IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 April 2023, accepted 9 June 2023, date of publication 13 June 2023, date of current version 21 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3285630

== RESEARCH ARTICLE

Light-Weight Security Protocol and Data Model

for Chip-to-Chip Zero-Trust

ASHFAQ AHMED “, (Senior Member, IEEE), ABDULHADI SHOUFAN 12, (Member, IEEE),

AND KAIS BELWAFI“1, (Member, IEEE)

!Center for Cyber-Physical Systems (C2PS), Khalifa University, Abu Dhabi, United Arab Emirates
2Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates

Corresponding author: Ashfaq Ahmed (ashfaq.ahmed @ku.ac.ae)

This work was supported by the Khalifa University of Science and Technology from the External Fund under Grant 8434000388.

ABSTRACT The semiconductor supply chain is vulnerable to multiple security attacks, such as hardware
Trojan injection, intellectual property theft, and overproduction. The notion of zero-trust (ZT) — never trust,
always verify — offers a promising opportunity for chip security by authenticating integrated circuits (ICs)
when they are connected to critical computing systems. Before exchanging any data, the system establishes
trust with the chip using industry security protocols. In this paper, we propose using the secure protocol and
data model (SPDM) to establish chip-to-chip (C2C)-ZT communications. Furthermore, we present formal
models for this solution and verify these models using state-of-the-art formal verification tools. The results
show that the SPDM meets the requirements of the ZT architecture and can be used as a foundation for

secure C2C interconnection.

INDEX TERMS Secure protocol and data model (SPDM), automatic verification of internet security
protocols and applications (AVISPA), secure protocol animator (SPAN), formal verification (FV).

I. INTRODUCTION
Over the last few years, ZT has become the preeminent
concept, drawing the attention of the cyber security commu-
nity [1]. Many corporate giants have already deployed ZT net-
works, notably Google’s yondCorp [2], [3] and Microsoft’s
self-ZT security model [4], [5]. Due to the significant interest
of the research community in ZT, the National Institute of
Standards and Technology (NIST) has recently drafted the
terms, definitions, and network infrastructure components
for ZT. It is anticipated that it will be an integral part of
future systems to protect enterprises and critical infrastruc-
tures against cyber attacks. The ZT principle has been widely
adopted in a wide range of applications, including but not
limited to self-driving networks [6], cloud computing [7],
device-to-device communications [8], medical and healthcare
sector [9], [10], and internet of things (IoT) [11].

The ZT principle promotes the notion of never trusting
and always verifying. Recently, the hardware community has
shown keen interest in ZT to protect chips and embedded sys-

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tems. Especially since the emergence of the 10T, the security
of the enormous, tiny devices is vital, since they may serve as
soft targets for cyber attackers [12]. Drones / unmanned aerial
vehicles (UAVs) are another example of devices that can be
flown away from control centers and then kidnapped, hacked,
and operated by an unauthorized entity [13].

In this paper, we propose a C2C-ZT architecture that pro-
vides physical-level security for hardware systems by permit-
ting communication between two chips only if they pass an
authentication and attestation procedure. This solution aims
to mitigate the security concerns associated with outsourc-
ing chip production that may lead to vulnerable embedded
systems [14], [15]. Physically unclonable function (PUF) is
a relevant technology that provides a digital fingerprint for
chips. To validate this fingerprint, the user must have access to
additional information, namely the challenge-response table.
So, authenticating a chip with PUF boils down to trusting this
challenge-response table, which contradicts the ZT principle.
SPDM, on the other hand, is based on trusting the certification
authority, rather than any data generated in the chip supply
chain. Therefore, tt the core of the proposed C2C-ZT archi-
tecture is the SPDM.

60335

https://orcid.org/0000-0002-6194-7551
https://orcid.org/0000-0002-3968-8637
https://orcid.org/0000-0003-1455-439X
https://orcid.org/0000-0002-8887-4321

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

As SPDM becomes increasingly popular in the cyber
security community, it is crucial to validate the protocol.
Indeed, the prerequisite for attesting any security protocol is
its formal verification (FV). If a security protocol success-
fully passes all security threat tests during the FV, it can be
implemented in systems. There are numerous tools and tech-
niques available for verifying security protocols. In this study,
we use the widely used push-button verification tool, auto-
matic verification of internet security protocols and applica-
tions (AVISPA)+secure protocol animator (SPAN), which is
extensively utilized by the research community for FV [16],
[17], [18], [19], [20]. The performance of AVISPA tool is
evaluated in [21]. Multiple security protocols are utilized to
test the tool, and it is determined that the tool is well-suited
for validating the protocols.

A. LITERATURE REVIEW

The ZT security architecture has been extensively studied in
the literature, and various proposals have been put forward to
address different security threats. In this section, we system-
atically classify the current ZT security architecture based on
different threats and survey them accordingly.

AUTHENTICATION AND CONFIDENTIALITY OF IoT DEVICES
To guarantee the authentication and confidentiality of IoT
devices, blockchain-enabled information sharing under the
ZT principle is proposed in [11]. A lightweight continuous
device-to-device authentication (LCDA) protocol is proposed
in [8] to protect inter-device communication on resource-
constrained devices. The protocol specifies mutual and con-
tinuous authentication phases that include a dynamic secret
key refreshing method including channel state information
(CSI) modification.

INSIDER THREATS

A ZT-based framework for the IC design process to counter
insider threats is proposed in [14]. Palmo et al. in [22]
proposed a method to securely embed resource-limiting IoT
devices within software-defined perimeter (SDP), a ZT model
proposed by the cloud security alliance (CSA). The use of
endogenous security concepts to improve the internal struc-
ture of the ZT security model is proposed in [23]. The
suggested heterogeneous redundancy mechanism enhances
the security of the ZT system against internal threats while
maintaining universal applicability, ensuring reliable network
services and effective security defense.

MALWARE AND TROJAN DETECTION

In [15], a novel ZT aligned method for detecting run-time
Trojans in untrusted commercial off-the-shelf (COTS) pro-
cessors is provided. A software-defined ZT architecture for
sixth generation (6G) networks is proposed in [24], which
has the potential to establish a flexible and scalable security
framework. This architecture relies on adaptive collaboration
among control domains to enable secure access control, and it

60336

Exchange of messages:

i 1. Authentication

| 2. Measurements

3. Secure communications

Host system

External chip

2Cbus

FIGURE 1. Use-case of chip-to-chip communications based on ZT
principle.

provides effective protection against malicious access behav-
iors, including distributed denial of service (DDoS) attacks,
malware propagation, and zero-day exploits.

HARDWARE SECURITY

In [25], a ProGun hardware/software co-design is proposed to
mitigate the majority of security vulnerabilities caused by the
lack of physical protection. It is built with multiple security
layers to withstand cyber attacks. ProGun is a univeral serial
bus (USB) dongle with a hardened and restricted operating
system that can be used to protect any COTS computer from
remote access. The dongle also includes logical interfaces and
features for authentication and additional security. In [26],
a satellite ground station front end processor (FEP) is exam-
ined to determine the degree of trust minimization in real-
world scenarios. Using modern technologies and hardware-
oriented methodologies, it is proven that trust minimization
is attainable to a significant degree. It is anticipated that the
code size will be reduced by a factor of 100, and that the
level of protection against hardware backdoors will increase
substantially.

COUNTERFEITING
Dutta et al. in [27] proposes and implements a ferroelectric
field-effect transistor (FeFET)-based run-time reconfigurable
camouflage logic technique. The solution concurrently con-
ceals the design intellectual property (IP) from ZT foundry
and an untrusted testing facility, thus eliminating the counter-
feiting threats posed by reverse engineering.

Overall, these works address different security threats in
the ZT security architecture and provide various solutions.

B. MOTIVATION AND CONTRIBUTIONS
The review of related work shows that substantial efforts
have been made to protect devices, systems, and processes.
To the best of our knowledge, however, there is no published
literature on physical-layer authentication and secure com-
munication for a C2C-ZT architecture. This physical-layer
authentication of chips is highly needed to protect the system
from exchanging information with counterfeit chips.

Under such a C2C-ZT architecture, no device is granted
implicit access to the system, but the least possible privileges

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

TABLE 1. Description of the lightweight SPDM protocol in a C2C-ZT scenario.

Step Host Chip

External Chip

1 Sends GET_VERSION message, which contains a list of all the

versions of SPDM that are supported by the host

Receives the GET_VERSION message, and responds with a VER-
SION message that includes the latest and commonly supported
SPDM version based on the list of supported versions from both
the host and guest

Sends the GET_CAPACITIES message, which contains the SPDM
2 version, the authentication, encryption, and key exchange algo-

rithms, as well as the maximum message size

Receives the message GET_CAPACITIES and responds with CA-
PACITIES which is a message similar to the one received but
includes the capabilities supported by the guest chip

3 Sends a NEGOTIATE_ALGORITHMS message, which includes a

list of supported algorithms and a preferred order of priority

Selects the highest-priority algorithms that are supported by both
the chips and sends a ALGORITHMS message to confirm the
selected algorithms to be used for the rest of process.

