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ABSTRACT Multi-asset portfolio selection is an asset allocation strategy involving a variety of assets.
Adaptive investment strategies which consider the dynamic market characteristics of individual assets and
asset classes are vital for maximizing returns and minimizing risks. We introduce HADAPS, a novel com-
putational method for multi-asset portfolio selection which utilizes the Soft-Actor-Critic (SAC) framework
enhanced with Hierarchical Policy Network. Contrary to previous approaches that have relied on heuristics
for constructing asset allocations, HADAPS directly outputs a continuous vector of action values depending
on current market conditions. In addition, HADAPS performs multi-asset portfolio selection involving
multiple asset classes. Experimental results show that HADAPS outperforms baseline approaches in not
only cumulative returns but also risk-adjusted metrics. These results are based on market price data from
sectors with various behavioral characteristics. Furthermore, qualitative analysis shows HADAPS’ ability to
adaptively shift portfolio selection strategies in dynamic market conditions where asset classes and different
assets are uncorrelated to each other.

INDEX TERMS Portfolios, investment, stock markets, cryptocurrency, reinforcement learning.

I. INTRODUCTION
Portfolio selection is an investment strategy that seeks a com-
bination of assets best satisfying an invester’s needs under
uncertain market circumstances [1], [2]. The goal of portfo-
lio selection is maximizing returns while minimizing risks
through asset diversification [3], [4], [5]. Previous researches
in finance domain have attempted to construct diversified
portfolios with uncorrelated assets considering their indi-
vidual returns and volatilities (e.g., different national mar-
kets [6], [7], [8] or different asset classes [9]). To reduce the
complexity of investing in various assets with multiple asset
classes, [10], [11] suggested using hierarchical decision-
making systems. However, such approaches still have not
fully overcome burdens associated with multi-asset portfo-
lio selection where it requires massive amount of time and
discretion.
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To solve the difficulties of portfolio selection, deep learn-
ing methods, especially reinforcement learning approaches,
were proposed to deal with non-stationary and uncertain
characteristics of market conditions [12]. Moreover, deep
reinforcement learning has contributed to improving auto-
matic portfolio selection tasks [12], [13], [14]. However, such
previous methods rely on heuristic decision layers utilized
in value-based networks [14], [15]. This raises a need for
a reinforcement learning framework that learns to directly
determine actions in multi-asset portfolio selection with the
goal of better investment outcomes.

We introduce HADAPS which is a reinforcement learning
model based on Soft Actor Critic (SAC) framework [16].
The SAC framework enables our model to directly deter-
mine the asset-wise proportions in a portfolio represented
as continuous action values. To facilitate adaptive allocation
strategies, we made the following modifications to the SAC
framework. We replaced the policy network with our Hier-
archical Policy Network consisting the Intra-Class Asset and
Inter-Class Asset Layers. We also devised a novel parameter
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FIGURE 1. Overview of HADAPS. HADAPS make a decision of a
multi-asset portfolio selection by capturing the states of markets
consisting of multi-asset classes. According to the changes in Asset class
B’s prices illustrated on the left side, HADAPS increases the asset class
B’s allocation when the model classifies it as a bull market compared to
other asset classes as shown in the upper part on the right side.

called Action Scale which is applied to the output values of
policy networks.

In order to comprehensively evaluate the performance of
HADAPS in the portfolio selection task, we conducted a
series of experiments with three distinct groups, each com-
prising of a combination of assets. The assets in scenarios
included a safe asset, such as the U.S. dollar, a moderate
but important asset, represented by the U.S. stock market,
and a more aggressive asset, exemplified by cryptocurrency,
to provide a thorough assessment of HADAPS’s investment
performance on assets with various volatilities. To the best of
our knowledge, it is our first attempt to apply reinforcement
learning techniques to portfolio investment involving hetero-
geneous asset classes.

