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ABSTRACT The design of renewable-based and collective energy systems requires consumption data with
fine temporal and spatial resolution. Despite the increasing deployment of smart meters, obtaining such data
directly from measurements can still be challenging, particularly when attempting to gather historical data
over a reasonable period formany end users. As a result, there is a need formodels to simulate or predict these
consumption data (e.g., hourly load profiles). Typically, these models rely on numerous specific and detailed
observations, such as load type, household size for residential customers, or operating hours for commercial
ones. However, gathering this level of detail becomes increasingly difficult as the number and diversity of
end users increase. Therefore, this paper proposes a data-driven approach to predict hourly load profiles of
heterogeneous end users using only their monthly time-of-use electricity bills as inputs. We create a training
set using a limited number of hourly measurements from diverse categories of end users and, differently
from other approaches aimed at classifying the end users, we develop a regression model to map monthly
electricity bills to typical load profiles. Experimental results using one year of data from various end-user
categories demonstrate an average normalized mean absolute error of approximately 26% for instantaneous
consumption and less than 4% for time-of-use values. Comparative analysis with standard load profiles and
a two-step data-driven approach based on classification reveals that our proposed method outperforms the
others in terms of prediction accuracy and statistical metrics.

INDEX TERMS Energy consumption, electricity demand, load modeling, data-driven modeling, nearest
neighbor methods.

I. INTRODUCTION
The decarbonization of electricity will play a relevant role
in the future, worldwide energy transition to transform
the electricity grid into less carbon-intense or, potentially,
carbon-free systems [1]. This transition will require more
Renewable Energy Sources (RESs) to be integrated into the
grid at both utility-scale and the small and local scale on
a more dispersed perspective, as distributed generation [2].
The former, as large-size installations, usually participate
in the wholesale markets, and hence their sizing does not
dependent on local energy consumption. The latter solutions,
instead, sustain local demand by increasing self-sufficiency
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and reducing supply costs in many fields of application, from
the industrial [3] to the residential sectors [4].

Hence, RES-based distributed generation must be properly
sized according to the energy demand, to make the installa-
tions affordable, profitable, and sustainable. Practically, the
match between production and consumption at fine temporal
resolution (at least hourly [5]) must be thoroughly assessed,
e.g., through optimization [6], to avoid potential over-sizing
or underestimation, regardless of the field of application.

For this reason, weather data are needed to estimate RES
production through proper modeling of the active assets [7],
while load (i.e., consumption) profiles of the local demand
need to be identified [8]. This last task can become complex
when the number and the typology of end users increase
significantly, due to limited access to data measured by
smart meters (SMs) and the consequent increase in the
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number of unobserved end users (i.e., whose consumption
data cannot be collected at fine temporal resolution). In fact,
collecting hourly (or sub-hourly) consumption data from SM
can be challenging due to various factors, including privacy
concerns and technical limitations. Privacy regulations often
restrict the collection of granular consumption data, as they
can reveal sensitive information about individuals’ activities
and habits. Moreover, the roll out of new SMs to allow
measurements at fine temporal granularity for a large
number of customers can be logistically demanding and
time-consuming [9], [10]. Consequently, hourly consumption
profiles are not always available. Energy bills, instead, pro-
vide aggregated consumption information and are typically
already collected as part of standard billing procedures, mak-
ing them readily available directly to the end users or suppli-
ers. Despite being at a coarse temporal resolution, energy bills
data provide valuable information for the analysis and predic-
tion of load profiles, e.g., through data-driven modeling.

Unlike standard load profiles (SLPs) [11] or synthet-
ically generated ones [12], data-driven approaches use
measurements to build a model that relates attributes of the
end users to their load profiles. This knowledge can then be
extrapolated to predict load profiles of unobserved customers.
Previous studies [13], [14] have utilized different attributes as
input data. However, these approaches often require intensive
and intrusive data collection, whereas the energy bill offers a
potential solution by enabling models that can handle limited
data [15].

Therefore, in this study, we propose a data-driven approach
to predict the electricity load profiles of unobserved end users
using only their electricity bills. Specifically, we leverage
time-of-use (ToU) tariffs [16], [17], which divide the monthly
bill based on varying consumption patterns throughout the
day and week. Then, by applying a data-driven approach,
our goal is to invert the relationship between the ToU
consumption and the load profile that generated it. While it
may be argued that different load profiles can result in the
same energy bill, due to its integral nature, practical obser-
vations suggest a limited number of distinct consumption
patterns [18]. We assume that these identifiable patterns are
associated with different energy bills. Unlike classification-
based approaches [13], [14], [15], we utilize a regression
model, specifically k-nearest neighbors (k-NN), to map
energy bills to hourly load profiles.

Notwithstanding its limitations, the proposed approach is
easily exploitable in contexts where managing a portfolio
of end users is required, including unobservable ones.
In fact, once the model is trained using a limited amount
of measurements, it only utilizes aggregated data from
monthly energy bills, which can be collected even for
large numbers of heterogeneous end users. The fields of
application of the approach extend beyond RES-based local
energy systems to encompass the design and evaluation of
Demand Response programs, identification of energy-saving
opportunities, and creation of dedicated offers from energy
suppliers.

