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ABSTRACT This study focuses on improving the accuracy of effort estimation by employing ensemble,
deep learning, and transfer learning techniques. An ensemble approach is utilized, incorporating XGBoost,
Random Forest, and Histogram Gradient Boost as generators to enhance predictive capabilities. The
performance of the ensemble method is compared against both the deep learning approach and the
PFA-IFPUG technique. Statistical criteria including MAE, SA, MMRE, PRED(0.25), MBRE, MIBRE,
and relevant information related to MMRE and PRED(0.25) are employed for evaluation. The results
demonstrate that combining regression models with Random Forest as the final regressor and XGBoost and
Histogram Gradient Boost as prior generators yields more accurate effort estimation than other combinations.
Furthermore, the findings highlight the potential of transfer learning in the deep learning method, which
exhibits superior performance over the ensemble approach. This approach leverages pre-trained models
and continuously improves performance by training on new datasets, providing valuable insights for
cross-company and cross-time effort estimation problems. The ISBSG dataset is used to build the pre-
trained model, and the inductive transfer learning approach is verified based on the Desharnais, Albrecht,
Kitchenham, and China datasets. The study underscores the significance of transfer learning and the
integration of domain-specific knowledge from existing models to enhance the performance of new models,
thereby improving accuracy, reducing errors, and enhancing predictive capabilities in effort estimation.

INDEX TERMS Software effort estimation, ensemble, function point analysis, deep learning, inductive
transfer learning.

I. INTRODUCTION

A successful software project development might begin
with extensive analysis and preparation of relevant doc-
uments, such as explicitly outlining requirements in the
early stages of projects. Technique considerations, environ-
mental factors, and even developer experience are essen-
tial in developing a project. These could contribute to
measuring effort estimates. However, software develop-
ment effort estimating (SDEE) may be more challenging
and the most challenging task for the project manager
[1], [2], [3]. They may leverage previous project experiences
or well-known methods when estimating software effort, such

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish

as Function Point Analysis (FPA) [4], [5]. They might make
their decision based on the researchers’ suggestions, which
are based on information from sources that have already been
used for the project.

FPA is a fundamental approach for estimating the size of
software projects from the viewpoint of the user [4], [6].
In 1979, Allan J. Albrecht invented this approach at IBM.
The International Function Point Users Group subsequently
expanded it (IFPUG). Previous publications [7], [8] indicate
that FPA predicts the cost of software development or mainte-
nance regardless of the technology used. The functional size,
for instance, should be consistent across domains, languages,
and development approaches.

Nevertheless, this is the most difficult step for software
engineering estimators. One possible reason is that there are
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so many different project lifecycle models, and each one
might have different resource needs at different stages of the
project’s development. The typical estimating technique [7]
needs greater effort to record actions, which increases
the complexity and time of the estimation. Moreover, the
expertise of software engineers, the software team’s project
history in the same business area, and a range of other
features, as well as the correlations between these aspects,
are not always accounted for appropriately [9].

There might be two popular kinds of approaches to
propose the predictive models, including regression-based
approaches [4], [10], [11], [12], [13], machine learning-
based or deep learning-based approaches [4], [S], [14], [15].
Moreover, solo vs ensemble techniques is the concepts
mentioned in the publication [16]. The term “‘solo” might be
driven by [17], which means “alone; without other people.”
opposite of solo is ensemble. As presented in [16], the
proposal models are based on a single approach, such as a
regression model or a machine learning model called solo
techniques. Ensemble methodology aims to combine multiple
models to create a good prediction model [18].

This article aims to suggest a way to improve SDEE
by stacking ensemble techniques that use Random Forest,
XGBoost, and Histogram Gradient Boost as generators.
Furthermore, there might not be any research conducted
to investigate the feasibility of using trained models in
estimating effort for the recent dataset. The trained models
are built using the oldest dataset. This paper studies how well
the models already trained might be used to estimate the effort
for the most recent dataset.

The following sections are organized: Section II presents
the Function Point Analysis; Section III presents Related
Work; Section IV proposes Research Questions; Sections V,
and VI present Experimental Design and Experimental
Design; Sections VII, and VIII illustrate the Result and
Discussion and Threats to Validity; and Section IX conveys
Conclusion - Future Work.

IIl. FUNCTION POINT ANALYSIS

In this study, we employ the FPA-IFPUG approach [4], [7],
[19] which is widely used for quantifying the software’s
complexity and feature set concerning actual user require-
ments. This technique aims to use a number of unique
transaction function types (External Inputs (EI), External
Outputs (EO), External Inquiry (EQ)) and data function types
(External Interface Files (EIF), Internal Logical Files (ILF))
created by software development projects to measure a size
characteristic.

Table 1 shows the relative complexity of the various
parts. According to the Counting Practices Manual [7],
which is responsible for drafting and modifying its standards,
version 4.3.1 (2010), ISO/IEC 20926:2010 standardizes the
FPA created by the IFP, also known as the initial function
point analysis. Additional ISO/IEC Functional Software
Measurements (FSM) include Markll, MESMA, COSMIC,
and FISMA. These methods are outside the scope of this
research, however they are referenced in [22].
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TABLE 1. Complexity weights of FPA components [20], [21].

Size Attributes Complexity Weight (CWs)
Low Medium | Large
EI 3 4 6
EO 4 5 7
EQ 3 4 6
EIF 5 7 10
ILF 7 10 15

TABLE 2. General systems characteristics [20], [21].

GSC Characteristic Description

Factors

F1 Data communications Does the system require backup and
recovery?

F2 Distributed Functions Are Data Required for Communica-
tion?

F3 Performance Does the system include a distributed
processing function?

F4 Heavily Used Config- | Is critical performance required?

uration

F5 Transaction Rate Will the system work during heavy
loads?

F6 Online Data Entry Does the system require direct data
input?

F7 End-User Efficiency Do data inputs require multiple
screens or operations?

F8 Online Update Are the main files up to date?

Fo Complex Processing Are inputs, outputs, files, and queries
intricate?

F10 Reusability Is internal processing complicated and
complex?

F11 Installation Ease Is the code designed for reuse?

F12 Operational Ease Are Conversions and installation In-
cluded in Design?

F13 Multiple Sites Is the system designed for multiple
installations in different locations?

Fl4 Facilitate Change Is the application designed to make it
easy for users to make changes?

The FPA has many of the characteristics necessary to
provide preliminary estimates for software development
projects [23]. To begin, it is possible to completely assign
function points if doing so satisfies the needs or design
criteria. The efforts look to be just getting started. Second,
they are unrelated to any kind of data processing, including
programming languages, specialist development tools, and so
on citation [21]. In addition, the function points may be easier
to understand for non-technical users of the program since
they are based on the user’s external view of the system.

To count function points, a linear combination of size
characteristics with appropriate weights for three levels of
complexity is built. The function count is often referred to
as Unadjusted Function Points (UFP). The UFP formula is
shown as Equation (1).

5 3

UFP =" BCs; x CWsj; 1)
i=1 j=1

where BCs;; is the number of component i at level j, and CWs;;
is an appropriate weight from Table 1.

Multiplying the UFP by the adjustment influent fac-
tors determines the output of the function point count
(GSC). These may assist in a more accurate UFP
count [24]. Moreover, the formula (2) defines Value
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TABLE 3. Influent factors rating [20], [21].