4 Sends GET_DIGESTS message, which specifies the type of digest

and the number of digests to be returned by the guest

Responds with DIGESTS message, which contains the hash of
digital certificate, Hash{(KC1) g}, where KC1 is the public
key of the host which is encrypted with the private key K of the
certification authority (CA)

Receives the Hash{(KC1)k}
if{Hash{(KC1)k} is not available in the memory}

5 —> Send GET_CERTIFICATE message, store Hash{(KC1) g

else
= Move to next step

Receives GET_CERTIFICATE message, and sends back the digital
certificate, represented as { KC'1} i

6 Receives { KC1} g, if not available in the memory. Sends a

challenge message containing a nonce N,

Receives the nonce N,, generates its nonce Ny, and sends back
{Np; {Na}invir}} as CHALLENGE_AUTH message, where
inv{ K C1} represents the private key of the guest

7 Sends GET_MEASUREMENTS message to get measurements from
a guest’s firmware or hardware. The message includes a nonce Ng

Sends back the message MEASUREMENTS, which includes the
requested measurements, the received nonce N, and its encrypted

nonce {Nb}inv{Kcl}

8 A secure communication channel is established by exchanging Diffie-Hellman (DHE) key-pairs

are granted after a rigorous authentication and attestation
procedure. Fig. 1 shows a C2C use case in which an exter-
nal chip is plugged into the host system through an inter-
integrated circuit (I2C) bus. The host system initiates an
authentication process with the chip. The external chip is only
permitted to exchange data after the successful completion of
this process.

To enable the C2C-ZT architecture, we propose using the
SPDM between the host system and every chip in the system.
The design of robust security protocols is knowingly complex
since it should take into consideration all possible hostile
behaviors and activities of attackers who could interfere
with the protocol to gain unauthorized access [28]. Formal
verification is a recognized approach that helps in checking
the correctness of security protocols. To our knowledge, the
SPDM protocol has not yet been formally verified. Therefore,
a comprehensive FV of this protocol is demonstrated in this
paper. This is to provide assurance about the security of this
protocol in the hardware community. The protocol is spec-
ified in high-level protocol specification language (HLPSL)
and a complete FV is performed using the AVISPA tool. The
protocol is evaluated in several attack scenarios to show its
robustness against these attacks and readiness for the C2C-
ZT. The main contribution of this paper is the formal verifica-

VOLUME 11, 2023

tion of the SPDM protocol, as well as providing open-source
models for the community to reuse based on their specific
requirements, with an emphasis on lightweightness. While
the SPDM protocol is recommended by Intel,! its integration
into chips is difficult due to the large size of the compiled
library and limited resources of the chips. Therefore, it is
critical to develop a lightweight version of the protocol to
enable practical use in resource-constrained devices. Formal
models play an essential role in ensuring that the lightweight
versions of the protocol are secure.

C. PAPER ORGANIZATION

The threat model, followed by an overview of the SPDM
protocol, is provided in Section II. The FV of SPDM is
provided in Section III. This section includes an overview of
the AVISPA tool and the HLPSL description of the protocol.
The SPDM security validation is discussed in Section IV. The
challenges involved in the formal verification of the SPDM
protocol and the C2C-ZT are described in Section V. Finally,
the work is concluded in Section VI.

1 https://www.intel.com/content/www/us/en/newsroom/opinion/zero-
trust-approach-architecting-silicon.html#gs.vthrcx

60337

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

TABLE 2. Potential attacks and their countermeasure addressed by SPDM protocol.

Attack category Description

Countermeasures

Data flow sniffing

Encrypting the data flow

Information disclosure
Weak authentication schemes

Custom authentication scheme

Repudiation Potential data repudiatioin by requester processor | Auditing to record the source, time, and summary of received data
Spoofing Spoofing the requester processor process Authentication mechanism to identify the destination process

. Collision attacks Reassemble data before filtering it, and handle the data overlapping
Tampering

Replay attacks

Implement anti-reply techniques (investigates sequence numbers before
timers), and strong integrity

Il. THREAT MODEL AND AN OVERVIEW of SPDM
PROTOCOL

The Microsoft threat modeling tool is utilized to identify
potential attacks. The potential attacks are addressed by the
SPDM protocol. The list of potential attacks in the C2C-ZT,
and their potential countermeasures are provided in Table 2.

Recently published by the distributed management task
force (DMTF) organization [29], the SPDM protocol is envi-
sioned as a potential solution that adheres to the ZT’s guid-
ing principles. It provides means to authenticate and mea-
sure hardware devices and enable secure communications
between system components. The SPDM relies on asymmet-
ric cryptography and public-key certificates for authentica-
tion. A post-quantum design is proposed in [30].

The broader device community has widely embraced
this protocol. It has been adopted by several other stan-
dard groups, including peripheral component interconnect
(PCD) [31] and trusted platform module (TPM) [32]. In addi-
tion, the PCI express (PCle) integrity and data encryption key
management (IDE_KM) protocol [33] for link encryption and
other application protocols are built on top of the SPDM pro-
tocol. It standardizes the authentication of hardware compo-
nents and enables the establishment of secure communication
channels among them [34]. The protocol allows endpoints
to discover and negotiate each other’s security capabilities
and to retrieve each other’s measurements, which include the
configurations of the hardware and the firmware.

A. SPDM MESSAGES

We chose a lightweight approach to implementing the com-
plex SPDM protocol in this work because the chip cannot
execute the entire protocol due to limited on-chip resources.
As aresult, we carefully selected a subset of SPDM functions
that guarantee ZT.

An overview of the exchanged messages in SPDM pro-
tocol is depicted in Fig. 2, and is explained in detail in
Table 1. A secure connection is established between two
end-nodes, referred to as a requester and a responder, after
the exchange of multiple messages. The requester initiates
the protocol by sending a GET_VERSION message to the
responder. Typically, this message is used to either initiate

60338

anew SPDM session or reset the current session. In response
to this message, the responder sends the VERSION message,
which contains the version of SPDM it supports. Both the
requester and responder may support multiple SPDM ver-
sions, but the requester always selects the most recent com-
mon version. Once the requester sends the GET_VERSION
message, all active sessions are terminated and the associated
data is discarded. After receiving a successful VERSION
message response, the requester sends GET_CAPABILITIES.
This message is used to retrieve a number of the capabilities
of the responder, i.e., whether the requester supports digests
and certificates, challenge authentication, and mutual authen-
tication, as well as several capabilities pertaining to key
exchange during the secure session. In SPDM, end-nodes can
switch roles at any time. Consequently, during the exchange
of GET_CAPABILITIES messages, the requester shares its
capabilities with the responder.

The requester sends the NEGOTIATE_ALGORITHMS
message after obtaining the capabilities of the responder. The
objective of this message is to negotiate cryptographic algo-
rithms. The requester informs the responder of all encryp-
tion algorithms supported. The responder selects the largest
common encryption algorithm from the received list and
responds via ALGORITHMS in a message. All SPDM session
parameters are determined following a successful ALGO-
RITHMS message response. The requester then transmits the
GET_DIGESTS message if the responder supports digests
and certificates. The responder sends the cryptographic hash
values of its certificate chains in response to this message.
The requester caches the received hash values and compares
them to the previously cached digests. Certificates are only
requested if they cannot be located in the local storage buffer.

If the received digests do not match the digests
stored in the requester’s cache, the requester sends the
GET_CERTIFICATE message. Therefore, the GET_DIGESTS
message can improve performance by avoiding the transfer
of certificates that are already present at the requester. The
complete certificate chain includes the first certificate, which
is either signed by the root certificate or is itself a root
certificate. The preceding certificates sign the subsequent
certificates. The public key of the responder is contained
in the leaf certificate. When receiving certificate chains,

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

Requester

(¢—— VERSION

Responder

GET_VERSION—————

GET_CAPABILITIES———»|
«——CAPABILITIES
——NEGOTIATE_ALGORITHMS—~

(«—ALGORITHMS

If supported | GET_DIGESTS——>|

«—— DIGESTS

GET_CERTIFICATES———»

«—CERTIFICATES

CHALLENEGE——|

«——CHALLENEGE_AUTH: |

GET_MEASUREMENTS——»

(«—MEASUREMENTS

If supported

KEY_EXCHANGE———»

1
|
I
T
|
|
|
|
|
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
I
T

l«——KEY_EXCHANGE_RSP-
|«—MUTUTAL_AUTHENTICATION—

FINISH———»

(«— FINISH_RSP:

APPLICATION DATA

| |_Secure Communicatin _|

=
|

FIGURE 2. An overview of SPDM protocol.

the requester must at least save the public key of the leaf
certificate. In addition, the requester must send multiple
GET_CERTIFICATE requests to retrieve the chain. The
requester then sends the CHALLENGE message to authenti-
cate the responder. The requester sends a randomly generated
nonce and the slot number of the certificate chain to be
used for authentication. In response, the responder sends the
message CHALLENGE_AUTH. The certificate chain hash
is returned in this message. These hash values are used to
validate that the certificate chain matches the requested one.
Moreover, the responder generates signatures by encrypting
the nonce received from the requester with its private key. The
summary of the measurements’ hash values is also included
within the CHALLENGE_AUTH message. In contrast, the
requester verifies the received signatures with the responder’s
public key; a successful verification proves the responder’s
authentication.