The remaining sections are structured as follows. In Sec-
tion II, we review the literature on load modeling, focusing
on data-driven methods and presenting the related works
and contributions of this study. Section III analyzes the
load prediction from energy bills as an inverse problem.
Section IV describes the implementation methods for the
proposed approach and benchmark approaches from the
literature. Section V discusses the data set used for testing
the proposed approach. Section VI presents and compares
the results obtained with benchmark approaches, discussing
the strengths and limitations of the proposed approach.
Finally, Section VII provides the conclusions of this
work.

II. LITERATURE REVIEW AND CONTRIBUTION
A. LOAD MODELING
This work pertains to the field of energy use/load mod-
eling [19], specifically focusing on the prediction of
fine-resolution electricity consumption data for heteroge-
neous end users (residential, commercial, public offices).

Traditionally, SLPs obtained from measurement cam-
paigns have been widely utilized. For example, the H0
SLP is employed by energy companies in Germany and
Austria for residential customers [11], [12]. Similarly,
non-residential customers are categorized and assigned an
SLP based on their assumed energy usage and/or energy
intensity [20], [21]. However, SLPs have faced criticism due
to their reliance on outdated data, ignoring recent changes
in consumption patterns, and overlooking variations within
the same category [12], [20], [22]. Moreover, SLPs struggle
to accurately capture consumption levels and dynamics at
fine temporal and spatial resolutions [11], [23]. Nevertheless,
SLPs continue to be widely used in industry and government
bodies, such as the Italian Manager of Energy Services
(GSE), which adopted SLPs for regulating end users under
collective self-consumption and energy communities to
address the absence of SM data [24].

Conversely, research has focused on modeling energy
usage to generate synthetic load profiles. Various models,
classified as bottom-up and top-down (sometimes hybrid),
have been proposed [25]. Extensive reviews of these
models have been conducted by Grandjean et al. [26] and
Proedrou [12]. In essence, bottom-up models can produce
accurate and highly resolved load profiles but require
extensive and detailed input data, while top-down models can
work with fewer, large-scale data, but they are generally more
suitable for aggregate-level load profile modeling [12], [25].1

Recently, data-driven models have flourished in the litera-
ture thanks to the introduction of Advanced Metering Infras-
tructure, of which SMs are a key component [28], [29], [30].
These models typically treat hourly or sub-hourly energy
consumption data from SMs as time series and employ

1It is worth noting that Duque et al. [27] recently developed a probabilistic
model using smart meter measurements to generate synthetic load profiles
for individual households, conditioned on specific total yearly consumption
values.
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data mining and machine learning techniques to extract
knowledge from them [31]. While these models find appli-
cations in various areas such as fault and anomaly/bad data
detection, and load forecasting [32], our focus is on the
topic of load management [29], which encompasses building
energy benchmarking and customer segmentation.

A significant portion of the literature is focused on the
latter field, which aims to group energy end users based on
similar characteristics. One approach is to cluster buildings
with similar energy usage patterns to identify energy-saving
opportunities [33], [34], [35]. Another approach involves
identifying groups of customers with similar consumption
patterns, enabling the provision of tailored offers and the
implementation of Demand Response programs to enhance
energy system operation [13], [14], [15], [22]. Studies by
Rasanen et al. [20], Mutanen et al. [36], and, more recently,
Parks et al. [18] and Zhan et al. [37] demonstrate how
data-driven methods analyzing SM data yield more accurate
results compared to traditional approaches based on activity
typology (e.g., residential, commercial, government) and
energy use intensity.

Clustering SM consumption data is a common char-
acteristic of these data-driven methods, which involves
unsupervised learning [38] to identify groups with similar
consumption patterns. Each group, or cluster, is then associ-
ated with a representative load profile (i.e., the cluster center).
Chicco [28], Zhou et al. [39] and Rajabi et al. [21] provide
comprehensive reviews of load profile clustering, covering
the methodologies, steps, application to customer classifi-
cation, and performance evaluation metrics. It is important
to note that only a few cases include a post-clustering
phase, which entails supervised learning [38] to develop
models such as classifier systems or regressions for extrap-
olating the acquired knowledge to new (or unobservable)
customers.

B. RELATED DATA-DRIVEN APPROACHES
The post-clustering phase serves two opposing aims: infer-
ring the characteristics of buildings/end users from their
load profiles (used as predictive attributes) [40], [41];
predicting the class (and, consequently, load profile) of new
or unobservable customers based on a series of attributes. The
latter problem, onwhichwe focus, has received little attention
in the literature according to previous studies [13], [15] and
to our own review.

Typically, the classification of new customers and the
assignment of representative profiles rely on specific
attributes of the end users within each cluster. For instance,
Viegas et al. [14] utilized survey data, such as the age and
income of family members, and the number of appliances,
along with a limited amount of SM measurements (0 to
10 weeks). In the case of unobserved end users, the
classification solely relies on the available survey data.
Vercamer et al. [13], instead, classified non-residential
consumers based on internal company data (e.g., commercial
code, number of employees), open data related to the

municipality, and cartographic information (e.g., building
size). Piscitelli et al. [15], on the other hand, classified
commercial and industrial end users based on easily col-
lectible data such as monthly consumption from energy bills
and information on opening/closing and lunchtime hours.
In contrast to the aforementioned methods, Granell et al. [42]
employed a regression approach using k-NN to predict the
hourly load profiles of new supermarkets in different market
areas, considering the floor area.

