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ABSTRACT Domain Generation Algorithms (DGA’s) have been employed by botnet orchestrators for
controlling infected hosts (bots), while evading detection by performing multiple DNS requests, mostly
for non-existing domain names. With blacklists ineffective, modern DGA filtering methods rely on Machine
Learning (ML). Emerging needs for higher intrusion detection accuracy lead to complex, non-interpretable
black-box classifiers, thus requiring eXplainable Artificial Intelligence (XAI) techniques. In this paper,
we utilize SHapley Additive exPlanation (SHAP) to derive model-agnostic, post-hoc interpretations on
DGA name classifiers. This method is applied to binary supervised tree-based classifiers (e.g. eXtreme
Gradient Boosting - XGBoost) and deep neural networks (Multi-Layer Perceptron - MLP) to assess domain
name feature importance. SHAP visualization tools (summary, dependence, force plots) are used to rank
features, investigate their effect on model decisions and determine their interactions. Specific interpretations
are detailed for identifying names belonging to common DGA families pertaining to arithmetic, wordlist,
hash and permutation based schemes. Learning and interpretations are based on up-to-date datasets, such as
Tranco for benign and DGArchive for malicious names. Domain name features are extracted from dataset
instances, thus limiting time-consuming and privacy-invasive database operations on historical data. Our
experimental results demonstrate that SHAP enables explanations of XGBoost (the most accurate tree-based
model) andMLP classifiers and indicates the characteristics of specific DGA schemes, commonly employed
in attacks. In conclusion, we envision that XAI methods will expedite ML deployment in networking
environments where justifications for black-box models are required.

INDEX TERMS Cybersecurity, domain generation algorithms (DGA’s), domain name system (DNS),
explainable artificial intelligence (XAI), machine learning, shapley additive explanation (SHAP).

I. INTRODUCTION
Machine Learning (ML) algorithms have been widely
employed within the cybersecurity domain for effectively
filtering massive amounts of data and classifying malignant
traffic. Such algorithms have been commonly used in
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the field of botnet traffic detection and for classifying
names originating from Domain Generation Algorithms
(DGA’s) [1]. Tree-based ML classifiers and deep neural
networks are utilized to differentiate between legitimate
and malicious Domain Name System (DNS) names with
promising accuracy results.

Development of DGA name classifiers has been motivated
by the desire for ML models of higher performance.
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Therefore, simple and intrinsically explainableML classifiers
have been replaced by complex, black-box models that are
not interpretable. Thus, developers are incapable of under-
standing their models to debug them and assert their intended
operation, while users cannot receive justifications on model
decisions made on their data. Finally, regulators are unable
to ensure that models deployed within critical infrastructures
comply with General Data Protection Regulation (GDPR) [2]
or equivalent legislations.

The aforementioned limitations led to investigations for
eXplainable Artificial Intelligence (XAI) techniques [3]
to provide interpretations (and possibly explanations) on
ML model operation. As mentioned in [4], post-hoc and
model-agnostic XAI algorithms are typically preferred. Post-
hoc algorithms are applied to ML models after learning
is completed; model-agnostic ones are independent of the
selectedMLmodels, e.g. tree classifiers and neural networks.
Explanations may be (i) global detailing model behavior
on entire sets of sample points and (ii) local reporting how
models make classification decisions for specific inputs.
A promising post-hoc and model-agnostic approach is
SHapley Additive exPlanation (SHAP) [5], [6], which is
capable of global and local explainability.
Our work leverages on XAI to analyze the operation of

binary, supervised DGA name classifiers that distinguish
between legitimate and malicious1 names, thus detecting
botnet traffic abusing DNS. We train and evaluate various
tree-based classifiers (Random Forests - RF’s, Gradient
Boosting - GB, eXtreme Gradient Boosting - XGBoost,
Adaptive Boosting - AdaBoost, Extremely Randomized
Trees - ExtraTrees) and a deep neural network (Multi-
Layer Perceptron - MLP). SHAP is subsequently employed
to determine and compare the classification criteria of
XGBoost [7], which was the most accurate tree model, and
MLP deep neural network [8] in a post-hoc and model-
agnostic manner. Our experimental analysis focuses on
global and localmodel interpretations used to rank the impact
of utilized features and indicate how their individual values
contribute to classification decisions. Relying on multiple
SHAP visualization tools (i.e. summary, dependence and
force plots [3], [6]) we investigate how the developed models
(i) differentiate between benign and malicious domain names
and (ii) identify which features have the most significant
contribution in classifications of names originating from
well-known fundamental DGA generation schemes that
produce malicious names [1]. Learning and interpretations
are based on linguistic and statistical features, directly
extracted from domain names included within up-to-date
datasets of benign and malignant DNS names.

Our main contributions are summarized as follows:
• SHAP-based interpretations of DGA name classifiers
based on deep neural networks (MLP’s) and comparison

1Throughout our paper, DNS names are considered malicious if they
are produced by DGA’s. Non-DGA names, even those related to malignant
activities (e.g. malware propagation), are labeled as benign names in the
training set.

of their decision-making criteria versus tree-based ML
models (XGBoost).

• Identification of dominant features utilized formalicious
domain name detection pertaining to specific DGA
generation schemes (arithmetic, wordlist, hash and
permutation based).

• Extraction of linguistic and statistical features leading to
accurate and real-time classification of DGAnameswith
no reliance on time-consuming and privacy sensitive
external repository operations.

• Training and interpretations based on the most updated
and inclusive dataset of DGA names, i.e. theDGArchive
repository [1], [9] including 105 DGA families.

• Open-sourced implementation available from our
GitHub repository [10].

The remainder of this paper is structured as follows:
Section II provides brief background and summarizes
related work; Section III provides a high-level overview of
our methods used for interpreting DGA name classifiers;
Section IV elaborates on implementation details pertaining
to our approach; Section V includes our experimental results
and interpretations of DGA name classifiers based on
XGBoost and MLP. Finally, in Section VI we conclude our
work and discuss future steps.

II. BACKGROUND AND RELATED WORK
This section provides brief background on concepts used
in our paper (subsection II-A), outlines related research
approaches (subsection II-B) and details our key contribu-
tions (subsection II-C).

