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ABSTRACT Electroencephalography (EEG) recording is highly vulnerable to physiological or technical
artifacts, which may reduce the performance of EEG-based brain–computer interface (BCI) systems.
A number of noise artifact removal methods have been used to overcome this issue and hence estimate
the cognitive state information much better, which will lead to the design of EEG-based BCI systems that
are more practical, reliable, and accurate. Smoothing filter techniques are popularly used to remove noise and
retain the morphology of signals. The purpose of this study is to compare three smoothing filters—median,
Savitzky-Golay, and regularization—in the analysis of EEG data. To do so, we used publicly available
motor imagery and P300 datasets to evaluate the effects of applying the aforementioned smoothing filters
on the classification of right- versus left-hand imagery movements and target versus nontarget characters in
spellers, respectively. The results show that smoothing EEG by regularization increased the coefficient of
determination (r2) values between the target and nontarget responses and slightly improved the signal-to-
noise ratio relative to the other smoothing filters. Moreover, the results show that power spectral density
for EEG smoothed by regularization reveals more discriminative information about left- and right-hand
imagery movements. The classification results show that smoothing EEG by regularization provides the
best classification accuracy in both datasets.

INDEX TERMS Electroencephalography, brain–computer interface, smoothing filters.

I. INTRODUCTION
Electroencephalography (EEG) is a technique developed by
Hans Berger in 1929 for recording electrical activity in the
brain [1]. Electrical signals formed by the action potentials
of neurons in the brain are captured using EEG by plac-
ing small metal electrodes on the scalp. Compared with
other technologies used to record brain activities, EEG read-
ing technologies are relatively low cost and provide high-
temporal-resolution data, in addition to being noninvasive.
However, the nonlinearity and nonstationarity of the recorded
signal and the low spatial resolution make the study of EEG
signals challenging [2], [3]. Electroencephalogram (EEG)
measurements of brain electrical activity reveal complicated
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behavior with nonlinear dynamic features. This behavior
manifests as EEG patterns of varying complexity [3]. Nonsta-
tionarity in EEG refers to changes in the statistical properties
of the EEG signals over time, which can occur between intra-
and inter-sessions. This can reduce the quality of the recorded
signal, whereas most machine-learning algorithms are based
on the assumption of data stationarity [4], [5].

The presence of noise in EEG recordings can cause non-
stationary in EEG signal. The term ‘‘noise’’ in EEG refers to
any electrical activity that is recorded by the electrodes and
is unrelated to the brain activity of interest. This electrical
activity can arise from a variety of sources, including physio-
logical noise, environmental interference, and electrical noise
from recording equipment. Noise in EEG recordings can
contribute to nonstationarity by obscuring or distorting the
underlying brain signals, which can lead to changes in the
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statistical properties of the EEG signal over time. Moreover,
noise can introduce variability in the statistical features of the
EEG signals, leading to fluctuations in the power and shape
of the signal over time, thereby affecting the signal-to-noise
ratio (SNR) and degrading the signal quality.

In addition to noise, several other factors can contribute to
nonstationarity in EEG signals. Firstly, the physical features
of EEG electrodes may deteriorate over time. For example,
if the conductive gel dries up, the electrode impedance may
change, or if the EEG cap is reused in a new session, the elec-
trodes may shift position. Secondly, changes in neurophysi-
ological factors, such as wakefulness. Thirdly, psychosocial
factors, such as motivation, attention, and task engagement,
cause significant differences. Fourthly, artifacts caused by
bodymotions or muscle activity, such as swallowing or blink-
ing, may change signal characteristics. Lastly, nonstationarity
may occur as a result of neurofeedback; obtaining neurofeed-
back implies that users try to enhance outcomes by altering
their brain patterns.

For the above reasons, EEG signals should be processed to
maximize the SNR to reduce noise and improve signal quality
to conduct a better analysis of the data. There are several
preprocessing techniques that can be utilized to improve each
type of EEG data. For example, S. Aydin has discussed sev-
eral techniques to improve the auditory event-related poten-
tial type of EEG [6], [7].