Overall, previous models have been developed based on
category-specific end user attributes or through extensive
data collection procedures. However, these approaches may
not be suitable when dealing with a large number of end users
from diverse categories, as they can become cumbersome and
inefficient.

C. CONTRIBUTION
This paper introduces different key contributions to the
field of load modeling and, in particular, end user load
profile prediction. By building upon the existing literature,
we address the following aspects.

1) UTILIZATION OF ToU ENERGY BILLS
The analyzed state-of-the-art approaches often rely on
end-user attributes that are category-specific or require inten-
sive data collection, which can be cumbersome and impracti-
cal. Conversely, our approach utilizes only the ToU energy
bill for load profile prediction. While Piscitelli et al. [15]
also used energy bills, their approach incorporated additional
data, specific to commercial and industrial customers.
Furthermore, they focused solely on weekdays, while we
consider a more comprehensive set of typical days (also
including Saturdays, and holidays, according to the ToU
tariffs described in Section III).

2) REGRESSION-BASED PREDICTION
Unlike classification-based approaches employed in previous
works, we adopt a regression-based methodology to predict
hourly load profiles. We frame the problem as an inverse one
since the input (energy bill) and output (consumption profile)
are linked by a direct analytical relationship. SLPs, com-
monly used in the industry and by government bodies [24],
map energy bills to load profiles independently of the bill’s
characteristics. In other words, the same profile is indiffer-
ently adopted for all end users (within a predefined category),
while re-scaling is used to preserve the total consumption (see
Fig. 1a). Alternatively, clustering-classification approaches
map different energy bills to distinct load profiles (i.e.,
the cluster centers) which can be seen as a ‘‘discrete’’
mapping (see Fig. 1b). In contrast, our approach leverages
regression using k-NN, enabling a more continuous mapping
between energy bills and load profiles (see Fig. 1c). In this
way, similar ToU energy bills are mapped into similar load
profiles, reflecting the supposed inverse relationship between
the two quantities, which is described more in detail in
Section III.
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FIGURE 1. Visual representation exemplifying different ways of mapping
the energy bills (represented as points in the x-space) to their
corresponding typical load profile (i.e., their image in the y-space), which
is represented as a line (see Section III-A for the definitions of these
elements). These three methods of mapping are compared in the paper: in
(a) an SLP is used, and consequently the values of an energy bill can only
change the total consumption (‘magnitude’) of the typical load profile
while the shape corresponds to the SLP; differently, in (b), the x-space is
divided into clusters, and hence depending on the values of the energy
bill (i.e., the position of a point in the x-space), it is mapped by with a
different typical load profile whose shape corresponds to the cluster
center; finally, in (c), each point is considered individually and mapped in
a more continuous way, in a regression-like approach, by means of k-NN.

3) TESTING DIVERSE END-USER CATEGORIES
We leverage the fact that our proposed approach provides
a more versatile and scalable solution that can be applied
to a wide range of end-user categories. Therefore, while
previous studies focus on a single category, we test the pro-
posed approach on different customer categories, involving
residential, commercial, and public offices. We also provide
a comparison with two benchmarks, respectively based on
SLPs and the two steps clustering-classification approach
identified in the literature.

In summary, these contributions advance the field of
load modeling and prediction, in particular by providing a
streamlined and data-driven approach that utilizes time-of-
use energy bills for regression-based load profile prediction.

III. INVERSE PROBLEM DESCRIPTION
We start by providing an overview of the ToU tariff scheme
implemented in the Italian regulation [43] since we use a
set of SM measurements of Italian end users for testing our

approach. In particular, three different tariffs are defined
for electricity (F1, F2, F3), respectively, for on-peak, mid-
peak, and off-peak hours, which are arranged as shown in
Fig. 2. According to these ToU tariffs, three types of days can
be identified, each characterized by a different subdivision
of the hours into ToU tariffs: work days, from Monday to
Friday; Saturdays; and Sundays/holidays (just ‘holidays’,
in the followings).

A. DEFINITIONS
1) LOAD PROFILE
We refer to a load profile as a time series of the energy
consumption over a sequence of uniformly-spaced time steps,
which in this paper have an hourly resolution. We use an
average, uniform power demand associated with the energy
consumption in each time step while using the term ‘energy’
for other quantities with rougher granularity (e.g., daily or
monthly).

2) AVERAGE LOAD PROFILE
An average load profile is the result of a time step-
by-time step average between load profiles that have the
same length and that share some feature(s). In this paper,
we evaluate average load profiles on a monthly basis, for each
day type (work days, Saturdays, holidays).

3) TYPICAL LOAD PROFILE
A typical load profile provides a condensed representation of
the three average load profiles in amonth, obtained by putting
the latter in a sequence (see Fig. 3).

4) ENERGY BILL
An energy bill is a set of records of the energy consumption
(rather than the expenditure) in the three ToU tariffs in one
month. The components of the energy bill can be evaluated
from a typical load profile, considering the ToU structure
depicted in Fig. 2.