A. BACKGROUND
In subsection II-A1 we describe the operation and character-
istics of Domain Generation Algorithms (DGA’s), whereas
in subsection II-A2 we summarize the basics of the SHapley
Additive exPlanation (SHAP) method.

1) DOMAIN GENERATION ALGORITHMS (DGA’s)
DGA’s are a common technique for establishing communica-
tion between hacked devices, i.e. bots, and their orchestrators,
i.e. Command & Control (C&C) servers. Bots generate DNS
requests based on a seeding technique that is known to C&C
servers. A small number of domain names is registered and
bots are expected to request their resolution. These names
correspond to valid C&C IP addresses, thus bots are capable
of locating them. Specifically, bots perform several DNS
requests; although most of these requests involve invalid
domain names (i.e. NXDOMAIN responses are returned),
a limited number of them is successfully resolved to the C&C
IP addresses. This typically large number of queried domain
names combined with constant changes to the seed render
domain name blacklists ineffective.

Therefore, ML algorithms have been suggested as an
alternative solution to blacklisting. They leverage on previous
knowledge and generalize to newly observed domain names
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for differentiating between benign and malignant patterns,
thus blocking communication between bots and their C&C
servers. Notably, various classification algorithms have been
investigated with promising results, including deep neural
networks [11], [12], [13], [14], [15], [16] as well as
Tree-based Classifiers (e.g. Random Forests - RF’s), Support
Vector Machines (SVM) and Naive Bayes [17], [18], [19],
[20], [21].

The seeding strategy, the number of domain names
produced by a bot and their structure are determined by the
DGA family. Although there are various families with diverse
characteristics, DGA’s are grouped into the following four
generation schemes [1] based on the technique utilized to
produce domain names:

• Arithmetic-based: These algorithms generate sequences
of random values. DGA names are constructed by
concatenating the ASCII representations corresponding
to these values or using them to locate characters within
lists that constitute the DGA alphabet.

• Wordlist-based:DGA names are generated by randomly
concatenating dictionary words. Thus, domain name
randomness is reduced, rendering malicious name
detection more complicated.

• Hash-based: Domain names are constructed by hashing
alphanumeric strings and returning their hexadecimal
representation.

• Permutation-based: They generate at random a domain
name, which is subsequently permuted several times to
produce multiple DGA names.

2) SHAPLEY ADDITIVE EXPLANATION (SHAP)
SHAP is a model-agnostic, post-hoc XAI method related
to cooperative game theory. In cooperative games, players
collaborate to achieve a pay-off, which is subsequently split
based on participant contributions. Accordingly, features are
considered as participants that tune a classifier and subse-
quently SHAP determines feature importance by estimating
the effect of specific features on classification decisions when
these features are present and absent.

SHAP delivers global and local explanations onMLmodel
decisions, whereas various visualization tools facilitate
interpretations, e.g. summary plots, dependence plots and
force plots. Model-agnostic SHAP is typically based on
the KernelExplainer [22] method; this approximates feature
importance via a weighted linear regression model applied
to input instances (sample points). SHAP time complexity
mainly depends on the dataset size. Enabling execution
within reasonable time frames may require clustering and/or
subsampling a given dataset. This process extracts the
eXplainability Background Instances (XBI’s) used for tuning
SHAP values and eXplainability Test Instances (XTI’s)
utilized for generalizing model interpretations.

B. RELATED WORK
Various approaches have been proposed for the detection of
DGA names with promising results, e.g. [11], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [23], [24]. However,
the aforementioned approaches emphasize on improving
detection accuracy, but they do not deliver global and local
model and feature interpretations.

Interpreting DGA name classifiers has recently attracted
significant interest. In [25] neural network classifiers are
interpreted based on their weights. A system for result
visualization is also presented to facilitate model comprehen-
sion. However, interpretations rely on model-specific XAI
methods applicable exclusively to deep learning models,
whilst the total features are limited for visualization purposes.
In [26] multi-class DGA name classifiers are developed based
on features directly extracted from domain names and feature
importance is assessed using various statistical methods.
Nevertheless, [26] is limited to global explainability of DGA
classifiers, thus neglecting model interpretations on specific
DNS names. Moreover, the effect of different DGA schemes
on model decisions is not addressed.

In [27], [28], and [29] SHAP and/or equivalent XAI
techniques (e.g. Local Interpretable Model-Agnostic Expla-
nation - LIME [30] and Counterfactual Explanations [31])
are employed to provide global and local interpretations on
binary DGA name classifiers. Although the aforementioned
approaches deliver promising results, they are limited mainly
to tree-based ML classifiers. These approaches focus on
interpreting how names are classified as benign or malicious,
therefore neglecting how the characteristics of different DGA
families affect classification decisions. Furthermore, feature
calculation in [27] and [29] requires resource-intensive opera-
tions on databases involving historical data, e.g. IP reputation
lists, WHOIS lookups and Time To Live (TTL) values from
DNS responses. These are usually time-consuming and may
raise privacy concerns.

C. KEY CONTRIBUTIONS
Our approach relies on SHAP for model-agnostic (regardless
of the selected models) and post-hoc (after the learning
procedure is completed) validation of DGA name classifier
operation. Ourmodels are based on features extracted entirely
from given names, hence resource-intensive operations on
privacy-sensitive historical DNS data are not required.
We compare interpretations derived from tree-based models
(i.e. XGBoost) and neural networks (i.e. MLP’s) using
both global and local explanations. Notably, we extend
related approaches by analyzing how binary classifier feature
rankings perform when facing diverse DGA schemes, e.g.
following testing methods used in use cases related to
radio communications and health systems [32], [33]. Finally,
malicious DNS data used for training and interpreting our
models are selected from DGArchive; we included 105 DGA
families, a significantly higher number compared to [27],
[28], and [29].

III. OVERVIEW
This section outlines the design principles of our analysis
(subsection III-A) and provides a baseline description of our
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FIGURE 1. Baseline design.

proposed schema for developing and interpreting DGA name
classifiers (subsection III-B).

A. DESIGN PRINCIPLES
The main design principles of our approach are:

• Model-agnostic ML interpretations: We leverage on the
SHAP KernelExplainer [22] to interpret our DGA name
classifiers independently of the underlying ML model.
Therefore, we analyze the operation of tree-based and
deep neural network classifiers in a unified manner.

