated the non-local
network proposed byWang et al. [34]. The non-local network
originates from the non-local mean filter [35], which
performs denoising by first calculating the similarity among
pixel points of the image. Pixels with a higher similarity
were assigned higher weights. Then, a weighted average of
all pixels was calculated, leading to a denoised image that
retained important sharp features.

In a conventional CNN model, convolutional layers are
used to extract important features from the input image.
However, the size of the receptive field is restricted by
the convolution-kernel size. By employing the concept of
non-local mean filter, the non-local network takes the full
input image as the receptive field and is weighted by its
similarity with the current pixel. The basic formulation is
shown in (2):

yi =
1

C(x)

∑
∀j
f
(
xi, xj

)
g

(
xj

)
(2)

where i is the current output pixel index, j is the index of all
pixels, x is input and y the output. The dimensions of x and
y are identical. f (·) calculates similarity between pixels i and
j. g(·) calculates the feature value at pixel location j. Finally,
the output is normalized by C (x) .

In [34], g(·) was defined as a linear embedding as
formulated in (3).

g
(
xj

)
= Wgxj (3)

where wg was the weight matrix to be learned through
1 × 1 convolution. The similarity function f (·) had four
different formulations: Gaussian, embedded Gaussian, dot
product, and concatenation. It was shown in the paper that
the four formulations had similar results. For our architecture,
we selected the embedded Gaussian formulation, as shown
in (4):

f
(
xi, xj

)
= eθ(xi)T φ(xj) (4)

where θ (xi), φ
(
xj

)
, and C (x) are formulated respectively as

follows:

θ (xi) = W θxi (5)

φ
(
xj

)
= Wφxj (6)

C (x) =

∑
∀j
f
(
xi, xj

)
(7)

Substituting (4) and (7) into (2), we obtain (8), which
is equivalent to calculating the softmax with respect to j,
as shown in (9).

yi =

∑
∀j

eθ(xi)T φ(xj)∑
∀j e

θ(xi)T φ(xj)
g(xj) (8)

y = Softmax(xTWT
θ Wφx)g(x) (9)

To allow (2) to be applied to any model, the author added
the concept of shortcut connection and redefined the equation
as a non-local block, as shown in (10).

zi = W zyi + xi (10)

By setting the initial value of W z to zero and let xi be the
identity mapping, this non-local block can be inserted into
any pretrained model.

Inspired by Wen et al. [36], we attached the non-local
visual context fusion module after the non-local neural
network. This module applies three different operations to
the input feature map, namely the average pooling, maximum
pooling, and bilinear interpolation. These extract different
perspectives of the input while down-sampling the feature
map to the same size as the output from the residual attention
network branch so that outputs from the two branches can be
merged.

3) FULL ARCHITECTURE
The full deep learning architecture proposed in this study is
shown in Fig. 6.

D. IMAGE POST-PROCESSING
As shown previously in Fig. 1. The MSI detection framework
comprises two stages. The first stage differentiates between
normal and tumor WSIs. The second stage differentiates
tumor patches in tumorousWSIs intoMSI orMSS categories.

After each of the two deep learning stages, we propose the
application of image post-processing. In the first stage where
we locate tumor regions we observed that, while the WSI
images were annotated by professional laboratory physicians,
to reduce the labeling time, physicians may choose to label
the overall lesion area rather than selecting one by one the
smaller individual regions at a higher magnification. As a
result, the annotated tumor region may contain some normal
tissue, as shown in Fig. 7.

Therefore, when the outputs of stage one deep learning
model were pieced back into the WSIs, the predicted tumor-
ous regions could often be scattered with bits of predicted
normal patches. To better align the output result with the
physician’s annotation, we applied the connected-component
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FIGURE 6. (a) Full deep learning architecture proposed in this study. (b) The residual block.

FIGURE 7. WSI annotation tends to be broad strokes.

labeling algorithm (CCL) [37] to eliminate the sporadic
noises. Tumor regions formed by two or fewer patches were
considered noise and removed. The holes surrounded by
tumor tissues were then filled using flood-fill algorithm
[38], [39], as shown in Fig. 8.