After authenticating the responder, the requester sends the
GET_MEASUREMENTS message to determine the number
of individual measurement blocks supported by the responder
and to request either specific blocks or all available blocks.
This message contains a nonce and the certificate chain index
used for the authentication of measurements. In addition, the
requester specifies whether all measurements, all available
measurements, or specific measurements are required. Mul-
tiple request messages are used by the requester to obtain
the measurements. In this situation, the requester does not
request signatures for each individual message. Therefore,

VOLUME 11, 2023

the responder simply sends back the measurements without
the signature but creates a log for all received measure-
ment request messages. On the other hand, the requester
creates a log for all measurements received. The requestor
will then request the signatures in the final measurements
request message. Using its private key, the responder gen-
erates a signature on the measurement log if it includes an
active flag for the measurement capability. The responder
generates a MEASUREMENTS message that indicates any
detected changes to the signed measurement log. It assists
the requester in requesting the current measurements through
another GET_MEASUREMENTS message. Furthermore, the
number and length of measurement blocks are included in the
response. Additionally, the message contains a nonce and the
signatures of the measurements log.

This request message shall initiate a handshake between
the requester and responder in order to authenticate the
responder (or optionally both parties), negotiate crypto-
graphic parameters (in addition to those negotiated in
the previous NEGOTIATE_ALGORITHMS /| ALGORITHMS
exchange), and establish shared keying material. During this
phase, the public keys generated by DHE [35] are exchanged
between the two end-nodes. The responder generates a DHE
secret using the private key of the responder’s DHE key
pair and the public key of the requester’s DHE key pair as
specified in the KEY_EXCHANGE request message. In a
similar way, the requester generates a DHE secret using the
private key of the DHE key pair of the requester and the
public key of the DHE key pair of the responder, which are
provided in the KEY_EXCHANGE_RSP response message.
Both end-nodes generate identical DHE secrets, which are
used to generate session secrets. The responder sends back
a KEY EXCHANGE_RSP message containing the DHE pub-
lic key it has generated. The handshake is concluded when
the requester and the responder send the FINISH and FIN-
ISH_RSP messages, respectively. The FINISH request and
FINISH_RSP response messages serve to provide key confir-
mation, bind the identity of each party to the exchanged keys,
and protect the entire handshake from active manipulation.
The respondent returns the signature and hash-based message
authentication code (HMAC) of the transcript. The applica-
tion data is then exchanged between the end-nodes utilizing
the authenticated encryption with associated data (AEAD)
algorithm, which simultaneously provides data encryption
and authentication.

Ill. FORMAL VERIFICATION OF SPDM PROTOCOL

This section discusses the AVISPA tool and how it is used
to validate the SPDM protocol. FV, as opposed to simula-
tions, demonstrates design correctness by using static anal-
ysis methods or model checkers for an equivalence check
with a well-known referent or to demonstrate that the design
properties and assertions are fulfilled. It eliminates the need
for extensive simulations to get excellent coverage, and the
verification results are independent of the quality of the test
cases. Moreover, mathematical proofs are highly relevant in

60339

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

High-Level Protocol
Specification Language
(HLPSL)

Translator from HLPSL to IF

Intermediate Format
(IF)

i ¢ + :
Onithely || Clbased || SAThased || (ReimO0
Model-Checker || Attach Searcher || Model-Checker Analyzer
(OFMC) (CL-AtSe) (SATMC) (TA4SP)
\
l Output

FIGURE 3. AVISPA architecture.

the field of computer security, as they allow for the formal
verification of security protocols to ensure their correctness
and security. The AVISPA+SPAN toolkit embeds mathemat-
ical proofs as a core feature, allowing for the identification
and mitigation of potential security vulnerabilities.

Given that SPDM is gaining popularity in the cyber secu-
rity community, validation of the protocol is highly essential.
Indeed, the FV of any security protocol is a prerequisite for
the protocol’s attestation. If the security protocol passes all
tests for security threats during the FV, it can be implemented
in the systems. Numerous tools and techniques exist for the
FV of the security protocols. In this work, we are utilizing the
AVISPA-+SPAN tool, which is a push-button verification tool
that is widely utilized by the research community for FV.

Given that SPDM offers a way to authenticate, compute the
device’s hardware identification, and allow secure communi-
cations between the devices. The FV of the SPDM protocol
will increase hardware community trust in using the protocol
for device authentication. The procedure typically involves
the following steps:

1) Model the SPDM protocol using a HLPSL.

2) Implement the protocol in the tool and generate an
initial model.

3) Specify the desired security properties to be verified,
such as authentication or confidentiality.

4) Use the SPAN tool to simulate the protocol execution
and generate an attack trace.

5) Analyze the attack trace to determine if the protocol is
vulnerable to the specified security properties.

6) Modify the protocol or add security mechanisms if
vulnerabilities are found.

7) Repeat the verification process until all desired security
properties are satisfied.

A. AN OVERVIEW OF AVISPA TOOL
Figure 3 illustrates the structure of the AVISPA tool. As the
initial step, the user specifies the security protocol in the

60340

HLPSL. Along with the protocol itself, the protocol’s desired
objectives are included in the protocol specification. The
formal language HLPSL is expressive, modular, and based
on roles. It describes complicated security aspects such as
control-flow patterns, data structures, multiple cryptographic
operators, and their corresponding algebraic properties. The
HLPSL protocol specification, on the other hand, does not
necessitate an initial protocol simplification because it has
more robust features than weaker alternatives. The AVISPA
tool converts a user-defined or standard security protocol
described in HLPSL to a corresponding intermediate format
(IF). The IF specifications are inputted into the tool’s back-
ends. The tool next explores the infinite-state transition sys-
tem provided by the IF specifications to determine the state
that signals attacks on the protocol’s intended features. The
current version of the AVISPA tool has four back-ends: on-
the-fly model-checker (OFMC) [36], constraint-logic-based
attack searcher (CL-AtSe) [37], SAT-based model-checker
(SATMC) [38], and tree-automata-based protocol analyzer
(TA4SP) [39]. The back-ends examine the protocols under the
assumption of perfect cryptography and a network controlled
by a Dolev-Yao intruder [40] for message exchanges. Even
though the active intruder has control of the network, it is
unable to breach the encryption. Furthermore, if the intruder
has access to the corresponding keys, it can intercept and
decrypt the messages. Following that, it forwards messages
in the name of any other party that is generated based on
its own knowledge. The analytical results are subsequently
output by the backends using a standard and clearly defined
output format. Based on the input goals, the outcome will
indicate if the protocol is safe or unsafe. If a potential attack
is detected, a trace is generated.

B. SPDM SPECIFICATION IN HLPSL

The protocol is comprised of two agents: the host system
and the external chip. In our proposed method, the host
system is the requester, and the external chip is the respon-
der. We assume in our protocol that only the host system
authenticates the external chip. This section contains HLPSL
descriptions of the involved roles and sessions under con-
sideration. In these HLPSL specifications, all receiving and
transmitting channels adhere to the Dolev-Yao (DY) intruder
model. In Fig. 4, an overview of the FV of SPDM in a C2C-ZT
is displayed. The environment is created with two sessions.
In addition, the goals for secrecy and authentication, as well
as the knowledge of the intruder, are defined. In our model,
the illegal chip is impersonated as an intruder.