• Local and global interpretations: Our approach relies
on SHAP to rank feature contributions in classification
decisions made on specific input instances for local
explainability and lists of domain names for global
explainability.

• Analysis relying on various SHAP visualization tools:
Multiple SHAP visualization methods (i.e. summary,
dependence and force plots) are employed to esti-
mate feature importance, determine how feature val-
ues affect model decisions and investigate feature
interactions.

• Classification based on domain-specific features: ML
models are trained on features directly extracted
from domain names without requiring costly database

operations on historical data that may raise privacy
concerns. Such features conceive the statistical and
linguistic properties of DNS names, hence they are
suitable for real-time DGA name classifications.

• Explanations for diverse DGA schemes: We assess
the effect of different DGA family properties on
feature contributions. This way we infer how the
binary DGA name classifiers distinguish between legit-
imate and malicious DNS names for specific DGA
schemes (i.e. arithmetic, wordlist, hash and permutation
based).

B. BASELINE DESIGN
Fig. 1 depicts an overview of our approach for DGA traffic
detection based on accurate and reliable classifiers. The
purpose of the Administrator is to train supervised binary
classifiers that effectively differentiate between benign and
DGA names, validate their dependable operation via XAI
techniques (specifically SHAP) and deploy filtering rules to
drop botnet traffic.

The architecture of Fig. 1 consists of three components:

• Learning Module: Data are preprocessed and the
necessary learning parameters are defined to train and
evaluate DGA name classifiers.
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• Explainability Module: SHAP is used to analyze and
validate the operation of name classifiers developed by
the Learning Module.

• Recursive DNS Server: Ingress DNS requests are
inspected using the trained DGA name classifiers; those
involvingmalicious names are dropped, while legitimate
DNS traffic is forwarded for name resolution.

The Administrator initially selects the learning dataset that
will be utilized for tuning DGA name classifiers (step 1). The
selected data consist of benign and malicious (i.e. DGA gen-
erated) DNS names labeled for binary classification purposes.
Malicious dataset labels include the DGA algorithm used for
name construction; such information is typically available
from reverse engineering efforts on DGA malware installed
within infected hosts [34].

Details of the Learning Module operation are subsequently
determined (step 2). The Administrator defines the model
specifications required for tuning name classifiers, i.e. the
ML algorithm, the model hyperparameters and the selected
features. The learning dataset is then retrieved (step 3)
and preprocessed (step 4) based on the selected features
and ML model details. The DGA Classifier is subsequently
trained and evaluated (step 5), while assessment results and
tuned model parameters are returned to the Administrator
(step 6).

Upon completion of the learning phase, the Administrator
configures the Explainability Module by determining the
reduced dataset instances required for SHAP execution
(step 7). This step refers to the clustering and subsampling
processes required for keeping the SHAP running time within
feasible time periods. In steps 8 and 9 the Learning Module
feeds the trained DGA Classifier, the selected features
and the preprocessed dataset to the Explainability Module.
This dataset is then clustered and subsampled (step 10) to
derive the instances required for SHAP; the eXplainability
Background Instances (XBI’s) used in SHAP calculations
for assessing feature importance and the eXplainability Test
Instances (XTI’s) consisting of the input sampling points
used to eventually derive model interpretations. Note that,
in our case XTI’s were subsampled from the class of
malignant DGA names since our purpose was to assess
feature importance per DGA generation scheme.

After SHAP analysis is completed (step 11), the Explain-
ability Module provides the Administrator with global and
local model-agnostic interpretations of the trained classifiers
(step 12). The Administrator gathers the Learning and
Explainability module results to validate model operation
(step 13). If the classifier accuracy and explanations are satis-
factory, the Administrator deploys appropriate DGA filtering
procedures within the Recursive DNS Server (step 14).

In step 15, ingress DNS requests from DNS Clients are
inspected by the Recursive DNS Server (step 16). Malicious
DNS requests are dropped, whereas legitimate ones are
resolved by the DNS Software, e.g. BIND [35], installed
within the Recursive DNS Server (steps 17 and 18).

IV. IMPLEMENTATION DETAILS
This section elaborates on feature selection (subsection IV-A),
on the development and operations of the Learning
Module (subsection IV-B) and on details pertaining to the
Explainability Module (subsection IV-C).

A. SELECTED FEATURES
We leverage on feature values that are directly extracted
from given domain names and denote linguistic properties
(e.g. values denoting the number of vowels) and statistical
measures (e.g. entropy values). Such features facilitate
real-time DNS traffic inspection and limit sensitive data
exchanges by not requiring storage of privacy-sensitive
information. As already stated, we do not employ historical
data features (e.g. time-based patterns of DNS responses and
IP reputation measures), which typically require excessive
processing resources and storing them may raise privacy
concerns [17].

Prior to feature extraction valid DNS suffixes (one or
multiple zone namespaces, e.g. ‘‘.com’’ and ‘‘.gov.uk’’) are
removed from domain names as in [17]. These are not
generated by DGA’s, hence they are not meaningful to the
learning process. Identification of valid DNS suffixes is based
on the Mozilla public suffix list [36]. Note that removing
these suffixes mapped multiple distinct names to common
prefixes within the learning dataset, e.g. ‘‘google.com’’
and ‘‘google.fr’’ were both reduced to ‘‘google’’. As a
result, classifiers are tuned towards accurately recognizing
frequently requested DNS names; their appearance frequency
within the dataset reflects specific trends of DNS queries
resolved by Recursive DNS Servers.

The features used for DGAname classification are outlined
in Table 1; feature selection was based on approaches
available from the literature, e.g. [14], [17], [37]. In the
following, features 44, 47, 48 and 50 are further analyzed:

• Vowel_Freq (feature 44): Determines the number of
vowels included within the domain name, i.e. letters a, e,
i, o, u and y; considering y as a vowel typically increases
classification accuracy as reported in [20].

