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ABSTRACT Reinforcement learning (RL) can obtain the supervisory controller for discrete-event systems
modeled by finite automata and temporal logic. The published methods often have two limitations. First,
a large number of training data are required to learn the RL controller. Second, the RL algorithms do not
consider uncontrollable events, which are essential for supervisory control theory (SCT). To address the
limitations, we first apply SCT to find the supervisors for the specifications modeled by automata. These
supervisors remove illegal training data violating these specifications and hence reduce the exploration space
of the RL algorithm. For the remaining specifications modeled by temporal logic, the RL algorithm is applied
to search for the optimal control decision within the confined exploration space. Uncontrollable events are
considered by the RL algorithm as uncertainties in the plant model. The proposed method can obtain a
nonblocking supervisor for all specifications with less learning time than the published methods.

INDEX TERMS Discrete event system, linear temporal logic, supervisory control theory, reinforcement
learning.

I. INTRODUCTION
Discrete event systems (DESs) [1], [2] encompass a wide
variety of human-made systems, including power sys-
tems [3], unmanned aerial vehicle systems [4], healthcare
service systems [5], traffic systems [6], communication pro-
tocols [7], [8], digital systems [9] and robotic systems [10],
[11]. A DES typically uses deterministic finite automata
(DFA) to describe a plant system and its control specification.
Reference [12] propose the supervisory control theory (SCT)
to compute a supervisor that prevents certain controllable
events based on the state of the plant to ensure the controlled
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system satisfies all specifications, is nonblocking, and has
maximal freedom.

An essential concept in SCT is that certain events
are uncontrollable and hence cannot be prevented by the
supervisor. If the occurrence of an uncontrollable event
leads to the violation of a specification, the supervisor
must prevent certain controllable events in advance to
preempt the occurrence of the uncontrollable event. SCT
develops many theories and algorithms for computing the
maximally permissive and nonblocking supervisors with
acceptable computational complexities. Both the plant and
the specification aremodeled by deterministic finite automata
or regular languages [13]. Many common specifications,
however, cannot be modeled by DFAs. For example,
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‘‘Eventually a workpiece is produced in a production line,’’
‘‘It is always true that if condition A happens, result B
will eventually happen.’’ These specifications are difficult
to model using DFA but can be easily expressed in linear
temporal logic (LTL) [14]. Thistle and Lamouchi [15]
synthesize a supervisor for a partially observed DES with
DFA plant and LTL specifications. Lacerda [16] proposes
a methodology to compute a supervisory for a DES with
LTL specifications, where the plants are modeled by either
DFAs or Petri nets. Sakakibara and Ushio [17] propose an
online supervisory control scheme for DESs, where a control
specification is described by a fragment of linear temporal
logic. Despite theoretical contributions, these methods suffer
from intractable computational complexity and are hence
difficult for applications.

RL [18], [19], [20] is an effective method for solving
control problems with LTL specifications. Smith et al. [21]
shows a technique to find an optimal path of a robot to
satisfy prespecified control requirements modeled by LTL
formulas. Lindemann et al. [22] propose an approach to
compute a controller of a coupled multi-robot system under
linear temporal logic and signal temporal logic requirements.
Sadigh et al. [23] consider a plant as a labeled MDP and
the specification is given as an LTL formula. They propose
a method for designing a controller based on temporal
difference learning [18]. A reward is assigned to each state
of the product MDP according to the acceptance condition
of the DRA. The reinforcement learning method is employed
to obtain an optimal controller that maximizes the expected
discounted sum of rewards and satisfies the LTL formula.
Hiromoto and Ushio [24] use a labeled MDP with a control
cost for system modeling and propose a reinforcement
learning algorithm to design an optimal controller. Their
algorithm has two steps. First, it removes the actions that do
not satisfy LTL specifications. Second, it selects an action that
fulfills the LTL specification and minimizes the discount sum
of the cost.

One common challenge of these methods is the conversion
from an LTL formula to a finite automaton. The methods
proposed in [23] and [25] use Safra’s construction [26]
to translate an LTL formula into a deterministic Rabin
automaton (DRA). The conversion is implemented by the
program ltl2dstar.1 Compared with ltl2dstar, another tool
Rabinizer32 is developed [27] to reduce the state size of the
DRA corresponding to an LTL formula. Schillinger et al. [28]
propose an approach to decompose a single finite LTL
specification into several independent tasks with LTL
specifications and construct a group of models to reduce
the computational complexity. Wolff et al. [29] define a
subset of LTL specifications, which significantly reduces
the computational complexity of control synthesis for both
the deterministic transition systems and Markov decision
processes. The reduction is achieved by computing a

1https://www.ltl2dstar.de/
2https://www7.in.tum.de/ kretinsk/rabinizer3.html

controller directly from the original plant model instead of
converting the LTL specification into a DRA. Wolff and
Murray [30] propose a computationally efficient approach
to obtain an optimal trajectory with LTL specification by
encoding LTL formulas as mixed-integer linear constraints
on the original system, which avoids the computationally
expensive processes of creating a finite abstraction of plant
and an ω−automaton [31] for the specification. Tumova and
Dimarogonas [32] propose a two-phase automaton method
to synthesize a controller for multi-components with LTL
specifications such that the large computational complexity
is reduced. Hasanbeig et al. [33] convert an LTL formula
to a limit-deterministic Büchi automaton and define a
synchronous reward function to synthesize control policies
for an MDP with LTL specifications. Cai et al. [34] divide a
complex LTL specification into several simple modules, and
propose a modular deep reinforcement learning method for
an MDP environment with unknown transition probabilities.
These approaches do not consider the controllability of events
and hence are not suitable for computing supervisors.