In the second stage of deep learning where we differentiate
between MSI and MSS, we leverage the fact that MSI and
MSS categories aremutually exclusive. An outputWSI image
may contain both MSI and MSS features. Depending on
which features are more dominant, the whole WSI image
would be considered either an MSI or MSS sample, and all
tumorous patches within that WSI image would carry the
solely MSI or MSS annotation.

Therefore, image post-processing was applied after the
second deep learning stage. After the predicted outputs were
pieced back into the WSIs, the numbers of MSI and MSS
patches within the same WSI were calculated. As shown in
Fig. 9, the pink, orange, and brown regions were predicted
normal, MSI, and MSS patches, respectively. The number
of orange MSI patches was much higher than that of brown
MSS patches. Therefore, the whole WSI sample would be
considered an MSI sample, and the MSI or MSS labels of
all tumorous patches within that sample would be changed to
MSI (orange), and vice versa.

III. EXPERIMENT AND RESULTS
The experiment was split into the tumor identification
stage and microsatellite status recognition stage. In both
stages, the results are presented in terms of patch-wise
and whole-slide metrics. In addition, ablation comparison
among four models, including baseline models ResNet18 and
residual attention network (RA), and models proposed in this
study, namely the residual attention with non-local module
(RA-NL) and the addition of post-processing (RA-NL-PP),
will be discussed.
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FIGURE 8. Stage 1 post-processing procedures.

FIGURE 9. Stage 2 post-processing procedures.

TABLE 1. Number of CGMH WSI samples.

A. DATASETS
Two datasets were employed in this study. The first was a
private dataset gathered by Chang Gung Memorial Hospital
(CGMH) and was referred to as the CGMH dataset.
The CGMH dataset was paraffin-embedded gastric biopsy
provided by CGMH and annotated by Dr. SC Huang and
KH Chen from the Department of Anatomic Pathology at
CGMH. All slice images were stained using the standard
Hematoxylin-Eosin staining technique. A total of 448 WSIs
with 193 normal, 152MSS, and 103MSI tissue sections were
included. An 8:2 training to validation ratio was used, as listed
in Table 1.

The second is the public TCGA-STAD dataset which
contains 78,189 MSI and 140,391 MSS histological image
patches extracted from the gastric WSIs of the Cancer
Genome Atlas (TCGA) [4]. All images were 224 ×

224 pixels in size and were processed using the same color
normalization method proposed by Macenko et al. [32].

The efficacy of the proposed framework was tested
primarily on the CGMH dataset. The TCGA-STAD public
dataset was used to test the efficacy of the proposed method
across datasets and to compare the performance with other
relevant studies on a fairer basis.

B. SOFTWARE ENVIRONMENT
The code was written in Python version 3.8. The deep
learning model was built using PyTorch version 1.9.1,

TABLE 2. Model hyperparameters.

TABLE 3. Tumor recognition in terms of patches.

running under CUDA version 11.4. In terms of other libraries
employed, as the WSIs were not stored in a standard
format as those in traditional images, but in an image
format known as NDPI developed by Japanese instrument
developer Hamamatsu (Shizuoka Prefecture, Japan), they
were loaded using the Openslide version 1.1.2 library. The
other hyperparameters of the model are listed in Table 2.

C. STAGE 1: TUMOR IDENTIFICATION
In this stage, we first distinguished between normal and
tumorous samples. The trainingWSI samples were regrouped
into 193 normal samples and 255 gastric cancer samples
(including both MSS and MSI samples). This is now a
two-way classification problem. Patches were extracted from
these WSI samples following the procedures described in
Section II, resulting in a total of 1,925,337 patches, with
1,387,697 normal and 537,640 tumorous patches. Eighty
percent of these patches were used to train the proposed
models, and twenty percent tested. Table 3 presents the
results.

For this two-way classification, the performance measures
were defined as follows:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

Specificity =
TN

FP+ TN
(14)

IoU =
TP

TP+ FP+ FN
(15)

where TP,TN ,FP,FN were true positive, true negative, false
positive, and false negative respectively. The tumor class was
considered positive.