• Reputation (feature 47): Evaluates domain name Repu-
tation defined as an indication of its legitimacy [38]; the
higher the Reputation the more legitimate the name may
appear. A method for measuring the reputation score of
a domain name is the appearance frequency of N-grams
(i.e. sequences of N consecutive characters) present
in benign names and absent in malignant ones [39].
Estimating Reputation requires a preprocessing stage
whereby a whitelist is constructed based on the N-grams
derived from a set of legitimate DNS names (e.g. the
Tranco list [40]). Reputation of a given domain name is
evaluated by determining how many of its N-grams are
included in the aforementioned whitelist. N values are
selected between 3 and 7 characters as in [39]; unigrams
(i.e. N = 1) and bigrams (i.e. N = 2) are excluded because
most of them exist in both legitimate and malicious
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TABLE 1. Selected Features for DGA name classification.

names, thus affecting the learning process and hindering
feature importance.

• Words_Freq (feature 48): Determines the number of
meaningful words within given names. Words are
extracted using the Wordninja Natural Language Pro-
cessing (NLP) tool [41] similarly to [42]. Wordninja
probabilistically splits strings into concatenated words
based on the unigram frequency of words appearing
within the English Wikipedia. As in [43], words shorter
than 3 characters (e.g. pronouns and articles) are ignored
as their effect to the learning process is not significant.

• Entropy (feature 50): Estimates domain name random-
ness using Shannon Entropy [17]. We used the standard
definition of entropy:

H (X ) =

∑
x∈X

p(x)log2p(x) (1)

where X is the set of characters included within a DNS
name and p(x) the frequency of character x ∈ X .

B. LEARNING MODULE
This module trains and evaluates supervised binary classifiers
that differentiate between legitimate and DGA names. The
labeled dataset comprised of benign and malicious names
is retrieved and the Learning Module proceeds with dataset
preprocessing by performing feature extraction. Pairwise
feature correlations are calculated using the Pearson’s
Correlation Coefficient (PCC) statistical measure [44] to
detect redundant features not contributing significantly to the
learning process. Upon detecting pairs with PCC’s exceeding
a predefined threshold, a feature is randomly selected and
evicted from the dataset, eventually accelerating the learning
process without significant performance degradation.

The resulting dataset is randomly split into the training
set (used for tuning the binary classifier) and the testing
set (used for evaluating model generalization). Training
and testing instances are scaled between 0 and 1 using
Min-max normalization based on minimum and maximum
values of training instances as in [45]. The Learning
Module completes dataset preprocessing by balancing the

number of benign and malicious class instances. Training
set instances are oversampled using the Synthetic Minority
Over-sampling Technique (SMOTE) [46], similarly to [45].
SMOTE synthetically generates instances following training
set statistical properties to reduce imbalance between given
classes.

Finally, the Learning Module trains and evaluates DGA
name classifiers. We trained tree-based classifiers (i.e.
Random Forest - RF, Gradient Boosting - GB, eXtreme Gra-
dient Boosting - XGBoost, Adaptive Boosting - AdaBoost,
Extremely Randomized Trees - ExtraTrees) and a deep neural
network (i.e. Multi-Layer Perceptron - MLP). Tree classifiers
were developed using scikit-learn [47] and XGBoost Python
Package [48], whereas MLP’s with Keras [49]. Model
hyperparameters were fine-tuned using Grid Search, which
exhaustively explores a subset of the ML algorithm hyperpa-
rameter space and selects the best performing classifier [50].

C. EXPLAINABILITY MODULE
This module analyzes the operation of DGA name classifiers
using SHAP, eventually delivering global and local model-
agnostic post-hoc interpretations to the Administrator.

The preprocessed dataset, the trained model and the
selected features are initially retrieved from the Learning
Module. The preprocessed dataset is then clustered and
subsampled to limit SHAP analysis within reasonable time
constraints [4]. The eXplainability Background Instances
(XBI’s) are obtained as the centroids of K-means clus-
tering on the training set, whereas eXplainability Test
Instances (XTI’s) are derived by randomly subsampling
the testing set. XBI’s are used to tune SHAP values
and XTI’s to interpret decisions made by the DGA name
classifiers.

Subsequently, SHAP KernelExplainer [22] is used to
derive global and local interpretations by ranking features
according to their contribution in classification decisions
and determining interactions between them. SHAP offers
various visualization tools to facilitate comprehension of
interpretations [4], [6]. We relied on the following SHAP
plots:
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• Summary plots: Features are ranked in descending order
according to their impact on model decisions. XTI’s
are mapped as instance dots based on their positive or
negative contributions to model classifications, i.e. their
SHAP values depicted in the horizontal dimension. Low
and high values of features are additionally mapped
on summary plots to depict their effect on classifier
operation. SHAP relies on a color palette to distinguish
feature values; extreme values are visualized using a pair
of basic colors (e.g. blue and red), whereas basic color
shades denote their intermediary values.

• Dependence plots: They demonstrate contributions of
specific features on model decisions. XTI’s are mapped
as dots on a two-dimensional plot; the horizontal axis
includes all possible values of an investigated feature,
whereas the vertical axis depicts the corresponding
SHAP values, i.e. their impact on model decisions.
Dependence plots also visualize the correlation between
the investigated feature and an additional one that
mostly interacts with it. This interacting feature is
determined by evaluating the joint effect of all possible
feature pairs, therefore estimating their influence on
classification accuracy using the Shapley interaction
values [3], [51]. Low and high values of the interacting
feature are depicted using the aforementioned color
palette, thus facilitating conclusions of how feature
interactions jointly affect classification decisions.

• Force plots: They demonstrate feature contributions
on specific XTI’s (typically single local instances).
A pair of basic colors is used to discern model features
according to whether they contribute positively (e.g.
red) or negatively (e.g. blue) to classification decisions.
Names and values of features mostly contributing to
model decisions are included in the plot, whereas
less important feature names and values are omitted.
A decimal number (denoted with bold characters)
corresponds to the final result returned by the binary
classifier.

V. EVALUATION
This section includes the results of our experimental
analysis. Subsection V-A describes the selected dataset
and subsection V-B outlines the experimental testbed.
Subsection V-C involves the Learning Module performance
evaluation that assesses the accuracy of binary DGA name
classifiers. Finally, subsection V-D includes the SHAP-based
interpretations extracted by the Explainability Module.

A. DATASETS
ML models were evaluated using malicious and benign
domain names, typically used for building DGA name
classifiers. Our data were retrieved in Spring 2023.