Our key contributions are as follows:

• To the best of our knowledge, we utilized the Soft Actor
Critic framework in the multi-asset portfolio selection
task for the first time.

• We developed HADAPS by enhancing SAC framework
with our novel Hierarchical Policy Network Layer and
Action Scale parameter.

• We conducted experiments with three groups of scenar-
ios including stocks and cryptos price data to compare
HADAPS’ investment performance with other multi-
asset porfolio selection methods. Results show that
HADAPS outperforms all baselines in not only cumu-
lative returns but also risk-adjusted metrics.

II. RELATED WORK
A. ALGORITHMIC APPROACHES FOR
PORTFOLIO SELECTION
Early Markowitz approach [1] suggested making decisions
on portfolio selection by formulating a heuristic model

TABLE 1. Table of notations.

through exploitation of expected return and risk indica-
tors. Subsequently, other researches have attempted to com-
pose different types of asset classes (e.g., different regional
characteristics [6] and equity groups [9]) for better invest-
ment return. Furthermore, previous studies improved the
Markowitz model by adopting other parametric mathemati-
cal methods such as correlation [17] and regime switching
models [18].

B. DEEP REINFORCEMENT LEARNING FOR
PORTFOLIO SELECTION
Despite many attempts based on parametric portfolio selec-
tionmethods, uncertain characteristics of markets brought the
necessity of creating generalized agents for automatic port-
folio selection. Particularly in finance domain, deep learning
methods have shown promising results in forecasting mar-
ket states based past historical states [15], [19], [20], [21],
[22], [23].

Prior automatic portfolio selection commonly relied on
Deep Q Networks (DQN) [15] which is a reinforcement
learning framework based on Value Network. The advent of
SAC framework in deep reinforcement learning has brought
improvement in other domain-specific downstream tasks
which provides rationale for us to apply it in multi-asset
portfolio selection.

Previous approaches have engaged in multi-asset portfolio
selection involving homogeneous assets in the same asset
class such as Stocks [22], [23], [24] or Cryptos [13], [14].
Distinguishable from other approaches, our work introduces
a multi-asset portfolio selectionmethod applied with the SAC
framework applicable with heterogeneous asset classes.

III. PRELIMINARIES
The following details are the preliminaries for Multi-Asset
Portfolio Selection task and its applied deep reinforcement
learning framework.
Task 1: (Multi-Asset Portfolio Selection) Suppose a het-

erogeneous set B, containing m Assets which can be cate-
gorized into n disjoint Asset Classes C, where B = (B1 ∪

B2 · · · ∪ Bn), |B| = m, |C| = n are given. Given the Assets
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FIGURE 2. Model architecture of HADAPS. sp and sv are the input of
HADAPS, which representation of a current market state. HADAPS make a
decision of a portfolio selection action y for given a state (sp, sv ).

above, we define Multi-Asset Class Portfolio Selection as
constructing a portfolio selection action y ∈ Rm of which
objective is to maximize the Cumulative Reward in R over
time frame T .
As our method involves the SAC enhanced with hierarchical
policy network layer, we break down the Multi-Asset Port-
folio Selection task into two sub-tasks.
Subtask 1: (Inter-Class Portfolio Selection) Given a set

of Asset Classes C, we define Inter-Class Portfolio Selection
as constructing a portfolio selection action yC ∈ Rn consist-
ing a Class-wise allocation of n investments.
Subtask 2: (Intra-Class Portfolio Selection) Given a

set of Assets within an Asset Class Bi where i ∈

{1, 2, · · · , n}, we define Intra-Class Portfolio Selection as
constructing a portfolio selection action yi ∈ Rmi where
mi = |Bi|. yi consists of an Asset-wise allocation of
mi investments.

For applying reinforcement learning framework to our
Multi-Asset Portfolio Selection Task, we define the environ-
ment and agent as follows:

• Environment: The environment produces a new state
(spt+1, s

v
t+1) and a reward rt with given yt for every time

step t .

