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ABSTRACT Power quality disturbances (PQDs) in modern electrical power systems, caused by the
integration of nonlinear power electronic devices and erratic distributed generation (DG), lead to
interruptions and significant energy losses for end users. However, conventional methods for PQDs
classification face challenges in dealing with noise interference and feature selection. To address these
challenges, this research paper proposes a novel approach that combines the stockwell transform (ST) with an
improved grey wolf optimization-based kernel extreme learning machine to enhance classification accuracy.
The stockwell transform is utilized to extract meaningful features from the power quality (PQ) signals, which
are subsequently input into the kernel extreme learning machine (KELM). Furthermore, the parameters of
the KELMmodel are optimized using the improved grey wolf optimization (IGWO) approach to improve the
accuracy of classification. To evaluate the performance of the proposed method, real-time implementation
is considered by incorporating PQDs data with signal-to-noise ratios (SNR) of 20 dB, 30 dB, and 40 dB
into the original synthetic signals. Multiple noise conditions are simulated to assess the proposed model
ability to identify and classify disturbance signals. The results demonstrate a detection accuracy of 99.76%
under noiseless conditions, indicating the model’s high accuracy. Moreover, the proposed method exhibits
robustness to noise, achieving accuracies of 98.86%, 98.32%, and 97.3% at SNR levels of 40 dB, 30 dB, and
20 dB, respectively. In the end, this work has performed a comparative study with other previously published
work. Compared with other classification methods, the algorithm proposed in this paper has higher accuracy,
and it is an efficient and feasible classification method.

INDEX TERMS Power quality disturbances, stockwell transform, improved grey wolf optimization, kernel
extreme learning machine, decision tree, confusion matrix.

ABBREVIATIONS
AI Artificial intelligence.
DAG Directed acyclic graph.
DG Distributed generation.
DRST Double resolution S-transform.
DRST Double resolution S-transform.
DT Decision tree.
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EEMD Ensemble empirical mode decomposition.
EMD Empirical mode decomposition.
EWT Empirical wavelet transform.
FFT Fast fourier transform.
FRFT Fractional fourier transform.
FST Fast S-transform.
FT Fourier transform.
HHT Hilbert-haung transform.
HHT Hilbert huang transform.
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HT Hilbert transform.
IEWT Improved empirical wavelet transform.
IGWO Improved grey wolf optimization.
IMFs Intrinsic mode functions.
KELM Kernel extreme learning machine.
KF Kalman filter.
KNN K-nearest neighbour.
PQ Power quality.
PQDs Power quality disturbances.
RER Renewable energy resources.
RKELM Reduced kernel- extreme learning machine.
SD Standard deviation.
ST S-transform.
STF Strong tracking filter.
STFT Short-time fourier transform.
SVM Support vector machine.
VMD Variational mode decomposition.
VMD Variational mode decomposition.
WBELM Weighted bidirectional-extreme learning

machine.
WGO Wild goat optimization.
WPT Wavelet packet transform.
WT Wavelet transform.

I. INTRODUCTION
A. MOTIVATION AND INCITEMENT
Power quality is one of the biggest problems in modern
power systems. The rapid growth and development of
industries such as computing, telecommunications, and
electronics manufacturing have led to increased utilization
of power electronic equipment, which serves as a primary
source of power quality disturbances (PQDs). Power quality
disturbances can also result from the increasing integration of
distributed generation (DG), as well as from the widespread
use of nonlinear loads, faults in the power system, lightning
strikes, switching operations of transformers and capacitors,
and so on [1], [2]. The detrimental impacts of poor power
quality (PQ) are important and include equipment failures,
shortened device lifespans, and higher maintenance costs.
Conversely, enhancing power quality can yield several advan-
tages, including increased equipment lifespan, improved
energy efficiency, and enhanced safety within the electrical
system [3]. Addressing these PQ challenges has become
imperative to ensure the reliable and efficient operation of
power systemwhile mitigating the detrimental effects on end-
users and electrical infrastructure. As a result, researchers
have been working to develop novel approaches to PQ
monitoring and analysis and to enhance the quality of power
in modern electrical networks.

Detecting and classifying PQDs is a key part of making
electrical power system more reliable, efficient, and stable
while reducing downtime and maintenance costs. Recent
research has emphasised the significance of PQ analysis in
enhancing power system performance. With advancements in
sensor technology and data analytics, real-time monitoring

of PQDs has become more feasible. Several methods and
technologies, such as deep learning (DL) [4], machine learn-
ing (ML) [5], and the internet of things (IoT) [6], have been
proposed for power quality research. To detect and classify
PQ disturbance, a range of techniques have been developed,
including time-domain analysis, frequency-domain analysis,
statistical methods, and artificial intelligence (AI) techniques.
Time-domain techniques focus on analyzing waveforms
in the time domain, while frequency-domain techniques
assess the frequency content of waveforms. Statistical
methods utilize statistical analysis to classify PQDs, and AI
techniques, such as neural networks (NN), support vector
machines (SVM), random forest, and fuzzy logic, have
gained popularity due to their ability to handle complex data
patterns and provide accurate classifications. These diverse
techniques and technologies contribute to the advancement
of PQ analysis and facilitate the development of robust
solutions for PQ disturbance detection and classification,
ultimately improving the overall performance of electrical
power systems.