Malicious DNS names were obtained fromDGArchive [9],
a moderated repository continuously updated with DGA
names resulting from reverse engineering efforts on DGA
malware code. We retrieved roughly 200 million domain

names corresponding to 105 distinct DGA families pertaining
to all generation schemes (i.e. arithmetic, wordlist, hash and
permutation based). The total repository size and constraints
of our experimental infrastructure rendered training of DGA
name classifiers time-consuming and memory intensive.
Therefore, we sampled DGArchive and randomly extracted
10,000 DNS names from each DGA family as in [52];
families involving less than 10,000 names were included
without subsampling. Eventually, our dataset consisted of
600,775 DGA names, which were used to train, evaluate and
interpret DGA name classifiers.

Legitimate DNS names were selected from Tranco [40],
a public online service ranking domain names based on
their popularity. Tranco merges data from various name
ranking services, namely Alexa, Cisco Umbrella, Majestic
and Farsight. Name rankings are calculated over long time
periods (e.g. 30 days), thus mitigating the impact of abrupt
daily fluctuations and/or list manipulation attempts. How-
ever, Tranco still contains a small percentage of DGA names
that are frequently requested by large numbers of infected
Internet devices (bots). Therefore, we filtered the Tranco
dataset [53] by removing names included within DGArchive;
these amounted to 0.57% of Tranco entries. We subsequently
utilized the top-ranked 1 million entries from the remaining
Tranco names similarly to [28]. Following [39] we used
the first 100,000 to construct the whitelist pertaining to the
Reputation feature (subsection IV-A); the remaining 900,000
were used to train and assess the DGA name classifiers.

The aforementioned name sets were labeled as benign
and malignant without indicating specific families of mali-
cious DGA names. Binary classifiers were selected instead
of multi-class ones. Although multi-class classifiers may
provide insight in specific DGA families, they are typically
less accurate than binary ones in segregating benign and
malignant names [11].

B. TESTBED OVERVIEW
Experiments were performed within our laboratory infras-
tructure. We utilized a Virtual Machine (VM) comprising of
8 virtual cores and 24GB physical memory. The hypervisor
was a Dell PE R730 with Intel Xeon E5-2620 v3 2.4 GHz.
Training of neural networks was accelerated using the
NVIDIA GeForce GTX 1050 Ti 4GB [54] graphics card.

C. LEARNING MODULE
The Learning Module was evaluated by assessing (i) the
pairwise correlation among selected features and (ii) the
performance of supervised binary DGA name classifiers.
Assessments were performed using the dataset of benign and
malicious names described in subsection V-A.

Pearson’s Correlation Coefficient (PCC) was utilized to
detect highly correlated features. PCC’s were calculated for
all feature pairs and those exceeding 0.9 (by absolute value)
were considered strongly correlated [55]. In such feature
pairs, a feature was selected at random and evicted from
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the dataset. In particular, Ratio_DeciDig was determined as
strongly correlated to other features, hence it was removed
from subsequent experiments.

We selected Random Forests (RF’s), Gradient Boosting
(GB), eXtreme Gradient Boosting (XGBoost), Adaptive
Boosting (AdaBoost) and Extremely Randomized Trees
(ExtraTrees) as indicative algorithms of tree-based clas-
sifiers; Multi-Layer Perceptrons (MLP) were selected as
representative models of deep neural networks. Classifiers
were trained and evaluated using the dataset described in
subsection V-A. This dataset was randomly split into two
parts using the train_test_split method of scikit-learn [10];
80% was utilized as the training set and the remaining 20%
as the testing set.

Grid Search was used to tune model hyperparameters.
The number and maximum depth of RF, GB and XGBoost
trees were varied as described in Table 2. The number of
AdaBoost and ExtraTrees estimators were varied as described
in the table. Similarly, multiple MLP configurations were
considered by varying the hidden layers number, the neurons
per layer, the batch size and the rate of dropout regularization
layers placed between the hidden layers to reduce overfitting.
Considered MLP hyperparameters are described in Table 3.

Based on the accuracy of ML models, classifier perfor-
mance was assessed as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

where True Positives (TP’s) are the correctly classified DGA
names, True Negatives (TN’s) are the correctly categorized
benign names, False Positives (FP’s) are the incorrectly
classified benign names and False Negatives (FN’s) are the
misclassified malicious names.

Grid Search determined that among RF, GB, XGBoost,
AdaBoost, ExtraTrees and MLP classifiers the best accuracy
scores on the testing set were 94.67%, 94.66%, 94.81%,
92.32%, 94.67% and 94.51% respectively2 as shown in
Table 4. Their configuration details are summarized in
tables 2, 3.

D. EXPLAINABILITY MODULE
The Explainability Module was evaluated based on
SHAP interpretations derived on the trained models
(subsection V-C) for the dataset described in subsection V-A.
We investigated (i) the features used to discern benign and
malicious names derived from multiple DGA families and,
(ii) the most influential features utilized to differentiate
specific DGA schemes.

Interpretations were derived for 105 DGA families of the
DGArchive repository and are available from our GitHub
repository [10]. However, for illustration purposes represen-
tative results are presented in this paper for 4 indicative

2Filtering repetitive name prefixes (see subsection IV-A) within the
training and testing sets yielded comparable accuracy results, specifically
94.39% for XGBoost (best tree-based classifier) and 94.31% for the MLP
neural network. Thus, we did not consider filtering them in our experiments
pertaining to the Explainability Module.

TABLE 2. Hyperparameter tuning of tree classifiers using grid search.

TABLE 3. Hyperparameter tuning of MLP classifier using grid search.

TABLE 4. Accuracy of best classifiers.

DGA families pertaining to 4 diverse DGA schemes (see
Section II-A1). Specifically, as in [59] results are presented
for the following: (i)DirCrypt (arithmetic-based), (ii)Matsnu
(wordlist-based), (iii) Bamital (hash-based) and (iv) Volatile-
Cedar (permutation-based).

Similarly to [4], XBI’s were selected as the cluster
centroids resulting from K-means execution on the training
set with K equal to 50. XTI’s used for interpreting how
name classifiers differentiate between benign and malicious
names derived from all DGA families were obtained by
randomly subsampling 250 DGA names from the testing
set. Interpretations pertaining to specific DGA families were
based on XTI’s randomly subsampled from testing set entries
of these specific families; families with less than 250 names
were included without subsampling.