Algorithm 1 HADAPSTraining Algorithm
1: Initialize θ, π

2: D← ∅ ▷ Initialize an empty replay buffer
3: for each iteration do
4: for each environment step t ∈ (k − 1,T ) do
5: aintert ∼ πφinter (a

inter
t |svt )

6: aintert = β × aintert ▷ Section IV-D
7: aintert = σ (aintert ) ▷ σ is a softmax function.
8: for each asset class ci ∈ {c1, · · · , cn} do
9: aintra,cit ∼ πφintra,i(a

intra,ci
t |spt )

10: aintra,cit = β × aintra,cit ▷ Section IV-D
11: aintra,cit = σ (aintra,cit )
12: acit = aintra,cit × ainter,it
13: end for
14: yt = Concat(ac1t , · · · , acnt ) ▷ yt ∈ Rm

15: st+1 ∼ p(st+1|st , yt )
16: D← D ∪ {(spt , svt , yt , rt (s

p
t , yt ), s

p
t+1, s

v
t+1)}

17: end for
18: Update θ using gradient decent using D
19: end for

• Agent: The agent in portfolio selection task generates the
portfolio selection action yt for given state (spt , svt ) with
the objective of maximizing the cumulative rewards.

To apply the deep reinforcement learning framework to our
formulated Multi-Asset Portfolio Selection task, we define
the following components (Sp,Sv,Y,R) in MDP which
are Price State, Volatility State, Portfolio Selection Action,
Reward respectively. The following definitions also include
t and k which are the current timestamp and rolling window
size.

• Price State spt : For each Asset, the Price State is defined
as spt = [pt−1, · · · , pz, · · · , pt−1−k ], where pz is a price
of an asset at time z and k is a window size. All prices
p were normalized by the mean and standard deviation
value calculated only within the training period.

• Volatility State svt : For each Asset, the Volatility State
is defined as svt = [vt−1, · · · , vz, · · · , vt−1−k ], where
vz denotes a standard deviation of previous prices from
timestamp z to z − k multiplied by ϵ where ϵ = 1 if
(pz − pz−1) ≥ 0 else ϵ = −1.

• Portfolio Selection Action yt : For all Assets at
timestamp t , an Action is the agent’s decision
for the above-mentioned Multi-Asset Class Port-
folio Selection Action yt which is built based on
aintert ∈ Rn in Inter-Class Portfolio Selection and
aintrat ∈ R|Bi| in Intra-Class Portfolio Selection where
i ∈ {1, 2, · · · , n}.

• Reward rt (s
p
t , svt , yt ): For all m Assets (m = |B|) at

timestamp t , Reward is computed based on the agent’s
decision given the Price State spt and Volatility State
svt and their corresponding yt . The reward is calculated
based on the summation of Asset-wise products between
returns and yt . The Asset-wise return is defined as

73396 VOLUME 11, 2023



J. Kim et al.: HADAPS: Hierarchical Adaptive Multi-Asset Portfolio Selection

1 ∈ Rm since there are m Assets as defined above in
ourMulti-Asset Class Portfolio Selection. Each Asset-
wise return at timestamp t is calculated based on the rate
of price change from timestamp to t to timestamp t − 1.
The calculation of Asset-wise returns 1t timestamp t is
mathematically expressed as follows:

δz,t =
pz,t − pz,t−1

pz,t
, δz,t ∈ 1t (1)

where pz,t is the price at timestamp t , asset z.
Subsequently, the calculation of Reward rt for allmAssets

is mathematically expressed as follows:

rt (δt , yt ) = 100×
m∑
z=1

(δz,t · yz,t ) (2)

where yz,t is the resultive portfolio selection action for the
zth Asset at timestamp t .

Using the above definition of MDPs, we define a model’s
policy πφ at given time t .
• Policy πφ(yt |s

p
t , svt ): An agent’s decision based on cur-

rent state at time t of composing yt among given assets.
We set the goal of an agent as maximizing cumulative
rewards.