B. LITERATURE REVIEW
Typically, detecting and classifying PQ disturbance involves
a three-step procedure, as depicted in FIGURE 1. In the
first stage, signals are collected under a variety of fault
conditions with the required sample frequency in order to
classify the associated PQ disturbances. The second stage
entails acquiring essential features for PQDs classification
either directly or indirectly. Usually, signal processing (SP)
techniques are used to derive information from the time
and frequency domains. In recent times, researchers have
introduced multiple algorithms for the analysis of PQDs,
which can be broadly categorized into parametric and non-
parametric approaches. The parametric approach involves
fitting the signal to a model and deriving parameters such as
kalman filter (KF) [7] and the strong tracking filter (STF) [8].
While these methods offer real-time signal parameter track-
ing with high accuracy, they may struggle with accurately
extracting parameters due to the complexity of constructing
an unknown signal model. To enhance the adaptability
of the KF in analyzing multiple PQ disturbance signals,
researchers have suggested considering different models for
different types of signals [9]. On the other hand, non-
parametric methods obtain signal parameters through integral
transformations such as the fast fourier transform (FFT),
wavelet transform (WT), and stockwell transform (ST). The
FFT technique is the standard for harmonic signals; however,
it is ineffective for transient disruptions. The short-time
fourier transform (STFT) [10] an enhanced method based
on FFT, suffers from the Heisenberg uncertainty principle,
which limits simultaneous spectral or temporal resolution.
Wavelet transform addresses this issue by assessing both
steady-state and transient disruptions, but determining the
appropriate wavelet basis and number of decomposition
layers poses challenges.Wavelet packet transform (WPT) has
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FIGURE 1. Process of PQDs detection and classification.

been utilized by researchers to improve upon WT by decom-
posing both high-frequency and low-frequency components.
However, the down-sampling technique in WPT fails to
accurately express sudden changes in wavelet coefficients
across different layers, leading to reduced detection accuracy.
Stockwell transform [11], a well-known power quality

evaluation algorithm, was created by integrating STFT and
WT to overcome some of these limitations. Considering
the drawbacks associated with many signal processing-
based feature extraction (FE) approaches, the authors of this
study propose utilizing the S-transform for PQ disturbance
identification. However, the selection of appropriate features
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remains a significant challenge, requiring advancements in
statistical analysis and ML techniques. Statistical metrics
such as energy, entropy, minima, maxima, standard deviation,
mean, and root-mean-square (RMS) values are commonly
employed to calculate optimal sets of dominant and dis-
tinctive feature vectors. After completing the FE phase, the
feature selection (FS) procedure comes into play. Feature
selection is often seen as a supplementary technique prior
to classification tasks, involving the selection of a feature
vector consisting of the most relevant features based on their
association with the output classes [12]. To address these
challenges, researchers focus on the development of efficient
technologies for statistical analysis and machine learning to
improve PQ disturbance identification accuracy. The feature
selection procedure plays a crucial role in selecting the most
informative features for classification tasks. By reducing the
number of features while preserving their discriminatory
power, the FS approach enhances the efficiency of subse-
quent classification algorithms [13]. Thirdly, an appropriate
classifier is used to classify PQ disturbance based on the
extracted features. Various classifiers have been proposed in
the literature for PQDs classification using features extracted
from the S-transform. The choice of kernel, parameter tuning,
and extracted features all affect the performance of the
classifiers [14]. Somewidely usedML techniques for classifi-
cation include artificial neural networks (ANN) [15], support
vector machine (SVM) [16], and decision tree (DT) [13].
However, ANN suffers from slow performance and local
minima convergence problems, while SVM requires proper
selection of the kernel function and regularization parameter.
K-nearest neighbor (KNN) [17] is another method that uses
neighboring samples for classification but is susceptible
to false positives. Extreme learning machines (ELM) [18],
a feed-forward ANN variation with higher generalization
capabilities, have recently been used to address classification
and regression issues. However, fine-tuning its settings is a
difficult process. Metaheuristic optimization methods can be
used to optimize parameters. A unique technique combining
the S-transform and ELM is suggested for the detection
and classification of PQ disturbances [19]. The features
extracted from the PQ signals using the S-transform are used
to classify seventeen different types of PQ disturbances using
ELM. Furthermore, ELM performance is improved by fine-
tuning its settings using grey wolf optimization (GWO) [20].
Extensive computer simulations are performed to validate the
efficacy of the proposed approach.

Several algorithms for the accurate detection and classi-
fication of PQ disturbances have been developed in recent
years. Combining the double-resolution S-transform (DRST)
and directed acyclic graph support vector machines (DAG-
SVMs), Li et al., proposed a novel algorithm. The algorithm
high accuracy and efficiency in detecting and classifying PQ
disturbances made it appropriate for use in real-time applica-
tions [21]. Similarly, Mahela and Shaik developed a method
that integrates the S-transform and fuzzy C-means clustering
for precise detection and classification of PQDs, even in

the presence of noise. Their strategy yielded promising
results in addressing power quality disturbances with more
accuracy [22]. Singh and Singh proposed a classifier using
the fractional fourier transform (FRFT) to classify PQDs
precisely. By employing FRFT-based feature extraction, the
accuracy of classification was significantly improved in
comparison to the S-transform method. The efficacy of the
proposed FRFT-based classification method was demon-
strated experimentally using actual PQ disturbance data [23].
Chakravorti and Dash used variational mode decomposition
(VMD) to detect PQDs and fisher linear discriminant analysis
(FDA) to reduce dimensionality. Their VMD-assisted FDA-
based feature selection in conjunction with an extreme
learning machine with a reduced kernel enabled accurate
classification of multiple PQ disturbances [24]. Sahani
and Dash presented a real-time method for detecting and
classifying PQDs based on the hilbert-huang transform
(HHT) and weighted bidirectional extreme learning machine
(WBELM). Their method demonstrated its applicability for
online power quality monitoring systems by outperforming
other classifiers [25]. Combining adaptive filtering and a
multiclass support vector machine, Thirumala et al., proposed
an automated recognition strategy. Their method demon-
strated efficacy, resiliency, and accuracy when managing
PQDs individually and in combination [26]. Gao et al.,
describes a new way to identify PQDs using contributions
from adaptive wavelet threshold denoising and deep belief
network fusion extreme learning machine (DBN-ELM). The
proposed adaptive denoising algorithm effectively reduces
noise impact and signal-to-noise ratio (SNR). The new DBN
model doesn’t require manual feature extraction to get correct
disturbance features. But it is not known howwell the method
works on different data sets and in the real world. It needs a lot
of training data and is hard to figure out how to do, whichmay
make it hard to use in real-time systems [37]. Swarnkar et al.,
introduces an algorithm called multi-variable power quality
disturbance identification algorithm (MPQDIA) that com-
bines ST, hilbert transform (HT), and rule based decision
tree (RBDT) for identifying and classifying power quality
disturbances. The algorithm is evaluated using voltage signals
based on IEEE-1159 standards in both noise-free and 20 dB
SNR conditions, and its performance is compared to other
methods. MATLAB software is used for the study [27]. It is
clear from the literature that certain classifiers struggle in
the presence of noise, whereas others can successfully detect
and categorise PQ disturbances under noiseless conditions
using only a small subset of possible PQD combinations.
This paper proposes a kernel extreme learning machine
(KELM) classifier model for the classification of seventeen
PQ disturbances as a solution to this issue.