5) SPACES OF THE ENERGY BILLS AND TYPICAL LOAD
PROFILES
An energy bill can be imagined as a point in a space with
three dimensions, i.e., one for each ToU tariff: we call this
the ‘x-space’. Similarly, we define a space of the typical
load profiles, the ‘y-space’, that has one dimension for each
time step in the profile.

B. DIRECT AND INVERSE MAPPING
Given the definitions provided above, the calculation of the
ToU energy bill from a typical load profile provides the direct
analytical relationship between the two quantities. Fig. 4
provides a qualitative example of this relationship, while
the mathematical details are reported in Section IV. On the
other hand, the analysis of measured data shows that it is
possible to invert this relationship. For instance, in Fig. 5,
three different pairs of energy bills are shown in the x-space,
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FIGURE 2. ToU tariffs structure adopted in Italy. The central hours of work days are on-peak (tariff F1, in red); early morning and evening of
work days (Monday-Friday) and day hours of Saturdays are mid-peak (tariff F2, in yellow); night, Sundays, and major holidays are off-peak hours
(tariff F3, in green).

FIGURE 3. Visual example of the averaging process and creation of a typical load profile in one month. A month-long load profile is first chunked
into day-long sequences, which are arranged by day type (in red are the load profiles of all work days, in yellow those of all Saturdays, and in green
holidays); then, an average load profile is evaluated for each day type; these profiles are finally put in a sequence to obtain the typical load profile
(the blue, continuous line). [The data are from the data set described in Section V].

FIGURE 4. Visual example of the bill calculation from a typical load profile in one month. The blue line shows the typical load profile. The
subdivision of the time steps into ToU tariffs is also shown (F1, in red, F2, in yellow, and F3, in green). The colored bars are the three components of
the bill, i.e., the consumption in each ToU tariff. The width of the arrow is related to the number of days of each day type in the month.

with the related typical load profiles in the y-space. These
have been randomly chosen among the data available in
the testing data set (described in Section V) in order to be
pair-wise close in the bills space although from different
end users. Despite some differences in the instantaneous
consumption within the same ToU tariff time span, the
profiles that share similar energy bills also share many
similarities in the consumption patterns, e.g., the hours of
peak and base load, the number of spikes in the consumption,
and so on. In the following section, the methods to leverage
this inverse relationship to build a model for the prediction
of typical load profiles of unobservable end users are
described.

IV. METHODS
A. NOTATION AND BASIC CALCULATIONS
A load profile is represented as a vector:

p = {Ph}h=1,...,Nh , (1)

whose elements Ph are the average, constant power demand
associated with the energy consumption Eh in each time step
th, i.e., Ph = Eh/1th, where 1th is one hour; and Nh the
length of the time series.

Given a month-long load profile, it can be chunked
into daily sequences, which can be arranged by day type
(work days, Saturdays, holidays). We call Lj the set of load
profiles of all days in themonth belonging to day type j. Then,
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FIGURE 5. Visual examples of the similarity between monthly ToU energy bills and typical hourly load profiles. In particular, three pairs of points
(i.e., energy bills) are shown, which are pair-wise close in the x-space. The respective ‘‘lines’’ in the y-space (i.e., typical load profiles) in turn exhibit
similar shapes.

the corresponding average load profile p̄j can be evaluated,
as follows:

p̄j =
{
P̄j,h

}
h=1,...,Nh

,

s.t. P̄j,h =
1
ndj

∑
l∈Lj

Pl,h. (2)

where ndj is the size of the set Lj, i.e., the number of days in
the month of the j-th day type.
We call J the set of the three average load profiles in

a month. Then, the corresponding typical load profile, y,
is represented as follows:

y = {Yi}i=1,...,Ni =
{
P̄j,h

}j=1,...,|J|
h=1,...,Nh

, (3)

Considering Nh = 24 and |J | = 3, the length of the typical
load profiles is Ni = 72.
An energy bill is also represented as a vector,

x = {Ef}f=1,...,Nf , (4)

whose elements Ef are the monthly energy consumption in
the three ToU tariffs F1, F2, F3 (Nf = 3).
Given a typical load profile y the elements Ef of the

associated energy bill vector x are calculated as follows:

Ef =

|J|=3∑
j=1

ndj ·
Nh=24∑
h=1

P̄j,h · δf,j(th) · 1th, ∀f = 1, 2, 3, (5)

where δf,j is a binary auxiliary variable, defined as follows:

δf,j(th) =

{
1, if th in day type j belongs to Ff
0, otherwise,

(6)

whose values, which depend on the hour and type of the day,
can be directly obtained from Fig. 2.

B. TRAINING DATA SET
The proposed approach requires a set of energy bills (x)
and corresponding typical load profiles (y) pairs. We call
these pairs the ‘training data set’, in compliance with the
conventional naming in the field of machine learning. These
{x, y} pairs can be obtained from an end user’s year-long load
profile, by:

i. dividing the time series into month-long profiles;
ii. repeating the steps in (2), (3) and (5) for each month.