One technique that can be used for all types of EEG data
to improve signal quality is filtering. The filtering techniques
can be classified into two types based on changes made to
the signal: smoothing and nonsmoothing. Smoothing filters
did not alter the signal waves’ shapes as the nonsmoothing
(classical) filters do [8]. Smoothing can be performed on indi-
vidual trials. Consequently, a higher bit rate can be achieved
as the user can make more selections in a shorter time [9].

In this work, filtering techniques based on smoothing the
signal were used and compared in terms of improving the
classification accuracy for two types of EEG signals: P300
and motor imagination-related event. Three mathematical
models of different smoothing filters were developed and
applied. These include median filter, Savitzky–Golay (SG),
and regularization.

The median filter was selected as one of the filtering
options in this study because of its simplicity of implemen-
tation, as well as its delicate signal smoothing and efficiency
in filtering spikes. A median filter is a nonlinear filter that
measures the average of sequences (in ascending order of
data) around a processed point. The advantage of this filter is
that it excludes values that deviate from the average [8], [10].
The median filter has been commonly applied in preprocess-
ing EEG data, such as medical diagnosis in human, human
emotion recognition, and motor imagery [8], [11], [12], [13].

The second applied smoothing filter is the SG filter. It is a
least-square digital polynomial filter that smooths out irregu-
larities and improves the SNRwithout altering the data appre-
ciably. SG filtering, also called the least-square smoothing

filter method, is based on an existing mathematical procedure
popularized by Savitzky and Golay in 1964, which publishes
tables of convolution coefficients for various polynomials and
subset sizes [14].

SG filter replaces each value of a signal series with a new
value produced by applying polynomial fitting to a subset of
contiguous data points. The fitting is done using linear least
squares to 2n + 1 nearby location, where n can be equal
to or larger than the polynomial order. The more smoothly
the signal develops, the more neighbors are employed in
the averaging process. Smoothing with least squares reduces
noise while preserving signal information [14], [15]. The
SG filter has been utilized in smoothing and removing noise
from event-related potentials in several studies. For exam-
ple, SG was applied to smooth P300 [16] and to improve
the analysis of error-related potential events [17], [18].
For motor imagination recognition, the SG filter has been
applied as one of the steps to improve the recognition of
motor imagination [19]. In addition, SG filter was employed
to remove artifacts from EEG signals for neuromarketing
applications [20].

The third smoothing technique applied in this study was
regularization. Regularization, as used in mathematical ter-
minology, is the process of adding a new term to an opti-
mization problem to increase the ‘‘regularity’’ of the solution.
In this study, the regularization presented by J. J. Stickel
was applied [21]. In the context of EEG data, regulariza-
tion was utilized to smooth P300 and compared with band-
pass filter [9]. The objective of the study was to identify
the occurrence of a target letter and not recognize it as a
particular target letter. The study involved four participants
(two impaired, and two unimpaired). The results showed that
regularization outperforms bandpass filters in some cases,
and vice versa [9].

Based on the literature survey that we performed, no pre-
vious study has compared regularization with other types of
smoothing filters, as has been done in this paper. Given the
nature of EEG data, filtering and smoothing the signal is
an important step before starting to analyze the data. This
paper provides a comparison of three types of smoothing
filters and their effects on examining two types of EEG:
P300 classification and motor imagery classification. This
work contributes to, but not limited to, the field of BCI
by demonstrating the use of smoothing by regularization
method, which has been little used by researchers to ana-
lyze noisy data, to improve the performance of BCI sys-
tem. The contribution of the present study will help the
researchers who are working with noisy data to reduce noise
and increase data quality more effectively. The rest of this
paper is organized as follows. In Section II, we describe the
two datasets used in this study. In Section III, we explain
the smoothing filters applied. In Sections IV and VI, we list
and discuss the results and main findings obtained from
the experiments. Finally, we conclude this paper in
Section VII.
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II. DESCRIPTION OF DATASETS
A. P300 SPELLER PARADIGM DATASET
This dataset is publicly available on the brain–computer inter-
face (BCI) competition webpage [22]. The Wadsworth Cen-
ter, New York State Department of Health, initially provided
it. The dataset was collected from one subject using the P300
speller developed by Farwell and Donchin in 1988 using
BCI2000 software [23]. It was recorded from 64 electrodes
arranged according to the standard 10–20 international elec-
trode placement system. The recorded signals were bandpass
filtered from 0.1 Hz to 60 Hz and sampled at 240 Hz. During
the experiment, the subject was presented with a 6× 6 matrix
comprising 36 characters and asked to focus on characters in a
word that was given by the investigator. Each row/columnwas
intensified successively and randomly at a rate of 5.7 Hz. The
intersection of the row and column with the desired (target)
character elicited the P300 response. The dataset consisted
of three sessions. In each session, a total of 15 runs were
performed for each character. For each run, each row/column
was flashed randomly for 100 ms, followed by a blank period
of 75 ms. The dataset was split into training and testing
datasets. The training dataset had 1,260 signal samples for the
P300 responses and 6,300 signal samples for the non-P300
responses. The testing dataset had 930 signal samples for the
P300 responses and 4,650 signal samples for the non-P300
responses.