1) HLPSL CODE FOR HOST
The HLPSL code for the role of the host is given below:

lrole host_chip (A, B: agent,
2 Hash: hash_func,

3 K: symmetric_key,

4 SND, RCV: channel (dy))

5

bplayed_by A

Tdef=

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

16
17
18
19
20

NN DN
W N =

=~

AN

(S S SN Sl SN SR S}
O o0

35
36

37
38

39
40
41
42

44
45
46

Environment Goals Intruder’s
Secrecy, Authentication Knowledge
i
i v i
Sessionl Session2 Session3
Role Role Role
Chipl (legal) Chipl (legal) Chipl (illegal)
Rolé ““““ Role o ‘Role
Chip2 (legal) Chip2 (illegal) Chip2 (legal)
SPDM m exchanges (transitions)

FIGURE 4. An overview of implemented FV on the AVISPA tool.

local
State nat,
Get_Ver,Ver, Get_Cap, Cap message,
Negotiate_Algo,Algo message,
Get_Digests,Digests message,
Get_Cert message,
Get_Measurements,Measurements message,
Kcl public_key,
KeyRing (public_key) set,
Nal,Na2,Na3,Na4,Na5 text,
Nb1l, Nb2 text

init
State := 0

transition

% Sending GET_VERSION message

1. State =0 /\ RCV (start) =|>

State’ := 2 /\ SND (Get_Ver)

o

Receiving VERSION message and Sending
GET_CAPABILITIES message

2. State = 2 /\ RCV (Ver’) =|>

State’ := 4 /\ SND (Get_Cap)

% Receiving CAPABILITIES message and Sending
NEGOTIATE_ALGORITHM message
3. State = 4 /\ RCV(Cap’) =|>
State’ := 6 /\ SND (Negotiate_Algo)

% Receiving ALGORITHMS message and sending
GET_DIGESTS message, if certificates not
available

4. State = 6

State’ :=

/\ RCV(Algo’) =|>
8 /\ SND (Get_Digests)

5 Receiving DIGESTS message and if certificate
are not available

5. State = 8 /\ RCV(Hash(Kcl’))
/\ not (in (Hash (Kcl’),KeyRing)) =|>
State’ := 10 /\ SND (Get_Cert)
/\ KeyRing’ := cons (Hash (Kcl’),
KeyRing)
/\ request (A,B,auth_kcl,Kcl’)

% Receiving DIGESTS
are available

message and if certificate

6. State = 8 /\ RCV (Hash (Kcl’))
/\ in(Hash(Kcl’),KeyRing) =|>
State’ := 12 /\ request (A,B,auth_kcl,Kcl’)

VOLUME 11, 2023

55
56
57
58
59

60
6

62
63
64
65

66
67
68

69
70

71
72

?
3

74

75

76
77

78
79

% Receiving CERTIFICATES and sending CHALLENGE (
nonce)
7. State = 10 /\ RCV ({Kcl’}_K) =|>
State’ := 14 /\ Nal’ := new()
/\ SND (Nal’)
/\ request (A,B,auth_kcl,Kcl’)
/\ secret (Nal’,h secrecy_Na, {A,B
})
% Only sending CHALLENGE (nonce)
8. State = 12 =|>
State’ := 14 /\ Na2’ := new()
/\ SND (Na2’)
/\ secret (Na2’,secrecy_Na, {A,B
})
/\ witness (A,B,auth_Na,Na2’)
% Receiving CHALLENEGE and sending
GET_MEASUREMENTS message
9. State = 14 /\ RCV (Nbl’.{Na3’}_inv(Kcl))
:|>
State’ := 16 /\ Na4’ := new()
/\ SND (Na4d’)
/\ request (A,B,auth_Nb,Nbl’)
/\ secret (Na4’,secrecy_Na, {A,B
})
% Receiving the MEASUREMENTS and sending the
KEY_EXCHANGE message
10. State = 16 /\ RCV (Nb2’.{Na5’}_inv (Kcl))
:|>
State’ := 18 /\ request (A,B,auth_Nb,Nb2’)
/\ secret (Na5’,secrecy_Na, {A,B
})
end role

The role of the host chip initiates the protocol since it contains
the statement RCV/(start), where RCV is the receiving channel
of the role. It then sends the Get_Ver message on the SND
channel to retrieve the SPDM version from the external chip.
It receives the version message in the Ver local variable via the
RCYV channel. After this, the host system sends the Getr_Cap
message and updates the state. Likewise, after receiving the
capabilities message in its local variable Cap, it modifies
the state and transmits the Negotiate_Algo message over the
SND channel. The host system updates its current state and
requests the digests of the certificates using the Ger_Digests
message after obtaining the common algorithm in its local
variable Algo. The message received contains the hash values
of the available certificates of the external chip. The host
system compares the hash certificate values received within
its local buffer, KeyRing. If the hash values are present in
the buffer, it means that the host does not need to request
the certificates because they are already available. The next
message in this case is to challenge the external chip. The
host chip sends a nonce to the external chip. Alternatively,
if the host chip is unable to locate the received certificate hash
values in its local buffer, the host modifies its current state
and simultaneously sends a Get_Cert message. Concurrently,
the host chip stores the received certificate hash values in the
local buffer. The host receives the public key of the chip in
response to the Ger_Cert message in its local variable Kc/.
In practice, the chip sends the entire certificate chain, with
the leaf certificate containing the public key. This public key
is subsequently employed to create a secure channel. In this

60341

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

case, the exchange of public keys should be accomplished
through the exchange of certificates.

At this stage, the host chip challenges the external chip
through a nonce. In response to the challenge message, the
host chip receives the nonce shared by the external chip as
well as its transmitted nonce that has been encrypted using the
external chip’s private key. If the host decrypts the encrypted
nonce with the external chip’s public key, it signals that it
is connecting with the legal external chip. At this point, the
host updates its state and sends a message to obtain the
external chip’s measurements. This message includes a nonce
for freshness. The host then requests the chip’s firmware and
hardware measurements. The nonce guarantees that the most
recent and accurate measurements are received. In response
to the message, the host receives the measurement as well as
the nonce of the chip and its own nonce encrypted using the
external chip’s private key. For authentication purposes, the
host decrypts its encrypted nonce using the public key of the
external chip.

Finally, a secure communication link between the two
devices is established. The SPDM protocol accomplishes the
key exchange using a handshaking method that incorporates
the ephemeral DHE key exchange. Both chips generate a pair
of public and private keys during this phase. After that, they
exchange their respective public keys. Finally, both endpoints
construct secret keys using their private keys and the public
keys they have received. In [41], the FV of the DHE algorithm
is provided. Therefore, we limit our FV to identification and
authentication in this work.

2) HLPSL CODE FOR EXTERNAL CHIP
The following is the HLPSL specification for the role of
external chip:

role external_chip (

1

2 A, B: agent,

3 Hash: hash_func,

4 K: symmetric_key,

5 SND, RCV: channel (dy))

6bplayed_by B

Tdef=

8

9 local

10 State : nat,

11 Get_Ver,Ver,Get_Cap,Cap : message,
12 Negotiate_Algo,Algo : message,

13 Get_Digests,Digests : message,

14 Get_Cert : message,

15 Get_Measurements,Measurements : message,
16 Nal,Na2,Nbl,Nb2 : text,

17 Kcl : public_key

18

19 init

20 State := 1

21

22 transition

23

24 % Sending VERSION message

25 1. State =1 /\ RCV (Get_vVer’) =|>
26 State’ := 3 /\ SND(Ver)

27

28 % Sending CAPABILITIES message

29 2. State = 3 /\ RCV (Get_Cap’) =|>
30 State’ := 5 /\ SND (Cap)

60342

3

32 % Sending ALGORITHMS message

33 3. State =5 /\ RCV (Negotiate_Algo’) =|>

34 State’ := 7 /\ SND(Algo)

35

36 % Sending DIGESTS message

37 4 State = 7 /\ RCV (Get_Digests’) =|>

38 State’ := 9 /\ SND (Hash (Kcl))

39 /\ witness (A, B, auth_kcl, Kcl)

40 /\ secret (Kcl,secrecy_kcl, {A,B})

41

42 % Sending CERTIFICATES message

43 5 State = 9 /\ RCV (Get_Cert’) =|>

44 State’ := 11 /\ SND ({Kcl}_K)

45 /\ witness (A, B,auth_kcl,Kcl)

46 /\ secret (Kcl,secrecy_kcl, {A,B
})

47

48 % Sending CHALLENGE_AUTH message

49 6 State = 11 /\ RCV(Nal’) =|>

50 State’ := 13 /\ Nbl’ := new()

51 /\ SND (Nbl’.{Nal’}_inv(Kcl))

52 /\ witness (A, B, auth_Nb,Nbl’)

53 /\ request (A,B,auth_Na,Nal’)

54 /\ secret (Nbl’, secrecy_Nb, {A,B
})

Jd

56 % Sending MEASUREMENTS message

57 7. State = 13 /\ RCV(Na2’) =|>

58 State’ := 15 /\ Nb2’ := new()

59 /\ SND (Nb2’.{Na2’}_inv (Kcl))

60 /\ witness (A, B, auth_Nb,Nb2’)

61 /\ request (A,B,auth_Na,Na2’)

62 /\ secret (Nb2’,secrecy_Nb, {A,B

}
63
6dend role

In the case under consideration, the external chip imitates a
responder. Consequently, it always responds to the host sys-
tem’s messages. The first message the external chip receives
is the Get_Ver message. It responds by updating its state and
sending the Ver message. The chip then receives the Get_Cap
message and sends the Cap response message to the host chip
to convey its capabilities. The chip then gets a Negotiate_Algo
message and, in response, selects a hash algorithm from
the host’s shared list of hash algorithms. Typically, the chip
selects the greatest common hash algorithm and returns it to
the host via an Algo message. It receives the Ger_Digests mes-
sage from the host in the subsequent state. The chip returns
the hash values for all available certificates. In the proposed
FV, the external chip’s public key is hashed and returned to
the host chip as part of the HLPSL description. The host then
issues a challenge to the chip in the form of a nonce. The
chip creates its own nonce and uses its private key to encrypt
the received nonce. The created and encrypted nonce is then
transmitted to the host. After the challenge authentication, the
host sends the chip a measurements request that contains a
nonce. The chip encrypts the received nonce and then creates
a new nonce in response to the request. Then it returns its
measurement blocks, as well as the encrypted host nonce and
its newly created nonce.