The presence of uncontrollable events in DES control
problems is often considered through Rabin games, where
the uncontrollable events are modeled as an adversary
player [35], [36], [37]. The control specification can
be modeled by both finite automata and LTL formulas.
However, it leads to a high computational complexity.
Zielinski et al. [38] propose a general methodology that
applies reinforcement learning to an industrial DES. They
first synthesize a supervisor through SCT and then translate
the controller to an MDP. Finally, they apply State-Action-
Reward-State-Action algorithm [39] to the MDP and obtain
an optimal supervisor that satisfies the specifications, where
the controllability of events is considered in the proposed
action selection algorithm. However, the method requires the
assumption of some special transition probabilities of the
original subsystem.

This study integrates SCT and an RL method to reduce the
learning time of solving DES supervisory control problems
with LTL specifications. We model a plant by a labeled DFA
and the specifications as LTL formulas. Some types of LTL
formulas can be modeled by normal DFAs. For example,
a propertymust always hold. This category of LTL constraints
is referred to as the invariant property [14]. Our method
begins by utilizing SCT to generate a maximally permissive
and nonblocking supervisor for the invariant constraints.
Standard algorithms and tools for computation are available
for synthesizing the supervisor [40]. The supervisor is
extended to a labeled DFA, called labeled supervisor by
considering the labels of the plant. The remaining LTL
formula is then converted into a DRA, which is a special
type of deterministic finite automaton capable of representing
LTL formulas [41]. We construct a Rabin product DFA from
the DRA and the labeled supervisor. The RL method is
applied to find a deterministic state-based controller for the
remaining LTL formula by considering the uncontrollable
events as uncertain transitions. The controller determines
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one action at a state and is not yet a supervisor. All
uncontrollable events must be added to the allowed action
subset at every state to change the controller into a supervisor.
The generated supervisor ensures the plant satisfies all
specifications modeled by both DFA and LTL formulas.

The contributions of the paper are twofold as follows.
• To support control synthesis by RL, we propose an
algorithm to determine the next state and the corre-
sponding reward by considering uncontrollable events
as uncertain transitions.

• We integrate SCT and RL for the supervisor synthesis
of discrete event systems with LTL specifications. SCT
can eliminate infeasible transitions, thereby reducing the
learning time of RL. While the Q function of the RL
algorithm in this paper is represented explicitly as a table
for illustrating concepts, it can be easily replaced by a
deep neural network to further reduce the computational
complexity. All methods proposed in this paper apply
without change to the RL algorithm using deep neural
networks.

The advantages of the proposed method are verified by
two case studies: 1) Control of an autonomous vehicle in
a construction site. 2) Control of an industrial transfer line
[1], [38]. For both cases, we compare the proposed method
that integrates SCT and RL with the baseline method of only
using RL. The proposed method is shown to require less
training time to compute the supervisor. Moreover, we use
a model-based deep reinforcement learning algorithm to
realize the proposed method in the second case.

II. PRELIMINARIES
A. AUTOMATA AND LINEAR TEMPORAL LOGIC
A labeled deterministic finite automaton (DFA) is defined as
G = ⟨Q,A, ξ, q0,Qm, 5,L⟩, where
• Q is a finite nonempty state set;
• A is a finite nonempty set, the alphabet of transition
labels;

• ξ : Q × A → Q is the partially defined transition
function;

• q0 ∈ Q is the initial state;
• Qm ⊆ Q is the set of marker states;
• 5 is a nonempty set of atomic propositions;
• L : Q→ 25 is the label function on states.

Given a word ω = uv with u, v ∈ A∗, u is called a prefix
of ω, denoted by u ⪯ ω. Given q ∈ Q, σ ∈ A, if ξ (q, σ ) is
defined, write ξ (q, σ )!. ξ is extended to a function:Q×A∗→
Q. Accordingly, given str ∈ A∗, write ξ (q, str)! if ξ (q, str) is
defined. L(G) = {str ∈ A∗ | ξ (q0, str)!} is the generated
language and Lm(G) = {str ∈ A∗ | ξ (q0, str) ∈ Qm}
is the marked language of G. Let L ⊆ A∗ be a language,
L = {u ∈ A∗ | (∃ω ∈ L)u ⪯ ω} is the prefix closure of
L. We say that G is nonblocking if L(G) = Lm(G). The
alphabet A is composed of two subsets Ac and Au, where
Ac and Au respectively represent the sets of controllable and
uncontrollable events in A.

An atomic proposition a ∈ 5 is a logic statement about
the states in Q and returns true or false. A propositional logic
formula is a proposition that combines atomic propositions
using Boolean operators ∧ (and), ∨ (or), ! (negation), and
→ (implication). A state formula is a propositionwhose value
is completely determined by the combination of states and the
labels on these states. An LTL formula is composed of state
formulas and temporal operators □ (always), ♦ (eventually),
X (next),UW (weak until), andU (strong until). Given a state
sequence v = q0q1q2 . . . of G and a set of state formulas
{φ, ϕ, . . .}, let vi = qi be the i-th state along the state sequence
and v[i] = qiqi+1 . . . be the suffix starting from the i-th state.
The semantics of the most common temporal logic formulas
are described as follows.
• v ⊨ φ iff v0 ⊨ φ,
• v ⊨ Xφ iff v1 ⊨ φ,
• v ⊨ □φ iff (∀i ≥ 0) vi ⊨ φ,
• v ⊨ ♦φ iff (∃i ≥ 0) vi ⊨ φ,
• v ⊨ φ ∪W ϕ iff v0 ⊨ ϕ ∨ (v0 ⊨ φ ∧ v[1] ⊨ φ ∪W ϕ),
• v ⊨ φ ∪ ϕ iff v ⊨ φ ∪W ϕ ∧ ♦ϕ.
The difference of φ ∪ ϕ (strong until) and φ ∪W ϕ (weak

until) is that ϕ in φ ∪ ϕ must become true in the future but ϕ
in φ ∪W ϕ may or may not become true. More complex LTL
formulas are composed of simple LTL formulas and logic
connectives.

A deterministic Rabin automaton (DRA) is defined asR =
⟨S, 5, β, s0,F⟩, where
• S is a finite set of states;
• 5 is a finite set of atomic propositions;
• β : S × 25

→ S is the state transition function;
• s0 ∈ S is the initial state;
• F = {(D1,B1), . . . , (Dk ,Bk )} is the acceptance
condition whereDi,Bi ⊆ S for i = 1, . . . , k and (Di,Bi)
is called an acceptance pair ofR.