60380 VOLUME 11, 2023



S.-N. Yu et al.: Prediction of MSI From Gastric Histological Images

TABLE 4. Tumor recognition in terms of slides.

FIGURE 10. Original WSI, predicted tumor region, and after
post-processing for (a) actual tumorous WSI where blue circled regions
are ground truth tumor region, and (b) normal healthy WSI. Although
post-processing can improve the alignment of prediction to physician
annotation, it does not alter the slide-wise predicted label.

TABLE 5. Miscrosatellite status recognition in terms of patches.

Without image post-processing, the residual attention
model with a non-local network module (RA-NL) outper-
formed the baseline in most patch-wise classificationmetrics,
indicating the efficacy of the proposed model. Although
the recall rate appeared inferior to that of the baseline, the
proposed post-processing was able to correct the errors and
improve all metrics by a large margin.

The strength of the proposed architecture stands out
when evaluated using whole slides instead of patches.
As shown in Table 4, the slide-wise metrics for both
RA-NL and RA-NL-PP outperformed the baseline by a large
margin.

The predicted tumor region, when compared to the ground
truth, also achieved a much higher IoU than the baseline. This
indicates that the proposed addition of the non-local module
was able to successfully capture long-range dependencies
between patches, achieving better regional prediction. The

TABLE 6. Miscrosatellite status recognition in terms of slides.

FIGURE 11. Confusion matrix of slide-wise prediction for baseline
(a) ResNet18, (b) RA model, and (c) proposed RA-NL model.

metrics before and after post-processing were similar because
when deciding whether a slide should be considered tumor-
ous, the rule was set that if a contiguous region of five or
more patches were tumorous, then the whole slide would be
considered tumorous. Because the post-processing procedure
removes noisy predictions that contain two or fewer tumorous
patches, it does not affect the predicted label of the slide.
As shown in Fig. 10, while post-processing can remove
sporadic noises in prediction, contiguous predicted tumorous
patches of more than five were still present, so normal
tissue images may still be classified as tumors. Nevertheless,
post-processing improved the IoU metric.

D. STAGE 2: MICROSATELLITE STATUS RECOGNITION
The second stage extends from the first stage, performing
another 2-way classification on the predicted tumorous
patches from stage 1 to distinguish whether the tumor-
ous patches were MSS or MSI tissues. The combined
result is a 3-way classification system consisting of two
independent stages. To train this stage 2 model, the
same patches used in the previous stage were employed,
including 324,817 MSS and 212,823 MSI patches, totaling
537,640 tumorous patches. The results are presented in
Tables 5 and 6.

The evaluation metrics were calculated in terms of
the 3-way classification, including micro accuracy, macro
precision, macro recall, and macro specificity. Each class was
in turn taken as the positive class, while all other classes
were negative. Here, micro-accuracy was calculated as the
number of samples correctly classified over the total number
of samples. The macro-average measures were defined as

VOLUME 11, 2023 60381



S.-N. Yu et al.: Prediction of MSI From Gastric Histological Images

FIGURE 12. Ground truth and predicted tumor regions before and after
post-processing for (a) MSI and (b) MSS samples.

follows, taking precision as an example:

MacroPrecision =

∑
c Precisionc

n
(16)

where c was the index of classes and n the number of classes.
The proposed RA-NL-PP model significantly outper-

formed the other models in both patch-wise and slide-wise
3-way classification. Based on the confusion matrices shown
in Fig. 11, RA-NL successfully recalled more MSI samples
than the baseline. In Fig. 12, we present some of the
prediction outputs for MSI and MSS samples.

Furthermore, we applied Score-CAM [40] to the MSI and
MSS patches for the proposed RA-NL model to highlight the
areas that contributed to the model’s prediction. The red and
blue regions in the heatmap in Fig. 13 indicate high and low
attention, respectively.

The histological patches of high attention inMSI-associated
gastric cancer shown in Fig. 13(a) align with regions of
poorly differentiated cancer cells, geographic necrosis, and
prominent lymphoplasmacytic infiltration, consistent with
the findings of previous studies [10], [11]. In contrast,
the highlighted patches in the MSS cases shown in
Fig. 13(b) represent glandular formation, little peritumoral
inflammatory reaction, infiltrating borders, and poorly
cohesive carcinoma.