3) HLPSL CODE FOR SESSION ROLE
The HLPSL code for the session role is given below:

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

role session(

1

2 A, B : agent,

3 K: symmetric_key,

4 Hash : hash_func)

S5def=

6

7 local

8 SBA, RBA, SAB, RAB : channel (dy)

9

10 composition

11 host_chip (A, B, Hash, K, SAB, RAB)
12 /\ external_chip (A, B, Hash, K, SBA, RBA)

13end role

The session role combines the defined protocol participants.
In this case, for example, the roles of the host chip and the
external chip are glued together. Both roles are instantiated
inside the session role. The session role defines local vari-
ables for all transmitting and receiving channels.

4) HLPSL CODE FOR ENVIRONMENT ROLE
Following is the HLPSL specification for the environment
role:

lrole environment ()

2def=

3

4 const a, b : agent,
5 h : hash_func,

6 k: symmetric_key,

auth_kcl, auth_Na, auth_Nb : protocol_id,
secrecy_kcl, secrecy_Na, secrecy_Nb :
protocol_id

10 intruder_knowledge = {a,b}

12 composition

13 session(a,b,k,h) /\
14 session(a, i, k,h)
I5end role

16

18goal

19 authentication_on auth_kcl, auth_Na, auth_Nb,
auth_Nc

20 secrecy_of secrecy_kcl, secrecy_Na, secrecy_Nb

2lend goal
729

P ——

24environment ()
This role manages the sessions. The environment role can
accommodate numerous sessions. As previously mentioned,
in this work, we define two sessions. Furthermore, the objec-
tives for secrecy and authentication are specified. In this role,
the protocol (including the initial knowledge of the intruder)
and the scenario to be implemented, i.e., the instances of
parallel sessions, are examined. The information given to the
roles as parameters is constant, with the exception of the
communication channels.

IV. SPDM SECURITY VALIDATION

SPDM provides a set of security mechanisms, including
mutual authentication, data integrity, confidentiality, and
replay attack protection, among others. The protocol is
designed to be flexible and extensible to support various secu-
rity requirements and use cases. The majority of these SPDM

VOLUME 11, 2023

host_chip external_chip
a — 3 b - 4
epl
Get Ver :
—
tep
Ver -
=l
ep3
Get_Cap -
)
c ceps
ap
—
eps
Negotiate Algo
—
cp6
Algo R
=l
: ep?
Get_Digests =
)
ep8
Hash (Kcl) :
e
ep9
Get_Cert h
—
Stepl0
{Kcl}_K
=l
Stepll.
Nal P
)
. Stepl2.
Nbl.{Nal}_inv(Kal)
e
Stepl3.
Na4 e
—
Stepld.
Nb2. {Na2} inv(Kcl) v
—

FIGURE 5. SPDM protocol simulation.

security features have been investigated in this research work.
Replay attack prevention is one of the features provided by
SPDM. It uses sequence numbers and timestamps to detect
and prevent replay attacks. Besides replay attacks, the authen-
tication of the guest chip is verified, and confidentiality and
secrecy are also checked.

The AVISPA+SPAN tools are used to examine the follow-
ing security features of the SPDM protocol.

A. PROTOCOL SIMULATION

The flow of messages in the SPDM protocol is validated
using the protocol simulation feature of SPAN. The simu-
lation of the protocol is depicted in Fig. 5. The SPAN tool
enables the visualization of the sequential message exchange
of the SPDM protocol. Furthermore, the protocol simula-
tion is useful for eliminating and correcting semantic errors
in the HLPSL protocol description. The complete message
exchange in Fig. 5 indicates that the HLPSL specification
contains no semantic error.

B. AUTHENTICATION
In this step, the endpoints confirm that they are communi-
cating with the desired entity. Two endpoints are involved in
the SPDM protocol, namely the host chip and the external
chip. In the HLPSL specification, the authentication property
of a protocol can be examined using the request and witness
clauses, which permit endpoints to declare that they want to
be the peer and will agree on a value (variable) for authenti-
cation.

Here, the request-witness pair of the host chip authenticates
the external chip using the nonce NbI. This authentication is

60343

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

Intruder_ host_chip external_chip
i-0 a = 3 b~ 4

Stepl.
Get_Ver -

msg

Get_Cap

msg

Negotiate_Algo

Alo

msg

Get_Digests

Hash|kcl)

h (pk)

Get_Cert

Stepl8.

Stepl19.

{pk)_k

nonge-1

Nbl. {Nall} inv (Kcl)

ndnce-2. {nonce-1}_inv (pf)

Nad

nonge 3

Nb2. (Na2}} inv (K1)

>

nce-2.{nonce-1}_inv (p|

FIGURE 6. Intruder simulation of SPDM protocol.

declared as the authentication goal in the goal section of the
HLPSL.

witness(A,B,auth_Nb,Nbl’)

This indicates that the host chip expects the external chip to
authenticate it on the Nb1 protocol. Here, auth_Nb represents
the protocol identifier that is later used to set the goal.

request(A,B,auth_Nb,Nb1’)

which indicates that the external chip has requested that
the host chip authenticate itself on NbI. The authentication
goal is finally defined in the Environment using the protocol
identity auth_Nb as,

authentication_on auth_Nb

60344

Correspondingly, we validated the authentication of several
messages using HLPSL specifications.

C. CONFIDENTIALITY SECRECY

During the active SPDM protocol session, this feature indi-
cates that confidential information is not disclosed to an unau-
thorized endpoint. SPDM maintains secrecy by exchanging
messages through an encrypted channel. The confidentiality
of secret values may be confirmed in AVISPA by declaring
the secrecy clause in the role that generates secret information
and by adding the secrecy goal of the HLPSL specification.
For instance, we checked the secrecy of the external chip’s
public key by including the following statement in the session
for the external chip:

secret(Kcl,secrecy_kcl,A,B)

where the first argument Kc/ is the public key of the external
chip, which is required to be kept secret. The second argument
secrecy_kcl specifies the secrecy goal identifier, whilst the
last argument indicates the agents with whom the secret value
is exchanged. Here, we test the secrecy of Kcl between the
host and external chips by establishing the following goal:

secrecy_of secrecy_kcl

Likewise, we have examined the secrecy of the encrypted
nonce values.

D. REPLAY ATTACK

A replay attack happens when an unauthorized agent or
intruder captures network communication and delays or
repeats it deliberately while impersonating a legal agent.
Messages can be made resistant to replay attacks by including
a nonce or timestamp. SPDM resists this attack by including
a nonce within the handshake nonce. In order to test against
a replay attack, the following two protocol sessions were
evaluated:

o session(a,b,k,h): This session executes the protocol
assuming that all agents participating in the session are
legitimate. The simulation for this session is shown in
Fig. 5.

o session(a,i,k,h). This session simulates a situation in
which an intruder imitates the external chip. The sim-
ulation for this session is shown in Fig. 8.

Table 3 summarizes the attack scenarios. The AVISPA tool is
only compatible with the Dolev-Yao model. In the Dolev-Yao
intruder model, the intruder has complete control of the net-
work, meaning that all communications delivered by agents
are routed to the intruder. The intruder may intercept, analyze,
and/or modify the message and transmit any message to an
agent posing as a legal agent, but without the key, he or she
cannot encrypt or decrypt the communication.