B. MOTOR IMAGERY DATASET
This dataset was provided by the Berlin BCI group [24].
It consists of EEG recorded from nine healthy subjects. The
data were collected from three electrodes (C3, Cz, and C4),
filtered between 0.5 Hz and 100 Hz, and sampled at 250 Hz.
The subjects’ tasks were to imagine right/left-hand move-
ments without feedback based on a visual cue (an arrow)
presented on a computer screen for 1.25 s. The subjects were
asked to imagine left- and right-hand movements for a period
of 4 s. Each subject participated in 12 runs, with 10 trials each.
This resulted in 120 trials of each hand movement.

III. SMOOTHING METHODS
In this paper, three different smoothing methods were applied
to the EEG datasets. The median filter is a well-known order-
statistic filtering technique used for noise suppression. It was
first introduced by J. W. Tukey in 1974 [25]. In the median
filter, each sample in the signal is replaced with the median
of the samples contained in a window around that sample,
as follows:

Y (n) = med [X (n − k) , . . . ,X (n) , . . . ,X (n + k)] (1)

whereX (n) andY (n) are the nth samples of input and output
sequences, respectively, the window size is N = 2k + 1, and
med is the median function.

SG filtering is a simple and smoothing technique with a
low computational cost originally proposed by Savitzky and
Golay in 1964 [14]. The SG smoothing filter is typically
used in digital signal processing to smooth a noisy signal

based on the local least-squares polynomial approximation
method [18]. In SG filtering, a polynomial fitting method
is applied to successive subsets of adjacent data samples
in a prescribed window. The window size and the polyno-
mial degree are two parameters that can be used to control
smoothing [20].

If the data consist of a set of points {xj,yj}, j = 1, 2, . . . ,n,
where xj is an independent variable and yj is an actual value,
a set of m convolution coefficients, Ci, the smoothed data Yj
can be calculated as follows:

Yj =

∑m−1
2

i= 1−m
2

Ciyj+i, where
m − 1

2
< j < n−

m − 1
2

(2)

The third method used in this work was introduced by
J. Stickel in 2010 [21]. Smoothing by regularization is sim-
ple and easy to implement compared with other smoothing
techniques. In this method, the data are smoothed by regular-
ization, in which a quadratic term is used for regularization.
In (3), y (x) is a set of data, where i = 1, 2, . . . ,N; ŷ (x)
is a smooth function that approximates y (x); and λ is the
regularization parameter.

Q
(
ŷ
)

=

∫ xN

x1
|ŷ (x) − y (x) |2dx+λ

∫ xN

x1
|ŷ(d)(x)|2dx (3)

Equation (3) has two terms: the squared error and the
roughness term of ŷ (x)multiplied by λ. Both terms have to be
minimized to get a good fit and approximation of y (x). It is
recommended to choose a small value for λ, as it minimizes
the squared error. To choose an appropriate value λ, the gener-
alized cross-validation (GCV) and the classification accuracy
were computed for steps of λ ranges between 1×10−5 and
0.1. The value of 0.001 resulted in the minimum GCV and
the best classification accuracy.