Hence, twelve pairs (one per month) can be obtained from
each end user’s year-long load profile. Then, the training
data set is organized in rows, each corresponding to one of
these pairs.
Data Normalization: The training data set contains data

from heterogeneous end users, so they must be normalized
to remove effects related to the total consumption (‘magni-
tude’). Given a pair of x, y vectors, the elements of the energy
bill are normalized so that they sum to 1. Hence, the elements
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Êf of the normalized vector x̂ are evaluated as follows:

Êf =
Ef∑
f Ef

. (7)

Concerning the load profiles, usually min-max [28] or
max normalization (e.g., in [37]) are performed to obtain
time series values in the range 0–1, or z-standardization to
obtain values with null mean and unitary standard deviation
(e.g., [18]). In our case, we want to keep the relationship
between the typical load profile and energy bill in (5).
Therefore, the elements Ŷi of the normalized typical load
profile, ŷ, are evaluated as follows:

Ŷi =
Yi∑
f Ef

. (8)

Hence, the resulting normalized typical load profiles have
unitary total consumption in the month.

When evaluating the normalized vectors x̂ and ŷ, we per-
form a ‘‘row-wise’’ normalization of the training data set so
that all samples can be compared with each other. Usually,
also ‘‘column-wise’’ data normalization is required, to make
the different features comparable to each other. This is not the
case for the energy bill (and the typical load profile), whose
single elements are already comparable with each other.

C. K-NN BASED PREDICTION
The training data set is used to predict the end users’ typical
load profiles from their monthly bills, by means of a
k-NN algorithm. This is a well-known supervised learning
method [44]. Unlike other algorithms, it does not have a
training phase and it exploits the whole training data set in
each prediction. The only parameter of the algorithm is the
number of neighbors.

Given the training set of (x̂, ŷ) pairs, and a vector x̂∗

whose corresponding ŷ∗ is unknown, the algorithm works as
follows.
i. Evaluate the distance between x̂∗ and all the x̂ vectors in

the training data set. The Euclidean distance is used.
ii. Identify the neighbors, i.e., the elements in the training

data set with a smaller distance from x̂∗. We call the
sets of the x̂ and of the ŷ vectors of the neighbors,
respectively, Kx and Ky. Their size |K| is equal to the
number of neighbors.

iii. Evaluate the prediction (ŷpred), as the element-by-
element weighted average of the vectors in Ky, as in (9):

ŷpred =

∑
k

1
|K |

· ŷk, (9)

where ŷk is the typical load profile of the k-th neighbor.
iv. Set ŷ∗ equal to the prediction ŷpred.
This is the basic implementation of the algorithm,

in which the neighbors have the same (uniform) weights
However, neighbors could also have different weights, e.g.,
inversely proportional to the distance between their x̂ vector
and x̂∗ [45].

Fig. 6 provides an outline of the process that leads to
the k-NN-based prediction of ŷ∗. After this procedure, y∗ is
obtained by inverting (8), thus restoring the actual magnitude.
However, despite the proximity of the neighbors in the
x-space, the ‘‘predicted’’ energy bill, evaluated applying (5)
to y∗ may not coincide with the original bill in the different
ToU tariffs (see Fig. 6).

D. BENCHMARK APPROACHES
We present a general outline of the benchmark approaches
against which we compare the proposed one.

1) STANDARD LOAD PROFILES
This method is based on the SLP evaluated for different
categories of end users. In particular, we used the SLP
adopted by the GSE in [24], defined for two categories, i.e.,
household and non-household (see Fig. 7). Given an end user
with a monthly bill x∗, the associated typical load profile y∗

is evaluated by:

i. selecting a standard profile yref according the end-user
category;

ii. multiplying the SLP by a scaling factor to match the
actual total consumption in the month.

2) CLUSTERING-CLASSIFICATION
The detailed steps of this kind of procedure can be found
in works like [13] and [14] and mainly [15], from which
we borrowed this method, therefore we present here only an
overview of the main steps and of the algorithms adopted for
each task.

The first step is the extraction of the representative load
profiles from the training data set, through a clustering
performed in the y-space (i.e., only the typical load profiles,
ŷ, are used). We use K-means, a well-known unsupervised
learning algorithm that has been recently proven particularly
effective in load profiles clustering [34]. The number of
clusters is the only parameter of the algorithm. Based on
the result of the clustering, the (x̂, ŷ) pairs in the training
data set are divided into classes (i.e., the clusters), each with
a representative load profile (i.e., the cluster center). Then,
a classifier system can be trained using the elements of the
energy bills x̂ as features and the cluster label as targets. This
supervised learning task is performed by means of a Decision
Tree classifier, as in [15]. At the end of this procedure, a set
of rules have been derived, based on which an energy bill
can be assigned to one of these classes. When a typical
load profile ŷ∗ must be predicted from an end user’s energy
bill x̂∗, a class label is assigned based on the derived decision
rules. Then, the cluster center is set as the representative
load profile and (8) is inverted to add the magnitude effect
so that the total consumption matches the actual energy
bill.