A greater number of XBI’s and XTI’s yielded in our exten-
sive experiments insignificant interpretation improvements,
while SHAP running time increased dramatically [10]. Using
the aforementioned parameters, the Learning Module and
the Explainability Module required approximately 2 days to
complete their operation.
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FIGURE 2. SHAP summary plots on XTI’s including malicious names from all DGA families.

The following subsections present SHAP interpretations
for XGBoost (which was the most accurate tree-based model)
and the MLP deep neural network model. Interpretations are
based on multiple SHAP plots: (i) summary plots pertaining
to 250 XTI’s from all DGA families (subsection V-D1),
(ii) summary plots involving XTI’s from selected DGA
families (subsection V-D2), (iii) dependence plots pertaining
to 250 XTI’s from all DGA families (subsection V-D3),
(iv) dependence plots including XTI’s from specific DGA
families (subsection V-D4) and (v) force plots for selected
domain names (subsection V-D5). Legitimate and malicious
name classes are denoted with numbers 0 and 1 respec-
tively. Thus, negative SHAP values contribute to benign
name classifications, whereas positive values to DGA name
classifications.

1) XGBOOST AND MLP CLASSIFIER SUMMARY PLOTS FOR
ALL DGA FAMILIES
In this subsection SHAP summary plots are used to explain
the operation of binary DGA name classifiers. Fig. 2 demon-
strates XGBoost (Fig. 2a) and MLP (Fig. 2b) classification
criteria for segregating malicious names from benign ones.
Analysis was based on 250 XTI’s, illustrated as colored dots
in the horizontal dimension, from all DGA families. In these
summary plots blue color is used to denote low feature values,
whereas red color is utilized for high feature values (see
subsection IV-C).

Fig. 2a depicts the 20 most influential features used by
the XGBoost binary classifier. The most effective features
are Reputation, Length, Freq_Q, Words_Mean, Words_Freq
andDeciDig_Freq ranked in order of descending importance.
High Length and DeciDig_Freq values favor malicious name
classifications. Such behavior is related to lengthy names
and high decimal digit frequencies, typically employed by
most DGA’s to avoid coincidence with legitimate regis-
tered domain names. As expected, high Reputation and
Words_Freq values mostly point to benign name catego-
rizations since the presence of many whitelisted N-grams
and meaningful words are linked to legitimate names.
Max_DeciDig_Seq contribution is significantly smaller com-
pared to the impact of the aforementioned features; it
is ranked 12th in terms of contribution to classification
decisions. Finally, high feature values of Words_Mean
may inconclusively affect both benign and malicious name
classifications.

Fig. 2b shows that the most influential features used by the
MLP classifier are Reputation, Length, Max_DeciDig_Seq,
Words_Mean and DeciDig_Freq. Similarly to XGBoost,
MLP relies predominantly on Reputation and Length fea-
tures.Max_DeciDig_Seq was the 3rd most important feature
for MLP with higher values pointing to benign name
classifications. Recall that for XGBoost, Max_DeciDig_Seq
was ranked 12th, a much lower significance level (Fig. 2a).
Likewise, Vowel_Freq feature significantly affects MLP
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FIGURE 3. SHAP summary plots derived for XTI’s from specific DGA families (Algorithm: Multi-Layer Perceptron - MLP).
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decisions ranking as the 8th most influential feature, while
XGBoost dependence on Vowel_Freq is not even among
the 20 most significant features of Fig. 2a. This may be
partially explained by the difference of XGBoost and MLP
in modeling learning tasks. The former mainly relies on
splitting training set instances based on dominant feature
deviations; following boostingmethods strong tree estimators
are eventually constructed by iteratively improving weaker
classifiers. The latter (MLP) tunes its weights during back
propagation towards directions that linearly combine feature
values, forming induced local fields that are further subjected
to non-linear activation functions (e.g. ReLU, Sigmoid).
Thus, XGBoost mainly relies on boosting methods based on
significant feature deviations [60], while MLP on weighted
feature differences.

2) MLP CLASSIFIER SUMMARY PLOTS FOR SELECTED DGA
FAMILIES
This subsection addresses explanations pertaining to binary
MLP classifiers tested for XTI’s derived from specific DGA
families. In Fig. 3 we present summary plots for 4 DGA
families selected from 4 different generation schemes:
(a)DirCrypt (arithmetic-based), (b)Matsnu (wordlist-based),
(c) Bamital (hash-based) and (d) VolatileCedar (permutation-
based). In Table 5 we list four indicative malicious names
pertaining to each of the aforementioned DGA families;
note that typical suffixes, e.g. ‘‘.com’’ and ‘‘.info’’, are not
included in the table. These schemes and their respective
families have the following properties [1]:

• Arithmetic-based DGA’s (e.g. DirCrypt): Domain
names are generated by concatenating randomly
selected characters. DirCrypt is based on the 26 English
alphabet letters to produce names between 8 and
20 characters. Names typically contain long consonant
sequences and are characterized by increased random-
ness compared to benign names.

• Wordlist-based DGA’s (e.g. Matsnu): Random dictio-
nary words are concatenated to generate malicious
domain names resembling legitimate ones. Matsnu
forms long names between 12 and 24 characters by
joining multiple dictionary words of relatively short
length [61].

• Hash-based DGA’s (e.g. Bamital): They rely on the hex-
adecimal representation resulting from hashing domain
names. Bamital is based on MD5 hash function to
generate names consisting of 32 hexadecimal digits.

• Permutation-based DGA’s (VolatileCedar): Multiple
DGA names are produced by permuting a generated
domain name that resembles legitimate names. Linguis-
tic (e.g. number of vowels) and statistical properties
(e.g. letter frequencies) of the initial malignant name are
inherited by derived names.

In the following we analyze specific feature contributions
using summary plots derived by experimenting with malig-
nant XTI’s, randomly subsampled from the aforementioned
DGA schemes:

TABLE 5. Indicative names per DGA family.