Influence Rating
None 0
Insignificant 1
Moderate 2
Average 3
Significant 4
Strong significant 5

Adjustment Factor (VAF):

14
VAF = 0.65 4 0.01 x ZFZ- X Ratingufiuence ~ (2)
i=1
where F represents the impact of the GSC component, and
the system is affected by fourteen distinct factors. These
considerations are shown in Table 2, while the ranking of
influential considerations is shown in Table 3.
The Adjusted Function Points (AFP) may be calculated
using the following formula (3):

AFP = UFP x VAF 3)

AFP may be utilized as a factor in the effort estimation
process. Meanwhile, the amount of work will be proportional
to the Productivity (PDR) divided by the Average Full-Time
Productive Capacity. As demonstrated by Equation (4), the
amount of effort used will equal the amount of PDR included
in the AFP. However, VAF is not recorded for the majority
of recently counted projects in ISBSG [25], and the VAF is
assumed to be 1. It means that AFP and UFP might be used
interchangeably for recent projects.

Effort = AFP x PDR @)

Ill. RELATED WORK
The previous studies examined various problems with the
FPA methodology. Many different kinds of studies have been
done to find out how accurate effort estimation models are.
Researchers and experts figure out which estimation methods
give reliable results for certain data sets and other factors.
Hoc et al. [4] examined the performance of Pytorch-based
deep learning, multilayer perceptron (MLP) and multiple
linear regression (MLR) in terms of function point analysis-
based software effort estimates. In this research, the relative
size, type of business, adjusted function points, and EI,
EO, EQ, EIF, ILF are all studied based on the ISBSG
dataset (version 2020/R1). The effort-estimating performance
of multiple models is evaluated using a prediction level
of 0.3 (PRED(0.3)) and standardized accuracy (SA). The
findings demonstrate that deep learning based on Pytorch and
MLP performed better than MLR. Moreover, deep learning
outperformed MLP. Furthermore, the authors concluded that
El, EO, EQ, EIF, ILF, and the industry sector contribute the
most to the model’s accuracy when compared to other factors.
In 2021, Hoc et al. [26] developed the Adj-Effort method
to optimize effort estimates in terms of FPA on the basis
of the ISBSG version 2020. In order to get the most
accurate estimate possible, they used a method called MLR
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based on AdamOptimizer [10] with 10-fold cross-validation.
PRED(0.25), Mean Absolute Error (MAE), and Maximum
RMSE were used to evaluate their results against those
of the baseline models (Casper-Jones, and FPA-IFPUG).
Consequently, their model outperformed the benchmark
models.

Using FPA, categorical variable segmentation (CVS), and
stepwise regression, Silhavy et al. [27] created a new way
to measure the amount of work that goes into making
software. The approach of stepwise regression develops an
estimation model for each segment. Observational studies
relied on data from the ISBSG dataset (Release 13, 2015).
The proposed model increases prediction performance in
terms of Mean Absolute Percentage Error, Mean Estimation
Error, and PRED compared with baseline approaches such
as non-clustered FPA and clustering-based models (0.25).
In terms of accuracy, the new CVS model exceeds previous
methods.

Prokopova et al. [28] analyzed the effect of a few factors on
the assessment of labor effort using function point techniques.
In this analysis, several things were taken into account, such
as the function point count method, where the businesses
were located, what they did, and how big they were. Their
goal was to find out if the productivity from the training
dataset could be used to estimate the amount of work and if
the parameters used affected how well the estimates worked.
The ISBSG repository (Release 13) is made up of 1,333
finished projects that were put together for historical reasons.
Using the hold-out method and a 2:1 ratio, the dataset was
split into a training dataset and a testing dataset.

On the other hand, Ahmad and Ibrahim [29] studied
and compared support vector machines, random forest,
Lasso, Neuralnet, decision tree, ridge, ElasticNet, and
Deepnet using the Kitchenham, China, Maxwell, Albrecht,
Kemerer, Desharnais, and Cocomo81 datasets to improve
SDEE. According to a study of multiple machine learning
algorithms, the random forest approach outperforms all other
measures (MAE, RMSE) in the Albrecht data source. On the
other hand, the Lasso technique produced better results based
on MAE in the Kitchenham dataset. The Neuralnet per-
formed better because it produced lower RMSE and greater
R-Squared values; in Cocomo81, where the Lasso algorithms
outperformed others in the China dataset, it produced lower
RMSE, MAE, and higher R-Squared values.

In 2019, Abdelali et al. [30] conducted empirical research
aimed at estimating effort using the random forest technique.
The impact of the number of trees and the number of
qualities used to grow them was initially investigated. Next,
the researchers compared the performance of the random
forest model with that of the regression tree model using the
hold-out validation method (70-30) and three datasets from
COCOMO, ISBSG, and Tukutuku. The evaluation criteria
employed for assessment were MMRE, MdAMRE, and Pred,
with a threshold of 0.25. Across all evaluation criteria, the
random forest model outperformed the regression tree-based
model, particularly in the case of COCOMO and ISBSG
datasets.
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Passakorn [31] studied whether machine-learning tech-
niques that have excelled in recent active data science
competitions will also do well when estimating software
effort. Based on 13 industry-standard software effort estima-
tion datasets, he examined 14 machine learning techniques,
including the increasingly popular gradient boosting machine
and deep learning (PROMISE 2015). The most widely used
stable ranking evaluation method for estimating software
effort was used to come to the main conclusions of this
study. Combining multiple effort estimators into a stacked
ensemble, for example, to just take the average of the
predicted effort levels, gave more accurate results than any of
the 14 estimators that were looked at. In this investigation, the
estimated effort values were taken as an average of the values
from the stacked ensemble that was most accurate overall.
He also found that using the boosting principle to create an
ensemble improved performance.

Palaniswamy and Venkatesan [32] employed the ensemble
technique to improve prediction. Traditionally, hyperparam-
eters are found through trial and error based on the problem
and dataset, which takes a lot of time. Particle swarm opti-
mization (PSO) and genetic algorithms were used to change
the hyperparameters in this study. The stacking ensemble
model was made with data from the ISBSG dataset. It collects
data from different software projects in different countries
and companies. In 2021, Anithaetal. [33] investigated
software effort estimation using ensemble techniques and
machine/deep-learning algorithms. They compared different
ensemble techniques and evaluated several stacking models.
The authors conducted experiments on multiple datasets,
including Albrecht, China, Desharnais, Kemerer, Maxwell,
Kitchenham, and Cocomo81, to evaluate the performance of
the models. Their findings suggest that the proposed random
forest stacking method outperforms SVM, decision trees, and
neural nets when applied to various datasets.

Moreover, Suresh Kumar et al. [34] proposed a robust
approach using a gradient-boosting regressor model. They
compare the performance of this model with various other
regression models, including stochastic gradient descent, K-
nearest neighbour, decision tree, bagging regressor, random
forest regressor, Ada-boost regressor, and gradient boosting
regressor. They used Cocomo81 and China datasets to
evaluate the models. Their findings demonstrated that the
gradient-boosting regressor model performs exceptionally
well.