The objective of this research is to develop an efficient
and robust method for the clear and distinct recognition
of PQ disturbances, which is essential for designing,
planning, and protecting the entire power system. Several
SP-based techniques for PQ analysis have been devised,
along with a variety of feature extraction methods and
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FIGURE 2. R-GWO local search and global search.

classifiers. PQ event classification has utilized machine
learning algorithms such as SVM, NN, and DT, as well as
kernel-based machine learning algorithms such as KELM,
which has gained popularity due to its ability to handle
complex and nonlinear data. Additionally, researchers are
investigating the use of optimization algorithms, such as
improved grey wolf optimization (IGWO), to enhance the
efficacy and robustness of PQ recognition and classification.
Maintaining the stability and dependability of the power
system requires the development of precise and efficient
methods for recognizing and classifying PQ disruptions.
The application of SP techniques, FE methods, and ML
algorithms, such as KELM and optimization algorithms such
as IGWO, has the potential to enhance the accuracy and
efficacy of PQ recognition and classification.

C. CONTRIBUTION AND ORGANIZATION
The article aims to propose a novel method for identifying
and classifying PQDs that emphasizes accuracy. In order to
accomplish this objective, this study presents the following
key contributions:

1. This paper presents a method for detecting power
quality disturbances by employing a feature extractor based
on the ST. The S-transform extends both the wavelet
and fourier transforms, allowing it to work around issues
with fixed-width windows and difficult window function
selection.

2. In this study, a total of seventeen different types of PQDs
signals are investigated. These signals include both single
disturbances (like sag, swell, harmonics, etc.) and multiple
disturbances (like sag+harmonics, swell+harmonics, etc.),
and they are selected based on the guidelines provided by the
IEEE-1159 standard.

3. A 3.2 kHz sampling frequency is employed on ten cycles
of distorted waveforms for the feature extraction.

4. The extracted features are applied to a novel
improved grey wolf optimization-based kernel extreme
learning machine (IGWO+KELM) classifier model for the
classification of 17 PQDs.

5. Improved grey wolf optimization is used to improve
KELM performance by fine-tuning its parameters.

Extensive computer simulations were run to validate the
suggested approach efficacy.

The following is how the paper is organized: Section II
discusses stockwell transform and its application to PQDs.
Section III describes the mathematical model of the IGWO
method, which incorporates improvements to the conven-
tional algorithms weight factor and convergence factor.
Section IV discusses the origins of KELM as well as its
mathematical proofs. Section V discusses the simulation and
classification results obtained using the proposed approach.
Finally, Section VI presents the conclusions of the study.

II. S-TRANSFORM FOR FEATURE EXTRACTION
In 1996, Stockwell proposed the stockwell transform or
S-transform (ST) method, facilitating multi-resolution anal-
ysis of time-varying signals. Unlike other techniques, the
output of ST is not affected by the noise signal input.
The S-transform is a time-frequency analysis approach that
extends the wavelet and fourier transforms. It does this by
using a Gaussian window that is scalable in both time and
frequency. This enables the S-transform to work around the
limitations of fixed-width windows, such as the inability
to precisely represent both time and frequency information
simultaneously. Also, with S-transform, the user doesn’t have
to choose a window function, which can be challenging and
time-consuming. So, the S-transform is a powerful tool for
time-frequency analysis that can be used in a variety of
applications [28]. Because of this, ST is the best way to
get local phase information and a resolution in the time-
frequency domain that changes with frequency. Stockwell
transform employs a fixed relative bandwidth for filtering sig-
nals through multi-resolution analysis. Continuous wavelet
transform (CWT) uses a mother wavelet that stays the same,
but ST uses a mother wavelet that changes to get information
about local phase [29].

A. CONTINUOUS S-TRANSFORM
The CWT for a signal x(t) is defined by

ω(τ, d) =

∫
∞

−∞

x(t)w(t − τ, d)dt (1)
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where d is scale parameter and τ is wavelet position. The S
transform of x(t) is a CWT multiplied by the phase factor.

S(τ, d) =

∫
∞

−∞

x(t)g(t − τ, d)e−j2π f τdt (2)

In contrast to the CWT approach, the mother wavelet
(window function) in the ST is chosen as a function of the
signal frequency content rather than scale d . This is given as

g(τ, d) =
1

σ (f ) ·
√
2π

e
−t2

2σ2 ej2π ft (3)

where σ (f ) =
1

a+b|f | represents Gaussian window width.
From equations (2) and (3) for a = 0, the ST can be rewritten
as

S(τ, d) =

∫
∞

−∞

x(t)
b|f |
√
2π

e−
(τ−t)2f 2b2

2 e−j2π ftdt (4)

Mathematically, the S-transform as represented by the fourier
transform is

S(τ, d) =

∫
∞

−∞

X (α + f )e
−t2f 2

2 e−j2π ft (5)

By using the fast fourier transform (FFT) and the convolution
theorem together, you can get the discrete form of the
S-transform.