Figure 6 depicts the intruder simulation of the ses-
sion(a,b,k,h). The outcome of the OFMC backend with
intruder simulation demonstrates that the protocol is unsafe
with two legitimate agents, a and b in the presence of an

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

intruder i. The output trace of the intruder simulation of
session(a,b,k,h) using the OFMC backend is as follows:

o

1% OFMC
2% Version of 2006/02/13
3SUMMARY
4 UNSAFE
SDETAILS
6 ATTACK_FOUND

7PROTOCOL

8 /home/span/span/testsuite/results/get_digests.if
9GOAL

10 authentication_on_auth_Na

| IBACKEND

12 OFMC
I3COMMENTS
I4STATISTICS

15 parseTime:
16 searchTime:

0.00s
0.05s

17 visitedNodes: 19 nodes
18 depth: 5 plies
I19ATTACK TRACE

201 -> (b,3): %250

21(b,3) -> i: dummy_msg
221 -> (b, 3): x279

23(b,3) -> i: dummy_msg
241 -> (b, 3): x308

25(b,3) -> i: dummy_msg
261 -> (b,3): %337

27(b,3) —> i: h(dummy_pk)
281 -> (b,3): %366

29(b,3) -> i: {dummy_pk}_k
301 —> (b,3): x395

31(b,3) —=> i: Nbl(6).{x395}_inv (dummy_pk)
32

33

34% Reached State:

35%

36% request (a,b,auth_Na,x395, 3)

37% secret (Nbl (6),secrecy_Nb, set_146)

38% contains (a,set_146)

39% contains (b, set_146)

40% witness (a,b,auth_kcl, dummy_pk)

41% secret (dummy_pk, secrecy_kcl,set_145)

42% contains (a,set_145)

43% contains (b, set_145)

44% secret (dummy_pk, secrecy_kcl, set_144)

45% contains (a,set_144)

46% contains (b, set_144)

47% state_external_chip(b,a,h,k,13,x250, dummy_msg,
x279,dummy_msg, x308, dummy_msg, x337, dummy_msg,
%366, dummy_msg, dummy_msg, x395, dummy_nonce, Nbl
(6) , dummy_nonce, dummy_pk, dummy_sk, dummy_nonce,
dummy_nonce, set_144,set_145,set_146,set_147,3)

48% state_host_chip(a,b,h, k, 0, dummy_msg, dummy_msg,
dummy_msg, dummy_msg, dummy_msg, dummy_msg,
dummy_msg, dummy_msg, dummy_msg, dummy_msg,
dummy_msg, dummy_pk, dummy_set, dummy_nonce,
dummy_nonce, dummy_nonce, dummy_nonce,
dummy_nonce, dummy_nonce, dummy_nonce, dummy_ sk,
dummy_nonce, dummy_nonce, set_119,set_120,
set_121, 3)

49% witness (a,b,auth_Nb,Nbl (6)

This scenario will never occur in this work since the SPDM
protocol is executed between two devices. However, Fig. 6
depicts the exchange of SPDM messages across three devices.
In addition, the intruder can listen to the exchanged messages,
but it cannot decrypt the external chip’s public key, as only
a symmetric key between the host chip and the external
chip can be used to decrypt the key. This symmetric key is
unknown to the intruder. However, the intruder chip imitates

VOLUME 11, 2023

a host chip. The output trace for the intruder simulation of
session(a,b,k,h) is shown as

| (host_chip, 3) -> (Intruder_, 0) x (Get_Ver,
Listen_i)
2(Intruder_, 0) —-> (external_chip, 4) X (msg,
Get_Ver)
3 (external_chip, 4) -> (Intruder_, 0) x (Ver,
Listen_1i)
0) —> (host_chip, 3) X (msg, Ver)

4 (Intruder_,
5(host_chip, 3) ->
Listen_i)

(Intruder_, 0) x (Get_Cap,

6(Intruder_, 0) -> (external_ chip, 4) X (msg,
Get_Cap)

7 (external_chip, 4) -> (Intruder_, 0) x (Cap,
Listen_i)

8(Intruder_, 0) -> (host_chip, 3) x (msg, Cap)
9 (host_chip, 3) -> (Intruder_, 0) : x(
Negotiate_Algo,Listen_i)

10 (Intruder_, 0) -> (external_chip, 4) X (msg,
Negotiate_Algo)
11 (external_chip, 4) -> (Intruder_, O0) x (Algo,

Listen_i)
12 (Intruder_, 0) ->
13 (host_chip, 3) ->
Listen_1i)

(host_chip, 3)
(Intruder_, 0)

x (msg,Algo)
X (Get_Digests,

14 (Intruder_, 0) -> (external_chip, 4) x (msg,
Get_Digests)
15 (external_chip, 4) -> (Intruder_, 0) x (apply (

Hash,Kcl),Listen_1i)

16 (Intruder_, 0) -> (host_chip, 3)
apply (Test_Hash,Kcl))

17 (host_chip, 3) -> (Intruder_, O0)
Listen_1i)

x (apply (h,pk),

x (Get_Cert,

18 (Intruder_, 0) -> (external_chip, 4) X (msg,
Get_Cert)

19 (external_chip, 4) -> (Intruder_, 0) X (scrypt (K,
Kcl),Listen_1i)

20 (Intruder_, 0) -> (host_chip, 3) x (scrypt (k, pk),

scrypt (Test_K,Kcl))

21 (host_chip, 3) -> (Intruder_, 0) x (Nal_new,

Listen_i)

22 (Intruder_, 0) —-> (external_chip, 4) X (nonce-1,
Nal)

23 (external_chip, 4) -> (Intruder_, 0) X (pair (

Nbl_new, crypt (inv (Kcl),Nal)),Listen_1i)

24 (Intruder_, 0) -> (host_chip, 3) X (pair (nonce-2,
crypt (inv (pk) ,nonce-1)),pair (Nbl, crypt (inv (
Test_Kcl),Na3)))

25 (host_chip, 3) -> (Intruder_, 0)
Listen_1i)

x (Nad_new,

26 (Intruder_, 0) -> (external_chip, 4) X (nonce-3,
Na2)
27 (external_chip, 4) -> (Intruder_, 0) X (pair (

Nb2_new, crypt (inv (Kcl),Na2)),Listen_1i)

28 (Intruder_, 0) -> (host_chip, 3) X (pair (nonce-2,
crypt (inv (pk) ,nonce-1)),pair (Nb2, crypt (inv (
Test_Kcl),Nab5)))

The host chip can be connected, over the same bus, to more
than two chips using, for example, the I2C interface, as shown
in Fig 7. Therefore, the host chip, which is the master, may
simultaneously establish the SPDM protocol between several
chips. The master should orchestrate the data exchange with
an external peripheral by sending the address of the appro-
priate slave. One of the expected scenarios is that one of
the connected slaves is a malicious peripheral. So, the illegal
peripheral can intercept the data on the bus, but it cannot
decrypt the external chip’s public key, as only a symmetric
key between the host chip and the external chip can be used
to decrypt the key. Figure 8 demonstrates the actual situation

60345

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

External chip 1

External chip 2

12C bus

External chip 3

FIGURE 7. Use-case of multiple chip-to-chip communication over shared
12C bus.

involving an unauthorized external chip. In this scenario,
the host chip initiates SPDM exchanges with the intruder
(unauthorized external chip). As the exchange of the initial
three messages occurs prior to authentication, there are no
issues. As soon as the host chip requests the digests, the
intruder is unable to supply the digests of the certificate,
prompting the host chip to terminate subsequent message
exchanges and implying that the external chip is illegitimate.
The OFMC output trace for this simulation can be seen
below.

1% OFMC

2% Version of 2006/02/13

3SUMMARY

4 SAFE

SDETAILS

6 BOUNDED_NUMBER_OF_SESSIONS

7PROTOCOL

8 /home/span/span/testsuite/results/get_digests.
if

9GOAL

10 as_specified

| IBACKEND

12 OFMC

13COMMENTS

14STATISTICS

15 parseTime: 0.00s

16 searchTime: 0.02s

17 wvisitedNodes: \text{5}~nodes

18 depth: \text{4}~plies

E. VERIFICATION RESULTS
The validation results for SPDM using the OFMC back-
end are presented in Table 4. The table shows the
cases that have been examined for potential security goal
breaches.

The obtained results are reported in Table 4. These results
are summarized by AVISPA using one of the following:

« Safe means that the protocol does not breach any of the
security goals outlined in the HLPSL specification.

o Unsafe implies that the protocol for which an attack
trace was identified contains a security vulnerability.

o Inconclusive refers to the fact that, due to funda-
mental difficulties, AVISPA is unable to examine the
protocol.

60346

Intruder_ host_chip
i—0 a — 3

Stepl.
Get_Ver

Step2.
msg

Step3.
Get Cap

Step4d.
msg

. Step5.
Negotiate Algo

Step6.
msg

Step7.
Get Digests
—

FIGURE 8. SPDM protocol simulation with illegitimate external chip.

TABLE 3. Attack scenarios.