Last but not least, Pan and Yang [35] conducted a
study on transfer learning, focusing on the relationship
between traditional machine learning and different transfer
learning settings. They classified transfer learning into three
subsetting: inductive transfer learning, transductive transfer
learning, and unsupervised transfer learning, based on the
variations in situations between the source and target domains
and tasks. Inductive transfer learning applies when the target
task differs from the source task, regardless of whether the
source and target domains are the same. In transductive
transfer learning, the source and target tasks remain the same,
while the domains differ. Lastly, in unsupervised transfer
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learning, similar to inductive transfer learning, the target
task differs from but shares a relationship with the source
task.

In 2015, Kocaguneli et al. [36] studied transfer learning
techniques in effort estimation. The authors employed a
transfer learning methodology to address both conventional
cross-company learning challenges and data set shift chal-
lenges. This demonstrates the potential benefits of integrating
research techniques from two distinct but interconnected
strands within the field of software engineering, namely
“data set shift” introduced by Turhan [37] and *cross-
company learning” proposed by Kitchenham et al. [38].
The results of their investigation challenge two prevalent
assumptions: firstly, that information obtained from one
organization is unsuitable for informing local decisions;
and secondly, that historical data within an organization
lacks relevance in the present context. The authors highlight
the significance of their findings by emphasizing the
success of their transfer learning strategies in effectively
managing data transitions, underscoring the importance
of not disregarding valuable insights derived from past
experiences.

IV. RESEARCH QUESTION

Three research questions (RQs) must be answered:
o RQ1: Which of the prior combinations in the ensemble

model could contribute to improved performance?

« RQ2: Is the ensemble model estimation more accurate
than the deep learning model?

o RQ3: Is it feasible to use the trained model to estimate
effort for recent projects? How effective is the trained
model compared to one trained based on a new dataset,
assuming both models use the same approach?

o« RQ4: What approach (EnsEffort or PytEffort) will
improve the accuracy of effort estimation? What hap-
pens if we employ transfer learning for PytEffort model?

V. RESEARCH METHODOLOGY
Our research methodology is designed to achieve four
primary goals. The methodological steps undertaken to

achieve these objectives are outlined below.
1) Develop an Ensemble Approach: The study aims to

create efficient prediction models that combine multi-
ple regression techniques for enhanced predictability

over solo models. The process includes:
« Selecting robust regression techniques, including

XGBoost, Random Forest, and HGBoost.

o Creating an ensemble model that employs a gen-
erator from these techniques as the final regressor,
with the others serving as prior generators, ensur-
ing impartiality and optimal use of the regression
techniques.

o Experimenting with different arrangements of
these techniques, such as using Random Forest as
the final regressor and XGBoost and HGBoost as

prior predictors.
2) Employ Trained Models on New Datasets: Given

potential limitations in accessing or training on new
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datasets, we propose using the robust performance
of trained models to improve effort estimation. This
involves:
« Adopting the model trained in phase 1 for use in
the second phase.
« Examining two different scenarios based on two
subsets of the second dataset.

3) Compare Ensemble and Deep Learning Approaches:

The study also aims to contrast the performance of the
ensemble approach with that of a deep learning method.
This is done by:

o Implementing transfer learning in a deep learning
model.

o Conducting preliminary assessments to compare
the performance of the transfer learning approach
with the ensemble method.

4) Apply Transfer Learning: The research further
explores the potential benefits of leveraging results
from previously trained models for improving the
performance on new datasets. This includes:

o Applying transfer learning to continue training on
a new set of databases.

o Conducting experiments on four different datasets
- Desharnais, Albrecht, Kitchenham, and China,
which share the same target feature (‘effort’) with
the ISBSG dataset.

5) Evaluate Performance: The final step involves
assessing the performance of the methods employed,
including:

o Comparing the performances in different scenar-
i0s.

o Evaluating the accuracy, error reduction, and
enhanced predictive capabilities of the methods
used.

This research methodology underscores the potential of

using ensemble approaches, deep learning, and transfer learn-
ing techniques in developing efficient prediction models.

A. ENSEMBLE APPROACH

In practice, aggregating the predictive effort estimation of
different predictors (such as regressors or classifiers) might
typically achieve better findings than the best individual
predictor. In 1990, Hansen et al. [39] claimed that employing
an ensemble of neural networks with a majority agreement
technique outperforms using a single. The ensemble is a
term to indicate a group of predictors. A method that
integrates from a group of predictive models is ensemble
learning; the ensemble learning algorithm is an ensemble
method. According to a publication [18], bagging, boosting,
and stacking are the most common ensemble methods.
David Wolpert proposed stacking [40] in 1992, taking
prior predictions as feed to determine the final prediction
(blender/meta learner). The training dataset is separated into
two subsets; the first will be used as a training dataset for
predictors. The predictions made by those predictors are
based on the second subset as inputs (blending training set) to
make the blended predictor. This guarantees the forecasts are
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“clean,” as the predictors have never observed these events
throughout training.

Based on the conclusion of Anitha et al. [33], we build
the proposed models to estimate software effort estimation
by employing a staking ensemble approach (EnsEffort).
We choose two among the random forest, extreme gradient
boosting, and histogram gradient boosting as generators, and
the rest is the final regressor.

B. RANDOM FOREST

Random Forest (RF), introduced in 2001 by Breiman [41],
is a kind of ensemble of decision trees trained via the
bagging method (or sometimes the pasting method). Several
poor models are joined to build a superior model. Each tree
categorises the attributes of a new entity. The forest chooses
the category with the most votes and averages the outputs
of the different trees. According to Mustapha et al. [30],
it outperformed several other classification models and was
also resistant to over-fitting and relatively user-friendly [42].

C. GRADIENT BOOSTING

The main idea behind boosting is to add new models to
an existing group in a logical order. Leo Breiman proposed
it [41]. Each iteration entails training a new weakly based
learner model based on the errors of the entire ensemble
previously learned. The first widely used boosting tech-
niques were entirely algorithm-driven. A gradient-descent-
based formulation of boosting approaches (gradient boosting
machines) was developed to adapt boosting methods with
the statistical framework [43], [44], [45]. The learning
method fits new models one after the other to measure the
response variable more accurately. The basic idea behind this
method is to build new base learners most similar to the
negative gradient of the loss function, which is related to the
whole ensemble. The learning process will lead to sequential
error-fitting if the error is the traditional squared error
loss.

o Extreme gradient boosting (XGBoost) is a GB ensemble
that leverages the second-order derivatives of the loss
function to determine the most accurate and efficient
base classifier [18], [46], [47]. XGBoost employs
second-order gradients, whereas gradient boosting uses
gradients to fit a new base classifier.

o Histogram Gradient Boosting (HGBoost), sometimes
known as histogram-based gradient boosting, is a
boosting ensemble that uses feature histograms to
identify the optimal splits quickly and accurately [46],
[48]. It is more efficient than gradient boosting regarding
processing speed and memory use.

D. DEEP LEARNING APPROACH

Deep learning enables computational models with several
processing layers to discover data representations with
different degrees of abstraction [49]. These techniques have
significantly advanced the state-of-the-art in many fields,
such as object detection, segmentation, and classification.
Deep learning uncovers detailed structure in enormous
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FIGURE 1. The diagram of deep learning with four fully connected layers.

data sets by utilizing the backpropagation technique to
determine how a machine’s internal parameters used to
calculate each layer’s representation from the previous layer’s
representation should be altered [50].