A DRA is used to model an LTL specification [41].
An LTL formula φ can be translated into a corresponding
DRA, and this study employs Rabinizer 3 [27], [42] to
do this conversion. Most LTL specifications only have
one acceptance pair, which simplifies the control synthesis
algorithm. Thus the acceptance condition is written as F =
(D,B) throughout the rest of the paper.
Let v = s0s1s2 . . . be an infinite sequence of states

generated byR and inf(v) denote the set of states that appear
infinitely often in v. If v satisfies

inf(v) ∩ D ̸= ∅ and inf(v) ∩ B = ∅, (1)

then we say that v is accepted by R. Note that given a pair
(D,B), B can be the empty set but D is always not.

B. THE OPTIMAL CONTROLLER FOR AN MDP
A Markov decision process (MDP) is defined as M =

⟨Q,A,P, q0, t⟩, where
• Q is a finite nonempty state set;
• A is a finite nonempty set of actions;
• P : Q × A × Q → [0, 1] is the transition probability
function;
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• q0 ∈ Q is the initial state;
• t : Q× A× Q→ R is the reward function;
A controller of an MDPM = ⟨Q,A,P, q0, t⟩ is a function

f : Q → A. Applying a fixed f to M, we obtain a
Markov chainMf , whose state space is Q and the probability
from state qi to state qj is denoted by P(qi, f (qi), qj). A run
of Mf is an ordered, infinite sequence of transitions r =
(q0, σ0, q1), (q1, σ1, q2), (q2, σ2, q3) . . . such that for all i ≥
0,P(qi, σi, qi+1) > 0 and σi = f (qi). Each run corresponds
to a sequence of states v = sta(r) = q0q1q2q3 · · · and a word
ω = act(r) = σ0σ1σ2 · · · . For a transition from state q to q′

by the event σ , the reward is denoted by t(q, σ, q′).
Given an MDPM = ⟨Q,A,P, q0, t⟩ and a controller f , the

discounted total reward for a run r of the Markov chain Mf
is defined as

R(r) =
∞∑
n=0

γ nt(qn, f (qn), qn+1), (2)

where 0 < γ ≤ 1 is the discount factor that reduces the
weight of rewards in the future, and t(qn, σn, qn+1) is the
step reward of the transition (qn, σn, qn+1), where qn, qn+1 ∈
Q, σn = f (qn), and P(qn, σn, qn+1) ̸= 0.
Let q ∈ Q be the initial state of a run r of Mf , denoted by

q = sta(r)0. The expectation of the discounted rewards of all
infinite runs of Mf starting from the state q is defined as a
value function

Uf (q) = Ef {R(r) | q = sta(r)0} (3)

of M under f , where Ef {·} is the expected value. According
to the Bellman equation [18], the value function of state q
satisfies

Uf (q) =
∑
q′∈Q

P(q, f (q), q′)[t(q, f (q), q′)+ γUf (q′)]. (4)

A controller for M that maximizes the expected value for
every state q ∈ Q is an optimal controller f ∗, which is
formulated as

f ∗ = argmax
f

∑
q′∈Q

P(q, f (q), q′)[t(q, f (q), q′)+ γUf (q′)].

(5)

If the MDP model including the state transition probabil-
ities is available, the optimal controller f ∗ can be found by
stochastic dynamic programming with an infinite horizon.
If the MDP model is not available, then RL is applicable for
approximating the optimal controller via randomly generated
simulations.

C. SUPERVISORY CONTROL THEORY (SCT)
SCT is a branch of systems control regarding the logical
behavior of a DES [12]. A plant is modeled by a DFAG with
an input set A that consists of two disjoint subsets Ac and Au,
where Ac is the set of controllable events and Au is that of
uncontrollable events. In SCT of DESs, the specification that
the plant necessarily satisfies is modeled by a DFA, denoted
by E, which has the same event set as G.

If G does not satisfy the specification, a supervisor
needs to be synthesized to prevent the occurrences of
some controllable events such that the plant satisfies the
control requirement. The supervisory control function is V :
L(G) → 0, where 0 = {γ ∈ 2A|Au ⊆ γ ⊆ A} is
a set of allowed event subsets. The definition implies that
uncontrollable events must always be allowed to happen. The
definition also emphasizes a fundamental difference between
the controller obtained by (5) and the supervisor. A controller
determines one action to take at the current state, but a
supervisor determines a subset of events that may occur at the
current state and the occurrences of these events are uncertain
for the supervisor. The events outside the determined subset
must be prevented by the supervisor. The function V restricts
the behavior of G to a supervisor DFA S, such that Lm(S) ⊆
Lm(G) ∩ Lm(E), S is nonblocking, and the language L(S)
is controllable with respect to G and Au. The SCT theory
ensures the existence of the maximally permissive supervisor
S∗ such that the language of any other supervisor S forG and
E is a subset of the language of S∗, i.e., Lm(S) ⊆ Lm(S∗).
Many computational tools are available for computing the

maximally permissive nonblocking supervisor for a given
pair of plant DFAG and the specification DFA E. This study
applies TCT [40].

III. INTEGRATION OF SCT AND RL
This section introduces a method that integrates SCT and
RL to compute a supervisor for a DES to satisfy the LTL
specifications.

A. PROBLEM FORMULATION
Given a labeled DFA G = ⟨Q,A, ξ, q0,Qm, 5,L⟩ with the
LTL specification φ = φ1 ∧ φ2, where φ1 describes the
invariant property and φ2 describes others. Our objective is
to compute a supervisor that ensures G to satisfy φ.
Our solution is shown in Fig. 1. To compute the supervisor,

we divide the procedure into three parts: satisfaction of the
invariant property φ1, computing the optimal controller for
the remaining LTL specification φ2, and construction of the
final supervisor. The details of each part are described as
follows.