In both previous cases, similarly to the proposed approach,
while the total energy consumption matches the value in the
energy bill, it is not guaranteed that the proportions between
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FIGURE 6. Graphical outline of the k-NN prediction process in the x and y-spaces (note that only two components of the bill are shown, to allow a
two-dimensional representation of the x-space.). First, the training set composed of (x̂, ŷ) pairs is initialized. A test pair of x̂∗ and ŷ∗ vectors is also
shown (normally ŷ∗ is unknown). To predict ˆypred from x̂∗, the k nearest neighbors (in the x-space) are evaluated and selected. Then, ˆypred is
evaluated as the element-by-element weighted average of the neighbors (in the y-space).

the different ToU components coincide. The latter depend
indeed on the shape of the predicted load profile, which is
imposed by the SLP/cluster centers.

E. VALIDATION
We validate our result using a test set of measured hourly
consumption data. Therefore, we first predict typical load
profiles using the described methods and then compare
them with the real ones. Kohler et al. [25] provided an
extensive review of metrics commonly used to compare
predicted (or synthetic) and real load profiles, focusing
on the difference between ‘sameness’ and ‘similarity’. The
former is the time step-by-time step equivalence between two
time series. For instance, the mean squared error (MSE) and
the mean absolute error (MAE) measure the sameness [25].
The similarity is a broader (and looser) concept that can

be declined and assessed in different ways. Many metrics
proposed in [25] to assess similarity focus on the statistics
of the real and simulated profiles (e.g., minimum, median,
and maximum values, standard deviation, and error on the
duration curve). In the paper, they also propose metrics based
on complexity, such as the number of peaks and the fractal
dimension.

In this paper, we evaluate the normalized MAE (NMAE)
and the Pearson coefficient (r) between the predicted and real
load profiles to assess the sameness. We prefer the MAE
over other error metrics, such as the MSE, because it directly
quantifies the energy consumption that is allocated in the
wrong time steps [42]. The r coefficient instead evaluates the
linear correlation between two quantities. We also evaluate
the ability of the methods to reconstruct the statistics of the
data by measuring the NMAE between the duration curves of

60508 VOLUME 11, 2023



P. Lazzeroni et al.: Data-Driven Approach to Predict Hourly Load Profiles From Time-of-Use Electricity Bills

FIGURE 7. Typical load profiles evaluated from the SLPs adopted by the
GSE for household and non-household end users. The subdivision of the
time steps into ToU tariffs is also shown (in red, F1, yellow, F2, green, F3).
[Elaboration of data from [24]].

the predicted and real typical load profiles [25]. We call this
metric the duration curve error (DCE).

In all cases, even if we use an artificial profile of 72 hours,
we consider the weight of each day type in one month (e.g.
there are more work days than Saturdays). As to the NMAE,
we perform a weighted average (on the number of days of
each day type) of the metric evaluated on the single day type.
In the case of the DCE, instead, we evaluate the duration
curves of the equivalent month-long load profile by assigning
to each day the average load profile of the related day type.

All methods guarantee that the actual total consumption
in a month is respected by properly scaling the typical load
profile. However, it is not guaranteed that the proportions
between the consumption in the different ToU tariffs match
the actual one. Therefore, we also evaluate the NMAE
between the real and predicted energy bills. Similarly to the
case of the load profiles, this metric measures how much of
the total monthly consumption is allocated in the wrong tariff
by the prediction (more details are reported in Section VI).

V. CASE STUDY
We tested the proposed and benchmark approaches on a
data set consisting of 114 end users of different types (i.e.,
household, DOM, and non-household, BTA), classes (i.e.,
levels of contractual power, see Table 1), and categories
(see Fig. 8). The data were provided by a local energy
supplier, who measured the hourly consumption for these
end users over a time span of one year. The samples are
mostly uniformly distributed among classes (around twelve
end users each) and categories. The only exception is
represented by the class DOM1, which is composed of only
one user. For this reason, we created the class DOM12 by
merging DOM1 into DOM2.

Fig. 9 shows the statistics of the consumption in the
typical load profiles of the end users in all months, divided
by classes. In some cases, consumption patterns with good
intra-cluster properties can be found in these classes. For
instance, in BTA1, BTA4, BTA5, DOM3, and DOM4 the
interquartile range (IQR) appears quite narrow and it follows
the median value, while in other cases (e.g., BTA2) it is

TABLE 1. Codes assigned to the end-user classes according to the type
(household, DOM, and non-household, BTA) and level of contractual
power at the point-of-delivery defined by the Italian Regulatory Authority
for Energy, Networks and the Environment.

rather wide. However, even when the IQR is narrow, the
extreme values (min, max) can be far from the median and
also have different shapes (e.g., BTA1 and BTA4). Finally,
Fig. 10 shows the distribution of the three components
of the energy bills in the end users, divided by classes.
Again, there are cases (e.g., household end users) where the
distributions are narrow, but also cases in which they are very
dispersed, meaning that end users with very different energy
bill composition (hence, consumption patterns) can be found
in the same class.

The typical profiles and related energy bills were evaluated
from raw data, therefore they have been analyzed in order
to eliminate samples with evident inconsistencies or extreme
outliers (e.g., time steps in which the consumption was
more than five times higher than the average one). This
procedure removed about 5% of the original samples: from
114 yearly load profiles, 1368 pairs could be obtained, and
1294 remained after data cleaning.