Figure 1 shows the flow diagram for the deep learning-
based proposed model with four fully connected layers.
Itincludes fcl, fc2, fc3, fc4. The first layer (fc1) takes an input
tensor of size six and produces an output tensor of size 32. The
subsequent layers have increasing output sizes: fc2 outputs
64 features, fc3 outputs 32 features, and fc4 outputs a single
scalar value. The forward method specifies the forward pass
of the model. It takes an input tensor x and sequentially passes
it through the defined layers. Each hidden layer contains a
nonlinear activation function applied to the previous layer’s
output. During the training phase, the weights assigned to
each neuron connection are adjusted based on the difference
between the predicted and actual outputs for each example in
the training set. The output of the last layer (fc4) is returned
as the final output of the model.

In 2016, Facebook’s AI team launched Pytorch [4],
[51]. It is an open-source platform for deep learning.
It incorporates dynamic computing, enabling more flexibility
in creating complicated structures. Figure 2 presents the
proposed model to estimate the effort estimation based on
the Pytorch platform (PytEffort). There are several steps
in this process. Firstly, the training data set is loaded into
torch.utils.data.Dataset. The samples and their related labels
are stored inside that dataset, while DatalLoader encapsulates
an iterable over Dataset to provide simple access to the
samples. Secondly, the dataset is converted to a torch.Tensor
before loading into data loader. Following that, the proposed
model is defined based on Pytorch’s nn.Module, the number
of hidden layers is identified by experimental. Last but not
least, the training loop is executed. The model parameters are
updated by looping over the training data and doing forward
and backward passes.

E. TRANSFER LEARNING APPROACH

Transfer learning is a method in machine learning designed
to enhance the effectiveness of a specific task by utilizing the
knowledge acquired while addressing a similar yet distinct
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FIGURE 2. The flow diagram of pytorch model.

problem [35], [36], [52]. This technique entails employing
a pre-existing model as a foundation for training a novel
model on a separate task. Ordinarily, the pre-trained model is
trained on an extensive dataset, and the acquired features are
utilized to initialize or refine the parameters of the new model.
As mentioned in Section III, the instance of inductive transfer
learning is when the source and target tasks are not equivalent
regardless of whether the source and target domains are the
same or not [35]. To tackle this issue, we might replace
the last layer of the pre-trained model with a new layer
that matches the size of the input features in different
datasets. Subsequently, only this last layer is trained on the
respective datasets, while keeping the rest of the model’s
parameters frozen. The details of those steps are presented as
follows:

o Pre-trained model loading: The initial step involves
loading a pre-trained model that has been trained on a big
dataset. The best-performing model from the training
process is selected to serve as the pre-trained model for
further utilization.

o Freezing layers except the last one: In this step, all layers
of the pre-trained model, except for the last layer, are
frozen. By setting the requires_grad attribute of each
parameter to False, the learned features of the pre-trained
model are preserved. This allows for fine-tuning only the
last layer to adapt it to the new task.

o New optimizer creation: A new optimizer is created
specifically for the last layer of the model, which was
set to require gradients in the previous step. In this case,
we choose an optimizer as the same optimizer used for
the pre-trained model.

o Continuing model training: The model is further trained
using a new dataset through the standard PyTorch
training loop. In each iteration, the input is passed
through the model, the loss is calculated, gradients
are computed, and the weights are updated using
the optimizer. This training process is repeated for a
specific number of epochs or until the model reaches
convergence.
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TABLE 4. The brief information of five datasets: ISBSG (2020),
Desharnais, Albrecht, Kitchenham, and China.

TABLE 5. Data Description - Dataset 1 (ranging from 1998 to 2000).

Datasets Source No.Records| No.Features| Unit Effort
ISBSG(2020) | ISBSG [25] 9,592 251 person-hours
Desharnais Promise [53] | 81 12 person-hours
Albrecht Promise [21] 24 8 person-hours
Kitchenham Promise [54] 145 10 person-hours
China Zenodo [55] 499 19 person-hours

VI. EXPERIMENTAL DESIGN

A. DATA DESCRIPTION

This research draws its observational projects from the
ISBSG projects repository (version R1/2020) [25]. The
dataset consists of 9,592 finished software projects, with
251 recorded characteristics. These characteristics are cate-
gorized into subsets such as rating, year, development type,
and size. The sizing team represents the AFP and VAF. The
Size group stores data about sizes, and Effort is divided
into Summary Work Effort (SWE) and Normalized Work
Effort (NWE). The Rating section uses letter grades (A
through D) to rate the quality of a product. Other main
types of information, such as industry sector, group size, and
development type, are also recorded.

Additionally, to expand the scope of the study, four
additional datasets (Desharnais, Albrecht, Kitchenham, and
China) are incorporated to examine the necessity of using
a pre-trained model. These datasets share the “‘effort”
feature with the ISBSG dataset and are included to validate
the potential improvement in prediction performance when
using a pre-trained model on a similar dataset. The brief
information on these datasets is presented in Table 4.

The primary objective of this inclusion is to thoroughly
examine the necessity of using a pre-trained model (answer
for RQ4). The ISBSG and those datasets are not equivalent.
However, they share the same ‘effort’ feature, which indicates
a direct relationship between the target tasks and the source
task [35]. Thus, we might retrain the last layer of the pre-
trained model (originally trained on the ISBSG dataset) on
those datasets. This study aims to validate whether training
a pre-trained model on a similar dataset would improve
prediction performance compared to using the pre-trained
model alone.

B. DATA PROCESSING
The ISBSG dataset is processed according to the following
standards:

o Only projects with high-quality ratings (A and B) are
considered, following recommendations from ISBSG
and other publications [4], [25]. This reduces the
number of projects in the dataset to 8,619, excluding
projects with insufficient legitimacy or a combination of
variables [56].

o Only the methods developed by IFPUG for counting
Function Point Analysis (FPA) are used in this investiga-
tion. Other methods such as MarkIll, NESMA, COSMIC,
and FISMA are ignored, resulting in 6,365 records.
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SWE EI EO EQ ILF EIF
Training
Data
(70%)
Mean 5697.91 192.87 154.500  104.56 146.37 47.16
Std 5863.78 254.53 191.86 144.72 175.64 64.83
Minimum  529.00 3.00 4.00 3.00 7.00 5.00
Q1 1700.00 45.25 37.250 24.50 45.00 10.00
Q2 3634.50 106.50 84.50 57.00 80.00 25.00
Q3 7738.25 237.00 164.75 132.00 167.50 55.00
Maximum 27000.00  2221.00  1216.00 893.00 1137.000  572.00
Testing
Data
(30%)
Mean 6989.08 220.38 136.70 129.44 223.63 39.25
Std 6359.29 301.62 169.94  205.34 326.12 48.60
Minimum 749.00 6.00 4.00 3.00 21.00 5.00
Q1 2217.50 33.50 25.00 23.50 37.00 10.00
Q2 4389.00 78.00 67.00 48.00 91.00 25.00
Q3 11264.50  288.50 172.50 124.00 284.00 53.00
Maximum 22960.00 1184.00  616.00  952.00 1252.00  300.00
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FIGURE 3. The number of selected projects from 1989 to 2019.

o The study focuses on specific variables such as SWE
(person-hours), EI, EO, EQ, ILF, ELF (number of
function points), and industry sector (IS), as pro-
posed by Hoc et al. [4]. Projects not falling into these
categories are excluded, leaving 1,515 projects for
observation. The industry sector is classified into sixteen
categories: Banking, Communication, Construction,
Defence, Education, Electronics & Computers, Finan-
cial, Government, Insurance, Manufacturing, Medical
Health Care, Mining, Professional Services, Service
Industry, Utilities, and Wholesale Retail.

o The interquartile range (IQR) method is used to
eliminate extreme cases. Values of SWE, EI, EO, EQ,
ILF, and ELF that fall outside the range of Q1 (first
quartile) - 1.5 * IQR to Q3 (third quartile) + 1.5 * IQR
may be removed [57].