• For DirCrypt, Fig. 3a shows that Reputation and
Length are the most important features (higher SHAP
values) followed by Words_Mean, Freq_X, Freq_Q
and Max_Let_Seq. As expected, high Length and
Max_Let_Seq values favor the malicious class since
the typically long names and absence of digits discern
DirCrypt names from benign ones. On the contrary, high
values of Reputation and Words_Freq favor legitimate
name classifications since DirCrypt names contain
less whitelisted N-grams and meaningful words. High
feature values of Words_Mean may be inconclusive,
whereas lower Words_Mean values point to malignant
(DGA) name categorizations.

• Regarding Matsnu, Fig. 3b shows that the most
important features in terms of SHAP values are
Reputation, Words_Mean, Length, Vowel_Freq, Freq_B
and Max_Let_Seq. Reputation exclusively contributes
to benign name classifications (negative SHAP values)
since many whitelisted N-grams may be present in both
legitimate and Matsnu names, therefore favoring mis-
classifications (FN’s) of DGAXTI’s. HighWords_Mean
values point to benign name classifications (FN’s); this
is expected as Matsnu concatenates dictionary words
that are typically short [61], thus higher Words_Mean
values (mean length of meaningful words within the
name) may mislead the classifier towards benign name
classifications. Reputation and Words_Mean influence
is mainly counterbalanced by Length, Vowel_Freq and
Freq_B values. High Length values point to malicious
name classifications since Matsnu names are typically
longer than benign names. Although vowels are typi-
cally present in both benign and Matsnu names, high
Vowel_Freq values enable DGA name categorizations
(TP’s); Matsnu names are usually longer than benign
ones, hence they typically include more vowels. Letter
B was found in variousMatsnu XTI’s, thus high Freq_B
favors TP’s.

• Regarding Bamital, Fig. 3c shows that DeciDig_Freq,
Length, Max_DeciDig_Seq and Reputation mainly
affect model decisions. High DeciDig_Freq values
(i.e. total frequency of decimal digits 0-9) and high
frequencies of specific hexadecimal digits (e.g. Freq_C,
Freq_D, Freq_B and Freq_1) contribute significantly
to TP’s since Bamital names exclusively consist of
such characters. As expected, impact of Length is
very important since Bamital names follow MD5 hash
function statistical properties and their size is fixed (i.e.
32 characters), thus clearly distinguishing them from
benign names. High Max_DeciDig_Seq (i.e. maximum
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digit sequence) values point to misclassifications of
DGA names as benign (FN’s) since long decimal
digit sequences are usually not present in Bamital
names; hash function results are typically uniform,
therefore short decimal digit sequences are followed by
hexadecimal digits. High Reputation values erroneously
favor the class of benign names (FN’s) as the frequency
of whitelisted N-grams within Bamital names is usually
limited.

• For VolatileCedar, Fig. 3d shows that Reputation is the
most important feature exclusively favoring legitimate
classifications (FN’s) with negative SHAP values; the
initial name used by VolatileCedar resembles benign
names, therefore many DGA N-grams may be included
within the Reputation whitelist. The effect of Repu-
tation is mainly counterbalanced by features Length,
Freq_E, Vowel_Freq, Freq_L and Max_Let_Seq. As a
permutation-based DGA, VolatileCedar is characterized
by specific feature values, which act as signatures for
discerning malicious names from benign ones.

3) XGBOOST AND MLP CLASSIFIER DEPENDENCE PLOTS
FOR ALL DGA FAMILIES
In this subsection SHAP dependence plots are used to inves-
tigate pairwise feature relationships, thus complementing our
analysis based on summary plots. Fig. 4 depicts XGBoost and
MLP classifier dependence plots onmalignant XTI’s subsam-
pled from all DGA families. Plots are provided for 4 features
of interest, i.e. Reputation, Entropy, Max_DeciDig_Seq and
Words_Mean. Interacting features are determined by SHAP
using Shapley interaction values (subsection IV-C); red and
blue colors denote high and low values of interacting features
respectively, while these values are depicted normalized
between 0 and 1 (subsection IV-B). Interactions pertaining
to features of interest are summarized below:

• Reputation Interactions: Fig. 4a and Fig. 4b show
that Reputation significantly influences classifications.
Namely, Reputation interacts with Length for XGBoost
and DeciDig_Freq for MLP. However, combined Repu-
tation and interacting feature values do not clearly affect
classification decisions because, as shown in Fig. 2, the
impact of Reputation is significantly higher than that of
Length and DeciDig_Freq.

• Entropy Interactions: As expected from the summary
plots of subsection V-D1, Fig. 4c and Fig. 4d show that
Entropy values are not significant for both XGBoost and
MLP classifiers. Although higher Entropy values may
favor malicious name categorizations for MLP’s, their
SHAP values are considerably low, therefore Entropy
effect is counterbalanced by more influential features.

• Max_DeciDig_Seq Interactions: As already mentioned
in subsectionV-D1, values ofMax_DeciDig_Seq feature
are not significant for XGBoost (Fig. 4e). For MLP,
Fig. 4f depicts that Max_DeciDig_Seq significantly
impacts classifications and interacts with Length. Long
sequences of decimal digits, i.e. highMax_DeciDig_Seq

values, combined with shorter names, i.e. low Length
values favor benign name classifications. This is
expected as several DGA families alternate letters and
decimal digits, thus long digit sequences are not formed.

• Words_Mean Interactions: Fig. 4g and Fig. 4h show
thatWords_Mean values affect both XGBoost and MLP
classifiers. However, although highWords_Mean values
favor legitimate name classifications (FN’s) for MLP,
for XGBoost high Words_Mean values mainly point
to malicious name categorizations. Explicit correlations
betweenWords_Mean and other interacting features are
not evident in our experiments.