IV. HADAPS
A. ARCHITECTURE
HADAPS is a hierarchical adaptive multi-asset portfolio
selection system which is constructed based on the SAC [16]
framework where the agent generates portfolio yt at times-
tamp t given state (spt , svt ).
The SAC framework is an off-policy actor-critic method

using the maximum entropy reinforcement learning frame-
work. Within the framework, the agent is trained to directly
learn to make decisions on multi-dimensional continuous
action values with stability [16], [25]. The SAC framework
consists two different networks which are Q Network and
Hierarchical Policy Network. All layers used in both Q net-
work and Policy Network use a five-layered MLP which is
mathematically expressed as,

L = δ(Dropout(BN (Linear(X ))) (3)

MLP(X ) = L5(L4(L3(L2(L1(X ))))) (4)

where X ∈ Rz×k , BN stands for batch normalization,
z is a number of assets or asset classes, k is a window
size. And the output dimensions for L1, L2, L3, L4, L5 are
256, 128, 64, 32, 16, respectively.
The Q network in HADAPS evaluates the current state st

and yt estimating the expected reward to guide the decision of
asset allocation layers. The mathematical formulation of the
Q network is as follows,

Qy(Y ) =MLPqy (Y ) (5)

Qs(S) =MLPqs (S) (6)

Oq(Y , S) =Concat(Qy(Y ),Qs(S)) (7)

Qθ (Y , S) =Linearq(ReLU (Oq(Y , S))) (8)

B. HIERARCHICAL POLICY NETWORK
The Hierarchical Policy Network comprises Asset Alloca-
tion Layers (Inter-Class and Intra-Class Asset Layer) with
an additional Action Scale parameter. Our intuition for this
design approach aligns with a robust investment strategy
that involves making investment decisions in a hierarchical
manner. The Inter-Class layer was designed to help the model
make allocations on asset classes based on its understanding
in the overall market situation while the Intra-Class layer was
designed to subsequently lead themodel to make fine-grained
decisions on individual assets within the same class based on
their priority.

We set this layer to decide asset allocation via predicting
proper Portfolio Selection Action yt for each assets in B.
The Inter-Class Asset Layer is mathematically expressed as
follows,

πφinter (s
v) =tanh(Linearπinter (MLPπinter (s

v))) (9)

Meanwhile the Intra-Class Asset Layers for each ci ∈
(c1, c2, · · · , cn) is mathematically expressed as follows,

πφintra,ci
(sp) =tanh(Linearπintra,ci (MLPπintra,ci

(sp))) (10)

where the output dimension for πφinter , πφintra,ci
are |C|, |Bi|,

respectively. We remark that for an asset class z when
|Bz| = 1, we removed the corresponding Intra-Class Asset
Layer and where the Inter-Class Portfolio Action value for
cz is directly used for computing the output. The hyperbolic
tangent tanh was included in every last part of each layer for
training stability [25].

C. TRAINING ALGORITHM
As shown in Algorithm 1, we initialize the replay buffer and
the layer-wise parameters of Q network and policy networks
in HADAPS (Section IV-A). For every environment step t ,
we let the agent explore the environment by allocating yt .
While HADAPS consists Inter-Class and Intra-Class Asset
Layers, HADAPS determines its action in two steps at each
time t based on the outputs from the layers. Given volatility
state svt , HADAPS sets the proportions of each asset class
in C by using the policy network πφinter in from line 5 to 7.
Meanwhile, HADAPS also selects the proportions of each
asset in the asset class in aintra,ci using the given price state s

p
t

from line 9 to 11. The proportions of each asset are multiplied
by the proportions of the asset classes belonging to in line 12.