The selected dataset is divided into two groups: dataset 1,
which includes completed projects from 1989 to 2000,
accounting for two-thirds of the total dataset, and
dataset 2, which includes completed projects after 2000
(from 2001 to 2019), accounting for one-third of the total
dataset. Data descriptions for dataset 1 and dataset 2 are
provided in Tables 5 and 6. Figure 3 shows the number of
selected projects from 1989 to 2019.

Furthermore, the Pearson correlation method [58] was
employed in this study to identify the attributes suitable in the
transfer learning model (using a threshold greater than 0.5 to
determine the strength of associations). A careful selection
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TABLE 6. Data Description - Dataset 2 (ranging from 2001 to 2019).

SWE EI EO EQ ILF EIF
Training
Data
(70%)
Mean 5299.93 153.39 137.60  123.96 174.39 83.03
Std 3900.97 195.65 154.20 14947 191.83 113.28
Minimum  679.00 3.00 4.00 3.00 7.00 5.00
Q1 2165.250 42.00 42.00 21.50 55.50 20.00
Q2 4716.50 89.00 69.50 87.00 99.50 43.50
Q3 7104.75 186.50 175.25  159.25 220.00 86.250
Maximum 18600.00  1327.00  932.00  797.00 995.00 644.00
Testing
Data
30%)
Mean 6422.73 122.04 114.69 136.78 98.43 112.39
Std 5054.07 148.23 15476 170.01  71.883635 213.43
Minimum 742.00 6.00 7.00 3.00 10.00 5.00
Q1 2983.00 43.00 34.00 36.50 40.00 31.00
Q2 4918.00 62.00 67.00 76.00 80.00 45.00
Q3 7821.50 129.50 129.00  138.50 151.50 87.00
Maximum 18825.00  584.00  698.00  653.00 231.00 977.00

TABLE 7. Lists used input and out variables among studied datasets.

Input Output
Datasets Numerical Categorical
ISBSG EL EO, EQ, EIF, ILF 1S SWE
Desharnais Length, Transactions, Entities, - Effort
PointsNonAdjust, PointsAjust
Albrecht Input, Output, Inquiry, File, - Effort
FPAdj, RawFPCount, AdjFP
Kitchenham duration, AFP, Estimate - Effort
China AFP, Input, Output - Effort
Enquiry, File, Added

process was conducted to identify a subset of attributes that
exhibited high correlation coefficients. In the case of the
Desharnais dataset, the attributes ‘Length’, ‘Transactions’,
‘Entities’, ‘PointsNonAdjust’, and ‘PointsAjust’ were chosen
due to their pronounced correlation. Similarly, for the
Albrecht dataset, the attributes ‘Input’, ‘Output’, ‘Inquiry’,
‘File’, ‘FPAd;j’, ‘RawFPCount’, and ‘AdjFP’ were identified
as having significant correlation. Likewise, the China dataset
highlighted ‘AFP’, ‘Input’, ‘Output’, ‘Enquiry’, ‘File’, and
‘Added’ as highly correlated attributes. Finally, the Kitchen-
ham dataset revealed ‘duration’, ‘AFP’, and ‘Estimate’ as
attributes with noteworthy correlations. As a result, the list
of input/output variables used for this paper is mentioned in
Table 7.

C. DATA PRE-PROCESSING

Data pre-processing techniques are applied to ensure the
dataset is in a suitable format for analysis. The following steps
are performed:

o One-hot encoding is used to transform the IS into a
numerical format. Each possible category is represented
by its own dummy variable. For example, if a project
belongs to the “Banking” category, the corresponding
dummy variable for “Banking” will be set to 1, while
the dummy variable for others will be set to 0. This
binary representation allows machine learning models
to handle categorical variables effectively. Table 8
presents an example of one-hot encoding for software
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TABLE 8. An example of transforming the IS into a numerical format for
Banking and Communication.

IS Banking | Communication
Banking 1 0
Communication
Construction
Defence
Education
Electronics Computers
Financial
Government
Insurance
Manufacturing
Medical Health Care
Mining
Professional Services
Service Industry
Utilities
Wholesale Retail

(=] fenl o] en] fen] fen] Jen] Jen] oo Jen] fon] en] fen} Jan] Jan]
(=] fe o] el fen] fen] fen] Jen] oo Nen] o] ] e} Rl Fo

projects that belong to “Banking/Communication”.
In this binary representation, only the element corre-
sponding to the ‘“Banking/Communication” category
is set to 1, indicating that the software project
belongs to the ‘“Banking/Communication” industry.
This representation allows machine learning models
to handle categorical variables and effectively learn
patterns and relationships between different industry
categories.

o Max-min normalization is applied to address the wide
range of scales used by the dataset’s features. The
formula used for normalization is:

x; — min(X)

X; = . (%)
max(X) — min(X)

This ensures that all features contribute equally
to the analysis and are on a similar scale. The
sklearn.preprocessing.MinMaxScaler ~ function  in
Python is used for this normalization process.

D. PERFORMANCE METRICS

The Magnitude of Relative Error (MRE) (6) and Mean
Magnitude of Relative Error (MMRE) (7) proposed by [59]
are common indicators to measure the performance of effort
estimation. Despite the fact that Myrtveit, Stensrud, and
Shepperd believe these measures have some significant
drawbacks because of the widespread usage of MMRE, they
are still frequently employed in the validation of real effort
estimation [60], [61], [62]. We will use MRE and MMRE
to validate effort estimation accuracy in this research. Other
metrics used to assess effort estimation accuracy include
PRED(x) (8), MAE (9), and standardised accuracy (SA) [62]
(10), Mean Balance Relative Error (MBRE) (11), and Mean
Inverted Balance Relative Error (MIBRE) (12). Furthermore,
this study includes helpful information on MMRE and PRED
(0.25) [63], those are, sigren (14), sigrign: (15), and sig (16).
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Sign values are determined using (13).

MRE; — lyi — il ©)
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PRED(x) = — - 8
2 N ; { 0 otherwise ®)
N PR— A.
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N
MAE
SA=1— ——— (10)
MAErguess
MBRE = l i M (11)
n = min(y, yi)
MIBRE = i i3l (12)
Lif >
sign(i, yi) =10 ify; =y (13)
-1 yi< yi
sigLeni(y, ) = N(N P ZZszgn(yz,yz (14)
) N k
SigRight (Y, y) = m Z Zsign(yN_iH, IN—it+1)
k=1 i=1
(15)
sig(y, §) = Sigrefr (v, 3) + SigRight (v, ) (16)

2

where y; is the predicted and y; is the i-th observed value.
MAE g5 1s the MAE of a large number of random guesses
(e.g., 1000 runs) [62]. MAE 4,ess Will converge on simply
using the sample mean after a number of runs [64].