B. DISCRETE S-TRANSFORM
By setting T as the sampling interval, the continuous PQ
signal x(t) is discretized as x(KT ). Below the equation
is a representation of the sampled signals discrete fourier
transform (DFT) for K = 0 to N − 1.

X
[ n
NT

]
=

N−1∑
K=0

1
N
x(KT )ej2π

nk
N (6)

where n = 1, 2, . . . . . .N − 1. By using DFT and the inverse
discrete fourier transform (IDFT), the ST of a discrete-time
series x[n] for τ = jT and f =

n
NT can be written as

S
[
jT ,

n
NT

]
=

N−1∑
K=0

X
[
m+ n
NT

]
G(m, n)e

j2πmk
N (7)

where G(m, n) = e
−jπ2m2

n2

S-transform amplitude and phase can be written as in
equation (8) and equation (9), respectively.

Amplitude = A(τ, f ) =

∣∣∣s [jT ,
n
NT

]∣∣∣ (8)

Phase = φ(τ, f ) = tan−1
(
imag(S[jT , n/NT ])
real(S[jT , n/NT ])

)
(9)

The high-resolution time-frequency information provided
by the S-transform makes it the preferred feature extraction
technique for power quality detection and classification.
This is especially true for non-stationary signals such as
power quality disturbances. Compared to fourier or wavelet
transforms, the S-transform offers a more detailed analysis of
power quality signals, is computationally efficient, and has
been shown to be effective in detecting and classifying power
quality disturbances.

TABLE 1. Simulation results of test functions.

III. BACKGROUND THEORY OF IMPROVED GRAY WOLF
OPTIMIZATION ALGORITHM
A. STANDARD GRAY WOLF OPTIMIZATION ALGORITHM
Gray wolf optimization (GWO) is a metaheuristic optimiza-
tion approach that mimics wolves behavioral patterns and
hunting mechanisms. Compared to traditional optimization
algorithms, GWO has a simple structure, requires fewer
parameters, and has excellent robustness, making it an
effective global optimization method across various research
domains. Gray wolf optimization has been proven superior
to traditional optimization algorithms and offers a reliable
alternative. A gray wolf pack typically has 5 to 12 members
and follows a rigid social order. The GWO algorithm
quantitatively models gray wolf seeking and hunting activity.
The pack leader, wolf α, with the greatest fitness score, has
the highest rank, followed by Wolf β, who has the second-
highest fitness score. Wolf δ ranks third, while the remaining
wolves, named ω, have the lowest fitness ratings [30].
For a defined d-dimensional issue with a population size

of N , each member in the population begins at random as
follows:

Xi = x1i , x
2
i , x

3
i , . . . , x

d
i (10)

where i = 1, 2, 3, 4, . . .N . The team-based hunting behavior
of grey wolves is an interesting topic to explore, particularly
their three-step hunting mechanism: tracking, driving, and
attacking prey. In the tracking stage, the grey wolf collection
will encircle and look at the prey, followed by driving and
outflanking it until the prey has no escape. Finally, the
group will attack the prey. This hunting procedure can be
mathematically expressed through the model that follows
(11), as described below.

{
D = C · Xp(k) − X (k)
X (k + 1) = Xp(k) − A · D

(11)

In the mathematical model, k denotes the present iteration
number, Xp(k) represents the prey position vector, and X (k)
represents the gray wolf position vector. The coefficients A
and C are defined as follows (Equation 12):{

A = (2r1 − 1)a
C = 2r2

(12)

During the prey capture process, the wolves hierarchy plays
a crucial role, with higher-ranked wolves having more
influence. The lower-ranked ω wolves update their positions
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FIGURE 3. Iteration number versus weight curve.

based on the locations of the top three wolves (α, β and δ)
using Equation 13 in each iteration of the hunting process.

Dg =
∣∣C .Xg(k) − X (k)

∣∣ v (13)

where g = α, β, δ and C is random vector.
In the GWO algorithm, the position of the alpha, beta, and
delta wolves (represented as Xα,Xβ ,and Xδ) are used to
update the position of other wolves. The updated position
of the current wolf (represented as X ) is determined by the
approximate distance between the current wolf ω and the
alpha, beta, and delta wolves. The estimated distance between
the current wolf ω and the α, β, and δ wolves determine
the updated location of the current wolf (shown as X ). The
updated position can be expressed as (Equation 14):

X (k + 1) =
1
3

δ∑
g=α

(Xg(k)−A · Dg) (14)

In Equation (12), r1 and r2 are both random vectors, with
random values in [0, 1]. A is determined by the convergence
factor a.As shown in FIGURE 2, A governs the wolves
search behavior, with values larger than one suggesting
global search and values less than one implying local search.
The convergence factor a, which is derived as the fraction
of wolves doing global and local searches, determines the
number of wolves performing global and local searches.

a = 2
(
1 −

k
M

)
(15)

where k represents the current stage of iteration and M
is the maximum number of iterations. FIGURE 2 depicts
the representative-based grey wolf optimizer (R-GWO) [31],
an upgraded version of the GWO that solves its shortcomings
and performs both global and local searches.