In SAC, the training objective is based on Maximum
Entropy objective which enables HADAPS to explore contin-
uous action spaces with the stochastic policy. The objective
function comprises two parts which are entropy and reward:

Jπ (φ) = Est∼D
[
Eyt∼πφ [α log(πφ(yt |s

p
t , s

v
t ))− r(s

p
t , s

v
t , yt )

]
(11)

where log(πφ(yt |s
p
t , s

v
t )), r(s

p
t , s

v
t , yt ), α describes entropy,

reward and temperature parameter, respectively. The temper-
ature parameter determines the relative importance between
reward and entropy.
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For the reward part, we use off-policy double Q function
methods used in [16]. And for the entropy part, we use a
tractable policy networkπφ .We sample yt for time step t from
Gaussian Distribution parameterized by µt , σt which are the
outputs from the policy network πφ . The implementation
details for the Q and policy networks are described in IV-B.

D. ACTION SCALE PARAMETER
Note that the last parts of every policy network layers are
hyperbolic tangent tanh which leads to the values in µt and
δt range from -1 to 1. To make yt as a proportion of assets,
we applied softmax function σ [14], [23], [24].
Note that tanh and σ tend to shrink the magnitudes of

exploring steps sampled from Gaussian Distributions param-
eterized by the outputs of policy networks. We empirically
show that such characteristics hinder HADAPS’s adaptive
training in Section VI-B. To circumvent such issues, we intro-
duce a novel parameter called Action Scale. The Action Scale
remedies the shrinking effects of tanh and σ by amplifying
the stochastic exploring steps from HADAPS’s Hierarchi-
cal Policy Network πφ . We refer this to hyper-parameter β

described in Algorithm 1 line 6 and 10.

V. EXPERIMENTS SETTINGS
We use gradient decent algorithm for training HADAPS with
RMSProp and MSELoss. Also we use 1e-5, 0.3, 300, 4000,
32 for the learning rate, dropout rate, maximum epoch, max-
imum buffer size, and batch size, respectively.

A. DATASET AND EVALUATION
In our experiments, we selected three asset classes which are
stocks, cryptos and cash as safe asset. We formulated three
types of experimental scenarios containing a pair of asset
groups consisting of five assets with cash to show HADAPS’
robust investment performance. The selection criteria aligns
with our motivation to investigate/evaluate HADAPS’ invest-
ment strategy in various market environments.
• Crypto&Stock: We selected the top five crypto assets
except stable coins1 by their market cap as of June 26,
2022.2 All crypto price data were last gathered prices for
each day from CoinMarketCap.3 Also, we selected the
top five U.S. stocks in Nasdaq by their market cap as of
June 26, 2022. 4 All stock price data were closing price
from Yahoo Finance.5

• Stockv1↑&Stockv2↑: We employed a selection criterion
of high volatility during the training periods to identify
the top two stock sectors, each comprising of five stocks.
Top 1 and 2 sectors are the Consumer service6 and

1Tether, USD Coin and Binance USD.
2The selected cryptos are BTC (Bitcoin), ETH (Ethereum), BNB (Binance

Coin), XRP (Ripple) and ADA (Cardano).
3https://coinmarketcap.com/
4The selected tickers of stocks are AAPL, MSFT, AMZN, META and

GOOG.
5https://finance.yahoo.com/
6BKNG, CMCSA, DIS, MCD, and SBUX

Health service,7 respectively. All of the sectors in U.S.
stocks are from Tradingview.8

• Stockv1↓&Stockv2↓: We chose the bottom two sectors
with the lowest volatility, selecting five stocks from each
sector, based on training period data. Bottom 1 and 2
sectors are the Communications9 and Non energy min-
erals,10 respectively.

We set one of the asset classes as a safe asset such as the U.S.
dollar for all three scenarios.HADAPS gets an opportunity to
invest in safe assets to minimize the risks of a portfolio when
non-safe asset classes are in a bear market.