E. FLOW DIAGRAM

Figure 4 presents the flow diagram to build the EnsEffort
model. As can be seen, there are two major phases. First,
two of three models (XGBoost, HGBoost, RF) are chosen
as generators, namely models 1 and 2, and the rest is the
final regressor. 70% of dataset 1 are fed into models 1 and 2.
Then, those generate predictions 1, and 2, respectively. Those
predictions are combined into two feature sets, which are then
used as inputs for the final regressor. The final predictions
are then evaluated for performance using a performance
evaluation method. The combination between XGBoost,
HGBoost, and RF is presented in Table 9. That combination
leads to 3 groups of study (group 1, group 2, and group 3).
This combination aims to find the best-proposed model for
the EnsEffort.

In the next step, we will assess the performance of
EnsEffort and PytEffort in several scenarios. There are three
scenarios to compare the performance of models, named
Case 1, Case 2 and Case 3, where:
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TABLE 9. The combination of three estimators.

Group Model 1 Model 2 Final Regressor
Group1  XGBoost HGBoost RF
Group2  XGBoost RF HGBoost
Group3  HGBoost RF XGBoost

fffffffffffffffffffff Ensemble Effort Estimation S
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i

i £o2 fe3 \:
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! [ Replace the last layer with a new ]
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FIGURE 5. A scenario consisting of three cases (Case 1, Case 2, Case 3)
aimed at evaluating the effectiveness of the trained model.

o Case 1: Using EnsEffort and PytEffort models trained
based on dataset 1 to validate the performance of effort
estimation based on 30% of dataset 2.

o Case 2: Using EnsEffort and PytEffort models, train
them based on 70% of dataset 2 and validate the
performance of effort estimation based on 30% of
dataset 2.

o Case 3: This is a transfer learning approach (see
Figure 5). Using PytEffort models trained by dataset
1 are called pre-trained models, and continue to train
based on 70% of dataset 2 and validate the performance
of effort estimation based on 30% of dataset 2.

The settings for XGBoost, HGBoost, and RF are deter-

mined by experimentation. The learning rate selected is 0.1;
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further parameters such asA n_estimators and max_depth are
determined through experimental. In PytEffort, every neuron
gathers input from the previous layer’s neuron. It generates
output delivered to the following layer by employing an
activation function to the weighted sum of its inputs. On the
one hand, we adopt the rectified linear unit (ReLU) as the
activation function. According to Jason Brownlee, ReLL.U [65]
is easy to compute and consumes fewer computational
resources. It also eliminates the problem of disappearing
gradients, allowing models to train rapidly and increase
performance [66]. On the other hand, optimization aims to
discover the optimum set of parameters for a model that
minimizes the loss function, which is the difference between
the expected and actual outputs of the model. As stated in
the paper [67], RMSProp and Adam use adaptive moment
estimates to improve outcomes between Adam, RMSProp,
Adaptive Gradient Algorithm (Adagrad), and a more robust
version of Adagrad (Adadelta).

The EnsEffort will be compared with a PytEffort model
and a baseline model as described in Equation (4) (FPA-
IFPUG). A PytEffort model is installed based on the support
of the Pytorch library [51]. The dataloader supported by
torch.utils.data is used with a batch size of 64. As mentioned
in the publication [4], the Adam optimizer is used with a
learning rate of 0.01, and the loss function is a mean squared
error (nn.MSELoss). Softmax with one dimension is used as
the activation function for the last layer. In both approaches,
cross-validation with 10-folds is used.

Figure 5 presents a scenario consisting of three cases
(Case 1, Case 2, Case 3) aimed at evaluating the effectiveness
of the trained model. The purpose is to assess whether the
trained model might be directly used to make predictions on
arelatively independent dataset compared to the data used for
training or if it is necessary to continue training when using it
to predict different datasets. To accomplish this, I will use the
entire ISBSG dataset by incorporating Dataset 1 and Dataset
2 as training data for the pre-trained model. This approach
allows me to leverage a broader range of data and increase
the model’s ability to generalize to different datasets.

The architecture of the scenarios involves three distinct
cases for validating and building performance models.
In each case, the four datasets, namely Albrecht, Desharnais,
Kitchenham, and China, are divided into two parts. 70% of
each dataset is allocated for training the models, while the
remaining 30% is used for validation. In Case 1, a pre-trained
model developed using the ISBSG dataset is loaded. This
model is then validated using the respective validation subsets
of the four datasets. Case 2 focuses on building a new model
using the training subsets (70%) of the four datasets, followed
by its validation using the corresponding validation subsets
(30%).

Finally, in Case 3, a pre-trained model is loaded and
further trained using the training subsets (70%) of the four
datasets. As mentioned in Sections III, and V-E, due to
the pre-trained model was initially built using the ISBSG
dataset, which has different input features compared to
the other datasets (Desharnais, Albrecht, Kitchenham, and
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China), we substitute the final layer of the pre-trained
model with a freshly added layer designed to correspond
with the dimensions of the input characteristics present in
those datasets. Subsequently, only this last layer is trained
on the respective datasets, while keeping the rest of the
model’s parameters frozen. This approach allows the pre-
trained model to learn the mapping between the inputs of
these datasets and the output. The resulting model is then
validated using the respective validation subsets (30%). This
architecture ensures that the models are trained on a majority
of the data while still being evaluated on a separate portion,
providing a reliable assessment of their performance and
generalization capabilities.

F. VALIDITY EVALUATION

This study used a “‘validity assessment” method to examine
the proposed models. This is not a good way to evaluate
something, and it could make the experiment’s results less
reliable. In this case, we are discussing the procedure for
validating statistical samples. To deal with this validity
problem and ensure the proposed technique is thoroughly
tested, a 10-fold cross-validation strategy was adopted. One
further kind of assessment that could influence the reliability
of the results is the choice of parameters in the PytEffort,
EnsEffort. In this investigation, both the EnsEffort parameters
and the PytEffort parameters found by trying things out are
used.

External validity, or the question of whether the results
can be used in a different setting, is at the heart of the
research questions for this paper. ISBSG 2020 (release R1),
Albrecht, Desharnais, Kitchenham and China were used to
assess the accuracy of the predictions. Evaluation measures
are used to determine how effective the proposed approach
is. Evaluation measures such as MBRE, MIBRE, MAE, SA,
and MMRE, PRED(0.25) with their useful information were
utilized, as previously reported [4], [S9], [62], [63]. Because
of this, the results of the experiments in this research can be
applied to a much larger group of projects.

VII. RESULTS AND DISCUSSION

Figure 6 illustrates the charts of MAE, MBRE, MIBE,
SA, MMRE, and PRED(0.25) among three regressions
(XGBoost, HGBoost, and RF). As can be seen, SA and
PRED(0.25) attained from XGBoost reached the maximum,
0.49 and 0.45, respectively (see Table 10), while its MAE
achieved the minimum (3147.78) compared with those gained
from HGBoost, and RF. Moreover, p-values computed by
Mann-Whitney U-Test [68] between XGBoost, HGBoost,
and RF are less than 0.05. These results demonstrate that
XGBoost yields the best performance compared with the
others.

RQ1: Which of the prior combinations in the ensemble
model could contribute to improved performance?

The performance of three groups (groups 1, 2, 3) is
presented in Table 11 and Figure 7. As can be seen, the
values of MBRE, MIBRE, MAE, and MMRE obtained from
group | reach the minimum, while its PRED(0.25) and SA
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FIGURE 6. The statistical results between XGBoost, HGBoost, RF.