B. NONLINEAR CONVERGENCE FACTOR
Based on the above study, it is clear that the iteration of the
typical GWO algorithm is controlled by the convergence fac-
tor, which decreases linearly. This indicates that the algorithm
does global searches at first, then turns to local searches as
the search advances. However, the linear reduction in the
convergence factor does not properly represent the GWO’s

FIGURE 4. Simulation results of test function f1(x).

exploration kernel generation process. As a result, the method
has a low convergence accuracy and is prone to local optimum
solutions. This work presents a unique strategy to improving
convergence accuracy by altering the convergence factor
to meet this issue. The suggested solution increases the
algorithm’s global and local search performance, eliminating
local optimization issues [32]. The suggested convergence
factor nonlinear variation mode is stated in the following
equation-

a = 2
(

−
2k
M

)(
1 −

k2

M2

)
(16)

According to equation (16), as the number of iterations grows,
the attenuation rate of the convergence factor decreases
progressively. This, in turn, improves the ability and accuracy
of local searches.

C. VARIABLE WEIGHT GRAY WOLF ALGORITHM
Examining equation (14), it is clear that the traditional
GWO method counts the optimal, suboptimal, and third-
optimal solutions as equally meaningful, which is irra-
tional given that wolves at different levels have differing
hunting capacities. To overcome this issue, this study
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FIGURE 5. Simulation results of test function f2(x).

improveswolfω position updatemechanism by incorporating
weight factors w1,w2, and w3 to reflect the various roles
played by wolves of various levels in the process of
hunting prey. As a result, equation (14) is rewritten as
equation (17):

X (k + 1) =

3∑
i=1

wiXi,
3∑
i=1

wi = 1 (17)

According to the weight allocation method, the wolf
closest to the prey at the start of the hunt, wolf α, has a
weight approximately equal to one, whereas wolves β and
δ wolf have weights close to zero. Because all of the wolves
surround the prey at the end of the hunt, the position weights
of wolves α,β,and δ wolf are deemed identical, as illustrated
in Equation (17). As a result, the weight of wolf α decrease
gradually with the number of iterations, from 1 to 1

3 , while
the weight of wolves β and δ wolf grows gradually from 0 to
1
3 , making them roughly equal. The condition w1 ≥ w2 ≥ w3
governs the change process. The weight is calculated using
equation (18): 

w1 = cos∅

w2 =
1
2 sin∅ · cos γ

w3 = 1 − w1 − w2.

(18)

Equation (19) defines the angles φ and γ in equation (18):{
γ =

1
2 arctan(k)

∅ =
4
π
arccos 1

3 · γ
(19)

FIGURE 3 displays the convergence factor A and changes
in positional weights of the three dominant wolves as the total
number of iterations increases, indicating conformity with
greywolf social status and hunting strategy. FIGURE 3 shows
the relationship between the number of iterations and both
the convergence factor A and the position weights of the three
main wolves. At the initial stage of hunting the weight of wolf

α position is close to 1 (w1 = 1) and theweights of wolf β and
δ position are close to 0 (w2=w3=0). As the iteration number
increases the weight of wolf α decrease gradually from 1 to
value 1/3 indicated by green dotted line which is the optimal
position to attack pray. While the weights of wolf β and δ

increases gradually from 0 to 1/3 with respect to iteration
count. At one stage of the hunting, the weight position of
leader wolf α and subordinate wolves β and δ are almost
equal. This means that all the wolves are gathering around the
pray to attack. FIGURE 3 shows very clearly that grey wolves
have these characteristics based on social rank and their
hunting behavior. This research has so far concentrated on
refining the traditional GWOmodel. To evaluate themodified
model’s performance, two frequently employed standard test
functions (f1(x) and f2(x)) were chosen to be compared
to the traditional GWO strategy and the particle swarm
optimization (PSO) method. The functions are represented
by equation (20)-{

f1(x) =
∑n

i=1
[
x2i − 10 cos (2πxi) + 10

]
f2(x) =

∑n
i=1 |xi| +

∏n
i=1 |xi|

(20)

where f1(x) involves a combination of cosine and quadratic
functions, while f2(x) is a combination of the absolute
sum of x and the sum of the absolute values of x. The
two benchmark test functions used in the study, f1(x) and
f2(x), are commonly used in optimization research and are
representative of different types of optimization problems.
By testing the IGWO on these two functions and comparing
its performance with that of the standard grey wolf algorithm
and particle swarm optimization, the authors were able
to demonstrate that the IGWO outperformed both GWO
and PSO in terms of convergence speed and accuracy.
TABLE 1 shows the test function simulation results, while
FIGURE 4 and 5 illustrate the optimal solution and iteration
number. Based on the results provided in TABLE 1 and
FIGURE 4 and 5, the IGWO method suggested in this study
has a faster convergence time and higher accuracy than both
the standard GWO algorithm and the standard PSO algorithm
for the two test functions. This confirms the efficacy and
monopoly of the modified GWO method described in this
study.

IV. KERNEL EXTREME LEARNING MACHINE (KELM)
After studying extreme learning machine (ELM) [33], it was
found that randomly generated input weights and hidden
layer bias in the establishment of ELM model may result in
reduced stability and generalization ability due to the inability
to guarantee learning effectiveness. To overcome this issue,
Huang G. B., introduced the kernel function into ELM and
proposed kernel ELM [34] to optimize initial weights and
bias. To further enhance the model’s generalization, Equation
(21) is introduced to minimize both the training error and the
norm of the output weight.

min : ∥Hα − T∥
2 and ∥α|| (21)
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FIGURE 6. Flow chart of proposed IGWO based KELM.

This equation is converted into an equivalent objective
function (22) using the Lagrange multiplier.{

min : L =
1
2 ||α||

2
+

1
2C

∑N
i=1 e

2
i ,

s.t. : h (xi) α = yi − ei, i = 1, 2, . . . .N
(22)

The error between the network output and true value is
denoted by ei = [ei1, ei2, . . . , eim]. utilizing KKT theorem,
training ELM is equivalent to solving a dual optimization
problem (23)

min : L =
1
2
||α2

|| +
C
2

N∑
i=1

e2i

−

N∑
i=1

µi (h (xi) α − yi + ei) (23)

where i is the Lagrangien multiplier of instance i, C is a non-
negative constant, and the equation (24) expresses optimality
condition.