For Crypto&Stock to simulate and evaluate HADAPS’s
understanding of the dynamic behavior of stock and crypto
prices and its robustness on unseen future circumstances,
we adopted time series cross validation on a rolling basis
[26], [27], [28]. Given four years of price data contained
in our dataset, we used the first three years (2018, 2019,
2020) for searching the hyperparameters and model choices
of HADAPS where years 2018 and 2019 are used as training
period and 2020 are used for validating HADAPS’ perfor-
mance on maximizing Cumulative Return. After fixing the
best hyperparameters, we used the last three years (2019,
2020, 2021) of price data by re-training HADAPS with years
2019 and 2020, and testing it on the remaining year 2021 price
data. The same dataset split and model validation scheme was
applied to the baselinemodels aswell. For each validation and
test year, we split the year into twelve periods to measure the
robustness of models by averaging the metric values for all
periods. Before every inference periods, HADAPS learns the
investment strategy using prior two years of training period.
Therefore, the time frame (T) for training and inference
period are set to two years and one month respectively.

In order to supplement the limited amount of price
data available for the cryptocurrency market, we conducted
additional experimental scenarios (Stockv1↑&Stockv2↑,
Stockv1↓&Stockv2↓) utilizing longer time frames. The stock
price data utilized in these experiments was sourced from the
U.S. stock market of which the time period is from April 1st,
2008 to December 31st, 2017.

We used the metrics including Cumulative Return (CR %),
Sharpe (Sha), Sortino (Sor), and Omega (Ome) [29] to eval-
uate HADAPS’s test performance on the unseen price data
for each settings.

√
252 is used as a multiplier for the Sharp

and Sortino. The Sortino ratio exploits only the negative
deviation of a portfolio’s reward, it gives investors a better
view of a portfolio’s risk-adjusted performance since positive
volatility leads to better rewards. For the Omega ratio, we set
threshold = 0 as a risk-free asset. While the Omega ratio
uses the exact values from gains and losses, it does not
depend on estimators from specific distributions which can

7CI, CNC, ELV, HUM, and UNH
8https://www.tradingview.com/markets/stocks-usa/sectorandindustry-

sector/
9AMOV, AMX, T, TMUS, and VZ
10BHP, FCX, RIo, SCCO, and VALE
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TABLE 2. Evaluation results of baseline experiments. For the Crypto&Stock, every value is the average of each phase. Also, we experiment ten times for
each model, and use the average values for each metric.

TABLE 3. Results of ablation experiments on Hierarchical Portfolio
Selection Layer on the Crypto&Stock. SAC is our base model without
using hierarchical selection architecture. All models below SAC uses
hierarchical selection architecture, but SAC+Intra, SAC+Inter use a fair
distribution strategy for assets in a given class and asset classes,
respectively. IV-B explains the asset allocation layers.

make disturbance for values with abnormal values or skewed
distributions [30].

B. MODEL BASELINES
The baselines for comparatively evaluation of HADAPS are
the following,
• Market, Momentum: Market strategy shows a result
of equally distributed composition for given assets.
Momentum strategy, which involves selecting the top
performing assets within a training period and dis-
tributing them equally within a testing period, shows
a result of following a simple traditional momentum
strategy [31]. These strategies show the results of simply
constructing a portfolio but not in an adaptive way.

• MLP,CNN:We adopted thesemodels that were used for
forecasting prices of individual assets [32]. We trained
themodels to predict three classes which are Long,Hold,
and Short. We set the class of a day as Short if the return
is below -3% or Long if return is above 3%.

• MAPS: As for our SOTA baseline, we trained a value
network tomeasure a state with three dimensions includ-
ing Long, Hold, and Short [14].

VI. RESULTS
A. MODEL COMPARISON WITH BASELINES
Table 2 and 3 show the results of our main and ablation exper-
iments. We conducted experiments to compare HADAPS’s
performance with its baselines using the four evaluation met-
rics. For each model, we repeated the experiments ten times
using different random seeds and calculated the mean values
of their test performance. For Crypto&Stock scenario, all
four evaluation metrics for each experiment were averaged

FIGURE 3. Results of ablation experiments for action Scale parameter on
the Crypto&Stock. STD is a standard deviation value for proportion of
asset classes. CR shows average cumulative return of each phase.

period-wise as our test year is split into twelve inference
periods.