TABLE 10. The performance metrics obtained from XGBoost, HGBoost,
and RF.

XGBoost HGBoost RF
R-Square 0.69 0.51 0.67
MMRE 2.177 2.055 1.712
PRED(0.25) 0.450 0.170 0.298
SigLeft 0.078 0.078 0.071
SigRight -0.546 -0.376 -0.539
sig -0.234 -0.149 -0.234
MAE 3147.78 4236.12 3147.78
SA 0.49 0.26 0.42
MBRE 0.090 0.129 0.102
MIBRE 0.079 0.109 0.088
p-value (Mann-Whitney U-test)
XGBoost vs. HGBoost, RF - 0.00 0.00
HGBoost vs. XGBoost, RF 0.00 - 0.00
RF vs. XGBoost, HGBoost, RF 0.00 0.00 -

get the maximum compared with group 2 and group 3.
Furthermore, the p-value obtained from group 1 compared
with groups 2 and 3 is smaller than 0.05; it is strong evidence
to conclude that the performance of group 1 is better than
groups 2 and 3. By contrast, there is no solid evidence for
concluding whether group 2 is better than group 3 due to its
p-value equal to 0.05. The results may answer RQ1: when
XGBoost and HGBoost were used as generators, and RF
was used as the final regressor, the accuracy was the best
among the three groups. The findings also show that models
would be more accurate if they used ensemble approaches
instead of the single method (XGBoost, HGBoost, RF)
in terms of FPA. In the future, we recommend using the
ensemble technique with RF as the final regressor for effort
estimation.

RQ2: Is the ensemble model estimation more accurate
than the deep learning model?

Furthermore, we also study the accuracy of the EnsEf-
fort/Group 1 compared with the PytEffort. As seen
in Table 11, PRED(0.25), SA, MAE, MBRE, and
MIBRE obtained from EnsEffort/Group 1 are better than
those obtained from PytEffort. However, the MMRE-
EnsEffort/Group 1 is slightly higher than the MMRE-
PytEffort. Besides that, the absolute valuable information
related to MMRE and PRED(0.25) (sigrefi, SigRights Sig)
attained from PytEffort might be slightly smaller than
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that from EnsEffort/Group 1. As mentioned in [63],
PytEffort might be more stable than EnsEffort/Group 1.
Additionally, the p-value computed by Mann-Whitney U-
test between EnsEffort/Group 1 and PytEffort is less
than 0.05, demonstrating that there is a statistically
significant difference in the medians between the two
methodologies.

RQ3: Is it feasible to use the trained model to estimate
effort for recent projects? How effective is the trained
model compared to one trained based on a new dataset,
assuming both models use the same approach?

In the next step, we use trained models that were introduced
with the oldest dataset to estimate the SDEE for new data
sets. This is a crucial step in figuring out if a model that has
already been trained might be used to estimate the effort for a
new dataset (Case 1). How accurate is the model that has been
trained compared to the model that was made using only the
new data (Case 2)? If a model that has already been trained
gives good results, it is helpful to train a model using a large
set of historical data, and we will use that model to make
predictions in the future.

Table 12 shows the performance of EnsEffort/Group 1 and
PytEffort acquired based on Case 1 against Case 2. As can be
seen, both approaches outperform FPA-IFPUG. PRED(0.25),
SA obtained from two methods reach the maximum, and the
other criteria reach the minimum compared with the FPA-
IFPUG. This finding concludes that we might even use the
trained model (Case 1) to estimate effort estimation for a new
dataset.

However, the statistical results (MMRE, PRED(0.25),
MAE, MBRE, MIBRE, SA) obtained from the EnsEf-
fort/Group1 in Case 1 produce better outcomes than those in
Case 2. The finding may be comparable to the conclusion
reached by Anitha et al. [33]. However, the sig-EnsEffort
value attained from Case 1 shows that the predicted effort
might be less stable than in Case 2 because sig-EnsEffort-
Case 2 is more significant than sig-EnsEffort-Case 1. This
means that a model should be trained when predicting an
entirely new dataset to get higher performance. In other
words, modifying the trained model before making the
prediction might yield better outcomes.
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TABLE 11. The performance metrics obtained from Group 3.

EnsEffort/Group 1 EnsEffort/Group 2 EnsEffort/Group 3 PytEffort
R-Square 0.856 0.405 0.601 0.71
MMRE 1.233 1.720 1.354 1.209
PRED(0.25) 0.574 0.149 0.260 0.540
Sigreft 0.372 0.183 0.401 -0.082
519Right 0.011 -0.395 -0.188 -0.270
sig 0.191 -0.106 0.106 -0.175
MAE 2528.88 4458.23 3680.85 2694.96
SA 0.63 0.21 0.38 0.55
MBRE 0.065 0.137 0.106 0.086
MIBRE 0.058 0.113 0.090 0.073
p-value (Mann-Whitney U-test)
Group 1 vs. Group 2, 3, and PytEffort - 0.00 0.00 0.00
Group 2 vs. Group 1, 3 0.00 - 0.05 0.00
Group 3 vs. Group 2, 3 0.00 0.05 - 0.00
PytEffort vs. Group 1, Group 2, 3 0.00 0.00 0.00 -
TABLE 12. The performance metrics obtained from EnsEffort/Group 1, PytEffort vs FPA-IFPUG.
MMRE  PRED(0.25)  sigreft SigRight sig MAE SA MBRE MIBRE
EnsEffort/Group 1
Case 1 1.017 0.348 0.145 0.290 0.217  3761.86  0.18 0.138 0.112
Case 2 1.558 0.304 -0.029 0.290 0.130 387035  0.15 0.143 0.118
PytEffort
Case 1 0.735 0.247 -0.289 -0.206 -0.247 452134  0.19 0.171 0.135
Case 2 1.10 0.323 -0.468 0.189 -0.140 421393  0.21 0.152 0.122
Case 3 1.04 0.348 -0.167 -0.094 -0.130  3557.14  0.22 0.133 0.107
FPA-IFPUG
1.613 0.0 -0.601 -0.529 -0.565 562441 -033  0.247 0.182

RQ4: What approach (EnsEffort or PytEffort) will
improve the accuracy of effort estimation? What happens
if we employ transfer learning for PytEffort model?

As shown in Table 12, the MBRE, MIBRE and MAE
values obtained from EnsEffort/Groupl may be better than
those obtained from PytEffort. In contrast, the remaining
values show that PytEffort gives more accurate prediction
results. Due to the incomplete evaluation criteria, it is difficult
to conclude which approach is better between EnsEffort
and PytEffort. However, transfer learning techniques in
deep learning technologies successfully handle information
disparities across datasets and improve the model’s prediction
performance for the current data [69]. Using the transfer
learning advantage, we suggest an additional transfer learning
(Case 3) and compare deep learning outcomes using the
transfer technique to the ensemble approach in this study.

As shown in Table 12, MMRE, MAE, MBRE, and MIBRE
obtained from Case 3 are significantly smaller than those
obtained from EnsEffort/Group 1 in both cases; meanwhile,
SA and PRED(0.25) reach the maximum. In addition, sta-
tistical values (p-values) obtained from PytEffort/Case 3 are
significantly less than 0.05 compared with EnsEffort/Group
1 (see Table 13). It reveals that employing transfer learning
in the deep learning model might outperform than EnsEffort
approach.