IV. COMPARISON WITH RELEVANT STUDIES
To compare with previous studies, we performed four addi-
tional experiments. The experimental design and comparative
results are summarized as follows, please also refer to Table 7.

FIGURE 13. (a) Score-CAM heatmap for MSI patches, (b) Score-CAM
heatmap for MSS patches.

Experiment 1: We tested the proposed RA-NL model
using our private CGMH dataset, as detailed in Section III.
Our model achieved an overall accuracy of 81.13%, MSS
accuracy of 86.15%, and MSI accuracy of 72.94%. AUC was
0.86.
Experiment 2: We changed the validation procedure to

the same as in [19], that is, 70% training, 15% validation,
and 15% testing. The private CGMH dataset was again
employed, and the model achieved an overall accuracy of
79.32%, where the MSS and MSI accuracies were 83.75%
and 72.07 %, respectively. AUC was 0.86. Compared with
the 8:2 validation method in Experiment 1, while the AUC
score was the same, the overall accuracy decreased slightly.
Experiment 3: The TCGA-STAD dataset was employed,

similar to that used in [19]. Again, 70% training, 15%
validation, and 15% testing were used. Our RA-NL model
achieved an overall accuracy of 95.86%, with an MSS
accuracy of 96.38% and an MSI accuracy of 94.92%. AUC
was 0.99. Compared with previous literature, ours was much
higher.
Experiment 4: Transfer learning was applied using the

same dataset and procedure as in Experiment 3. The model
was first pretrained using our private dataset and then
fine-tuned on the TCGA-STAD dataset. The overall accuracy
achieved was 96.53%, where the MSS and MSI accuracies
were 97.09% and 95.52 %, respectively. AUC was 0.99.
Compared with Experiment 3, the application of transfer
learning improved the overall performance of the model.

The results of the four experiments and other relevant
studies are summarized in Table 7 for comparison. The
comparative results show that the proposed model applied
to gastric histopathology images for distinguishing MSI
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TABLE 7. Comparison with relevant studies.

and MSS statuses is effective. Transfer learning can further
improve performance.

V. CONCLUSION AND FUTURE WORK
Digital pathological slices could not be fed directly into
an ordinary neural network for training because of their
high resolution; therefore, patches were extracted from the
WSIs. However, this also destroys the spatial relationship
between different parts of the same WSI, and the CNN
model can only identify the local features present in each
patch. In this study, we address this issue by extracting
overlapping training patches and combining local residual
attention model with non-local modules to obtain better
spatial information. Post-processing was also proposed to
eliminate noisy predictions that could have been caused by
bits of normal tissue present inside the annotated tumor
region.

A two-stage classification framework was proposed.
Employing the CGMH private dataset, the first stage
classified WSI samples as normal or tumorous, achieving
a high slide-wise overall accuracy of 94.25%, precision of
90.74%, recall of 100%, and specificity of 86.84%. The
proposed post-processing improved tumor localization IoU

from 0.7617 to 0.8005. The model performed well for
both tumor identification and segmentation. The second
stage further classified the tumorous patches into MSI
or MSS, achieving a 91.95% slide-wise overall accuracy.
Using transfer learning, we fine-tuned the model further on
the public TCGA-STAD dataset, achieving 96.53% overall
accuracy and an AUC of 0.99 for MSI detection on gastric
tissue slices, outperforming current literature.

This study is only the beginning. Owing to hardware
limitations, we only employed ×10 resolution slices, while
×40 resolution slices were available. If patches could
be extracted from these much higher resolution slices,
or information from both high- and low-resolution slices
could be considered simultaneously, we believe that the
model could be further improved.

In addition, in this study, the two stages employed the
same architecture and same WSI samples for comparison
with other relevant works, but this need not be the case.
Different models and sample resolutions can be employed for
these two stages. For example, in the first stage, where normal
and tumorous samples are classified, a simpler model using
lower-resolution samples may suffice to speed up the training
and inference time.
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