The first baseline Market in Table 2 are the representative
assets when following the evenly distributed portfolio strate-
gies. This baselines fell behind HADAPS in all four evalua-
tion metrics with all of the scenarios except CR (52.669) in
Stockv1↑&Stockv2↑ where HADAPS’s CR (50.735). How-
ever even in this case, other risk adjusted metrics including
HADAPS’s Sha (0.815), Sor (1.177), and Ome (1.178) are
better than the market’s. This demonstrates the effectiveness
of constructing multi-asset portfolios instead of a market
following heuristic investment approach.

As shown in Table 2, baselines using simple neural net-
works (MLP, CNN) did not show improvement compared
to Fair Trading especially in risk-adjusted evaluation met-
rics. Even replacing these models with SOTA approach
(MAPS) did not seem to grant remarkable improvement
in all evaluation metrics as well except CR (52.620) in
Stockv1↑&Stockv2↑ than HADAPS’ CR (50.735). We spec-
ulated that the performance of the MAPS is almost similar
to that of the market. Therefore, the MAPS approach may
lack adaptability in terms of asset allocation. Consequently,
HADAPS yielded superior results in a majority of cases com-
pared to baselines.

B. MODEL ABLATION ON ACTION SCALE PARAMETER
We performed ablation tests on HADAPS by modifying
the action scale parameter on Crypto&Stock. We initially
expected the action scale parameter to determine the overall
adaptive investment behavior of HADAPS. To quantify its
investment volatility we calculated the standard deviation
value (STD) of the proportion of asset classes. Higher STD
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FIGURE 4. Monthly asset class-wise proportions of portfolios on Crypto&Stock. The upper part illustrates the normalized prices of each asset in the test
period. Highlighted lines are nasdaq index and bitcoin which are the representative assets for stocks and cryptos respectively. The asset class-wise
proportions of portfolios made by HADAPS and MAPS for each period are shown in the lower part. We calculated the asset class-wise proportions by
summing the asset-wise proportions for each asset classes.

value means the model is sensitive to a market situation.
According to Figure 3, the STD value was proportional to
action scale parameters from 1 to 8 while the Cumulative
Return has reached its peak when the action scale was set
to 5. On the contrary, action scale parameters above 8 did not
result in increased returns and instead consistently exhibited
elevated levels of investment volatility. This demonstrates the
importance of selecting the optimal action scale parameter
as it may impact the overall investment results in terms of
HADAPS’ adaptive behavior.

C. MODEL ABLATION ON HIERARCHICAL POLICY
NETWORK LAYERS
We performed ablation tests on HADAPS to probe the effects
of utilizing Hierarchical Policy Network Layers of which the
results are shown in Table 3 onCrypto&Stock. As remarked
in the previous Section IV-D, the non-linear activation func-
tions tend to restrict our model’s adaptive asset selection
behavior in various market circumstances. This further sup-
ports our choice of enhancing the SAC framework with the
Hierarchical Policy Network and Action Scale parameter as
empirically shown in theHADAPS’ results. We replaced each
of the Policy Network Layers (Inter-Class Asset Layer, Intra-
Class Asset Layer) with Uniformly Distributed action values:
Even(X ) = 1

k , where k is 3 for inter-class allocation layer,
5,5,1 for each assets in asset classes (stocks, cryptos, and safe
asset), respectively.

As shown in Table 3, utilizing Inter-Class and Intra-
Class Asset Layers have significantly contributed to earning

more returns (CR 5.653) compared to other ablations
(SAC+Intra CR 3.503, SAC+Inter CR 3.133, Without Both
CR 3.588 from Table 2).