To answer the question “What happens if we employ
transfer learning for the PytEffort model?”’, we will examine
the results in Table 14. As can be seen, comparing Case 3 with
Case 2 and Case 1 across the four datasets, we observe
some notable trends. In general, Case 3 consistently out-
performs Case 2 and Case 1 regarding various performance
metrics. Firstly, considering the MMRE and MAE metrics,
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TABLE 13. The p-values results obtained from the Mann-Whitney U-test
in two cases based on EnsEffort/Group 1, PytEffort, and FPA-IFPUG.

EnsEffort FPA-
Casel Case2 IFPUG

EnsEffort/Groupl
Case 1 - 0.86 0.00
Case 2 0.86 - 0.00
PytEffort
Case 1 0.02 0.11 0.00
Case 2 0.01 0.02 0.00
Case 3 0.00 0.02 0.00

Case 3 consistently achieves lower values than the other
cases. It suggests that utilizing a pre-trained model and
continuing training on additional datasets in Case 3 leads
to a more accurate performance model than building a
new model in Case 2 or using only the ISBSG dataset
in Case 1. Secondly, when examining the PRED(0.25),
Case 3 consistently achieves higher values than Cases 1 and 2.
It indicates that leveraging a pre-trained model and further
fine-tuning it with additional data in Case 3 enhances the
predictive capability of the model.

Moreover, Table 15 shows the p-values obtained from the
Mann-Whitney U test for each pairwise comparison between
the cases within each dataset. These results might indicate
that the performance metrics in those cases are statistically
distinct.

VIIl. THREATS TO VALIDITY

Internal threats. In our view, internal validity and the ability
to make inferences about the optimal parameter setting for
EnsEffort and PytEffort estimates pose the most significant
dangers. Appropriate parameter selection is a potential
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FIGURE 7. The statistical results between Group 1, 2, and 3.

TABLE 14. The performance metrics obtained from PyDL in three cases
(case 1, 2, and 3) based on Albrecht, Desharnais, Kitchenham and China
datasets.

MMRE PRED(0.25) MAE SA  MBRE MIBRE
Albrecht
Case 1 560.53 0.00 8143.68 0.00 574.64 6.48
Case 2 0.31 0.80 1.44 0.92 0.32 0.19
Case 3 0.08 0.91 0.56 0.96 0.09 0.07
Desharnais
Case 1 0.55 0.25 323226 0.15 0.98 0.41
Case 2 0.29 0.68 1245.51 0.67 0.33 0.19
Case 3 0.21 0.81 1023.66  0.73 0.23 0.16
Kitchenham
Case 1 33.58  0.00 65306.69  0.00 33.61 0.92
Case 2 0.61 0.53 547.89 0.60 0.64 0.31
Case 3 0.49 0.61 486.17 0.65 0.52 0.24
China
Case 1 1.20 0.18 2769.88 0.24 2.34 0.68
Case 2 0.76 0.57 1074.54  0.75 0.81 0.38
Case 3 0.75 0.57 530.15 0.87 0.79 0.29

TABLE 15. The p-value obtained from the Mann-Whitney U-test in
cases 1, 2, and 3 on the Albrecht, Desharnais, Kitchenham, and China
datasets.

Datasets Case 1 Case2 Case3
Albrecht

Case 1 - 0.00 0.00
Case 2 0.00 - 0.00
Case 3 0.00 0.00 -
Desharnais

Case 1 - 0.02 0.02
Case 2 0.02 - 0.03
Case 3 0.02 0.03 -
Kitchenham

Case 1 - 0.00 0.00
Case 2 0.00 - 0.04
Case 3 0.00 0.04 -
China

Case 1 - 0.00 0.00
Case 2 0.00 - 0.03
Case 3 0.00 0.03 -

danger to internal validity. No precise guidelines exist for
selecting these parameters for each dataset.

Although it is commonly accepted that suitable parameters
significantly influence identifying excellent fitness models,
we used experiments to determine the parameter values for
deep learning and proposed models in this work. We feel
this choice is reasonable despite its time-consuming nature.
Although the efficacy of the performance measure employed
as the preventive criteria has been underlined, absolute
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certainty in this respect has been questioned, and we are
obliged to depend on conventional performance measures;
MMRE, MBRE, MIBRE,PRED(0.25), MAE, and SA, and
the useful information related to MMRE, PRED(0.25) [4],
[59], [62], [63]. We do not consider this a problem since
our research was driven by prior studies that employed
MMRE, MBRE, MIBRE, PRED(0.25), MAE, and SA as
optimization criteria. We used 10-fold cross-validation to
compare different adaption strategies. The primary reason
is because 10-fold cross-validation has been used in prior
research and is suggested by [4], [26], and [27] for comparing
effort estimate models.

External threats. The ISBSG dataset 2020, Desharnais,
Albrecht, Kitchenham, and China were used. In addition,
we consider that certain datasets are too old for estimating
software effort estimates since they reflect diverse software
development methodologies and technologies.

IX. CONCLUSION

This study aims to develop prediction models using an
ensemble approach. This is expected to improve the model’s
efficiency over the solo model. This paper’s regression
methods (XGBoost, RF, and HGBoost) offer good pre-
dictability. A combination of regression models is provided
to ensure impartiality and accomplish the best choice of the
regression techniques participating in the technical ensemble.
A generator is chosen as the final regressor, and the others are
selected as the prior generators. The generators are blended
using the stacking method. As mentioned in the section
above, group 1, where Random Forest is the final regressor
while XGBoost and HGBoost are the prior predictions, might
outperform the two other combined techniques based on
dataset 1.

Furthermore, using the robust performance of the trained
model to improve the effort estimation on a recent dataset
might be a fantastic approach. It might be employed when
the amount of new data sets required to train the model
is insufficient, or we can not be privileged to access those
datasets [36]. We adopted the model introduced in Phase 1 as
the trained model for the second phase to clarify this claim.
In this phase, we studied two scenarios (Case 1, Case 2) based
on two subsets of dataset 2, as presented in section V-D.
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The second goal is to compare the performance of effort
estimation obtained from the ensemble against that obtained
from the deep learning method. The findings produced in
Cases 1 and 2 do not evaluate the strength of the deep learning
approach compared to the ensemble method. However,
we continue to explore by implementing transfer learning
in a deep learning model. As a result, the transfer learning
approach outperforms the ensemble method. In the future,
we might inherit the best results from a previously trained
model and apply transfer learning to continuously improve
the model’s performance based on the new dataset. It is the
process of using the results of models that have already been
trained on a specific set of databases to continue training on
a new set of databases [36].

To be more specific, the results were experimentally val-
idated on four datasets: Desharnais, Albrecht, Kitchenham,
and China. Those datasets have a relationship with the
ISBSG because they have the same target (‘effort’ feature).
Notably, Case 3 exhibited superior performance compared
to Cases 1 and 2, highlighting the advantages of utilizing
a pre-trained model and further training it on additional
datasets. This approach significantly improved accuracy,
reduced errors, and enhanced predictive capabilities. These
findings emphasize the importance of transfer learning
and the incorporation of domain-specific knowledge from
existing models to enhance the performance of new models.

Limitation These findings are based on limited data,
which may not represent all possible scenarios. A trained
model development should usually be done on a larger
dataset. We will endeavour to collect additional data in the
future to ensure data diversity.
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