Scenario [Session Configuration

1 session(a, b, h)
2 session(a, i, h)

F. COMPUTATIONAL OVERHEAD

The tool is efficient and consumes minimal memory and
central processing unit (CPU) resources. We used the system
monitor tool to estimate the CPU and memory usage and
found that, on average, the tool uses approximately 1% of
CPU resources and 30% of memory resources. It should be
noted that the tool runs on an Ubuntu platform within a virtual
machine, which is allocated 4096 MB of base memory and
three processors by the host system. Despite these modest
resources, the verification process completes within seconds,
demonstrating that the verification process is both feasible
and fast enough.

AVISPA+SPAN is a powerful tool for verifying security
protocols, but it can be computationally intensive and may
not scale well for very large systems or complex protocols.
In particular, the verification time can increase exponentially
with the number of protocol runs, making it impractical for
large systems. However, there are techniques that can be
used to improve the scalability of formal verification through
AVISPA+SPAN, such as reducing the size of the protocol,
optimizing the verification parameters, and parallelizing the
verification process across multiple machines. We proposed a
lightweight SPDM protocol that is not computationally inten-
sive. As a result, the tool can traverse the required number of
states quickly.

We estimated the computational complexity of the SPDM
protocol in addition to that of the verification tool. The pro-
tocol is executed on two Raspberry Pi 4B devices, with one
designated as the requester and the other as the responder
module. The Raspberry Pi platform integrates a powerful
Broadcom BCM2711 processor with a frequency of 1.8GHz
and 4GB of internal memory. The total runtime of the proto-
col is approximately 29 seconds, including a 2-second initial
communication stage, a 0.70-second GET_DIGEST stage,
a 3-second GET_CERTIFICATE stage, a 10-second CHAL-
LENGE phase, a 12-second KEY_EXCHANGE stage, and a
0.7-second secure communication session.

VOLUME 11, 2023

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

IEEE Access

TABLE 4. Validation results with OFMC backend.

Scenario [Description | Result
VisitedNodes: 5 nodes
session(a,b,k,h) Depth: 4 plies Unsafe

SearchTime: 0.02s
VisitedNodes: 19 nodes
Depth: 5 plies Safe
SearchTime: 0.05s

session(a,i,k,h)

V. CHALLENGES INVOLVED

The SPDM protocol provides a comprehensive set of tools
and features to ensure the authentication, secrecy, and confi-
dentiality of data and devices. This work focuses on C2C-ZT,
where the host chip initiates the protocol and authenticates
the guest chip using digital certificates. Major challenges in
formally verifying the proposed lightweight SPDM protocol
for C2C-ZT include:

1) We model the private key of the CA as a symmetric
public key between the chips and use inv() to convert it
into the private key. To ensure the confidentiality and
secrecy of the CA’s private key, we have implemented
specific features. While this method replicates the con-
cept of a public-key infrastructure (PKI), finding an
exact solution to this problem remains a challenge.

2) While we assume that the guest chip contains a dig-
ital certificate, in reality, most hardware chips do not
have digital certificates, and it is unclear whether they
contain them. Implementing PKI for hardware chips
requires the host chips to store the public keys of major
CAs, which can be an overhead.

3) To minimize the amount of data exchanged between
devices, SPDM incorporates the sharing of digital
certificate hashes before the actual exchange takes
place. Although this feature significantly reduces
data exchange overhead, implementing it on the
AVISPA+SPAN tool can be challenging due to the
presence of if-else conditions. If the host chip detects
the presence of digital certificate hashes, it skips the
step of requesting the certificate and proceeds directly
to sending the challenge. However, if the hashes are
not found, it will request the digital certificates before
proceeding.

4) A major challenge is to thoroughly study the SPDM
protocol and develop the necessary features that guar-
antee the minimum requirements for ZT authentication
while remaining lightweight.

5) The SPDM protocol relies on asymmetric cryptography
and public-key certificates for authentication. While
these operations can be resource-intensive, they are
necessary for ensuring ZT. This means that chip manu-
facturers may need to provide more on-chip resources
to support authentication. In the proposed lightweight
SPDM, we suggest using lightweight digital certifi-
cates instead of the standard X.509 certificates [42].
These lightweight certificates are already being used
by the research community for IoT devices and are

VOLUME 11, 2023

more efficient because they use elliptic curve cryptog-
raphy (ECC) instead of Rivest-Shamir-Adleman (RSA)
for encryption. In summary, more resources than what
are currently available on-chip may be required for
achieving C2C-ZT. However, using lightweight digital
certificates and ECC can help to reduce the resource
requirements and make the authentication process more
efficient. Still, we think that it is accepted that ZT
authentication comes with additional costs.

VI. CONCLUSION
This paper describes a C2C architecture based on the ZT
principles. The SPDM protocol, which allows the authenti-
cation of the external chip to the host chip, is described in
detail. In addition, the protocol enables the establishment of
a secure communication channel for the exchange of data
between the two chips. A detailed formal validation of SPDM
protocol is performed using the widely-used AVISPA4+SPAN
tool. Simulations are conducted for both an authorized and
unauthorized external chip. We infer from the FV that the pro-
tocol meets the necessary security features (secrecy, authenti-
cation, and freshness) and is secure against active and passive
attacks. This document also includes the HLPSL specifica-
tion for SPDM.

Furthermore, we intend to use fuzzy testing to supplement
formal verification and identify any potential vulnerabilities
that may have been missed during formal verification.

REFERENCES

[1] N.F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss,
“Zero trust architecture (ZTA): A comprehensive survey,” IEEE Access,
vol. 10, pp. 57143-57179, 2022.

[2] J.L.Hardcastle. (Dec. 2022). Google Brings Beyondcorp Zero-Trust Secu-

rity to the Masses. Accessed: Dec. 2022. [Online]. Available: https://www.

sdxcentral.com/articles/news/google-productizes-beyondcorp-zero-trust-
network-security/2020/04/

R. Ward and B. Beyer, ‘“BeyondCorp: A new approach to enterprise secu-

rity,” Login, vol. 39, no. 66, pp. 6-11, 2014. [Online]. Available: [Online].

Available: https://research.google/pubs/pub43231/

Implementing a Zero Trust Security Model at Microsoft. Microsoft

Corporation. Accessed: Dec. 2022. [Online]. Available: https://www.

microsoft.com/en-us/insidetrack/implementing-a-zero-trust-security-

model-at-microsoft

T. Dawoud. (2021). Zero Trust Deployment Guide for Microsoft

Azure Active Directory. Accessed: Dec. 2022. [Online]. Available:

https://www.microsoft.com/en-us/security/blog/2020/04/30/zero-trust-

deployment-guide-azure-active-directory/

O. Hireche, C. Benzaid, and T. Taleb, “Deep data plane programming and

Al for zero-trust self-driven networking in beyond 5G,” Comput. Netw.,

vol. 203, Feb. 2022, Art. no. 108668.

L. Ferretti, F. Magnanini, M. Andreolini, and M. Colajanni, ‘““Survivable

zero trust for cloud computing environments,” Comput. Secur., vol. 110,

Nov. 2021, Art. no. 102419.

[8] S. W. Shah, N. F. Syed, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss,

“LCDA: Lightweight continuous device-to-device authentication for a

zero trust architecture (ZTA),” Comput. Secur., vol. 108, Sep. 2021,

Art. no. 102351.

B. Chen, S. Qiao, J. Zhao, D. Liu, X. Shi, M. Lyu, H. Chen, H. Lu,

and Y. Zhai, “A security awareness and protection system for 5G smart

healthcare based on zero-trust architecture,” IEEE Internet Things J.,

vol. 8, no. 13, pp. 10248-10263, Jul. 2021.

[10] M. Sultana, A. Hossain, F. Laila, K. A. Taher, and M. N. Islam, “Towards
developing a secure medical image sharing system based on zero trust prin-
ciples and blockchain technology,” BMC Med. Informat. Decis. Making,
vol. 20, no. 1, pp. 1-10, Oct. 2020.

3

[l

4

[5

[6

—

[7

—

[9

—

60347

IEEE Access

A. Ahmed et al.: Light-Weight Security Protocol and Data Model for Chip-to-Chip Zero-Trust

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Y. Liu, X. Hao, W. Ren, R. Xiong, T. Zhu, K. R. Choo, and G. Min,
“A blockchain-based decentralized, fair and authenticated information
sharing scheme in zero trust Internet-of-Things,” IEEE Trans. Comput.,
vol. 72, no. 2, pp. 501-512, Feb. 2023.

A.N. Jahromi, H. Karimipour, A. Dehghantanha, and K. R. Choo, “Toward
detection and attribution of cyber-attacks in IoT-enabled cyber—physical
systems,” IEEE Internet Things J., vol. 8, no. 17, pp. 13712-13722,
Sep. 2021.