IV. METHODOLOGY
A. DATA PREPROCESSING AND FEATURE EXTRACTION
Both datasets were preprocessed before the feature extrac-
tion and classification steps. For the P300 dataset, the data
samples were extracted for each channel from -200 ms to
660 ms around the presentation of each stimulus, where
the pre-stimulus interval was used for baseline correction
and SNR calculation. The post-stimulus time window (0 ms
to 660 ms) was extracted as a temporal feature since this
time window is enough to capture all necessary informa-
tion required for an efficient classification, as the P300 sig-
nal appears approximately 300 ms after the stimulus. Next,
each EEG segment was filtered using 8th-order bandpass
Chebyshev filter of Type I with cut-off frequency lying
between 0.1 and 20 Hz. The means of all post-stimulus
signals from each channel were then concatenated into a
single feature vector. This was used as the input to the
classifier.

For the motor imagery (MI) dataset, spectral power syn-
chronization and desynchronization in the mu (µ) frequency
band were extracted. To extract relevant features, the power
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spectral density (PSD) for each EEG trial on each channel was
estimated using Welch’s method. The EEG data were split
into a short-time Hanning window T centered at peaks τq,
where q = 1, 2 is the time window at different hand move-
ment. Then, for each window, the discrete Fourier transform
(DFT) was computed. Finally, all the DFTs were scaled and
averaged together as follows:

Pn
(
f,τq

)
=

1
T

∣∣∣∣∣∣∣
T
2 −1∑
t=−

T
2

Xn
(
τq+t

)
|H (t)| exp(i

2π
T

(f − 1) t)

∣∣∣∣∣∣∣
2

(4)

where Pn
(
f,τq

)
is the PSD at frequency f and time τq on

channel n, H (t) is the Hanning window, and T is the window
length. Next, the PSDs for each trial were normalized as
follows.

P̃n (f,m) = ln (Pn (f,m)) −ln(
1
M

∑M

p=1
Pn (f,m)) (5)

where the normalized PSD pn (f , m) is the log-transferred
division between the PSD of each segment data and the mean
of all segment data. The symbols f , m, n, and M denote
frequency, segment, channel numbers, and the total number of
segments, respectively. Finally, the spectral powers changes
at µ band (8–12 Hz) were chosen as movement-related fea-
tures to decode different hand movements.

B. SNR AND r2 VALUES CALCULATIONS
To compare the smoothing techniques used in this study, two
parameters were calculated for the P300 dataset. The first
parameter, SNR, was calculated at each electrode by dividing
the P300 peak amplitude by the peak across the baseline
variance (-200 ms to 0 ms) [29]. The P300 peak amplitude
was determined by the maximum positive amplitude in the
time window between 300 ms and 350 ms. Mathematically,
the SNR is commonly defined as shown in (6).

SNR =
ȳtw
σM

(6)

where ȳtw is the average event-related potential (ERP) ampli-
tude computed within the time window between 300 ms and
350 ms, and σM is the baseline variance.
The second parameter that was computed to compare the

smoothing techniques is the coefficient of determination (r2,
the squared value of Pearson’s r). The r2 is used to measure
the separability between two classes (e.g., target and nontar-
get classes). It can be computed using (7).

r2 (x, y) =
N1N2

(N1 + N2)2
(µ1 − µ2)

2

var⟨xi⟩
(7)

where µ1 = mean⟨xi⟩yi=1 and µ2 = mean⟨xi⟩yi=2 are the
class means and Nk= | {i | yi = k} | is the number of samples
of class k.

C. CLASSIFICATION PROCEDURES
This research employed linear discriminant analysis (LDA),
a well-known classification method in machine learning and
pattern recognition, to classify target versus nontarget and
right versus left-hand imagery movements, respectively. The
LDA is a supervised learning method that is used to find
a linear combination of features that separate two or more
classes of objects.