∂LELM
∂α

= 0 → α =
∑N

i=1 µih (xi)T = HTµ,

i = 1, 2, . . . ,N

∂LELM
∂ei

= 0 → µi = Cei, i = 1, 2, . . . ,N

∂LELM
∂µi

= 0 → h (xi) α − yi + ei = 0, i = 1, 2, . . . ,N .

(24)

where µ = [µ1, µ2, . . . , µN ]T

Equation (25) can be formed by substituting first and the
second sub-equations of Equation (24) into Equation (22).

(
1
C

+ HH⊺)µ = Y (25)

By solving equation (24) and (25) we can get equation (26):

α = HT (
1
C

+ HHT )−1Y (26)

Equation (27) can be produced by submitting equation
(26) into the output function of the generalized ELM,
f (x) = h(x)α:

f (x) = sign

(
h(x)HT

(
HHT

+
1
C

)−1

Y

)
(27)

Upon analyzing Equation (27), it becomes apparent that both
HHT and h(x)HT can bewritten in the form of inner products.
According to Mercer conditional theory, the kernel function
can also be expressed in terms of an inner product. As a
result, it is feasible to define the kernel matrix for ELM as
Equation (28):

KELM = HHT
→ KELMi,j = h(xi) · h(xj) = K (xi, xj) (28)
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TABLE 2. Types of PQ disturbances by class.

TABLE 3. Confusion matrix for binary classification problem.

This allows us to express the output function of ELM using
equation (29):

f (x) =

K (x, x1)
...

K (x, xN )


T

· (C−1
+ KELM )−1Y (29)

Selecting the appropriate kernel function and its param-
eters in kernel extreme learning machine classification is
problem-specific and there is no one-size-fits-all solution.
Commonly used kernel functions in KELM classification
include Gaussian (RBF), polynomial, sigmoid, and Lapla-
cian. Among them, the Gaussian kernel function is used in
precent work because of its high flexibility and generalization
ability when appropriately tuned with its parameter sigma
(σ ). Nevertheless, the performance of KELM is influenced
by the selection of kernel function and its parameters, and a
careful selection process should be based on the characteris-
tics of the data and the specific problem. The flowchart shown
in FIGURE 6 represents the KELM optimization based on
IGWO algorithm [35].

V. RESULTS ANALYSIS
A. DATASET
The effectiveness of any proposed method must be demon-
strated through rigorous testing and evaluation. In this
study, authors utilized a vast database of seventeen classes
(C1-C17) of distinct and composite PQD signals for clas-
sification, as stated in TABLE 2. FIGURE 7 depicts the
ST contour of PQDs signals, demonstrating that distortion
in the ST contour occurs whenever a disturbance happens.
Sampling at a frequency of 3.2 kHz and with a fundamental

FIGURE 7. ST contour of PQDs.

frequency of 50 Hz, each PQ disturbance signal was of size
10 cycles, resulting in a database of 1700 samples with
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TABLE 4. Confusion matrix during noiseless condition.

100 samples for each disturbance. To ensure the proposed
method’s robustness, authors also performed evaluations
under noise conditions with noise levels of 40, 30, and 20 dB.
The dataset was split into a training set of 60% and a testing
set of 40% for each test case. All samples are randomly
divided into 1020 samples of training dataset and 680 samples
of test dataset.

The data set used for analysis in this study was generated
in a simulated environment. Prior to examination, the data
undergoes a process known as normalization preprocessing.
The goal of normalization is to transform variables of varying
magnitudes into a uniform range, usually [0, 1] or [-1, 1].
In the current study, the data samples are mapped to the
interval [-1, 1]. The normalization procedure enhances the
accuracy and uniformity of analysis, especially for machine
learning algorithms that are sensitive to the scale of input
characteristics. To ensure unbiased classification results,
k-fold cross-validation (CV) was employed in this study.
Specifically, a 10-fold CV was utilized to evaluate the
performance of the proposed algorithm. However, evaluating
a 10-fold CV only once can result in an inaccurate evaluation.
To address this issue, the 10-fold CV was executed ten times
to generate more reliable and robust results. To find the
best classification results, different penalty parameters and

kernel parameters were used to choose KELM parameters.
The IGWO algorithm suggested in this research is employed
to optimize the value of the parameter and the optimal
parameter pair to 16 and 0.5, respectively. That is,C is 16 and
σ is 0.5.

B. PERFORMANCE ANALYSIS METRICS
The results of classification models are discrete, so we
need a way to compare discrete classes. Classification
metrics measure how well a model works and tell you
how good or bad the classification is, but each of them
does this in a different way. So, to evaluate classification
models various performance metrics are discussed here.
The confusion matrix links truth labels to what the model
says will happen. In confusion matrix, each row is made
up of predicted class instances, while each column is
made up of real class instances. The confusion matrix
is not a performance statistic but a base for others. The
confusion matrix for binary classification problem is shown
in TABLE 3.

The confusion matrix provides an evaluation of the
classifier, with each cell representing a different factor. The
True Positive (TP), True Negative (TN), False Positive (FP),
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TABLE 5. Confusion matrix during 20 dB noise condition.

and False Negative (FN) values are included in the confusion
matrix. The accuracy of the classifier can be calculated using
equation (30).

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(30)

1) PRECISION
Precision is the ratio of true positives to predicted total
positives.