D. QUALITATIVE ANALYSIS ON MONTHLY RESULTS
Under assumption that uncorrelated assets may provide
opportunities to secure more returns in portfolio selection [1],
we classified all twelve test periods into correlated and uncor-
related ones by calculating the correlation between stock and
crypto asset classes in the Crypto&Stock. The correlation
metric is defined as follows:

Corr(X ,Y ) =
E[(X − µx)(Y − µy)]

σxσy
(12)

whereX , Y are price data in test period averaged on five assets
per asset class which are stocks and cryptos respectively. For
each asset, all price data were normalized using min-max
scaling. µx , µy, σx , σy are mean and standard deviation of
X , Y .
Having calculated the correlation values as shown in Fig-

ure 4, we indicated the negative correlation periods with gray
areas and examined the portfolio proportions of each asset
class (P1, P2, P5, P6 and P11) where each period is annotated
with total Cumulative Return.

For P1 and P2, our HADAPS earned positive returns
(2.62, 70.55) compared to MAPS. During P1 where the stock
market has a bull-run period compared to crypto’s down-
trends, HADAPS took advantage and gained better returns by
acquiring more stocks. Moreover, making use of a transition

73400 VOLUME 11, 2023



J. Kim et al.: HADAPS: Hierarchical Adaptive Multi-Asset Portfolio Selection

in market trends,HADAPS responded by shifting its portfolio
proportions from stocks to cryptos.

For P5, as the crypto market was on its bear-run and
the stock market rebounded from its lowest bear-run, both
models suffered losses in cumulative return. However,
HADAPS managed to minimize its casualties by reducing
its investments in crypto assets. For P6, we speculated that
HADAPS showed agile response to the fluctuating prices of
cryptos and succeeded in mitigating its negative returns to
almost zero (-0.13) while MAPS was inflicted with relatively
more losses (-0.72). For P11,HADAPS did not provide favor-
able outcomes (-3.18) compared to MAPS (-2.40) when both
market negatively correlated downtrends.

Overall,HADAPS showed adaptive portfolio selection pat-
terns throughout the twelve periods in test data while MAPS
maintained its position of not drastically allocating more on
specific group of assets. This concludes that not only MAPS
is similar to Fair Trading strategies but HADAPS has better
potential in acquiring massive returns if it precisely captures
the bull-runs among volatile assets.

VII. CONCLUSION
We devised HADAPS, a multi-asset portfolio selection
SAC framework enhanced with the Hierarchical Policy
Network and Action Scale parameter. The former helps
HADAPS adjust the portfolio proportions of different asset
classes with response to dynamic market situations while the
latter inherently expands its exploration of action space in
the SAC framework. Experiments on investment in stocks,
cryptos and safe asset with three different scenarios demon-
strated HADAPS’s ability to adaptively invest in volatile
assets and show mostly better results on returns and risk-
adjusted metrics than other baselines and ablations. Further
investigation on HADAPS’s portfolio selection given twelve
test periods on Crypto&Stock also show HADAPS’s adapt-
ability to dynamic market trends.

Through the results of this paper, we confirmed that
HADAPS can effectively adjust portfolios for various assets
in response to dynamic markets. However, more in-depth
research is needed on these points, and future work will
proceed in the following directions. First, HADAPS has cur-
rently conducted experiments on stocks, cryptocurrencies,
and safe assets, but research is needed to verify the versatility
of the model, including various asset classes. Second, a more
detailed analysis of the effects of hierarchical policy networks
and behavioral scale parameters is needed. In particular, it is
important to better understand how the two factors interact to
affect overall performance.

Finally, HADAPS adapts well to dynamic market trends,
but further research is needed on its performance under
extreme market conditions. For example, testing HADAPS’s
ability to respond to prolonged economic downturns or rapid
market fluctuations will be one of the pillars of future
research. Through this direction, HADAPS will show better
performance and expand its applicability in real investment
scenarios.
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