B. SATISFACTION OF THE INVARIANT SPECIFICATIONS
As shown in Fig. 1, a part of the LTL specification,
namely φ1 describes the invariant constraints. An invariant
constraint describes a property that the system must satisfy
at all reachable states. For instance, the requirement that an
autonomous vehicle must avoid the obstacles in its path is
modeled by an LTL formula φ1 = □¬obstacle. This type
of LTL constraint can be modeled by DFAs, and can be
guaranteed by SCT.

Given the plant G = ⟨Q,A, ξ, q0,Qm, 5,L⟩ and the DFA
E1 that describes φ1, TCT generates a maximal permissive
nonblocking supervisor S′1 = ⟨Q1,A, ξ1, q1,0,Q1,m⟩ without
labels. To connect the supervisor and the LTL formula,
we need to construct a labeled supervisor that has the same
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language as S′1 and consistent labels asG. Denote the labeled
supervisor S1 = ⟨Q1,A, ξ1, q1,0,Q1,m, 5,L1⟩. It must have
the following properties
• S1 is nonblocking,
• Lm(S1) ⊆ Lm(G) ∩ Lm(E1),
• S1 is a supervisor w.r.t. G and Au.
• (∀str ∈ L(S1))L1(ξ1(q1,0, str)) = L(ξ (q0, str)).
The labeled supervisor S1 can be obtained from the product

G×S′1, and the label at every state (q, q1) is L1(q, q1) = L(q).

C. SATISFACTION OF THE REMAINING LTL
SPECIFICATIONS
This part is devoted to the computation of an optimal
controller that satisfies the remaining LTL specification by
an RL algorithm.

As depicted in Fig. 1, the remaining portion of the LTL
specification, namely φ2 is converted to a DRA R2 =

⟨S, 5, β, s0,F⟩ by the open-source software tool Rabinizer
3, but other tools for converting LTL to DRA are applicable.
To obtain the supervisor forG that satisfies both the invariant
specification φ1 and φ2, a Rabin product DFA from the
labeled supervisor S1 and the DRAR2 is created as follows.
Given S1 = ⟨Q1,A, ξ1, q1,0,Q1,m, 5,L1⟩ and R2 =

⟨S, 5, β, s0,F⟩, a Rabin product DFA is defined as a tuple
P = S1 ×R2 = ⟨X ,A,T , x0,F ,W ⟩, where
• X ⊆ Q1 × S is the set of states;
• A = Ac∪Au is identical to it in S1, whereAc is the control
event set and Au is the uncontrollable event set;

• T : X × A → X is the partial transition function. For
x = (q, s) and σ ∈ A,

T (x, σ ) =


(q′, s′) if q′ = ξ1(q, σ )

∧ s′ = β(s,L1(q′))
undefined if ξ1(q, σ ) is undefined

• x0 = (q0, s0) ∈ X is the initial state of P;
• F = (G,B) is the acceptance condition, where G =
Q1 × D,B = Q1 × B, and (D,B) = F is defined in
R2;

• W : X → R is the reward function. For any state x ∈ X ,

W (x) =


wG if x ∈ G
wB if x ∈ B
0 otherwise

where wG > 0 is a positive reward and wB < 0 is a negative
reward.

An event σ ∈ A is called enabled at a state x ∈ X if (∃x ′ ∈
X )x ′ = T (x, σ ). A set that includes all enabled events at a
state x is defined as Enb(x) = {σ ∈ A | σ is enabled at x}.
For the Rabin product DFA P, the one-step reward for
transition (xn−1, σ, xn) is defined as t(xn−1, σ, xn) = W (xn).
An essential assumption of SCT is that the occurrence

of uncontrollable events is not preventable. If a controllable
event σ ∈ Enb(x) is selected at a state x by a controller, all
other controllable events defined at state x are necessarily
disabled; however, the uncontrollable events defined at

FIGURE 1. Framework for the integration of SCT and reinforcement
learning.

the state x may still occur. Similarly, if the controller
selects an uncontrollable event σ at x, then all controllable
events defined at x are disabled but other uncontrollable
events defined at x may still occur. The uncertainty of the
uncontrollable events makes the Rabin product DFA P a
Markov Decision Process (MDP) with an uncertain state
transition relationship. At a state x = (q, s), the occurrence
of event σ ∈ Enb(x) randomly determines the next state by
Algorithm 1.

Algorithm 1 Random Selection of the Next State
Input: P = S1 ×R2, x = (q, s), σ ∈ Enb(x)
Output: x ′, t(x, σ, x ′)
1: 6← ({σ } ∪ Au) ∩ Enb(x);
2: Randomly select an event σ ′ ∈ 6;
3: x ′← T (x, σ ′);
4: t(x, σ, x ′)← W (x ′).

Algorithm 1 essentially augments the Rabin product DFA
P to an MDP. Similar to (5), the optimal controller for P that
satisfies φ2 can be found by (6).

f ∗P = argmax
fP

∑
x ′∈X

P(x, fP(x), x ′)[t(x, σ, x ′)+ γU (x ′)]. (6)

If a controller for P satisfying the remaining LTL property
φ2 exists, f ∗P is a satisfying controller after a proper selection
of the reward function W [23], [43]. On the other hand,
even though f ∗P maximizes the value function of P, it may
not ensure the P to satisfy φ2 because of the uncertainty
of the MDP. Therefore, the optimal controller f ∗P needs
further verification against φ2 by simulations or model
checking [14].

Based on the Rabin product DFA P = S1 × R2, a state-
action value function Qf : X × A→ R for the controller f is
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defined as the expected return if the starting state is x and the
first action at x is σ , and the controller f is applied from the
next state:

Qf (x, σ ) = Ef {
∞∑
n=0

γ nt(xn, σn, xn+1) | x0 = x,

σ0 = σ, (∀n > 0)σn = f (xn)}.