Precision =
TP

TP+ FP
(31)

2) RECALL
Recall, also called Sensitivity or true positive rate, is a
measure of how well a classifier finds positive examples.
It is measured by the number of true positive predictions
(instances that were correctly labelled as positive) out of
all the real positive instances in the dataset. In other words,
sensitivity is a measure of howmany positive cases the model
correctly identified as positive. Sensitivity can be shown
mathematically as:

Recall =
TP

TP+ FN
(32)

3) F1-SCORE
The F1-score metric considers both precision and recall. The
F1 score is the harmonic mean of equation (31) and (32). The
formula is

F1 − score =
2 × Precision × Recall
Precision + Recall

(33)

C. PERFORMANCE DURING NOISELESS CONDITIONS
For this study, a dataset was created for training and testing
a classifier. The dataset consisted of multiple classes of
signals, and a random selection of 60% of samples from
each class was used for training the classifier. The remaining
40% of samples from each class were used for testing the
classifier, resulting in a total of 40 samples per class used
for testing purposes. The performance of the classifier was
evaluated using a confusion matrix, which provides a detailed
breakdown of the accuracy of each class in the form of a
17×17 matrix. TABLE 4 is a representation of the confusion
matrix that occurs when there is no noise; based on this,
we can see that one of the harmonics with swell signals is
wrongly classified as a harmonic with flicker signal. One
of the harmonics with flicker signal has been incorrectly
identified as a harmonic with swell signal. The classifier
made accurate determinations about the classification of each
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TABLE 6. Confusion matrix during 30 dB noise condition.

and every other signal. The confusion matrix presented in
TABLE 4 includes the accuracy of all classes, labelled as
C1, C2, C3, and so on, up to C17. The results show that the
proposed approach achieved an overall accuracy of 99.76%.
These findings suggest that the classifier performed very well
and can accurately classify signals from each of the classes in
the dataset.

D. PERFORMANCE DURING 20 DB NOISE CONDITIONS
In real power networks, the signals extracted often include
accompanying noise signals, posing a challenge to extract
desired information accurately. To address this, the proposed
approach has been tested in a noise environment with varying
levels of noise, as measured by signal-to-noise ratio (SNR)
levels of 40 dB, 30 dB, and 20 dB. To evaluate the proposed
method’s performance, a pre-trained network using the
dataset mentioned in the previous section was used to test the
classifier on three individual datasets, each with a different
SNR value. TABLE 5 shows the confusion matrix that results
when the noise level is 20 dB. It was seen that one sag
signal was incorrectly classified as an interruption. Likewise,
4 harmonics with sag signals have been misidentified as
1 harmonic and 3 harmonics with interruption. 1 interruption
was misclassified as sag. In the same way, 3 harmonics with

interruption were wrongly classified as 1 harmonic, 1 sag
with harmonics, and 1 flicker with sag. 8-harmonic signals
are misclassified as 6 harmonics with flicker, 1 flicker with
sag, and 1 harmonic with sag signals. One signal with a flicker
was incorrectly classified as a harmonic signal. The suggested
classifier was able to correctly classify all the other signals.
The results of detection accuracy for each class are presented
in TABLE 5, with an overall detection accuracy of 97.3%
achieved with a 20 dB signal. These findings demonstrate
the proposed approach’s ability to effectively detect PQDs
even in noise environments, highlighting its potential for real-
world applications.

E. PERFORMANCE DURING 30 DB NOISE CONDITION
The efficacy of the proposed method, which combines the ST
feature extraction method with the IGWO+KELM classifier,
was evaluated through experiments using PQDs datasets with
30 dB of noise. The confusion matrix during the 30 dB
noise condition presented in TABLE 6 shows that 1 sag
was misclassified as interruption, 1 flicker with sag was
misclassified as harmonic, 1 interruption was misclassified
as sag, 1 harmonic was misclassified as flicker with sag,
1 flicker was misclassified as harmonic with sag, 1 harmonic
with a notch was misclassified as flicker with interruption,
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TABLE 7. Confusion matrix during 40 dB noise condition.

2 harmonics with sag were misclassified as 1 harmonic with
notch and 1 harmonic with interruption, and 3 harmonics
with flicker were misclassified as 1 harmonic, 1 harmonic
with sag and 1 harmonic with oscillatory transient. The
results shown in Table 6 demonstrate that the overall
detection accuracy with the 30 dB signal was 98.32%. These
findings demonstrate the approach’s robustness and high
accuracy. The ST feature extraction and IGWO+KELM
classifier effectively identified and classified PQDs, even
under challenging conditions. The approach remained highly
accurate despite significant noise, indicating its robustness.
These results suggest that the approach could enhance the
reliability and efficiency of power systems.

F. PERFORMANCE DURING 40 DB NOISE CONDITION
The proposed approach for PQDs detection and classification
was evaluated by conducting tests on PQ disturbance data
with a 40 dB noise addition. TABLE 7 is a representation
of the confusion matrix that occurs when there is a noise
level of 40 dB; based on this, we can see that one of
the interruption signals is wrongly classified as a harmonic
with a flicker signal. One harmonic with interruption signals
has been incorrectly identified as a harmonic with sag
signal. There is one instance of the harmonic with flicker

signal being incorrectly classified as the harmonic signal.
2 harmonics with sag signals were incorrectly classified as
2 harmonics with interruption signals. 3 harmonic signals
were misclassified as 1 interruption, 1 harmonic with flicker,
and 1 flicker with sag. Results of the classification report are
presented in Table 7, indicating the approach’s robustness,
reliability, and effectiveness in classifying PQDs under
various conditions. The overall detection accuracy obtained
with a 40 dB signal was found to be 98.86%. These
findings demonstrate the potential of the proposed approach
to enhance the safety, comfort, and efficiency of power
systems. As a result, the approach is likely to be of significant
interest to stakeholders in the field of power quality and
contribute to advancing research and development in this
area.