C. Pu, A. Wall, K. R. Choo, I. Ahmed, and S. Lim, “A lightweight and
privacy-preserving mutual authentication and key agreement protocol for
Internet of Drones environment,” IEEE Internet Things J., vol. 9, no. 12,
pp. 9918-9933, Jun. 2022.

A. Stern, H. Wang, F. Rahman, F. Farahmandi, and M. Tehranipoor,
“ACED-IT: Assuring confidential electronic design against insider threats
in a zero-trust environment,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 10, pp. 3202-3215, Oct. 2022.

M. Hasan, J. Cruz, P. Chakraborty, S. Bhunia, and T. Hoque, “Trojan
resilient computing in COTS processors under zero trust,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 10, pp. 1412-1424,
Oct. 2022.

S. Smaoui, F. Zarai, M. S. Obaidat, K. F. Hsiao, and L. Kamoun,
“HIP_IKEv2: A proposal to improve internet key exchange protocol-
based on host identity protocol,” in Proc. Intl. Conf. Simulation Modeling
Methodolog. Technol. Appl. (SIMULTECH), 2013, pp. 404—411.

V. Odelu, A. K. Das, and A. Goswami, “A secure biometrics-based multi-
server authentication protocol using smart cards,” IEEE Trans. Inf. Foren-
sics Security, vol. 10, no. 9, pp. 1953-1966, Sep. 2015.

M. Wazid, A. K. Das, V. Odelu, N. Kumar, and W. Susilo, ““Secure remote
user authenticated key establishment protocol for smart home environ-
ment,” IEEE Trans. Depend. Secure Comput., vol. 17, no. 2, pp. 391-406,
Mar. 2020.

A. Dua, N. Kumar, A. K. Das, and W. Susilo, ‘“Secure message communi-
cation protocol among vehicles in smart city,” IEEE Trans. Veh. Technol.,
vol. 67, no. 5, pp. 4359-4373, May 2018.

S. Paliwal, “‘Hash-based conditional privacy preserving authentication and
key exchange protocol suitable for industrial Internet of Things,” IEEE
Access, vol. 7, pp. 136073-136093, 2019.

L. Vigano, “Automated security protocol analysis with the AVISPA tool,”
Electron. Notes Theor. Comput. Sci., vol. 155, pp. 61-86, May 2006.

Y. Palmo, S. Tanimoto, H. Sato, and A. Kanai, “Optimal federation
method for embedding Internet of Things in software-defined perime-
ter,” IEEE Consum. Electron. Mag., early access, Sep. 19, 2022, doi:
10.1109/MCE.2022.3207862.

J. Guo and M. Xu, “ZTESA—A zero-trust endogenous safety architecture:
Gain the endogenous safety benefit, avoid insider threats,” in Proc. Int.
Symp. Comput. Appl. Inf. Syst. (ISCAIS), May 2022, pp. 192-202.

X. Chen, W. Feng, N. Ge, and Y. Zhang, ‘““Zero trust architecture for 6G
security,” 2022, arXiv:2203.07716.

K. Bicakei, Y. Uzunay, and M. Khan, “Towards zero trust: The design and
implementation of a secure end-point device for remote working,” in Proc.
Int. Conf. Inf. Secur. Cryptol. (ISCTURKEY), Dec. 2021, pp. 28-33.

J. Lowdermilk and S. Sethumadhavan, “Towards zero trust: An experi-
ence report,” in Proc. IEEE Secure Develop. Conf. (SecDev), Oct. 2021,
pp. 79-85.

S. Dutta, B. Grisafe, C. Frentzel, Z. Enciso, M. S. Jose, J. Smith,
K. Ni, S. Joshi, and S. Datta, ““Experimental demonstration of gate-level
logic camouflaging and run-time reconfigurability using ferroelectric FET
for hardware security,” IEEE Trans. Electron Devices, vol. 68, no. 2,
pp. 516-522, Feb. 2021.

M. Avalle, A. Pironti, and R. Sisto, “Formal verification of security
protocol implementations: A survey,” Formal Aspects Comput., vol. 26,
no. 1, pp. 99-123, Jan. 2014.

“Security protocol and data model (SPDM) specification,” Distrib. Manag.
Task Force (DMTF), Portland, OR, USA, Tech. Rep. 1.2.1, 2022. [Online].
Available: https://www.dmtf.org/sites/default/files/standards/documents/
DSP0274_1.2.1.pdf

J. Yao, K. Matusiewicz, and V. Zimmer, ‘“‘Post quantum design in SPDM
for device authentication and key establishment,” Cryptography, vol. 6,
no. 4, p. 48, Sep. 2022.

“PCI express 7.0 specification,” PCI-SG, Singapore, Tech. Rep., 2022.
[Online]. Available: https://pcisig.com/specifications/pci-express-70-
specification

60348

(32]

(33]

[34]

(35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

“Trusted platform module 2.0 library specification,” TCG,
Washington, DC, USA, Tech. Rep., 2022. [Online]. Available: https://
trustedcomputinggroup.org/tpm-2-0-library-specification-approved-
isoiec-international-standard/

“PCI express base specification revision 6.0.1, version 1.0,” TCG,
Washington, DC, USA, Tech. Rep., 2022. [Online]. Available:
https://members.pcisig.com/wg/PCI-SIG/document/18363

R. C. A. Alves, B. C. Albertini, and M. A. Simplicio, “Securing hard
drives with the security protocol and data model (SPDM),” in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2022, pp. 446-447.

R. C. Merkle, “Secure communications over insecure channels,” Commun.
ACM, vol. 21, no. 4, pp. 294-299, Apr. 1978.

D. Basin, S. Mddersheim, and L. Vigano, “OFMC: A symbolic model
checker for security protocols,” Int. J. Inf. Secur., vol. 4,no. 3, pp. 181-208,
Jun. 2005.

M. Turuani, “The CL-Atse protocol analyser,” in Proc. Int. Conf.
Rewriting Techn. Appl., F. Pfenning, Ed. Seattle, WA, USA: Springer,
2006, pp.277-286. [Online]. Available: https:/link.springer.com/
chapter/10.1007/11805618_21

A. Armando and L. Compagna, “SAT-based model-checking for security
protocols analysis,” Int. J. Inf. Secur., vol. 7, no. 1, pp. 3-32, Jan. 2008.
Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl, “Improvements
on the Genet and Klay technique to automatically verify security proto-
cols,” in Proc. Int. Ws. Automated Verification Infinite-State Syst. (AVIS),
Oct. 2022, pp. 1-11.

D. Dolev and A. C. Yao, “On the security of public key protocols,” IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198-208, Mar. 1983.

S. Dey and A. Hossain, “‘Session-key establishment and authentication in a
smart home network using public key cryptography,” IEEE Sensors Lett.,
vol. 3, no. 4, pp. 1-4, Apr. 2019.

F. Forsby, M. Furuhed, P. Papadimitratos, and S. Raza, “Lightweight X.509
digital certificates for the Internet of Things,” in Interoperability, Saf.
Secur. 10T, Int. Conf. IoT (InterloT), 2018, pp. 123-133.

ASHFAQ AHMED (Senior Member, IEEE)
received the M.S. and Ph.D. degrees from the
Department of Electronics and Telecommuni-
cations, Politecnico di Torino, Turin, Italy, in
2010 and 2014, respectively. He is currently with
the Center for Cyber-Physical Systems, Depart-
ment of Electrical Engineering and Computer Sci-
ence, Khalifa University (KU), Abu Dhabi, United
Arab Emirates. His research interests include hard-
ware security, security protocols, computational

intelligence, evolutionary algorithms, convex optimization, resource allo-
cation, applied optimization for 5G and beyond 5G applications, cloud
computing, and physical layer wireless communication.

|

ABDULHADI SHOUFAN (Member, IEEE)

received the Dr.-Ing. degree from Technische

University Darmstadt, Germany, in 2007. He is

a ﬁ 3 currently an Associate Professor of electrical engi-

B neering and computer science with Khalifa Uni-

¥ versity, Abu Dhabi. His research interests include

drone security, safe operation, embedded security,

cryptography hardware, learning analytics, and
engineering education.

KAIS BELWAFI (Member, IEEE) received the
M.Sc. degree in intelligent and communication
systems from the Highest School of Engineering of
Sousse, Tunisia, in 2012, and the Ph.D. degree in
sciences and technology of information and com-
munication from the University of Paris—Seine,
Cergy-Pontoise, France, in 2017. He is currently
a Research Scientist with the Electrical and Com-
puter Engineering Department, Khalifa University.
His main research interests include the security

of embedded systems, drone security, brain—computer interfaces, machine
learning, signal processing, embedded and real-time systems, and HW/SW
co-design.

VOLUME 11, 2023

http://dx.doi.org/10.1109/MCE.2022.3207862