According to the Bellman equation [44] and the Markov
property, the state-action value under f can be written as

Qf (x, σ ) =
∑
x ′∈X

P(x, σ, x ′)[t(x, σ, x ′)

+ γEf {
∞∑
n=0

γ nt(xn, f (xn), xn+1)|x0 = x ′}]

=

∑
x ′∈X

P(x, σ, x ′)[t(x, σ, x ′)+ γQf (x ′, f (x ′))].

Q∗(x, σ ) =
∑
x ′∈X

P(x, σ, x ′)[t(x, σ, x ′)+ γ max
σ ′

Q∗(x ′, σ ′)].

(7)

Since the state transition probabilities of the Rabin product
DFA P = S1 × R2 are unknown, P(x, σ, x ′) in (7) is also
unknown. The optimal controller for (7) may be found by
model-free methods. Q-learning [18], [45] is an off-policy
reinforcement learning method popular and effective for
unknown MDPs with discrete control actions. The temporal
difference learning method updates the Q function along
with a sampled episode. Based on the Rabin product DFA
P = S1 × R2, the temporal difference error is defined
as

e = t(x, σ, x ′)+ γ max
σ ′

Q∗(x ′, σ ′)− Q∗(x, σ ),

and the optimal Q function is updated as

Q∗(x, σ )← Q∗(x, σ )+ α[t(x, σ, x ′)

+ γ max
σ ′

Q∗(x ′, σ ′)− Q∗(x, σ )],

where α is the learning rate.
Algorithm 2 is the Q-learning algorithm used in this

study. The balance between exploitation and exploration
is coordinated by the ϵ-greedy algorithm. The probability
threshold is ϵ ∈ (0, 1). After each episode, ϵ decreases by
a decay rate Decay, and the minimal value of ϵ is 0.01.
At a state x, the Q-learning algorithm has the probability ϵ

for randomly selecting an event in Enb(x), i.e., all events
defined at x. To this end, a random number r ∈ [0, 1]
is generated by the even probability distribution. If r ≤
ϵ, a random event σ ∈ Enb(x) is selected; otherwise,
σ = argmax

σ
Q∗(x, σ ).

After selecting an event σ at a state x, Algorithm 2 calls
Algorithm 1 at Line 12 to further consider the uncertainties
caused by uncontrollable events. Then the value function is
updated as Line 13 of Algorithm 2.
There are three kinds of terminal situations in an episode.

The first one is that x is a blocking state withEnb(x) = ∅. The

Algorithm 2 Q-Learning for Computing an Optimal Con-
troller
Input: P = S1 × R2, Discount factor γ , learning rate α,

probability ϵ, decay rateDecay, average reward threshold
1, maximal steps MaxiStep, maximal episodes MaxiEpi
and queue length Length

Output: An optimal controller f ∗P
1: Initialize Q(x, σ ) with random values;
2: EpisodeNumber ← 0;
3: AverageReward ← 0;
4: Let Que be a circular queue with length Length;
5: Initialize Que as empty;
6: while AverageReward < 1 and EpisodeNumber <

MaxiEpi do
7: EpisodeReward ← 0;
8: x ← x0;
9: StepNumber ← 0;

10: while Enb(x) ̸= ∅ and x /∈ Bad and StepNumber ≤
MaxiStep do

11: Choose an event σ ∈ Enb(x) by ϵ-greedy policy;
12: Call Algorithm 1;
13: Q(x, σ ) ← Q(x, σ ) + α[t(x, σ, x ′) +

γ max
σ ′

Q(x ′, σ ′)− Q(x, σ )];

14: EpisodeReward ← EpisodeReward + t(x, σ, x ′);
15: x ← x ′;
16: StepNumber ← StepNumber + 1;
17: end while
18: if ϵ > 0.01 then
19: ϵ ← ϵ × (1− Decay);
20: end if
21: EpisodeNumber ← EpisodeNumber + 1;
22: Add EpisodeReward to Que;
23: SumReward ←

∑
n∈Que n;

24: AverageReward ← SumReward/len(Que);
25: end while
26: f ∗P (·)← argσ maxQ(·, σ );

second one is that x = (q, s) and the state s satisfies s ∈ B
and (∀l ∈ 25)β(s, l) = s, where B is a component of the
acceptance pair of the DRA. Here we use Bad to denote the
collection of the states that satisfy the second condition. The
third situation is that the step counter StepNumber in each
episode is larger than the step thresholdMaxiStep. When one
of the three situations mentioned above occurs, the current
episode is terminated and the algorithm starts a new episode
from the initial state x0.

Algorithm 2 is designed for finite Markov decision
processes and the convergence has been proved in [45].
The three variables EpisodeReward,EpisodeNumber and
AverageReward respectively represent the reward obtained
for each episode, the episode number, and the average
reward over the previous Length episodes. If the value
of AverageReward is larger than the threshold 1 or
EpisodeNumber is larger than the limit MaxiEpi, we
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terminate the iteration and return an optimal controller for
P = S1 ×R2 that satisfies the remaining LTL specification.
If there are multiple actions at state x with the identical value
of maxQ(x, σ ), then the algorithm chooses one randomly.
To calculate the average reward of the last Length episodes,
we define a circular queue Que with the fixed length Length
and initialize it as empty. An episode reward is added to Que
when an episode is finished.

D. COMPUTATION OF THE FINAL SUPERVISOR
The sections above obtain an optimal controller that satisfies
the invariant constraint and the remaining LTL specification.
We cannot use the optimal controller as a supervisor because
it only selects one event at a state. This controller obtained
by Algorithm 2 does not contain all feasible uncontrollable
events at the state. As a result, the controller is not a
supervisor in SCT. This part considers the uncontrollable
events and computes a supervisor restricting the plant to
satisfy the whole control specification.

Given the Rabin product DFA P = ⟨X ,A,T , x0,F ,W ⟩
from S1 = ⟨Q1,A, ξ1, q1,0,Q1,m, 5,L1⟩ and R2 =

⟨S, 5, β, s0,F⟩ and the optimal controller f ∗P , we construct
the final supervisor S = ⟨X ′,A,T ′, x0,Xm⟩ as follows.
• X ′ ⊆ X is the set of reachable states;
• A and x0 are identical to them in S and P, respectively;
• T ′ : X ′ × A→ X ′ is the partial transition function. For
a state x ∈ X ′ and an event σ ∈ A,

T ′(x, σ ) =

{
T (x, σ ) if σ ∈ {f ∗P (x)} ∪ Au
undefined otherwise;

• Xm = (Q1,m × S) ∩ X ′ is the marker state set.