Based on the features extracted from each EEG segment,
The data was randomly partitioned into two subsets, with
80% of the data used for training and 20% of the data used
for testing. The LDA classifier was trained on the 80% of
the data using 5-fold cross-validation. During each fold of
the cross-validation process, the data was randomly split into
five equal-sized parts with four parts used for training and one
part used for validation. This process was repeated five times,
with each part used for validation once. The performance of
the LDA classifier is evaluated on the remaining 20% of the
data.

V. RESULTS
Two datasets were used in this study to investigate the effects
of different smoothing methods on ERPs. The first dataset
consisted of ERPs recorded from one subject using 64 elec-
trodes during the P300 speller experiment. The second dataset
was collected from the C3, C4, and Cz electrodes, while
nine subjects performed imagery left/right-hand movement.
For both datasets, classification was performed using a linear
discriminant analysis (LDA) classifier.

Fig.1(a) shows the grand averages of the ERP waveforms
of P300 (in blue) and non-P300 (in black) at the Cz elec-
trode during the experiment. Clearly, the subject responded
strongly to the visual stimulus, where he produced a higher
amplitude of the target signal compared to the nontarget
signal. Fig.1(a) also shows the r2 values between the P300
and non-P300 conditions averaged from one subject on site
Cz. The maximal window for the P300 response is approxi-
mately 300–350ms. Fig.1(b) illustrates the topographic maps
of the distribution of voltage at different latency windows
for target and nontarget conditions. The latency window
between 290 ms and 380 ms for the target condition clearly
shows greater central P300 amplitude relative to the nontarget
condition.

Fig.2 shows the averaged PSD of the imagery left-and
right-handmovements from one subject recorded from the C3
and C4 electrodes. The PSD was calculated for each channel
using Welch’s method [30]. In this study, movement-related
spectral changes were used as features to classify left- and
right-hand imagery movements. In Fig.2, we can clearly see
that hand movement elicits power decreases (event-related
desynchronization) in the µ band (8–12 Hz) over the con-
tralateral cortex.

Fig.3 illustrates the effect of using different smoothing
methods on the P300 signals. We can see that applying
smoothing methods slightly affects the overall shape of the
signal. In addition, smoothing the signal by regularization
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FIGURE 1. (a) Grand average of P300 amplitudes recorded at channel Cz. Target response is presented in blue, and
nontarget response is presented in black with color coded r2-values for the difference between target and nontarget
responses. X-axis, latency (ms); Y-axis, amplitude (µV) (b) P300 topography maps for target and nontarget conditions for
different latency windows. The color bar shows the amplitude in µV.

tends to provide better results in terms of removing noise.
This result suggests that smoothing the signal by regulariza-
tion can better reduce the impact of noise and enhance the
signal of interest, leading to an increase in the SNR. This
increase in the SNR can improve the quality of the signal
and make it easier to distinguish signal components from
noise components. As a result, classification algorithms can
be more accurate and robust, leading to better classification
performance.

Fig.4 (a) shows the averaged r2 values between the P300
and non-P300 signals filtered by the bandpass filter and
smoothed by the SG filter, regularization, and median filter.
As shown in Fig.4 (a), the differences in ERPs between
target and nontarget stimuli were larger when the signals
were smoothed by regularization (r2= 0.008 ± 0.004) com-
pared to those observed when the signals were bandpass
filtered (r2= 0.0061 ± 0.003), smoothed by the SG filter
(r2= 0.0072 ± 0.003), and smoothed by the median filter

(r2= 0.007 ± 0.003), with no significant difference between
them (p > 0.05). Fig.4 (b) shows the topographic maps
of r2-values during the presentation of target stimuli after
applying different smoothing techniques. It can be seen that
higher P300 responses elicited by the target stimuli weremore
prominent when smoothing data by regularization, as higher
r2-values were obtained compared to other smoothing
techniques.