We used the data set for both testing and training the
data-driven approach. Therefore, in order to assess the
performance, we reconstructed the data set through a leave-
one-out cross-validation [46], where the samples of one
end user at a time served as testing while those of the other
end users served as training data. Accordingly, the number of
folds in the cross-validation procedure is equal to the total
number of end users in the data set (i.e., 114, each consisting
of around 12 profiles).

We implemented all the methods in Python and exploited
the open-source library sklearn [47] for the K-means,
Decision Tree classifier, and k-NN algorithms. We identified
a number of clusters equal to 11 (for the clustering-
classification approach), and a number of neighbors equal
to 9 (for the proposed k-NN) as those minimizing the average
error on the predicted load profiles, while we used the default
settings from sklearn for the training of the Decision Tree.

VI. RESULTS AND DISCUSSION
Fig. 11 shows the distributions of the NMAE between the real
and predicted data for the three methods tested. In particular,
Fig. 11a shows the NMAE on the ToU components of the
energy bill. Thanks to the procedure based on the proximity
in the x-space, the k-NN method obtains the smallest error.
In the case of the clustering-classification approach, the
composition of the predicted energy bill is more ‘‘rigid’’ since
it depends on the shape of the cluster centers. This effect
is more pronounced in the SLP approach, where only two

VOLUME 11, 2023 60509



P. Lazzeroni et al.: Data-Driven Approach to Predict Hourly Load Profiles From Time-of-Use Electricity Bills

FIGURE 8. Composition of the data set by types of end users (non-household, BTA, and household, DOM) and: (a) class, i.e., level of contractual
power at the point-of-delivery; (b) category.

FIGURE 9. Statistics of the typical load profiles evaluated for the end users divided by class: minimum (i.e., 5th percentile), median and
maximum (i.e., 95th percentile), and interquartile range, IQR, (25th-75th percentile) of the consumption in each time step. The box in the top-right
corner of the plots reports the total number of end users for each class.

FIGURE 10. Statistics of the monthly energy bills evaluated for the end users divided by ToU tariff time slot and class. The whiskers are truncated at
the 5th and 95th percentile.

shapes are possible (household and non-household). Fig. 11b
shows the same error metric evaluated on the typical load
profiles. In this case, the errors are larger since they are

evaluated instantaneously time step by time step. Also in this
case, the k-NN shows the best performance, allowing for an
error reduction, on average, of 6.5% and 13.8% if compared,
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FIGURE 11. Normalized mean absolute error (NMAE) between: (a) the components of the real energy bills and the ones evaluated from the
predicted typical load profiles; (b) the real and predicted typical load profiles (weighted on the number of days of each day types in the month), for
all samples and the different methods. The median error is shown (red line and value), while the whiskers are truncated at the 5th and 95th
percentile.

FIGURE 12. (a) Duration curve error (DCE) and (b) Pearson correlation coefficient (r) between the real and predicted reconstructed yearly load
profiles, for all the samples and the different methods. The median error of each method is shown (red line and value), while the whiskers are
truncated at the 5th and 95th percentile.

respectively, to the clustering-classification and to the SLP
approaches.

Fig. 12 shows two different metrics evaluated on the
reconstructed yearly load profiles of each end user. Fig. 12a
reports the error between the real and predicted duration
curves (DCE), while Fig. 12b shows the correlation coeffi-
cient between the two load profiles. The former measures
the sameness of the statistics of the real and predicted load
profiles. Therefore, the DCE is smaller than the NMAE on
the typical load profiles. The correlation coefficient instead
measures how the real and predicted profiles are linearly
correlated. The k-NN approach shows the closest values to 1,
which means perfect linear correlation. However, in certain
cases, the values of r are significantly smaller than 1.

The radar plots in Fig. 13 show, respectively, the NMAE
and r metrics between the real and predicted typical
load profiles, divided by end-user classes. In the case of
household end users, the performances of the SLP approach
are comparable to those of the data-driven ones. However,
the SLP reveals to be inadequate to characterize the load
profiles of non-household end users, where instead the data-
driven approaches, in particular the k-NN, show significantly
better performance, comparable to the ones they obtain with

the household end users. This means that an SLP is able to
characterize the typical load profiles of household end users,
where lower within-class variability is found (see Fig. 9).
On the other hand, non-residential customers have more
diversified consumption patterns, which a unique SLP fails to
represent, while data-driven methods can better identify the
different shapes based on the energy bill.

The radar plots in Fig. 14, where the NMAE and
r are divided by day type, show that all methods perform
significantly better on work days than on Saturdays and
Sundays/holidays. This can be related to the fact that the
consumption in work days is mostly under the ToU tariff F1,
which does not appear in other day types. On the contrary,
Sundays are completely in ToU tariff F3, which also belongs
to night hours of work days and Saturdays therefore, it ismore
difficult to properly divide the consumption in F3 between the
correct time steps.

A. DISCUSSION
The general trend that emerged from the previous results is
that data-driven methods can increase the performances of
the prediction of typical load profiles from the ToU energy
bill, with respect to SLPs. In fact, they can map the similarity
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FIGURE 13. Median value of: (a) Normalized mean absolute error (NMAE) and (b) Pearson correlation coefficient (r) between the real
and predicted load profiles, for all the samples and the different methods, broken down by end-user categories.