IV. CASE STUDIES
In this part, we apply our method to two cases and compare
the results of our method with the approach that only uses
the RL method. The two methods are compared in terms
of the sizes of the state spaces, the learning times, and
the number of learning iterations. The consequence is that
our proposed method spends less time obtaining an optimal
policy. In addition, the proposed method is realized by a
model-based deep reinforcement learning algorithm in the
second case.

A. CONTROL OF AN AUTONOMOUS VEHICLE IN A
CONSTRUCTION SITE
We explain the proposed method in this paper through an
illustrative example. As shown in Fig. 2(a), an autonomous
truck travels in a square construction site to move earth from
the load station to the unload station. The construction site is
partitioned into a 5 by 5 grid world. The rows are numbered
from 0 to 4 from south to north and the columns are numbered
from I to V from west to east. A block located in row r and
column c is denoted by (r, c). The truck is initialized at (3, I),
and the blocks in this grid world are divided into four types:
the grids with labels Load,Unload,Hole, and none. The

FIGURE 2. Environment.

grids for Load andUnload are colored in blue. The girds with
Hole are colored in red. At some grids adjacent to the holes,
the ground is uneven and has steep slopes into the Hole area.
These grids are colored in white. The labels Load,Unload ,
and Hole respectively represent the load station, the unload
station, and the holes in the construction site. The truck
can execute four actions: north, south,west and east in this
construction site. The action north makes the truck move
north. Similarly, the vehicle respectively moves south, west,
and east when it executes south, west , and east . The truck is
allowed to choose an arbitrary action except at the boundary
of the environment. For instance, at location (4, I), the vehicle
is only allowed to select an action from south and east since
actions north and west will make it hit the boundary. The
truck must satisfy the following constraints:

1. Never reach the grids with a hole.
2. Travel between the load and unload stations infinitely

often.
The grid world is modeled as the labeled DFA G in

Fig. 2(b). The nodes and directed edges respectively denote
the states and transitions of G. The state with a double arrow
is the initial state and the arrows in yellow describe the
uncontrollable events. For convenience, we use n, s,w, e, un,
and ue to respectively denote actions north, south, west ,
east , unorth and ueast , where unorth and ueast are two
uncontrollable events generated when the vehicle goes to
the white locations. The event set, controllable event set,
and uncontrollable set of G are respectively expressed by
6 = {n, s,w, e, un, ue},Ac = {n, s,w, e} and Au = {un, ue}.
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FIGURE 3. Specification and the supervisor.

Capital letters L,H and U in nodes separately represent the
labels Load , Hole, and Unload of the grid world. The labels
of nodes in white are ∅.

1) THE PROPOSED METHOD
This part uses the proposed new method that combines SCT
and a reinforcement learning method to compute a supervisor
that satisfies constraints 1 and 2 for the truck. The plant is
shown in Fig. 2(b) and the specification is described as an
LTL formula

ϕ = □♢L ∧□♢U ∧□¬H . (8)

The constraint□¬H can be enforced by a regular language
specification, and the DFA E that recognizes the language is
shown in 3(a).
The first step is to compute a nonblocking labeled

supervisor S1 from the plant G and the specification E. This
step is realized by SCT and the result is illustrated in Fig. 3(b).
With the supervisory control of S1, the movement of the truck
satisfies□¬H , i.e., the truck never goes to theHole areas. For
example, the supervisor disables action n at the initial state
since n leads to a Hole block. The action e is also disabled at
the initial state as the truck may enter a Hole block from the
shaded block (3, II).

The second step is to compute an optimal controller for
the LTL specification φ. The remaining LTL formula φ is
translated into a DRARφ in Fig. 4. The acceptance condition
of Rφ is F = ({s2},∅). The state in blue should be visited

FIGURE 4. The DRA Rφ corresponding to φ = □♢L ∧ □♢U .

FIGURE 5. Trajectory and the supervisor.

TABLE 1. Values of parameters.

infinitely often, and other states are in white. Then we obtain
a Rabin product DFA P = S1 ×Rφ with 33 states.
Applying Algorithm 2 to P, we obtain an optimal

controller f ∗P . The trajectory induced by f ∗P is shown in
Fig. 5(a). The arrows in blocks are the actions selected by the
optimal controller. When the truck enters (1, I) from (1, II),
the Rabin automaton is at state s0 and the optimal action is
f ∗P ((1, II), s0) = west . On the other hand, when the truck
enters (1, III) from (1, II), the Rabin automaton reaches s1 and
the corresponding action is f ∗P1 ((1, II), s1) = east . That is the
reason why there is more than one action in a block under the
optimal controller.

The values of the parameters used are from Table 1. The
negative reward wB is not used since there does not exist a
state that is required to be visited finitely.
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Then we use SCT to generate a supervisor S that allows all
feasible uncontrollable events, and S is shown in Fig. 5(b).
At the initial state, the truck cannot take the controllable

action n since S disables it to avoid the Hole block (4, I).
Similarly, the action e is disabled at the block (3, I). Although
the string se does not lead to any Hole block, it is also
disabled since the learning algorithm selects the event s at the
block (2, I).
The trajectory under the supervisor is shown in Fig. 5(a).

The truck starts from the initial state (3, I) and arrives at the
loading location (0, I) by executing the action sequence sss.
Then it takes action sequence neeeennn and arrives at the
unloading location (4,V). After dumping the soil, the truck
navigates back to the upload location by the action sequence
ssswwwws. Therefore, we obtain a trajectory

tra = (3, I), (2, I), ((1, I), (0, I), (1, I), (1, II), (1, III), (1, IV)

(1,V), (2,V), (3,V), (4,V), (3,V), (2,V), (1,V)

(1, IV), (1, III), (1, II))ω

for the vehicle. In this trajectory, the truck travels between
the load and the unload stations infinitely often and never
reaches theHole areas. Therefore, under the supervision of S,
the trajectory of the truck satisfies constraints 1 and 2.