In this study, we investigated the effect of different smooth-
ing filtering methods on the SNRs of ERP signals. The SNRs
for the P300 signals were calculated by dividing the maxi-
mum voltage amplitude in the time window between 300 and
400 ms by the peak across the baseline variance (–200 ms
to 0 ms). Fig.5 compares the SNRs of the P300 signals
smoothed by the different smoothing filters. The mean SNRs
were 0.95 ± 0.24, 1.07 ± 0.22, 1.13 ± 0.22, and 0.98 ± 0.20
when the signals were filtered by bandpass, SG, regulariza-
tion, and median smoothing filters, respectively. Smoothing

VOLUME 11, 2023 60175



S. I. Alzahrani, M. M. Alsaleh: Influence of Smoothing Filtering Methods

FIGURE 2. The PSD of the left- (red) and right (blue)-hand imagery movements from C3 and C4 electrodes.

FIGURE 3. P300 signals smoothed by bandpass filter, regularization, median filter, and
Savitzky–Golay filter.

the signals by regularization increased the SNR relative to
other smoothing filter techniques. However, the difference in
SNR values was not significant.

Fig.6 shows the averaged PSDs of EEG over the left (C3
electrode) and right (C4 electrode) motor cortex correspond-
ing to imaginations of left and right-hand movements after
the implementation of different smoothing techniques on the
EEG signals. The PSD was estimated for the µ band for each
electrode. Left- and right-hand imagery movements induced
an increase and decrease in the µ band at both electrodes.
As shown in Fig.6, compared to other smoothing techniques,
smoothing the EEG by regularization enhanced the mean

power difference between left- and right-hand imagery move-
ments. This finding suggests that smoothing EEG by reg-
ularization will increase the classification accuracy of the
discrimination between the left- and right- hand movements.

Using temporal EEG data for the P300 dataset and
ERS/ERD from µ frequency band for the motor imagery
dataset as features, each dataset was classified using the LDA
classifier to target versus nontarget and right versus left-hand
imagery movements, respectively. The classification results
are shown in Table 1. For the P300 dataset, the best classifica-
tion accuracy was obtained when the data were smoothed by
regularization, showing a classification accuracy of 94.05%.
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FIGURE 4. (a) Comparison of r2-values obtained for the P300 signal
filtered by bandpass filter and smoothed by the Savitzky-Golay filter,
regularization, and median filter (b) comparison of the topographic maps
of r2-values after applying different smoothing techniques.

Smoothing the data by median and SG filters yielded higher
classification accuracy than when the data were filtered by
bandpass filter, showing classification accuracies of 88.94%,
90.11%, and 84.2%. These results were consistent with the r2

results in Fig.4.
The results of the binary class classification of the imagery

EEG patterns corresponding to the right- and left-hand
imagery movements are presented in Table 1. The average
classification accuracies were 90.12% ± 1.05%, 88.78% ±
2.02%, and 84.31% ± 2.32% when the data were smoothed
by regularization, SG, and median filters, respectively.
The lower classification accuracy obtained was 82.22% ±
1.45%, where the data were filtered by bandpass filter. The
superior classification results suggest that smoothing ERPs
by regularization contributes to enhancing BCI classifica-
tion and hence improves the communication and control
capabilities of those suffering from severe neuromuscular
disorders.

VI. DISCUSSION
In the last several decades, there has been growing interest in
developing new methods to design more robust and reliable
EEG-based BCI systems to reestablish communication and
control for severely disabled people. However, the use of
EEG as an input to the system has limited the potential
to design practical and useful BCI systems because of its
low spatial resolution and SNRs. A number of denoising
techniques have been developed for preventing noise in EEG
and hence increasing SNRs [31], [32], [33]. Some of these
techniques include signal averaging, filtering, principal com-
ponent analysis, independent component analysis, and par-
allel factor analysis [36]. The study presented in this paper
has investigated the effect of three different smoothing filters
in removing noise from EEG signals and in classifying two
different types of ERPs: P300 for classifying target versus
nontarget andMI for classifying left- versus right-handmove-
ment imagination.

EEG recording is highly vulnerable to various forms of
sources of noise such as muscle movements, eye blinks,
power source, which are unavoidable. Denoising step is a
crucial step in the preprocessing stage of the EEG signal to
obtain useful information that reflects certain cognitive state
and to facilitate the process of feature extraction. For the
P300 based-BCI system, the well-known feature of interests
is narrow band cognitive response around 300 ms after the
stimulus. As it is shown in Fig.3, the signals become less
noisy when they are smoothed by different smoothing meth-
ods. In comparison to other smoothing methods used in this
study, smoothing the signals by regularization is the most
effective method for removing unwanted high-frequency
components.