TABLE 2. Median value (and interquartile range) of NMAE on typical load profiles between the real and predicted data, broken down by end user
categories, obtained with the different methods: A. Standard Load Profile; B. Clustering-classification; C. k-NN.

FIGURE 14. Median value of: (a) Normalized mean absolute error (NMAE) and (b) Pearson correlation coefficient (r) between the
real and predicted load profiles, for all the samples and the different methods, broken down by day type.

between bills (x) to the similarity between consumption
patterns (y). This is particularly true for non-residential
end users. Between the twoways of tackling the problem, i.e.,
the clustering-classification approach that creates a discrete
mapping between the x and y-spaces, and the k-NN approach
that tends to create a continuous mapping, the latter shows
the best performances. As to the different metrics analyzed,
worse performances are obtained when comparing the real
and predicted data time step by time step, as opposed to the
comparison between the statistics of the consumption or the
‘‘coarse’’ granularity data of the ToU bills. Concerning the
latter comparison, it should be noted that more sophisticated
scaling procedures could be implemented to guarantee that
the predicted consumption in each ToU tariff matches the
actual one (see for instance [48]). However, these procedures
scale the profile with a different factor for each ToU tariff,
and therefore they can introduce a distortion of the shape of
the predicted load profile. In particular, they can give rise

to unrealistic changes in consumption in the hours on the
interface between different ToU tariffs.

B. LIMITATIONS AND FURTHER IMPROVEMENT
The proposed approach allows the prediction of typical load
profiles from minimal data that can be easily obtained for a
large number of customers, independently from the category
of end users. In general, thanks to the k-NN regression,
we obtained an average error of less than 4% on the monthly
consumption in the different ToU tariffs and of around 26%
on the predicted typical load profiles. This means that a
quarter of the total consumption is allocated in the wrong
time step. The smallest errors are obtained in the prediction
of load profiles during work days, which are more frequent
than other day types. It is up to the final user of the method
to decide whether the compromise between accuracy and
ease of data collection is acceptable. However, the proposed
approach leaves room for further improvement. In particular,
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TABLE 3. Median value (and interquartile range) of NMAE on duration yearly reconstructed duration curve (duration curve error, DCE) between the real
and predicted data, broken down by end user categories, obtained with the different methods: A. Standard Load Profile; B. Clustering-classification;
C. k-NN.

TABLE 4. Median value (and interquartile range) of NMAE on ToU energy bills between the real and predicted data, broken down by end user categories,
obtained with the different methods: A. Standard Load Profile; B. Clustering-classification; C. k-NN.

given the size of our test data set, we deployed a single model
for all end-user categories and all months/seasons. Different
k-NN regressions could be used to predict the typical load
profiles of end users from different categories/seasons when
a richer data set is available (so to cover uniformly the
spaces of the energy bills and typical load profiles). It should
be noted that the further loss of detail related to the use
of typical load profiles is not considered here. Finally, the
methods have been tested on a set of end users located in
the same geographical area, thus temperature-related effects
are compensated by similar weather conditions. It is still to
be assessed whether a single model or more models (hence,
more data set) are needed to work with end users of different
regions. Nonetheless, we believe that the proposed method
provides a valid option for the prediction of a large number
of different end users’ load profiles when few input data are
available.

VII. CONCLUSION
In this work, we proposed a data-driven approach to predict
load profiles in typical days (work days, Saturdays, holidays)
for end users of heterogeneous categories, and from few
and easy-to-collect input data. In particular, we proposed
a method that predicts typical load profiles based on the
similarity between monthly time-of-use energy bills, using a
k-nearest neighbors algorithm.We assessed the performances
of the proposed method in comparison to two benchmarks: an
approach based on Standard Load Profiles and a data-driven
method based on the identification of similar load profiles
(clustering) and of decision rules to assign new customers to
one cluster, hence to its representative load profile, based on
their time-of-use energy bill (classification).

All methods allow the prediction of typical load profiles of
end user of different categories from a few input data (i.e.,
only the monthly bill). The results obtained on a data set
of measured hourly consumption show that the methods
have poorer performances on error metrics evaluating the
sameness of the predicted load profiles to the real ones,
while better performances are achieved in the error metrics

that measure the statistics of the consumption (e.g., duration
curve). The results also highlight that the proposed method
outperforms the other ones basically in all error metrics and
for each end-user category (with few exceptions).

In future works on the load profile prediction from
electricity bills, the analysis of the results can be deepened
both in terms of diversity of the similarity/sameness metrics
and in terms of benchmark methods to further assess where
the proposed method stands in terms of the trade-off between
accuracy and ease of data collection. Furthermore, the
adoption of multiple k-NN models to be used for different
end-user categories and/or different seasons can be explored,
if richer data set are available. Furthermore, it should be
noticed that in this work we preferred to utilize well-known
and easily-interpretable methods for our analysis. However,
different and more advanced methods from the field of
machine learning [38] could be explored to better assess the
potentiality of the proposed approach.

DATA AND CODE AVAILABILITY
The processed data set used for training and test-
ing the proposed and benchmark approaches is avail-
able at: https://github.com/cadema-PoliTO/Bill2Watt under
CC-BY-NC 4.0 License. Upon publication, the code will
eventually be made available under CC-BY-4.0 License at
the same address.
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