2) RL METHOD WITHOUT SCT
To highlight the advantages of the proposed method, this
section shows the results of two methods based on RL for
computing an optimal controller for the plant G to satisfy
the constraint ϕ in (8). One directly generates an optimal
controller for G. The other considers the uncertainties by
uncontrollable events based on the plant model G.

a: RL METHOD WITHOUT CONSIDERING
UNCONTROLLABLE EVENTS
The plant model is shown in Fig. 2(b) and the specification
is described by (8). The LTL formula ϕ is translated to a
DRA Rϕ in Fig. 6, where the acceptance condition of Rϕ

is ({s2}, {s3, s4}), and s0 is the initial state. The state in blue
is required to be visited infinitely often and the states in red
should be avoided. Other states are in white.

We obtain a Rabin product DFA P′ = G × Rϕ with
102 states. Applying Algorithm 2 to P′, we obtain an
optimal controller f ∗P′ for P′ to satisfy ϕ. The trajectory
of the truck under f ∗P′ is shown in Fig. 7(a). Compared
with the trajectory induced by the optimal controller f ∗P
in Fig. 5(a), the truck in Fig. 7(a) enters the block
(3, II). The values of α, γ, ε, 1,wG,wB,Decay,MaxiStep
and Length used in Algorithm 2 are shown in Table 1, where
wB = −100.

The supervisor S′ derived from P′ = G × Rϕ and f ∗P′
is shown in Fig. 7(b). Fig. 7(c) shows the trajectories under
S′, in which the truck enters the white block (3, II) and may
slip into the Hole block (3, III). Consequently, the supervisor
cannot ensure that the truck meets constraint 1.

FIGURE 6. Deterministic Rabin automaton Rϕ corresponding to ϕ.

FIGURE 7. Trajectories and the supervisor.

Therefore, the RL method fails to compute a correct super-
visor for the truck without recognizing the controllability of
events. Next, we investigate the situation that considers the
uncontrollable events.

59848 VOLUME 11, 2023



J. Yang et al.: Reducing the Learning Time of Reinforcement Learning for the Supervisory Control

FIGURE 8. Plots of episode reward and average reward.

b: RL METHOD CONSIDERING UNCONTROLLABLE EVENTS
This section considers the uncertainties induced by uncon-
trollable events. The product Rabin DFA P = G × Rϕ is
the same as it in the last method. Given the same values
of parameters in the last method, we obtain an optimal
controller f ∗P that satisfies the LTL formula ϕ by Algorithm 2.
The trajectory induced by f ∗P is illustrated in Fig. 5(a).
Then we obtain the supervisor S, which is the same as
the supervisor illustrated in Fig. 5(b). As analyzed in the
proposed method of the case, the supervisor meets the control
requirements.

Considering the controllability of events, the correct
supervisor of the plant is obtained by both the proposed
method and the RL method without using SCT. Fig. 8 shows
the plots of changes of EpisodeReward and AverageReward
introduced in Algorithm 2 through the proposed method
and the RL method without using SCT. The proposed
method requires 3257 episodes to converge the optimal
controller, while the RL method without using SCT needs
46682 episodes. The oscillation in the figures comes from the
uncertainties caused by both the ϵ-greedy algorithm and the
uncontrollable events.

Table 2 displays the differences between the two methods
in the number of states, learning episodes, and learning
times before converging. The RL method without using SCT
requires 102 states of the product MDP while the proposed
method requires only 33 states. The implementations are
realized by MATLAB with a PC with Intel(R) Core(TM)
i5-8265U CPU @1.60GHz, 1.80GHz, and 8.00GB installed
memory (RAM). The proposed method requires 7.2 seconds
while the RL method without using SCT needs 90.8 seconds.

TABLE 2. Comparison of computing overhead.

FIGURE 9. Configuration of transfer line.

In summary, the proposed method searches a smaller state
space, obtains the converged values earlier, and requires less
time than the RL method without using SCT.

B. CONTROL OF AN INDUSTRIAL TRANSFER LINE SYSTEM
The second example is an industrial transfer line consisting of
two machines M1, M2 and a test unit TU, linked by buffers
B1 and B2 in Fig. 9. The capacities of buffers B1 and B2 are,
for example, 3 and 1, respectively. Machine M1 takes a part
and is loaded. After the processing, M1 is unloaded and the
finished part is moved to buffer B1. MachineM2 takes a part
from buffer B1 and is loaded. After the processing, M2 is
unloaded and the finished part is moved to buffer B2. The
test unit TU takes a part from B2 for quality test. If the
part is accepted by TU, it is released from the system; if
rejected, it is returned to B1 for reprocessing byM2. Thus the
system incorporates ‘material feedback’. We assume that the
returned part has a priority to be taken from B1. The control
requirements of the system are:

1. Buffers B1 and B2 must be protected against underflow
and overflow.

2. If a workpiece is rejected by the test unit, B1 is not
allowed to receive any workpiece from M1 until the rejected
workpiece is processed byM2.
The labeled DFA models of M1,M2,TU,B1 and B2 are

displayed in Fig. 10, where Ac = {ld1, ld2, tst} and
Au = {uld1, uld2, fns, rjt}. The atomic proposition set is
5 = {pro1, pro2,RJT , und1, over1, und2, over2}. Events
pro1 and pro2 respectively denote the processing of M1 and
M2, and RJT means that TU rejects a workpiece. The labels
und1 and und2 respectively denote the underflow of B1 and
B2, and the labels over1 and over2 denote the overflow of
B1 and B2, respectively. The labels of nodes in white are
empty.