G. COMPARISON WITH OTHER METHODS
In this section, a comparative analysis of the proposedmethod
is presented against other contemporary works in the field of
power quality disturbance detection and classification. The
evaluation is based on several criteria, including the type of
PQDs studied, the total number of signals tested, sampling
rates, and accuracy. TABLE 8 summarizes the results of
this comparative study, which shows that the proposed
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TABLE 8. Comparing effectiveness of the suggested strategy in view of other recently published articles.

approach outperforms other methods in terms of accuracy
and number of PQ disturbance classes studied. The proposed
approach employs ST for feature extraction and IGWO based
KELM approach for classification. The comparison of the
proposed approach with several recent studies indicates that
it achieves better accuracy and considers a larger number of
PQ disturbance classes. The proposed approach achieved a
classification accuracy of 99.76% for noiseless signals and
98.86%, 98.32%, and 97.3% for signals with SNR of 40 dB,
30 dB, and 20 dB, respectively. The proposed approach
for PQDs detection and classification outperformed other
approaches in terms of accuracy. Previous studies, such
as [39] and [21], generated fewer classes of PQDs and had
lower detection accuracy compared to the proposed approach.
Li et al., proposed a DAG-SVM classifier to classify PQDs
with an accuracy of 99.38%. Samanta et al., proposed a
PQ disturbance classifier based on ST and GWOELM with
99.68% classification accuracy [21]. Another study in [22]
used ST and FCM to classify ten PQ disturbance classes and
achieved a lower accuracy value of 99.2% than the proposed
method in both noiseless and noise conditions. To further
evaluate the effectiveness of the proposed approach, it was
compared with other approaches that tested more classes,
such as FRFT + DT [23], VMD + RKELM [24], HHT +
WBELM [25], and EWT + SVM [26]. In 2017, Singh and

Singh proposed a classifier based on FRFT and DT with
an overall accuracy of 99.93% during noise-free conditions.
However, during noise, 40 dB and 20 dB, the accuracy is
99.57% and 94.27%, respectively, which is less compared
to the proposed approach. In 2018, Chakravorti and Dash
proposed a VMD and RKELM-based classifier for 15 PQ
disturbance classes with 98.82% classification accuracy.
Sahani and Dash proposed a classifier based on HHT and
WBELMwith an accuracy of 99%. In 2019, Thirumala et al.,
proposed a PQ disturbance classifier based on EWT and
SVMwith 95.56% classification accuracy. To classify PQDs,
Gao et al. suggested a classifier based on DBN and ELM,
which achieve 98.7%, 98.2%, and 95.6% accuracy at SNRs of
40, 30, and 20 dB [37]. The ST andHT based RBDT classifier
presented by Swarnkar et al., has a 99.52% accuracy rate [27].
Despite testing more PQ disturbance classes and different
sampling frequencies in noise environments, the proposed
approach outperformed all other approaches. Overall, these
results demonstrate that the proposed approach is highly
effective and superior to other existing approaches for PQDs
detection and classification.

H. LIMITATIONS OF THE ALGORITHM
In this subsection, the limitations of the proposed method
are examined. The analysis of TABLE 9 reveals that certain
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TABLE 9. Overall performance metrices during noise free, 40 dB, 30 dB, and 20 dB noise.

signals cannot be identified accurately. In this regard,
in the case of class 5 with a signal-to-noise ratio of 20 dB,
the detection accuracy is the lowest at 81.0%, and 19.0% of
the data are wrongly classified as class 9, class 12, and class
15. This misclassification happens due to the similarity of
features between class 5 and the remaining classes caused
by the 20 dB SNR. Similarly, under a 40 dB SNR, class 5
(harmonics) achieves the lowest detection accuracy of 93.5%.
Under a 30 dB SNR, the detection accuracy of class 9 is
95.0%, but 5.0% of the data is incorrectly classified as
class 11 and class 14. In noiseless conditions, the model
obtains a detection accuracy of 98.0% for classes 10 and 12,
which is the lowest value in this scenario. Additionally,
the proposed method can only simultaneously identify two
distinct types of disturbances. This limitation highlights the
need to consider additional classes that incorporate multiple
types of PQ disturbances in order to improve the classification
accuracy. However, the proposed method requires the tuning

of several parameters, which may be time-consuming and
computationally expensive. The proposed method uses the
S-transform for feature extraction and the IGWO+KELM
method for classification. Future research will therefore
concentrate on addressing these limitations and identifying
methods to improve the classification of PQ disturbances,
particularly by incorporating classes containing more than
two PQDs.

VI. CONCLUSION
In this article, a new hybrid method based on the stockwell
transform and an improved grey wolf optimization-based
kernel extreme learning machine (ST+IGWO+KELM) is
presented for detecting and classifying power quality distur-
bances. The stockwell transform can be employed for the
extraction of useful features from the disturbance signal.
The S-transform is a time-frequency analysis approach that
resolves the limitations of fixed-width windows and requires
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no window function selection. It is more computationally
effective than the wavelet transform. The KELM classifier
was employed to classify the PQ disturbances. To improve
the accuracy of classification, the parameters of the KELM
classifier were tuned using IGWO, which is a good meta-
heuristic optimizationmethod. Themain findings of the study
are: (i) A detection accuracy of 99.76% under noiseless
conditions; (ii) Robustness to noise with an accuracy of
98.86%, 98.32%, and 97.3% for signals with SNR of 40 dB,
30 dB, and 20 dB, respectively; and (iii) The performance
of the proposed approach is compared to other contemporary
approaches such as FRFT + DT, VMD + RKELM, HHT +
WBELM, EWT + SVM, DBN+ELM, and ST+HT+RBDT.
The comparison results reveal that the proposed method has
great ability for the detection and classification of PQDs,
even in noisy conditions. However, the proposed method
requires the tuning of several parameters, which may be time-
consuming and computationally expensive. The suggested
method could be useful for real-time applications, and future
research could include testing it with real-time PQD data,
analyzing PQ disturbances in the context of renewable energy
resources, and looking into how deep learning methods can
be used in more complex situations.
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