4) MLP CLASSIFIER DEPENDENCE PLOTS FOR SELECTED
DGA FAMILIES
In this subsection we present indicative dependence plots
for MLP’s mapping eXplainability Test Instances (XTI’s) for
dominant features per DGA scheme (see subsection V-D2).
Notably, in Fig. 5 we indicatively present dependence plots
pertaining to DirCrypt and Bamital.
DirCryptXTI’s in Fig. 5a and Fig. 5b show that Reputation

and Length features interact with Max_Let_Seq and Reputa-
tion respectively. High Reputation and Max_Let_Seq values
favor benign class categorizations (FN’s), while high Length
values favor TP’s. Such effect of Reputation and Length on
model classifications is expected since DirCrypt names are
typically long and randomized, thus they stand out from
benign names. Note that Length effect on model decisions
increases at a smaller rate as Reputation values increase.
Bamital XTI’s in Fig. 5c and Fig. 5d show that

DeciDig_Freq interacts with Spec_Char_Freq, while
Max_DeciDig_Seq with Length. Increasing DeciDig_Freq
favors TP’s, with its influence increasing (higher SHAP
values) for higher values of the interacting feature
(Spec_Char_Freq). This is expected because Bamital
names consist of hexadecimal digits, thus decimal digits
constitute their majority. Moreover, as in Fig. 5d, increased
Max_DeciDig_Seq values favor FN’s since Bamital follows
the statistical properties of MD5 hash function with
hexadecimal digits uniformly distributed across domain
names. Therefore, long decimal digit sequences typically
favor benign name misclassifications.

5) MLP CLASSIFIER FORCE PLOTS FOR LOCAL
EXPLAINABILITY
In this subsection force plots are used to analyze the operation
of binary MLP classifiers pertaining to specific inputs (local
explainability). Force plots are particularly helpful for under-
standing False Positives (FP’s) and False Negatives (FN’s) in
classification of specific benign and DGA names. In these
plots, features dominantly influencing name classifications
are depicted along with their values. Red color denotes
features favoring malicious name categorizations and blue
colors those contributing to benign name classifications.
A bold decimal value corresponds to the classifier output.
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FIGURE 4. SHAP dependence plots derived for XTI’s including malicious DNS names from all DGA families.
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FIGURE 5. SHAP dependence plots derived for XTI’s from specific DGA families (Algorithm: Multi-Layer Perceptron - MLP).

FIGURE 6. Force plots pertaining to benign (non-DGA) names incorrectly classified as DGA.

Fig. 6 depicts force plots pertaining to MLP FP’s, i.e.
benign (non-DGA) names incorrectly categorized as DGA.
Fig. 6a shows that name ‘‘wawibox.de’’ is perceived as
DGA, mainly because of the high frequency of letter W and
the low Reputation value. For this particular name Freq_W
and the absence of many whitelisted N-grams override the
effect of Length that favors benign name classifications.
Fig. 6b shows that name ‘‘rvwgm2wrld2.xyz’’, which is
frequently used for malware propagation [62] but is not
produced by DGA’s, is misclassified as DGA. This is
attributed to the low Reputation value, the high frequency
of letter W and the low Words_Mean value, although the

zero Vowel_Freq value might point to non-DGA name
classification.

Fig. 7 depicts force plots pertaining to MLP FN’s, i.e.
DGA names incorrectly classified as benign. Fig. 7a shows
that Length values have a major effect on misclassifying
name ‘‘nomodum.info’’, generated by the Simda arithmetic-
based DGA family, despite the high frequencies of letters
M and O that favor malicious name classifications. Fig. 7b
shows that name ‘‘californiatransferable.ru’’ originating
from the Gozi wordlist-based DGA family is classified as
benign because Reputation values point to benign name
classifications. This counterbalances the effect of name
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FIGURE 7. Force plots pertaining to malicious names incorrectly classified as benign.

length and the high presence of vowels that point towards
DGA names.

VI. CONCLUSION AND FUTURE WORK
We investigated XAI methods for interpreting DGA name
classifiers that detect malicious DNS messages used by bots
to communicate with Command & Control (C&C) servers.
We addressed defense mechanisms based on ML classifiers
and analyzed their operation via the SHapley Additive
exPlanation (SHAP) algorithm that provides global and local
interpretations in a model-agnostic, post-hoc manner.

To that end, we first configured tree-based and deep
neural network binary classifiers for differentiating between
benign DNS names and malicious names produced by
DGA’s. We trained and evaluated classifiers based on
supervised ML algorithms, specifically Random Forests
(RF’s), Gradient Boosting (GB), eXtreme Gradient Boost-
ing (XGBoost), Adaptive Boosting (AdaBoost), Extremely
Randomized Trees (ExtraTrees) andMulti-Layer Perceptrons
(MLP’s). These relied on features directly extracted from
domain name datasets, thus eliminating time-consuming
and privacy-sensitive operations on repositories of historical
data. Classifiers were trained using up-to-date and inclusive
datasets. Legitimate names originated from Tranco, an online
service ranking top Internet sites; we selected the 1 million
most popular names. Malicious instances were sampled from
the DGArchive repository, which reports 105 DGA families
from 4 different generation schemes; we randomly selected
600,775 DGA names.

Our SHAP-based evaluation analyzed the features used
by our trained XGBoost (determined as the most accu-
rate tree-based model) and MLP deep neural network
classifiers to segregate benign and DGA name instances.
We investigated how DGA families and their different
underlying algorithmic generation schemes (i.e. arithmetic,
wordlist, hash or permutation based) affect the features that
specifically influence classification decisions. Relying on
multiple SHAP visualization tools (summary, dependence
and force plots) we provided global and local interpretations
on sampled dataset instances. Specifically, we ranked feature
importance, investigated the effect of feature values on model
decisions and determined their interactions. Using up-to-date
and extensive datasets, we conclude that our SHAP-based

TABLE 6. Abbreviations.

analysis enables interpretations of XGBoost and MLP name
classifiers, attacked by well-known diverse DGA schemes.
Such methods may facilitate ML adoption within networking
environments where interpretations for black-box schemes
are required.

We plan to extend our SHAP-based interpretations to
address additional deep neural network models. These
include Convolutional Neural Networks (CNN’s), Long
Short-Term Memory (LSTM) networks and/or Bidirectional
LSTM (BiLSTM) networks that may be employed for
DGA name classification [13]. Alternative XAI approaches,
e.g. LIME [30] and Counterfactual Explanation [31], will
also be considered. The proposed scheme may be further
adapted to unsupervised deep learning models, e.g. Autoen-
coders. Finally, the proposed approach will be extended
to multi-domain infrastructures using Federated Learn-
ing [63] for collaborative DGA name detection, similarly to
[64], [65]. Therefore, privacy-aware model interpretations
will be derived without sharing attack and benign data.
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