The specification is described as an LTL formula

φ = □¬und1 ∧□¬und2 ∧□¬over1 ∧□¬over2∧

□(RJT → ¬pro1Upro2). (9)

1) THE PROPOSED METHOD
The proposed method substitutes the LTL specification φ1 =

□¬und1 ∧□¬und2 ∧□¬over1 ∧□¬over2 in (9) by a DFA
specificationE, which is the synchronization ofB1SPEC and
B2SPEC in Fig. 11.
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FIGURE 10. Component DES.

FIGURE 11. Buffer specifications.

FIGURE 12. The DRA R2 corresponding to φ2.

The plant G is the synchronization of M1,M2 and TU.
First of all, we obtain a supervisor S1, with 28 states and
65 transitions that satisfies E for the plant G through SCT.
We translate the remaining LTL formula φ2 = □(RJT →
¬pro1Upro2) to a DRA R2 in Fig. 12, where

event1 = (¬RJT ∧ pro1 ∧ pro2) ∨ (RJT ∧ ¬pro1 ∧ pro2)∨

(¬RJT ∧ ¬pro1 ∧ ¬pro2) ∨ (¬RJT ∧ ¬pro1 ∧ pro2)∨

(RJT ∧ pro1 ∧ pro2) ∨ (¬RJT ∧ pro1 ∧ ¬pro2),

event2 = RJT∧¬pro1∧¬pro2, event3 = RJT∧pro1∧¬pro2,
event4 = (¬RJT ∧¬pro1∧¬pro2)∨(RJT ∧¬pro1∧¬pro2),
event5 = pro2, and event6 = (RJT∧pro1∧¬pro2)∨(¬RJT∧
pro1 ∧ ¬pro2).

We get the labeled supervisor S1 and obtain a Rabin
product DFA P = S1 × R2 with 112 states. Applying
Algorithm 2 to P, we obtain an optimal controller for φ2. The
parameters used in this case are displayed in Table 3.

Then we construct the final supervisor S in Fig. 13. It is
tested by Monte Carlo simulations that the supervisor indeed

TABLE 3. Values of parameters.

FIGURE 13. Supervisor S of transfer line.

TABLE 4. Comparison of computing overhead.

satisfies the specifications B1 and B2. As an illustration,
during any trajectory of transitions allowed by S, after the
occurrence of event rjt , the event ld1 to load the first machine
is disabled until the second machine is loaded by event ld2.
Thus the LTL specification φ2 is satisfied.

2) RL METHOD WITHOUT SCT
The plant model G is the synchronization of components in
Fig. 10. The label of each state is the union of the labels
of the states in modular components. The specification is
expressed in (9) and is translated into a DRA Rφ with
4 states and 128 transitions. We construct a product DFA
P′ = G × Rφ with 864 states. Applying Algorithm 2
to P′, we obtain an optimal controller for φ, and then we
extend the optimal controller to the corresponding supervisor
S in Fig. 13. As analyzed in the last section, the supervisor
satisfies the control requirements.

Table 4 displays the differences between the two methods
in the number of states, learning episodes, and learning
times before converging. The RL method without using SCT
requires 864 states of the product DFA while the proposed
method requires only 112 states. The implementations are
realized by the same PC as the first case. The proposed
method requires 0.7 seconds while the RL method without
using SCT needs 11.2 seconds.

Fig. 14 shows the plots of changes of episode reward and
average reward introduced in Algorithm 2 through the two
methods. The proposed method requires 228 episodes, while
the RL method without using SCT needs 3498 episodes.

3) DEEP REINFORCEMENT LEARNING FRAMEWORK
To improve the scalability of the proposed method, the
Q-learning algorithm in Algorithm 2 using the explicit Q
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FIGURE 14. Plots of episode reward and average reward.

FIGURE 15. Plots of average rewards from the methods that use the DQN
algorithm and the Q-learning algorithm.

table can be replaced by a deep Q-network (DQN) algorithm.
The Q table for the transfer line example is approximated
by a fully connected three-layer neural network, where the
numbers of neurons of the input layer, the middle layer, and
the output layer are 6, 8, and 8, respectively. The details of
the DQN algorithm are elaborated in [46].

The input of the neural network is a vector of the state
numbers of the plant components, the modular supervisors,
and the DRA translated from the LTL specification, where the
modular supervisors are obtained from the plant components
and the individual specifications. In this case, the input is
x = (x1, x2, x3, x4, x5, x6), where x1, x2 and x3 correspond to
the state numbers ofM1,M2 and TU, x4 and x5 represent the
state numbers of two modular supervisors that fulfill B1 and
B2, respectively, and x6 denotes the state number of R2.
The reward function for DQN is the same as the one for the
Q-learning algorithm. and the values of rewards are shown

in Table 3. Other parameters for the DQN algorithm are the
same as those in Table 3 in [46].

Fig. 15 displays the plots of the average rewards by the
methods employing the Q-learning and the DQN algorithm,
respectively. It shows that the learning efficiency is improved
when the Q table is replaced by a neural network. The
primary advantage of the DQN algorithm is the reduction of
memory space. The Q table for this example has 112 states
and 8 actions. The total number of elements is 112 × 8 =
896, but the total number of parameters for the DQN is only
6 × 8 + 8 × 8 = 112. The optimal policy is modeled by the
obtained neural network, and the final supervisor constructed
is the same as the one shown in Fig. 13.

V. CONCLUSION AND FUTURE WORK
We investigate the controllability of events and propose a
method that combines SCT and RL framework to compute
a supervisor that allows all uncontrollable events in DESs.
Moreover, the proposed method can be applied to a DRL
framework to solve the control problems for a large-
scale DES. In this paper, SCT is utilized to remove the
obviously unacceptable states and hence saves learning
time.

In the future, we plan to apply DRL methods to design
a supervisory controller for a DES with multiple LTL
specifications. The proposed method is employed to obtain
multiple modular supervisors that satisfy the individual LTL
specifications, and a high-level supervisor is approximated
by a neural network to coordinate these modular supervisors
such that the LTL specifications are satisfied, and the learning
time is reduced since SCT eliminates a lot of obviously
unacceptable states.
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