For classifying P300, our results show that smoothing
the signal captured from Cz improves the signal shape in
general, where regularization was the best filter in terms of
removing noise, as clearly shown in Fig.3. This was also sup-
ported by the r2 value (coefficient of determination), which
quantifies the overall signal variance that the task condition
determines (target vs. nontarget) [35]. Smoothing signals by
regularization show the highest values of r2, which was also
reflected in the classification accuracies (Table 1), with the
highest classification accuracy of 94.05% compared to the
other smoothing filters. Compared with the literature [9], the
current study shows that regularization outperforms bandpass
filters in some cases. However, P300was captured in different
task types, and some subjects were impaired, which made
comparison difficult. To classify motor imagination, that is,
(right vs. left) hand imagery movement imagination, we used
PSD for feature extraction and LDA as the classifier. The
results in Table 1 illustrate that regularization improved the
classification accuracy by 1.34% in comparison to the SG
filter.

The filtering techniques applied in this study can be divided
into two groups, based on how the signal is smoothed. The
first group includes smoothing filters that rely on smoothing
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FIGURE 5. (a) The PSD box-plot comparing the SNR of different smoothing filter
techniques (p > 0.05).

FIGURE 6. The averaged PSD values at C3 and C4 electrodes across all
subjects for left- and right-hand imagery movements for different
smoothing techniques.

the signal without distorting the wave shape or remov-
ing any values. This group includes SG and regularization.

In comparison, the other group of smoothing filters allows
the signal to be processed. For example, a bandpass allows
only the signal between two specific bands to pass. In median
filters, all the values that differ from the average of the
signal are excluded. Our results show that SG and regu-
larization outperform bandpass and median filters. Regu-
larization provides the best results in terms of SNR and
classification accuracy in the two datasets. This kind of
comparison between the two types of filters has been con-
ducted in the literature. For example, a smoothing filter
based on SG were proposed and compared with some
other EEG data filtering approaches. The SG-based filter
outperformed the other filters in terms of average peak
coverage [36].

To the best of our knowledge, this is the first study to apply
regularization in smoothing motor imaginary EEG data, and
we can conclude that it provides results relatively close to
SG’s. This study has some limitations that will be addressed
in future work. For example, the proposed methodology
was applied to two types of EEG data: P300 and motor
imagination. It should be examined on other types of EEG,
such as auditory event-related potentials. In addition, differ-
ent feature extraction techniques can be applied with each
smoothing filter. Also, EEG data collected by different EEG
devices have different qualities, which can affect the type

TABLE 1. Classification accuracies of four filtering methods for P300 and MI datasets.
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of smoothing technique required. Moreover, the parameters
of smoothing filtering methods applied in this study were
fixed (for both regularization and Savitzky–Golay), while
the influence of those filters varies based on the selected
parameters [8], [9].

VII. CONCLUSION
The EEG-based BCI system performance has long been lim-
ited by its ability to extract meaningful information from
recorded signals due to external and internal noise and arti-
facts. The development of brain–computer interfaces may
be advanced, and many solutions involving the use of EEG
data may be improved with the proper choice of filtering.
Where most of these BCI applications are dedicated to help
individual with physical disabilities. For example, controlling
spellers, directing wheelchairs, post-stroke motor rehabilita-
tion, controlling artificial body parts, and controlling sensors
in smart houses [37].

In this study, we examined different smoothing filters to
remove noise from EEG signals. Our results suggest that
smoothing EEGusing the regularizationmethod improves the
classification accuracy of ERPsmore thanmedian and SG fil-
ters do. Future work will involve further testing different EEG
data to determine whether there is consistent performance.
In addition, we will apply optimization methods to choose an
appropriate value for the regularization parameter. We will
also compare smoothing data by regularization with state-of-
the-art artifact removal techniques.
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